]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
block: Add Sed-opal library
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54 /*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 u32 cmbloc;
103 struct nvme_ctrl ctrl;
104 struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109 return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
115 */
116 struct nvme_queue {
117 struct device *q_dmadev;
118 struct nvme_dev *dev;
119 char irqname[24]; /* nvme4294967295-65535\0 */
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
122 struct nvme_command __iomem *sq_cmds_io;
123 volatile struct nvme_completion *cqes;
124 struct blk_mq_tags **tags;
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
127 u32 __iomem *q_db;
128 u16 q_depth;
129 s16 cq_vector;
130 u16 sq_tail;
131 u16 cq_head;
132 u16 qid;
133 u8 cq_phase;
134 u8 cqe_seen;
135 };
136
137 /*
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
140 * me express that. Use nvme_init_iod to ensure there's enough space
141 * allocated to store the PRP list.
142 */
143 struct nvme_iod {
144 struct nvme_request req;
145 struct nvme_queue *nvmeq;
146 int aborted;
147 int npages; /* In the PRP list. 0 means small pool in use */
148 int nents; /* Used in scatterlist */
149 int length; /* Of data, in bytes */
150 dma_addr_t first_dma;
151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152 struct scatterlist *sg;
153 struct scatterlist inline_sg[0];
154 };
155
156 /*
157 * Check we didin't inadvertently grow the command struct
158 */
159 static inline void _nvme_check_size(void)
160 {
161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176 * Max size of iod being embedded in the request payload
177 */
178 #define NVME_INT_PAGES 2
179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182 * Will slightly overestimate the number of pages needed. This is OK
183 * as it only leads to a small amount of wasted memory for the lifetime of
184 * the I/O.
185 */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 dev->ctrl.page_size);
190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 unsigned int size, unsigned int nseg)
195 {
196 return sizeof(__le64 *) * nvme_npages(size, dev) +
197 sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202 return sizeof(struct nvme_iod) +
203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
213 {
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[0];
216
217 WARN_ON(hctx_idx != 0);
218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219 WARN_ON(nvmeq->tags);
220
221 hctx->driver_data = nvmeq;
222 nvmeq->tags = &dev->admin_tagset.tags[0];
223 return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228 struct nvme_queue *nvmeq = hctx->driver_data;
229
230 nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234 unsigned int hctx_idx, unsigned int rq_idx,
235 unsigned int numa_node)
236 {
237 struct nvme_dev *dev = data;
238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239 struct nvme_queue *nvmeq = dev->queues[0];
240
241 BUG_ON(!nvmeq);
242 iod->nvmeq = nvmeq;
243 return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247 unsigned int hctx_idx)
248 {
249 struct nvme_dev *dev = data;
250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252 if (!nvmeq->tags)
253 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256 hctx->driver_data = nvmeq;
257 return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
263 {
264 struct nvme_dev *dev = data;
265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 BUG_ON(!nvmeq);
269 iod->nvmeq = nvmeq;
270 return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275 struct nvme_dev *dev = set->driver_data;
276
277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282 * @nvmeq: The queue to use
283 * @cmd: The command to send
284 *
285 * Safe to use from interrupt context
286 */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288 struct nvme_command *cmd)
289 {
290 u16 tail = nvmeq->sq_tail;
291
292 if (nvmeq->sq_cmds_io)
293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294 else
295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297 if (++tail == nvmeq->q_depth)
298 tail = 0;
299 writel(tail, nvmeq->q_db);
300 nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, unsigned size,
310 struct nvme_dev *dev)
311 {
312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313 int nseg = blk_rq_nr_phys_segments(rq);
314
315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317 if (!iod->sg)
318 return BLK_MQ_RQ_QUEUE_BUSY;
319 } else {
320 iod->sg = iod->inline_sg;
321 }
322
323 iod->aborted = 0;
324 iod->npages = -1;
325 iod->nents = 0;
326 iod->length = size;
327
328 if (!(rq->rq_flags & RQF_DONTPREP)) {
329 rq->retries = 0;
330 rq->rq_flags |= RQF_DONTPREP;
331 }
332 return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338 const int last_prp = dev->ctrl.page_size / 8 - 1;
339 int i;
340 __le64 **list = iod_list(req);
341 dma_addr_t prp_dma = iod->first_dma;
342
343 if (iod->npages == 0)
344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 for (i = 0; i < iod->npages; i++) {
346 __le64 *prp_list = list[i];
347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 prp_dma = next_prp_dma;
350 }
351
352 if (iod->sg != iod->inline_sg)
353 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 if (be32_to_cpu(pi->ref_tag) == v)
360 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 if (be32_to_cpu(pi->ref_tag) == p)
366 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371 *
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
376 *
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
378 */
379 static void nvme_dif_remap(struct request *req,
380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 struct nvme_ns *ns = req->rq_disk->private_data;
383 struct bio_integrity_payload *bip;
384 struct t10_pi_tuple *pi;
385 void *p, *pmap;
386 u32 i, nlb, ts, phys, virt;
387
388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 return;
390
391 bip = bio_integrity(req->bio);
392 if (!bip)
393 return;
394
395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397 p = pmap;
398 virt = bip_get_seed(bip);
399 phys = nvme_block_nr(ns, blk_rq_pos(req));
400 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 ts = ns->disk->queue->integrity.tuple_size;
402
403 for (i = 0; i < nlb; i++, virt++, phys++) {
404 pi = (struct t10_pi_tuple *)p;
405 dif_swap(phys, virt, pi);
406 p += ts;
407 }
408 kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
424 int total_len)
425 {
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 struct dma_pool *pool;
428 int length = total_len;
429 struct scatterlist *sg = iod->sg;
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
432 u32 page_size = dev->ctrl.page_size;
433 int offset = dma_addr & (page_size - 1);
434 __le64 *prp_list;
435 __le64 **list = iod_list(req);
436 dma_addr_t prp_dma;
437 int nprps, i;
438
439 length -= (page_size - offset);
440 if (length <= 0)
441 return true;
442
443 dma_len -= (page_size - offset);
444 if (dma_len) {
445 dma_addr += (page_size - offset);
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
452 if (length <= page_size) {
453 iod->first_dma = dma_addr;
454 return true;
455 }
456
457 nprps = DIV_ROUND_UP(length, page_size);
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
460 iod->npages = 0;
461 } else {
462 pool = dev->prp_page_pool;
463 iod->npages = 1;
464 }
465
466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 if (!prp_list) {
468 iod->first_dma = dma_addr;
469 iod->npages = -1;
470 return false;
471 }
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
474 i = 0;
475 for (;;) {
476 if (i == page_size >> 3) {
477 __le64 *old_prp_list = prp_list;
478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 if (!prp_list)
480 return false;
481 list[iod->npages++] = prp_list;
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
498 }
499
500 return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 unsigned size, struct nvme_command *cmnd)
505 {
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
516
517 ret = BLK_MQ_RQ_QUEUE_BUSY;
518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 DMA_ATTR_NO_WARN))
520 goto out;
521
522 if (!nvme_setup_prps(dev, req, size))
523 goto out_unmap;
524
525 ret = BLK_MQ_RQ_QUEUE_ERROR;
526 if (blk_integrity_rq(req)) {
527 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 goto out_unmap;
529
530 sg_init_table(&iod->meta_sg, 1);
531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532 goto out_unmap;
533
534 if (rq_data_dir(req))
535 nvme_dif_remap(req, nvme_dif_prep);
536
537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538 goto out_unmap;
539 }
540
541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543 if (blk_integrity_rq(req))
544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545 return BLK_MQ_RQ_QUEUE_OK;
546
547 out_unmap:
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550 return ret;
551 }
552
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559 if (iod->nents) {
560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 if (blk_integrity_rq(req)) {
562 if (!rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_complete);
564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565 }
566 }
567
568 nvme_cleanup_cmd(req);
569 nvme_free_iod(dev, req);
570 }
571
572 /*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
577 {
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 unsigned map_len;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
585
586 /*
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
590 */
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 req->cmd_type != REQ_TYPE_DRV_PRIV) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
596 }
597 }
598
599 ret = nvme_setup_cmd(ns, req, &cmnd);
600 if (ret != BLK_MQ_RQ_QUEUE_OK)
601 return ret;
602
603 map_len = nvme_map_len(req);
604 ret = nvme_init_iod(req, map_len, dev);
605 if (ret != BLK_MQ_RQ_QUEUE_OK)
606 goto out_free_cmd;
607
608 if (blk_rq_nr_phys_segments(req))
609 ret = nvme_map_data(dev, req, map_len, &cmnd);
610
611 if (ret != BLK_MQ_RQ_QUEUE_OK)
612 goto out_cleanup_iod;
613
614 blk_mq_start_request(req);
615
616 spin_lock_irq(&nvmeq->q_lock);
617 if (unlikely(nvmeq->cq_vector < 0)) {
618 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
619 ret = BLK_MQ_RQ_QUEUE_BUSY;
620 else
621 ret = BLK_MQ_RQ_QUEUE_ERROR;
622 spin_unlock_irq(&nvmeq->q_lock);
623 goto out_cleanup_iod;
624 }
625 __nvme_submit_cmd(nvmeq, &cmnd);
626 nvme_process_cq(nvmeq);
627 spin_unlock_irq(&nvmeq->q_lock);
628 return BLK_MQ_RQ_QUEUE_OK;
629 out_cleanup_iod:
630 nvme_free_iod(dev, req);
631 out_free_cmd:
632 nvme_cleanup_cmd(req);
633 return ret;
634 }
635
636 static void nvme_complete_rq(struct request *req)
637 {
638 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
639 struct nvme_dev *dev = iod->nvmeq->dev;
640 int error = 0;
641
642 nvme_unmap_data(dev, req);
643
644 if (unlikely(req->errors)) {
645 if (nvme_req_needs_retry(req, req->errors)) {
646 req->retries++;
647 nvme_requeue_req(req);
648 return;
649 }
650
651 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
652 error = req->errors;
653 else
654 error = nvme_error_status(req->errors);
655 }
656
657 if (unlikely(iod->aborted)) {
658 dev_warn(dev->ctrl.device,
659 "completing aborted command with status: %04x\n",
660 req->errors);
661 }
662
663 blk_mq_end_request(req, error);
664 }
665
666 /* We read the CQE phase first to check if the rest of the entry is valid */
667 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
668 u16 phase)
669 {
670 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
671 }
672
673 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
674 {
675 u16 head, phase;
676
677 head = nvmeq->cq_head;
678 phase = nvmeq->cq_phase;
679
680 while (nvme_cqe_valid(nvmeq, head, phase)) {
681 struct nvme_completion cqe = nvmeq->cqes[head];
682 struct request *req;
683
684 if (++head == nvmeq->q_depth) {
685 head = 0;
686 phase = !phase;
687 }
688
689 if (tag && *tag == cqe.command_id)
690 *tag = -1;
691
692 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
693 dev_warn(nvmeq->dev->ctrl.device,
694 "invalid id %d completed on queue %d\n",
695 cqe.command_id, le16_to_cpu(cqe.sq_id));
696 continue;
697 }
698
699 /*
700 * AEN requests are special as they don't time out and can
701 * survive any kind of queue freeze and often don't respond to
702 * aborts. We don't even bother to allocate a struct request
703 * for them but rather special case them here.
704 */
705 if (unlikely(nvmeq->qid == 0 &&
706 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
707 nvme_complete_async_event(&nvmeq->dev->ctrl,
708 cqe.status, &cqe.result);
709 continue;
710 }
711
712 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
713 nvme_req(req)->result = cqe.result;
714 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
715 }
716
717 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
718 return;
719
720 if (likely(nvmeq->cq_vector >= 0))
721 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
722 nvmeq->cq_head = head;
723 nvmeq->cq_phase = phase;
724
725 nvmeq->cqe_seen = 1;
726 }
727
728 static void nvme_process_cq(struct nvme_queue *nvmeq)
729 {
730 __nvme_process_cq(nvmeq, NULL);
731 }
732
733 static irqreturn_t nvme_irq(int irq, void *data)
734 {
735 irqreturn_t result;
736 struct nvme_queue *nvmeq = data;
737 spin_lock(&nvmeq->q_lock);
738 nvme_process_cq(nvmeq);
739 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
740 nvmeq->cqe_seen = 0;
741 spin_unlock(&nvmeq->q_lock);
742 return result;
743 }
744
745 static irqreturn_t nvme_irq_check(int irq, void *data)
746 {
747 struct nvme_queue *nvmeq = data;
748 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
749 return IRQ_WAKE_THREAD;
750 return IRQ_NONE;
751 }
752
753 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
754 {
755 struct nvme_queue *nvmeq = hctx->driver_data;
756
757 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
758 spin_lock_irq(&nvmeq->q_lock);
759 __nvme_process_cq(nvmeq, &tag);
760 spin_unlock_irq(&nvmeq->q_lock);
761
762 if (tag == -1)
763 return 1;
764 }
765
766 return 0;
767 }
768
769 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
770 {
771 struct nvme_dev *dev = to_nvme_dev(ctrl);
772 struct nvme_queue *nvmeq = dev->queues[0];
773 struct nvme_command c;
774
775 memset(&c, 0, sizeof(c));
776 c.common.opcode = nvme_admin_async_event;
777 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
778
779 spin_lock_irq(&nvmeq->q_lock);
780 __nvme_submit_cmd(nvmeq, &c);
781 spin_unlock_irq(&nvmeq->q_lock);
782 }
783
784 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
785 {
786 struct nvme_command c;
787
788 memset(&c, 0, sizeof(c));
789 c.delete_queue.opcode = opcode;
790 c.delete_queue.qid = cpu_to_le16(id);
791
792 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
793 }
794
795 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
796 struct nvme_queue *nvmeq)
797 {
798 struct nvme_command c;
799 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
800
801 /*
802 * Note: we (ab)use the fact the the prp fields survive if no data
803 * is attached to the request.
804 */
805 memset(&c, 0, sizeof(c));
806 c.create_cq.opcode = nvme_admin_create_cq;
807 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
808 c.create_cq.cqid = cpu_to_le16(qid);
809 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
810 c.create_cq.cq_flags = cpu_to_le16(flags);
811 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
812
813 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
814 }
815
816 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
817 struct nvme_queue *nvmeq)
818 {
819 struct nvme_command c;
820 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
821
822 /*
823 * Note: we (ab)use the fact the the prp fields survive if no data
824 * is attached to the request.
825 */
826 memset(&c, 0, sizeof(c));
827 c.create_sq.opcode = nvme_admin_create_sq;
828 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
829 c.create_sq.sqid = cpu_to_le16(qid);
830 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
831 c.create_sq.sq_flags = cpu_to_le16(flags);
832 c.create_sq.cqid = cpu_to_le16(qid);
833
834 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
835 }
836
837 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
838 {
839 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
840 }
841
842 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
843 {
844 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
845 }
846
847 static void abort_endio(struct request *req, int error)
848 {
849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850 struct nvme_queue *nvmeq = iod->nvmeq;
851 u16 status = req->errors;
852
853 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
854 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
855 blk_mq_free_request(req);
856 }
857
858 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
859 {
860 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
861 struct nvme_queue *nvmeq = iod->nvmeq;
862 struct nvme_dev *dev = nvmeq->dev;
863 struct request *abort_req;
864 struct nvme_command cmd;
865
866 /*
867 * Shutdown immediately if controller times out while starting. The
868 * reset work will see the pci device disabled when it gets the forced
869 * cancellation error. All outstanding requests are completed on
870 * shutdown, so we return BLK_EH_HANDLED.
871 */
872 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
873 dev_warn(dev->ctrl.device,
874 "I/O %d QID %d timeout, disable controller\n",
875 req->tag, nvmeq->qid);
876 nvme_dev_disable(dev, false);
877 req->errors = NVME_SC_CANCELLED;
878 return BLK_EH_HANDLED;
879 }
880
881 /*
882 * Shutdown the controller immediately and schedule a reset if the
883 * command was already aborted once before and still hasn't been
884 * returned to the driver, or if this is the admin queue.
885 */
886 if (!nvmeq->qid || iod->aborted) {
887 dev_warn(dev->ctrl.device,
888 "I/O %d QID %d timeout, reset controller\n",
889 req->tag, nvmeq->qid);
890 nvme_dev_disable(dev, false);
891 nvme_reset(dev);
892
893 /*
894 * Mark the request as handled, since the inline shutdown
895 * forces all outstanding requests to complete.
896 */
897 req->errors = NVME_SC_CANCELLED;
898 return BLK_EH_HANDLED;
899 }
900
901 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
902 atomic_inc(&dev->ctrl.abort_limit);
903 return BLK_EH_RESET_TIMER;
904 }
905 iod->aborted = 1;
906
907 memset(&cmd, 0, sizeof(cmd));
908 cmd.abort.opcode = nvme_admin_abort_cmd;
909 cmd.abort.cid = req->tag;
910 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
911
912 dev_warn(nvmeq->dev->ctrl.device,
913 "I/O %d QID %d timeout, aborting\n",
914 req->tag, nvmeq->qid);
915
916 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
917 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
918 if (IS_ERR(abort_req)) {
919 atomic_inc(&dev->ctrl.abort_limit);
920 return BLK_EH_RESET_TIMER;
921 }
922
923 abort_req->timeout = ADMIN_TIMEOUT;
924 abort_req->end_io_data = NULL;
925 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
926
927 /*
928 * The aborted req will be completed on receiving the abort req.
929 * We enable the timer again. If hit twice, it'll cause a device reset,
930 * as the device then is in a faulty state.
931 */
932 return BLK_EH_RESET_TIMER;
933 }
934
935 static void nvme_free_queue(struct nvme_queue *nvmeq)
936 {
937 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
938 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
939 if (nvmeq->sq_cmds)
940 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
941 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
942 kfree(nvmeq);
943 }
944
945 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
946 {
947 int i;
948
949 for (i = dev->queue_count - 1; i >= lowest; i--) {
950 struct nvme_queue *nvmeq = dev->queues[i];
951 dev->queue_count--;
952 dev->queues[i] = NULL;
953 nvme_free_queue(nvmeq);
954 }
955 }
956
957 /**
958 * nvme_suspend_queue - put queue into suspended state
959 * @nvmeq - queue to suspend
960 */
961 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
962 {
963 int vector;
964
965 spin_lock_irq(&nvmeq->q_lock);
966 if (nvmeq->cq_vector == -1) {
967 spin_unlock_irq(&nvmeq->q_lock);
968 return 1;
969 }
970 vector = nvmeq_irq(nvmeq);
971 nvmeq->dev->online_queues--;
972 nvmeq->cq_vector = -1;
973 spin_unlock_irq(&nvmeq->q_lock);
974
975 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
976 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
977
978 free_irq(vector, nvmeq);
979
980 return 0;
981 }
982
983 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
984 {
985 struct nvme_queue *nvmeq = dev->queues[0];
986
987 if (!nvmeq)
988 return;
989 if (nvme_suspend_queue(nvmeq))
990 return;
991
992 if (shutdown)
993 nvme_shutdown_ctrl(&dev->ctrl);
994 else
995 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
996 dev->bar + NVME_REG_CAP));
997
998 spin_lock_irq(&nvmeq->q_lock);
999 nvme_process_cq(nvmeq);
1000 spin_unlock_irq(&nvmeq->q_lock);
1001 }
1002
1003 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1004 int entry_size)
1005 {
1006 int q_depth = dev->q_depth;
1007 unsigned q_size_aligned = roundup(q_depth * entry_size,
1008 dev->ctrl.page_size);
1009
1010 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1011 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1012 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1013 q_depth = div_u64(mem_per_q, entry_size);
1014
1015 /*
1016 * Ensure the reduced q_depth is above some threshold where it
1017 * would be better to map queues in system memory with the
1018 * original depth
1019 */
1020 if (q_depth < 64)
1021 return -ENOMEM;
1022 }
1023
1024 return q_depth;
1025 }
1026
1027 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1028 int qid, int depth)
1029 {
1030 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1031 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1032 dev->ctrl.page_size);
1033 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1034 nvmeq->sq_cmds_io = dev->cmb + offset;
1035 } else {
1036 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1037 &nvmeq->sq_dma_addr, GFP_KERNEL);
1038 if (!nvmeq->sq_cmds)
1039 return -ENOMEM;
1040 }
1041
1042 return 0;
1043 }
1044
1045 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1046 int depth)
1047 {
1048 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1049 if (!nvmeq)
1050 return NULL;
1051
1052 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1053 &nvmeq->cq_dma_addr, GFP_KERNEL);
1054 if (!nvmeq->cqes)
1055 goto free_nvmeq;
1056
1057 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1058 goto free_cqdma;
1059
1060 nvmeq->q_dmadev = dev->dev;
1061 nvmeq->dev = dev;
1062 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1063 dev->ctrl.instance, qid);
1064 spin_lock_init(&nvmeq->q_lock);
1065 nvmeq->cq_head = 0;
1066 nvmeq->cq_phase = 1;
1067 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1068 nvmeq->q_depth = depth;
1069 nvmeq->qid = qid;
1070 nvmeq->cq_vector = -1;
1071 dev->queues[qid] = nvmeq;
1072 dev->queue_count++;
1073
1074 return nvmeq;
1075
1076 free_cqdma:
1077 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1078 nvmeq->cq_dma_addr);
1079 free_nvmeq:
1080 kfree(nvmeq);
1081 return NULL;
1082 }
1083
1084 static int queue_request_irq(struct nvme_queue *nvmeq)
1085 {
1086 if (use_threaded_interrupts)
1087 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1088 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1089 else
1090 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1091 nvmeq->irqname, nvmeq);
1092 }
1093
1094 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1095 {
1096 struct nvme_dev *dev = nvmeq->dev;
1097
1098 spin_lock_irq(&nvmeq->q_lock);
1099 nvmeq->sq_tail = 0;
1100 nvmeq->cq_head = 0;
1101 nvmeq->cq_phase = 1;
1102 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1103 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1104 dev->online_queues++;
1105 spin_unlock_irq(&nvmeq->q_lock);
1106 }
1107
1108 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1109 {
1110 struct nvme_dev *dev = nvmeq->dev;
1111 int result;
1112
1113 nvmeq->cq_vector = qid - 1;
1114 result = adapter_alloc_cq(dev, qid, nvmeq);
1115 if (result < 0)
1116 return result;
1117
1118 result = adapter_alloc_sq(dev, qid, nvmeq);
1119 if (result < 0)
1120 goto release_cq;
1121
1122 result = queue_request_irq(nvmeq);
1123 if (result < 0)
1124 goto release_sq;
1125
1126 nvme_init_queue(nvmeq, qid);
1127 return result;
1128
1129 release_sq:
1130 adapter_delete_sq(dev, qid);
1131 release_cq:
1132 adapter_delete_cq(dev, qid);
1133 return result;
1134 }
1135
1136 static struct blk_mq_ops nvme_mq_admin_ops = {
1137 .queue_rq = nvme_queue_rq,
1138 .complete = nvme_complete_rq,
1139 .init_hctx = nvme_admin_init_hctx,
1140 .exit_hctx = nvme_admin_exit_hctx,
1141 .init_request = nvme_admin_init_request,
1142 .timeout = nvme_timeout,
1143 };
1144
1145 static struct blk_mq_ops nvme_mq_ops = {
1146 .queue_rq = nvme_queue_rq,
1147 .complete = nvme_complete_rq,
1148 .init_hctx = nvme_init_hctx,
1149 .init_request = nvme_init_request,
1150 .map_queues = nvme_pci_map_queues,
1151 .timeout = nvme_timeout,
1152 .poll = nvme_poll,
1153 };
1154
1155 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1156 {
1157 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1158 /*
1159 * If the controller was reset during removal, it's possible
1160 * user requests may be waiting on a stopped queue. Start the
1161 * queue to flush these to completion.
1162 */
1163 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1164 blk_cleanup_queue(dev->ctrl.admin_q);
1165 blk_mq_free_tag_set(&dev->admin_tagset);
1166 }
1167 }
1168
1169 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1170 {
1171 if (!dev->ctrl.admin_q) {
1172 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1173 dev->admin_tagset.nr_hw_queues = 1;
1174
1175 /*
1176 * Subtract one to leave an empty queue entry for 'Full Queue'
1177 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1178 */
1179 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1180 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1181 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1182 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1183 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1184 dev->admin_tagset.driver_data = dev;
1185
1186 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1187 return -ENOMEM;
1188
1189 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1190 if (IS_ERR(dev->ctrl.admin_q)) {
1191 blk_mq_free_tag_set(&dev->admin_tagset);
1192 return -ENOMEM;
1193 }
1194 if (!blk_get_queue(dev->ctrl.admin_q)) {
1195 nvme_dev_remove_admin(dev);
1196 dev->ctrl.admin_q = NULL;
1197 return -ENODEV;
1198 }
1199 } else
1200 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1201
1202 return 0;
1203 }
1204
1205 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1206 {
1207 int result;
1208 u32 aqa;
1209 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1210 struct nvme_queue *nvmeq;
1211
1212 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1213 NVME_CAP_NSSRC(cap) : 0;
1214
1215 if (dev->subsystem &&
1216 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1217 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1218
1219 result = nvme_disable_ctrl(&dev->ctrl, cap);
1220 if (result < 0)
1221 return result;
1222
1223 nvmeq = dev->queues[0];
1224 if (!nvmeq) {
1225 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1226 if (!nvmeq)
1227 return -ENOMEM;
1228 }
1229
1230 aqa = nvmeq->q_depth - 1;
1231 aqa |= aqa << 16;
1232
1233 writel(aqa, dev->bar + NVME_REG_AQA);
1234 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1235 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1236
1237 result = nvme_enable_ctrl(&dev->ctrl, cap);
1238 if (result)
1239 return result;
1240
1241 nvmeq->cq_vector = 0;
1242 result = queue_request_irq(nvmeq);
1243 if (result) {
1244 nvmeq->cq_vector = -1;
1245 return result;
1246 }
1247
1248 return result;
1249 }
1250
1251 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1252 {
1253
1254 /* If true, indicates loss of adapter communication, possibly by a
1255 * NVMe Subsystem reset.
1256 */
1257 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1258
1259 /* If there is a reset ongoing, we shouldn't reset again. */
1260 if (work_busy(&dev->reset_work))
1261 return false;
1262
1263 /* We shouldn't reset unless the controller is on fatal error state
1264 * _or_ if we lost the communication with it.
1265 */
1266 if (!(csts & NVME_CSTS_CFS) && !nssro)
1267 return false;
1268
1269 /* If PCI error recovery process is happening, we cannot reset or
1270 * the recovery mechanism will surely fail.
1271 */
1272 if (pci_channel_offline(to_pci_dev(dev->dev)))
1273 return false;
1274
1275 return true;
1276 }
1277
1278 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1279 {
1280 /* Read a config register to help see what died. */
1281 u16 pci_status;
1282 int result;
1283
1284 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1285 &pci_status);
1286 if (result == PCIBIOS_SUCCESSFUL)
1287 dev_warn(dev->dev,
1288 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1289 csts, pci_status);
1290 else
1291 dev_warn(dev->dev,
1292 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1293 csts, result);
1294 }
1295
1296 static void nvme_watchdog_timer(unsigned long data)
1297 {
1298 struct nvme_dev *dev = (struct nvme_dev *)data;
1299 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1300
1301 /* Skip controllers under certain specific conditions. */
1302 if (nvme_should_reset(dev, csts)) {
1303 if (!nvme_reset(dev))
1304 nvme_warn_reset(dev, csts);
1305 return;
1306 }
1307
1308 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1309 }
1310
1311 static int nvme_create_io_queues(struct nvme_dev *dev)
1312 {
1313 unsigned i, max;
1314 int ret = 0;
1315
1316 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1317 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1318 ret = -ENOMEM;
1319 break;
1320 }
1321 }
1322
1323 max = min(dev->max_qid, dev->queue_count - 1);
1324 for (i = dev->online_queues; i <= max; i++) {
1325 ret = nvme_create_queue(dev->queues[i], i);
1326 if (ret)
1327 break;
1328 }
1329
1330 /*
1331 * Ignore failing Create SQ/CQ commands, we can continue with less
1332 * than the desired aount of queues, and even a controller without
1333 * I/O queues an still be used to issue admin commands. This might
1334 * be useful to upgrade a buggy firmware for example.
1335 */
1336 return ret >= 0 ? 0 : ret;
1337 }
1338
1339 static ssize_t nvme_cmb_show(struct device *dev,
1340 struct device_attribute *attr,
1341 char *buf)
1342 {
1343 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1344
1345 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1346 ndev->cmbloc, ndev->cmbsz);
1347 }
1348 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1349
1350 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1351 {
1352 u64 szu, size, offset;
1353 resource_size_t bar_size;
1354 struct pci_dev *pdev = to_pci_dev(dev->dev);
1355 void __iomem *cmb;
1356 dma_addr_t dma_addr;
1357
1358 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1359 if (!(NVME_CMB_SZ(dev->cmbsz)))
1360 return NULL;
1361 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1362
1363 if (!use_cmb_sqes)
1364 return NULL;
1365
1366 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1367 size = szu * NVME_CMB_SZ(dev->cmbsz);
1368 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1369 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1370
1371 if (offset > bar_size)
1372 return NULL;
1373
1374 /*
1375 * Controllers may support a CMB size larger than their BAR,
1376 * for example, due to being behind a bridge. Reduce the CMB to
1377 * the reported size of the BAR
1378 */
1379 if (size > bar_size - offset)
1380 size = bar_size - offset;
1381
1382 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1383 cmb = ioremap_wc(dma_addr, size);
1384 if (!cmb)
1385 return NULL;
1386
1387 dev->cmb_dma_addr = dma_addr;
1388 dev->cmb_size = size;
1389 return cmb;
1390 }
1391
1392 static inline void nvme_release_cmb(struct nvme_dev *dev)
1393 {
1394 if (dev->cmb) {
1395 iounmap(dev->cmb);
1396 dev->cmb = NULL;
1397 }
1398 }
1399
1400 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1401 {
1402 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1403 }
1404
1405 static int nvme_setup_io_queues(struct nvme_dev *dev)
1406 {
1407 struct nvme_queue *adminq = dev->queues[0];
1408 struct pci_dev *pdev = to_pci_dev(dev->dev);
1409 int result, nr_io_queues, size;
1410
1411 nr_io_queues = num_online_cpus();
1412 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1413 if (result < 0)
1414 return result;
1415
1416 if (nr_io_queues == 0)
1417 return 0;
1418
1419 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1420 result = nvme_cmb_qdepth(dev, nr_io_queues,
1421 sizeof(struct nvme_command));
1422 if (result > 0)
1423 dev->q_depth = result;
1424 else
1425 nvme_release_cmb(dev);
1426 }
1427
1428 size = db_bar_size(dev, nr_io_queues);
1429 if (size > 8192) {
1430 iounmap(dev->bar);
1431 do {
1432 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1433 if (dev->bar)
1434 break;
1435 if (!--nr_io_queues)
1436 return -ENOMEM;
1437 size = db_bar_size(dev, nr_io_queues);
1438 } while (1);
1439 dev->dbs = dev->bar + 4096;
1440 adminq->q_db = dev->dbs;
1441 }
1442
1443 /* Deregister the admin queue's interrupt */
1444 free_irq(pci_irq_vector(pdev, 0), adminq);
1445
1446 /*
1447 * If we enable msix early due to not intx, disable it again before
1448 * setting up the full range we need.
1449 */
1450 pci_free_irq_vectors(pdev);
1451 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1452 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1453 if (nr_io_queues <= 0)
1454 return -EIO;
1455 dev->max_qid = nr_io_queues;
1456
1457 /*
1458 * Should investigate if there's a performance win from allocating
1459 * more queues than interrupt vectors; it might allow the submission
1460 * path to scale better, even if the receive path is limited by the
1461 * number of interrupts.
1462 */
1463
1464 result = queue_request_irq(adminq);
1465 if (result) {
1466 adminq->cq_vector = -1;
1467 return result;
1468 }
1469 return nvme_create_io_queues(dev);
1470 }
1471
1472 static void nvme_del_queue_end(struct request *req, int error)
1473 {
1474 struct nvme_queue *nvmeq = req->end_io_data;
1475
1476 blk_mq_free_request(req);
1477 complete(&nvmeq->dev->ioq_wait);
1478 }
1479
1480 static void nvme_del_cq_end(struct request *req, int error)
1481 {
1482 struct nvme_queue *nvmeq = req->end_io_data;
1483
1484 if (!error) {
1485 unsigned long flags;
1486
1487 /*
1488 * We might be called with the AQ q_lock held
1489 * and the I/O queue q_lock should always
1490 * nest inside the AQ one.
1491 */
1492 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1493 SINGLE_DEPTH_NESTING);
1494 nvme_process_cq(nvmeq);
1495 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1496 }
1497
1498 nvme_del_queue_end(req, error);
1499 }
1500
1501 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1502 {
1503 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1504 struct request *req;
1505 struct nvme_command cmd;
1506
1507 memset(&cmd, 0, sizeof(cmd));
1508 cmd.delete_queue.opcode = opcode;
1509 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1510
1511 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1512 if (IS_ERR(req))
1513 return PTR_ERR(req);
1514
1515 req->timeout = ADMIN_TIMEOUT;
1516 req->end_io_data = nvmeq;
1517
1518 blk_execute_rq_nowait(q, NULL, req, false,
1519 opcode == nvme_admin_delete_cq ?
1520 nvme_del_cq_end : nvme_del_queue_end);
1521 return 0;
1522 }
1523
1524 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1525 {
1526 int pass;
1527 unsigned long timeout;
1528 u8 opcode = nvme_admin_delete_sq;
1529
1530 for (pass = 0; pass < 2; pass++) {
1531 int sent = 0, i = queues;
1532
1533 reinit_completion(&dev->ioq_wait);
1534 retry:
1535 timeout = ADMIN_TIMEOUT;
1536 for (; i > 0; i--, sent++)
1537 if (nvme_delete_queue(dev->queues[i], opcode))
1538 break;
1539
1540 while (sent--) {
1541 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1542 if (timeout == 0)
1543 return;
1544 if (i)
1545 goto retry;
1546 }
1547 opcode = nvme_admin_delete_cq;
1548 }
1549 }
1550
1551 /*
1552 * Return: error value if an error occurred setting up the queues or calling
1553 * Identify Device. 0 if these succeeded, even if adding some of the
1554 * namespaces failed. At the moment, these failures are silent. TBD which
1555 * failures should be reported.
1556 */
1557 static int nvme_dev_add(struct nvme_dev *dev)
1558 {
1559 if (!dev->ctrl.tagset) {
1560 dev->tagset.ops = &nvme_mq_ops;
1561 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1562 dev->tagset.timeout = NVME_IO_TIMEOUT;
1563 dev->tagset.numa_node = dev_to_node(dev->dev);
1564 dev->tagset.queue_depth =
1565 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1566 dev->tagset.cmd_size = nvme_cmd_size(dev);
1567 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1568 dev->tagset.driver_data = dev;
1569
1570 if (blk_mq_alloc_tag_set(&dev->tagset))
1571 return 0;
1572 dev->ctrl.tagset = &dev->tagset;
1573 } else {
1574 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1575
1576 /* Free previously allocated queues that are no longer usable */
1577 nvme_free_queues(dev, dev->online_queues);
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int nvme_pci_enable(struct nvme_dev *dev)
1584 {
1585 u64 cap;
1586 int result = -ENOMEM;
1587 struct pci_dev *pdev = to_pci_dev(dev->dev);
1588
1589 if (pci_enable_device_mem(pdev))
1590 return result;
1591
1592 pci_set_master(pdev);
1593
1594 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1595 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1596 goto disable;
1597
1598 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1599 result = -ENODEV;
1600 goto disable;
1601 }
1602
1603 /*
1604 * Some devices and/or platforms don't advertise or work with INTx
1605 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1606 * adjust this later.
1607 */
1608 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1609 if (result < 0)
1610 return result;
1611
1612 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1613
1614 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1615 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1616 dev->dbs = dev->bar + 4096;
1617
1618 /*
1619 * Temporary fix for the Apple controller found in the MacBook8,1 and
1620 * some MacBook7,1 to avoid controller resets and data loss.
1621 */
1622 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1623 dev->q_depth = 2;
1624 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1625 "queue depth=%u to work around controller resets\n",
1626 dev->q_depth);
1627 }
1628
1629 /*
1630 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1631 * populate sysfs if a CMB is implemented. Note that we add the
1632 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1633 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1634 * NULL as final argument to sysfs_add_file_to_group.
1635 */
1636
1637 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1638 dev->cmb = nvme_map_cmb(dev);
1639
1640 if (dev->cmbsz) {
1641 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1642 &dev_attr_cmb.attr, NULL))
1643 dev_warn(dev->dev,
1644 "failed to add sysfs attribute for CMB\n");
1645 }
1646 }
1647
1648 pci_enable_pcie_error_reporting(pdev);
1649 pci_save_state(pdev);
1650 return 0;
1651
1652 disable:
1653 pci_disable_device(pdev);
1654 return result;
1655 }
1656
1657 static void nvme_dev_unmap(struct nvme_dev *dev)
1658 {
1659 if (dev->bar)
1660 iounmap(dev->bar);
1661 pci_release_mem_regions(to_pci_dev(dev->dev));
1662 }
1663
1664 static void nvme_pci_disable(struct nvme_dev *dev)
1665 {
1666 struct pci_dev *pdev = to_pci_dev(dev->dev);
1667
1668 pci_free_irq_vectors(pdev);
1669
1670 if (pci_is_enabled(pdev)) {
1671 pci_disable_pcie_error_reporting(pdev);
1672 pci_disable_device(pdev);
1673 }
1674 }
1675
1676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1677 {
1678 int i, queues;
1679 u32 csts = -1;
1680
1681 del_timer_sync(&dev->watchdog_timer);
1682
1683 mutex_lock(&dev->shutdown_lock);
1684 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1685 nvme_stop_queues(&dev->ctrl);
1686 csts = readl(dev->bar + NVME_REG_CSTS);
1687 }
1688
1689 queues = dev->online_queues - 1;
1690 for (i = dev->queue_count - 1; i > 0; i--)
1691 nvme_suspend_queue(dev->queues[i]);
1692
1693 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1694 /* A device might become IO incapable very soon during
1695 * probe, before the admin queue is configured. Thus,
1696 * queue_count can be 0 here.
1697 */
1698 if (dev->queue_count)
1699 nvme_suspend_queue(dev->queues[0]);
1700 } else {
1701 nvme_disable_io_queues(dev, queues);
1702 nvme_disable_admin_queue(dev, shutdown);
1703 }
1704 nvme_pci_disable(dev);
1705
1706 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1707 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1708 mutex_unlock(&dev->shutdown_lock);
1709 }
1710
1711 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1712 {
1713 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1714 PAGE_SIZE, PAGE_SIZE, 0);
1715 if (!dev->prp_page_pool)
1716 return -ENOMEM;
1717
1718 /* Optimisation for I/Os between 4k and 128k */
1719 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1720 256, 256, 0);
1721 if (!dev->prp_small_pool) {
1722 dma_pool_destroy(dev->prp_page_pool);
1723 return -ENOMEM;
1724 }
1725 return 0;
1726 }
1727
1728 static void nvme_release_prp_pools(struct nvme_dev *dev)
1729 {
1730 dma_pool_destroy(dev->prp_page_pool);
1731 dma_pool_destroy(dev->prp_small_pool);
1732 }
1733
1734 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1735 {
1736 struct nvme_dev *dev = to_nvme_dev(ctrl);
1737
1738 put_device(dev->dev);
1739 if (dev->tagset.tags)
1740 blk_mq_free_tag_set(&dev->tagset);
1741 if (dev->ctrl.admin_q)
1742 blk_put_queue(dev->ctrl.admin_q);
1743 kfree(dev->queues);
1744 kfree(dev);
1745 }
1746
1747 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1748 {
1749 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1750
1751 kref_get(&dev->ctrl.kref);
1752 nvme_dev_disable(dev, false);
1753 if (!schedule_work(&dev->remove_work))
1754 nvme_put_ctrl(&dev->ctrl);
1755 }
1756
1757 static void nvme_reset_work(struct work_struct *work)
1758 {
1759 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1760 int result = -ENODEV;
1761
1762 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1763 goto out;
1764
1765 /*
1766 * If we're called to reset a live controller first shut it down before
1767 * moving on.
1768 */
1769 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1770 nvme_dev_disable(dev, false);
1771
1772 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1773 goto out;
1774
1775 result = nvme_pci_enable(dev);
1776 if (result)
1777 goto out;
1778
1779 result = nvme_configure_admin_queue(dev);
1780 if (result)
1781 goto out;
1782
1783 nvme_init_queue(dev->queues[0], 0);
1784 result = nvme_alloc_admin_tags(dev);
1785 if (result)
1786 goto out;
1787
1788 result = nvme_init_identify(&dev->ctrl);
1789 if (result)
1790 goto out;
1791
1792 result = nvme_setup_io_queues(dev);
1793 if (result)
1794 goto out;
1795
1796 /*
1797 * A controller that can not execute IO typically requires user
1798 * intervention to correct. For such degraded controllers, the driver
1799 * should not submit commands the user did not request, so skip
1800 * registering for asynchronous event notification on this condition.
1801 */
1802 if (dev->online_queues > 1)
1803 nvme_queue_async_events(&dev->ctrl);
1804
1805 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1806
1807 /*
1808 * Keep the controller around but remove all namespaces if we don't have
1809 * any working I/O queue.
1810 */
1811 if (dev->online_queues < 2) {
1812 dev_warn(dev->ctrl.device, "IO queues not created\n");
1813 nvme_kill_queues(&dev->ctrl);
1814 nvme_remove_namespaces(&dev->ctrl);
1815 } else {
1816 nvme_start_queues(&dev->ctrl);
1817 nvme_dev_add(dev);
1818 }
1819
1820 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1821 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1822 goto out;
1823 }
1824
1825 if (dev->online_queues > 1)
1826 nvme_queue_scan(&dev->ctrl);
1827 return;
1828
1829 out:
1830 nvme_remove_dead_ctrl(dev, result);
1831 }
1832
1833 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1834 {
1835 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1836 struct pci_dev *pdev = to_pci_dev(dev->dev);
1837
1838 nvme_kill_queues(&dev->ctrl);
1839 if (pci_get_drvdata(pdev))
1840 device_release_driver(&pdev->dev);
1841 nvme_put_ctrl(&dev->ctrl);
1842 }
1843
1844 static int nvme_reset(struct nvme_dev *dev)
1845 {
1846 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1847 return -ENODEV;
1848 if (work_busy(&dev->reset_work))
1849 return -ENODEV;
1850 if (!queue_work(nvme_workq, &dev->reset_work))
1851 return -EBUSY;
1852 return 0;
1853 }
1854
1855 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1856 {
1857 *val = readl(to_nvme_dev(ctrl)->bar + off);
1858 return 0;
1859 }
1860
1861 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1862 {
1863 writel(val, to_nvme_dev(ctrl)->bar + off);
1864 return 0;
1865 }
1866
1867 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1868 {
1869 *val = readq(to_nvme_dev(ctrl)->bar + off);
1870 return 0;
1871 }
1872
1873 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1874 {
1875 struct nvme_dev *dev = to_nvme_dev(ctrl);
1876 int ret = nvme_reset(dev);
1877
1878 if (!ret)
1879 flush_work(&dev->reset_work);
1880 return ret;
1881 }
1882
1883 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1884 .name = "pcie",
1885 .module = THIS_MODULE,
1886 .reg_read32 = nvme_pci_reg_read32,
1887 .reg_write32 = nvme_pci_reg_write32,
1888 .reg_read64 = nvme_pci_reg_read64,
1889 .reset_ctrl = nvme_pci_reset_ctrl,
1890 .free_ctrl = nvme_pci_free_ctrl,
1891 .submit_async_event = nvme_pci_submit_async_event,
1892 };
1893
1894 static int nvme_dev_map(struct nvme_dev *dev)
1895 {
1896 struct pci_dev *pdev = to_pci_dev(dev->dev);
1897
1898 if (pci_request_mem_regions(pdev, "nvme"))
1899 return -ENODEV;
1900
1901 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1902 if (!dev->bar)
1903 goto release;
1904
1905 return 0;
1906 release:
1907 pci_release_mem_regions(pdev);
1908 return -ENODEV;
1909 }
1910
1911 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1912 {
1913 int node, result = -ENOMEM;
1914 struct nvme_dev *dev;
1915
1916 node = dev_to_node(&pdev->dev);
1917 if (node == NUMA_NO_NODE)
1918 set_dev_node(&pdev->dev, first_memory_node);
1919
1920 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1921 if (!dev)
1922 return -ENOMEM;
1923 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1924 GFP_KERNEL, node);
1925 if (!dev->queues)
1926 goto free;
1927
1928 dev->dev = get_device(&pdev->dev);
1929 pci_set_drvdata(pdev, dev);
1930
1931 result = nvme_dev_map(dev);
1932 if (result)
1933 goto free;
1934
1935 INIT_WORK(&dev->reset_work, nvme_reset_work);
1936 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1937 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1938 (unsigned long)dev);
1939 mutex_init(&dev->shutdown_lock);
1940 init_completion(&dev->ioq_wait);
1941
1942 result = nvme_setup_prp_pools(dev);
1943 if (result)
1944 goto put_pci;
1945
1946 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1947 id->driver_data);
1948 if (result)
1949 goto release_pools;
1950
1951 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1952
1953 queue_work(nvme_workq, &dev->reset_work);
1954 return 0;
1955
1956 release_pools:
1957 nvme_release_prp_pools(dev);
1958 put_pci:
1959 put_device(dev->dev);
1960 nvme_dev_unmap(dev);
1961 free:
1962 kfree(dev->queues);
1963 kfree(dev);
1964 return result;
1965 }
1966
1967 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1968 {
1969 struct nvme_dev *dev = pci_get_drvdata(pdev);
1970
1971 if (prepare)
1972 nvme_dev_disable(dev, false);
1973 else
1974 nvme_reset(dev);
1975 }
1976
1977 static void nvme_shutdown(struct pci_dev *pdev)
1978 {
1979 struct nvme_dev *dev = pci_get_drvdata(pdev);
1980 nvme_dev_disable(dev, true);
1981 }
1982
1983 /*
1984 * The driver's remove may be called on a device in a partially initialized
1985 * state. This function must not have any dependencies on the device state in
1986 * order to proceed.
1987 */
1988 static void nvme_remove(struct pci_dev *pdev)
1989 {
1990 struct nvme_dev *dev = pci_get_drvdata(pdev);
1991
1992 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1993
1994 pci_set_drvdata(pdev, NULL);
1995
1996 if (!pci_device_is_present(pdev))
1997 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1998
1999 flush_work(&dev->reset_work);
2000 nvme_uninit_ctrl(&dev->ctrl);
2001 nvme_dev_disable(dev, true);
2002 nvme_dev_remove_admin(dev);
2003 nvme_free_queues(dev, 0);
2004 nvme_release_cmb(dev);
2005 nvme_release_prp_pools(dev);
2006 nvme_dev_unmap(dev);
2007 nvme_put_ctrl(&dev->ctrl);
2008 }
2009
2010 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2011 {
2012 int ret = 0;
2013
2014 if (numvfs == 0) {
2015 if (pci_vfs_assigned(pdev)) {
2016 dev_warn(&pdev->dev,
2017 "Cannot disable SR-IOV VFs while assigned\n");
2018 return -EPERM;
2019 }
2020 pci_disable_sriov(pdev);
2021 return 0;
2022 }
2023
2024 ret = pci_enable_sriov(pdev, numvfs);
2025 return ret ? ret : numvfs;
2026 }
2027
2028 #ifdef CONFIG_PM_SLEEP
2029 static int nvme_suspend(struct device *dev)
2030 {
2031 struct pci_dev *pdev = to_pci_dev(dev);
2032 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2033
2034 nvme_dev_disable(ndev, true);
2035 return 0;
2036 }
2037
2038 static int nvme_resume(struct device *dev)
2039 {
2040 struct pci_dev *pdev = to_pci_dev(dev);
2041 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2042
2043 nvme_reset(ndev);
2044 return 0;
2045 }
2046 #endif
2047
2048 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2049
2050 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2051 pci_channel_state_t state)
2052 {
2053 struct nvme_dev *dev = pci_get_drvdata(pdev);
2054
2055 /*
2056 * A frozen channel requires a reset. When detected, this method will
2057 * shutdown the controller to quiesce. The controller will be restarted
2058 * after the slot reset through driver's slot_reset callback.
2059 */
2060 switch (state) {
2061 case pci_channel_io_normal:
2062 return PCI_ERS_RESULT_CAN_RECOVER;
2063 case pci_channel_io_frozen:
2064 dev_warn(dev->ctrl.device,
2065 "frozen state error detected, reset controller\n");
2066 nvme_dev_disable(dev, false);
2067 return PCI_ERS_RESULT_NEED_RESET;
2068 case pci_channel_io_perm_failure:
2069 dev_warn(dev->ctrl.device,
2070 "failure state error detected, request disconnect\n");
2071 return PCI_ERS_RESULT_DISCONNECT;
2072 }
2073 return PCI_ERS_RESULT_NEED_RESET;
2074 }
2075
2076 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2077 {
2078 struct nvme_dev *dev = pci_get_drvdata(pdev);
2079
2080 dev_info(dev->ctrl.device, "restart after slot reset\n");
2081 pci_restore_state(pdev);
2082 nvme_reset(dev);
2083 return PCI_ERS_RESULT_RECOVERED;
2084 }
2085
2086 static void nvme_error_resume(struct pci_dev *pdev)
2087 {
2088 pci_cleanup_aer_uncorrect_error_status(pdev);
2089 }
2090
2091 static const struct pci_error_handlers nvme_err_handler = {
2092 .error_detected = nvme_error_detected,
2093 .slot_reset = nvme_slot_reset,
2094 .resume = nvme_error_resume,
2095 .reset_notify = nvme_reset_notify,
2096 };
2097
2098 static const struct pci_device_id nvme_id_table[] = {
2099 { PCI_VDEVICE(INTEL, 0x0953),
2100 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2101 NVME_QUIRK_DISCARD_ZEROES, },
2102 { PCI_VDEVICE(INTEL, 0x0a53),
2103 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104 NVME_QUIRK_DISCARD_ZEROES, },
2105 { PCI_VDEVICE(INTEL, 0x0a54),
2106 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2107 NVME_QUIRK_DISCARD_ZEROES, },
2108 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2109 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2110 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2111 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2112 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2113 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2114 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2115 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2116 { 0, }
2117 };
2118 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2119
2120 static struct pci_driver nvme_driver = {
2121 .name = "nvme",
2122 .id_table = nvme_id_table,
2123 .probe = nvme_probe,
2124 .remove = nvme_remove,
2125 .shutdown = nvme_shutdown,
2126 .driver = {
2127 .pm = &nvme_dev_pm_ops,
2128 },
2129 .sriov_configure = nvme_pci_sriov_configure,
2130 .err_handler = &nvme_err_handler,
2131 };
2132
2133 static int __init nvme_init(void)
2134 {
2135 int result;
2136
2137 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2138 if (!nvme_workq)
2139 return -ENOMEM;
2140
2141 result = pci_register_driver(&nvme_driver);
2142 if (result)
2143 destroy_workqueue(nvme_workq);
2144 return result;
2145 }
2146
2147 static void __exit nvme_exit(void)
2148 {
2149 pci_unregister_driver(&nvme_driver);
2150 destroy_workqueue(nvme_workq);
2151 _nvme_check_size();
2152 }
2153
2154 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2155 MODULE_LICENSE("GPL");
2156 MODULE_VERSION("1.0");
2157 module_init(nvme_init);
2158 module_exit(nvme_exit);