]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/pci.c
Merge tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static int write_queues;
72 module_param(write_queues, int, 0644);
73 MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77 static int poll_queues;
78 module_param(poll_queues, int, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90 struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 int io_sqes;
104 u32 db_stride;
105 void __iomem *bar;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
109 bool subsystem;
110 u64 cmb_size;
111 bool cmb_use_sqes;
112 u32 cmbsz;
113 u32 cmbloc;
114 struct nvme_ctrl ctrl;
115 u32 last_ps;
116
117 mempool_t *iod_mempool;
118
119 /* shadow doorbell buffer support: */
120 u32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 u32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
128 dma_addr_t host_mem_descs_dma;
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
131 };
132
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135 int n = 0, ret;
136
137 ret = kstrtoint(val, 10, &n);
138 if (ret != 0 || n < 2)
139 return -EINVAL;
140
141 return param_set_int(val, kp);
142 }
143
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146 return qid * 2 * stride;
147 }
148
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151 return (qid * 2 + 1) * stride;
152 }
153
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156 return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
162 */
163 struct nvme_queue {
164 struct nvme_dev *dev;
165 spinlock_t sq_lock;
166 void *sq_cmds;
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169 volatile struct nvme_completion *cqes;
170 struct blk_mq_tags **tags;
171 dma_addr_t sq_dma_addr;
172 dma_addr_t cq_dma_addr;
173 u32 __iomem *q_db;
174 u16 q_depth;
175 u16 cq_vector;
176 u16 sq_tail;
177 u16 last_sq_tail;
178 u16 cq_head;
179 u16 last_cq_head;
180 u16 qid;
181 u8 cq_phase;
182 u8 sqes;
183 unsigned long flags;
184 #define NVMEQ_ENABLED 0
185 #define NVMEQ_SQ_CMB 1
186 #define NVMEQ_DELETE_ERROR 2
187 #define NVMEQ_POLLED 3
188 u32 *dbbuf_sq_db;
189 u32 *dbbuf_cq_db;
190 u32 *dbbuf_sq_ei;
191 u32 *dbbuf_cq_ei;
192 struct completion delete_done;
193 };
194
195 /*
196 * The nvme_iod describes the data in an I/O.
197 *
198 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
199 * to the actual struct scatterlist.
200 */
201 struct nvme_iod {
202 struct nvme_request req;
203 struct nvme_queue *nvmeq;
204 bool use_sgl;
205 int aborted;
206 int npages; /* In the PRP list. 0 means small pool in use */
207 int nents; /* Used in scatterlist */
208 dma_addr_t first_dma;
209 unsigned int dma_len; /* length of single DMA segment mapping */
210 dma_addr_t meta_dma;
211 struct scatterlist *sg;
212 };
213
214 static unsigned int max_io_queues(void)
215 {
216 return num_possible_cpus() + write_queues + poll_queues;
217 }
218
219 static unsigned int max_queue_count(void)
220 {
221 /* IO queues + admin queue */
222 return 1 + max_io_queues();
223 }
224
225 static inline unsigned int nvme_dbbuf_size(u32 stride)
226 {
227 return (max_queue_count() * 8 * stride);
228 }
229
230 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
231 {
232 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
233
234 if (dev->dbbuf_dbs)
235 return 0;
236
237 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
238 &dev->dbbuf_dbs_dma_addr,
239 GFP_KERNEL);
240 if (!dev->dbbuf_dbs)
241 return -ENOMEM;
242 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
243 &dev->dbbuf_eis_dma_addr,
244 GFP_KERNEL);
245 if (!dev->dbbuf_eis) {
246 dma_free_coherent(dev->dev, mem_size,
247 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248 dev->dbbuf_dbs = NULL;
249 return -ENOMEM;
250 }
251
252 return 0;
253 }
254
255 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
256 {
257 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
258
259 if (dev->dbbuf_dbs) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
263 }
264 if (dev->dbbuf_eis) {
265 dma_free_coherent(dev->dev, mem_size,
266 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
267 dev->dbbuf_eis = NULL;
268 }
269 }
270
271 static void nvme_dbbuf_init(struct nvme_dev *dev,
272 struct nvme_queue *nvmeq, int qid)
273 {
274 if (!dev->dbbuf_dbs || !qid)
275 return;
276
277 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
279 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
280 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
281 }
282
283 static void nvme_dbbuf_set(struct nvme_dev *dev)
284 {
285 struct nvme_command c;
286
287 if (!dev->dbbuf_dbs)
288 return;
289
290 memset(&c, 0, sizeof(c));
291 c.dbbuf.opcode = nvme_admin_dbbuf;
292 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
293 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
294
295 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
296 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
297 /* Free memory and continue on */
298 nvme_dbbuf_dma_free(dev);
299 }
300 }
301
302 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
303 {
304 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
305 }
306
307 /* Update dbbuf and return true if an MMIO is required */
308 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
309 volatile u32 *dbbuf_ei)
310 {
311 if (dbbuf_db) {
312 u16 old_value;
313
314 /*
315 * Ensure that the queue is written before updating
316 * the doorbell in memory
317 */
318 wmb();
319
320 old_value = *dbbuf_db;
321 *dbbuf_db = value;
322
323 /*
324 * Ensure that the doorbell is updated before reading the event
325 * index from memory. The controller needs to provide similar
326 * ordering to ensure the envent index is updated before reading
327 * the doorbell.
328 */
329 mb();
330
331 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
332 return false;
333 }
334
335 return true;
336 }
337
338 /*
339 * Will slightly overestimate the number of pages needed. This is OK
340 * as it only leads to a small amount of wasted memory for the lifetime of
341 * the I/O.
342 */
343 static int nvme_npages(unsigned size, struct nvme_dev *dev)
344 {
345 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
346 dev->ctrl.page_size);
347 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
348 }
349
350 /*
351 * Calculates the number of pages needed for the SGL segments. For example a 4k
352 * page can accommodate 256 SGL descriptors.
353 */
354 static int nvme_pci_npages_sgl(unsigned int num_seg)
355 {
356 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
357 }
358
359 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
360 unsigned int size, unsigned int nseg, bool use_sgl)
361 {
362 size_t alloc_size;
363
364 if (use_sgl)
365 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
366 else
367 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
368
369 return alloc_size + sizeof(struct scatterlist) * nseg;
370 }
371
372 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373 unsigned int hctx_idx)
374 {
375 struct nvme_dev *dev = data;
376 struct nvme_queue *nvmeq = &dev->queues[0];
377
378 WARN_ON(hctx_idx != 0);
379 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
380 WARN_ON(nvmeq->tags);
381
382 hctx->driver_data = nvmeq;
383 nvmeq->tags = &dev->admin_tagset.tags[0];
384 return 0;
385 }
386
387 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
388 {
389 struct nvme_queue *nvmeq = hctx->driver_data;
390
391 nvmeq->tags = NULL;
392 }
393
394 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
395 unsigned int hctx_idx)
396 {
397 struct nvme_dev *dev = data;
398 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
399
400 if (!nvmeq->tags)
401 nvmeq->tags = &dev->tagset.tags[hctx_idx];
402
403 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
404 hctx->driver_data = nvmeq;
405 return 0;
406 }
407
408 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
409 unsigned int hctx_idx, unsigned int numa_node)
410 {
411 struct nvme_dev *dev = set->driver_data;
412 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
413 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
414 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
415
416 BUG_ON(!nvmeq);
417 iod->nvmeq = nvmeq;
418
419 nvme_req(req)->ctrl = &dev->ctrl;
420 return 0;
421 }
422
423 static int queue_irq_offset(struct nvme_dev *dev)
424 {
425 /* if we have more than 1 vec, admin queue offsets us by 1 */
426 if (dev->num_vecs > 1)
427 return 1;
428
429 return 0;
430 }
431
432 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
433 {
434 struct nvme_dev *dev = set->driver_data;
435 int i, qoff, offset;
436
437 offset = queue_irq_offset(dev);
438 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
439 struct blk_mq_queue_map *map = &set->map[i];
440
441 map->nr_queues = dev->io_queues[i];
442 if (!map->nr_queues) {
443 BUG_ON(i == HCTX_TYPE_DEFAULT);
444 continue;
445 }
446
447 /*
448 * The poll queue(s) doesn't have an IRQ (and hence IRQ
449 * affinity), so use the regular blk-mq cpu mapping
450 */
451 map->queue_offset = qoff;
452 if (i != HCTX_TYPE_POLL && offset)
453 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
454 else
455 blk_mq_map_queues(map);
456 qoff += map->nr_queues;
457 offset += map->nr_queues;
458 }
459
460 return 0;
461 }
462
463 /*
464 * Write sq tail if we are asked to, or if the next command would wrap.
465 */
466 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
467 {
468 if (!write_sq) {
469 u16 next_tail = nvmeq->sq_tail + 1;
470
471 if (next_tail == nvmeq->q_depth)
472 next_tail = 0;
473 if (next_tail != nvmeq->last_sq_tail)
474 return;
475 }
476
477 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
478 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
479 writel(nvmeq->sq_tail, nvmeq->q_db);
480 nvmeq->last_sq_tail = nvmeq->sq_tail;
481 }
482
483 /**
484 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
485 * @nvmeq: The queue to use
486 * @cmd: The command to send
487 * @write_sq: whether to write to the SQ doorbell
488 */
489 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
490 bool write_sq)
491 {
492 spin_lock(&nvmeq->sq_lock);
493 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
494 cmd, sizeof(*cmd));
495 if (++nvmeq->sq_tail == nvmeq->q_depth)
496 nvmeq->sq_tail = 0;
497 nvme_write_sq_db(nvmeq, write_sq);
498 spin_unlock(&nvmeq->sq_lock);
499 }
500
501 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
502 {
503 struct nvme_queue *nvmeq = hctx->driver_data;
504
505 spin_lock(&nvmeq->sq_lock);
506 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
507 nvme_write_sq_db(nvmeq, true);
508 spin_unlock(&nvmeq->sq_lock);
509 }
510
511 static void **nvme_pci_iod_list(struct request *req)
512 {
513 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
515 }
516
517 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
518 {
519 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
520 int nseg = blk_rq_nr_phys_segments(req);
521 unsigned int avg_seg_size;
522
523 if (nseg == 0)
524 return false;
525
526 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
527
528 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
529 return false;
530 if (!iod->nvmeq->qid)
531 return false;
532 if (!sgl_threshold || avg_seg_size < sgl_threshold)
533 return false;
534 return true;
535 }
536
537 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
538 {
539 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
540 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
541 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
542 int i;
543
544 if (iod->dma_len) {
545 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
546 rq_dma_dir(req));
547 return;
548 }
549
550 WARN_ON_ONCE(!iod->nents);
551
552 if (is_pci_p2pdma_page(sg_page(iod->sg)))
553 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
554 rq_dma_dir(req));
555 else
556 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
557
558
559 if (iod->npages == 0)
560 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
561 dma_addr);
562
563 for (i = 0; i < iod->npages; i++) {
564 void *addr = nvme_pci_iod_list(req)[i];
565
566 if (iod->use_sgl) {
567 struct nvme_sgl_desc *sg_list = addr;
568
569 next_dma_addr =
570 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
571 } else {
572 __le64 *prp_list = addr;
573
574 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
575 }
576
577 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
578 dma_addr = next_dma_addr;
579 }
580
581 mempool_free(iod->sg, dev->iod_mempool);
582 }
583
584 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
585 {
586 int i;
587 struct scatterlist *sg;
588
589 for_each_sg(sgl, sg, nents, i) {
590 dma_addr_t phys = sg_phys(sg);
591 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
592 "dma_address:%pad dma_length:%d\n",
593 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
594 sg_dma_len(sg));
595 }
596 }
597
598 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
599 struct request *req, struct nvme_rw_command *cmnd)
600 {
601 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
602 struct dma_pool *pool;
603 int length = blk_rq_payload_bytes(req);
604 struct scatterlist *sg = iod->sg;
605 int dma_len = sg_dma_len(sg);
606 u64 dma_addr = sg_dma_address(sg);
607 u32 page_size = dev->ctrl.page_size;
608 int offset = dma_addr & (page_size - 1);
609 __le64 *prp_list;
610 void **list = nvme_pci_iod_list(req);
611 dma_addr_t prp_dma;
612 int nprps, i;
613
614 length -= (page_size - offset);
615 if (length <= 0) {
616 iod->first_dma = 0;
617 goto done;
618 }
619
620 dma_len -= (page_size - offset);
621 if (dma_len) {
622 dma_addr += (page_size - offset);
623 } else {
624 sg = sg_next(sg);
625 dma_addr = sg_dma_address(sg);
626 dma_len = sg_dma_len(sg);
627 }
628
629 if (length <= page_size) {
630 iod->first_dma = dma_addr;
631 goto done;
632 }
633
634 nprps = DIV_ROUND_UP(length, page_size);
635 if (nprps <= (256 / 8)) {
636 pool = dev->prp_small_pool;
637 iod->npages = 0;
638 } else {
639 pool = dev->prp_page_pool;
640 iod->npages = 1;
641 }
642
643 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
644 if (!prp_list) {
645 iod->first_dma = dma_addr;
646 iod->npages = -1;
647 return BLK_STS_RESOURCE;
648 }
649 list[0] = prp_list;
650 iod->first_dma = prp_dma;
651 i = 0;
652 for (;;) {
653 if (i == page_size >> 3) {
654 __le64 *old_prp_list = prp_list;
655 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
656 if (!prp_list)
657 return BLK_STS_RESOURCE;
658 list[iod->npages++] = prp_list;
659 prp_list[0] = old_prp_list[i - 1];
660 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
661 i = 1;
662 }
663 prp_list[i++] = cpu_to_le64(dma_addr);
664 dma_len -= page_size;
665 dma_addr += page_size;
666 length -= page_size;
667 if (length <= 0)
668 break;
669 if (dma_len > 0)
670 continue;
671 if (unlikely(dma_len < 0))
672 goto bad_sgl;
673 sg = sg_next(sg);
674 dma_addr = sg_dma_address(sg);
675 dma_len = sg_dma_len(sg);
676 }
677
678 done:
679 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
681
682 return BLK_STS_OK;
683
684 bad_sgl:
685 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
686 "Invalid SGL for payload:%d nents:%d\n",
687 blk_rq_payload_bytes(req), iod->nents);
688 return BLK_STS_IOERR;
689 }
690
691 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
692 struct scatterlist *sg)
693 {
694 sge->addr = cpu_to_le64(sg_dma_address(sg));
695 sge->length = cpu_to_le32(sg_dma_len(sg));
696 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
697 }
698
699 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
700 dma_addr_t dma_addr, int entries)
701 {
702 sge->addr = cpu_to_le64(dma_addr);
703 if (entries < SGES_PER_PAGE) {
704 sge->length = cpu_to_le32(entries * sizeof(*sge));
705 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
706 } else {
707 sge->length = cpu_to_le32(PAGE_SIZE);
708 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
709 }
710 }
711
712 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
713 struct request *req, struct nvme_rw_command *cmd, int entries)
714 {
715 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 struct dma_pool *pool;
717 struct nvme_sgl_desc *sg_list;
718 struct scatterlist *sg = iod->sg;
719 dma_addr_t sgl_dma;
720 int i = 0;
721
722 /* setting the transfer type as SGL */
723 cmd->flags = NVME_CMD_SGL_METABUF;
724
725 if (entries == 1) {
726 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
727 return BLK_STS_OK;
728 }
729
730 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
731 pool = dev->prp_small_pool;
732 iod->npages = 0;
733 } else {
734 pool = dev->prp_page_pool;
735 iod->npages = 1;
736 }
737
738 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
739 if (!sg_list) {
740 iod->npages = -1;
741 return BLK_STS_RESOURCE;
742 }
743
744 nvme_pci_iod_list(req)[0] = sg_list;
745 iod->first_dma = sgl_dma;
746
747 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
748
749 do {
750 if (i == SGES_PER_PAGE) {
751 struct nvme_sgl_desc *old_sg_desc = sg_list;
752 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
753
754 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
755 if (!sg_list)
756 return BLK_STS_RESOURCE;
757
758 i = 0;
759 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
760 sg_list[i++] = *link;
761 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
762 }
763
764 nvme_pci_sgl_set_data(&sg_list[i++], sg);
765 sg = sg_next(sg);
766 } while (--entries > 0);
767
768 return BLK_STS_OK;
769 }
770
771 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
772 struct request *req, struct nvme_rw_command *cmnd,
773 struct bio_vec *bv)
774 {
775 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
776 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
777 unsigned int first_prp_len = dev->ctrl.page_size - offset;
778
779 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
780 if (dma_mapping_error(dev->dev, iod->first_dma))
781 return BLK_STS_RESOURCE;
782 iod->dma_len = bv->bv_len;
783
784 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
785 if (bv->bv_len > first_prp_len)
786 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
787 return 0;
788 }
789
790 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
791 struct request *req, struct nvme_rw_command *cmnd,
792 struct bio_vec *bv)
793 {
794 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
795
796 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
797 if (dma_mapping_error(dev->dev, iod->first_dma))
798 return BLK_STS_RESOURCE;
799 iod->dma_len = bv->bv_len;
800
801 cmnd->flags = NVME_CMD_SGL_METABUF;
802 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
803 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
804 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
805 return 0;
806 }
807
808 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
809 struct nvme_command *cmnd)
810 {
811 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
812 blk_status_t ret = BLK_STS_RESOURCE;
813 int nr_mapped;
814
815 if (blk_rq_nr_phys_segments(req) == 1) {
816 struct bio_vec bv = req_bvec(req);
817
818 if (!is_pci_p2pdma_page(bv.bv_page)) {
819 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
820 return nvme_setup_prp_simple(dev, req,
821 &cmnd->rw, &bv);
822
823 if (iod->nvmeq->qid &&
824 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
825 return nvme_setup_sgl_simple(dev, req,
826 &cmnd->rw, &bv);
827 }
828 }
829
830 iod->dma_len = 0;
831 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
832 if (!iod->sg)
833 return BLK_STS_RESOURCE;
834 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
835 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
836 if (!iod->nents)
837 goto out;
838
839 if (is_pci_p2pdma_page(sg_page(iod->sg)))
840 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
841 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
842 else
843 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
844 rq_dma_dir(req), DMA_ATTR_NO_WARN);
845 if (!nr_mapped)
846 goto out;
847
848 iod->use_sgl = nvme_pci_use_sgls(dev, req);
849 if (iod->use_sgl)
850 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
851 else
852 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
853 out:
854 if (ret != BLK_STS_OK)
855 nvme_unmap_data(dev, req);
856 return ret;
857 }
858
859 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
860 struct nvme_command *cmnd)
861 {
862 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
863
864 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
865 rq_dma_dir(req), 0);
866 if (dma_mapping_error(dev->dev, iod->meta_dma))
867 return BLK_STS_IOERR;
868 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
869 return 0;
870 }
871
872 /*
873 * NOTE: ns is NULL when called on the admin queue.
874 */
875 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
876 const struct blk_mq_queue_data *bd)
877 {
878 struct nvme_ns *ns = hctx->queue->queuedata;
879 struct nvme_queue *nvmeq = hctx->driver_data;
880 struct nvme_dev *dev = nvmeq->dev;
881 struct request *req = bd->rq;
882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 struct nvme_command cmnd;
884 blk_status_t ret;
885
886 iod->aborted = 0;
887 iod->npages = -1;
888 iod->nents = 0;
889
890 /*
891 * We should not need to do this, but we're still using this to
892 * ensure we can drain requests on a dying queue.
893 */
894 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
895 return BLK_STS_IOERR;
896
897 ret = nvme_setup_cmd(ns, req, &cmnd);
898 if (ret)
899 return ret;
900
901 if (blk_rq_nr_phys_segments(req)) {
902 ret = nvme_map_data(dev, req, &cmnd);
903 if (ret)
904 goto out_free_cmd;
905 }
906
907 if (blk_integrity_rq(req)) {
908 ret = nvme_map_metadata(dev, req, &cmnd);
909 if (ret)
910 goto out_unmap_data;
911 }
912
913 blk_mq_start_request(req);
914 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
915 return BLK_STS_OK;
916 out_unmap_data:
917 nvme_unmap_data(dev, req);
918 out_free_cmd:
919 nvme_cleanup_cmd(req);
920 return ret;
921 }
922
923 static void nvme_pci_complete_rq(struct request *req)
924 {
925 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
926 struct nvme_dev *dev = iod->nvmeq->dev;
927
928 if (blk_integrity_rq(req))
929 dma_unmap_page(dev->dev, iod->meta_dma,
930 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
931 if (blk_rq_nr_phys_segments(req))
932 nvme_unmap_data(dev, req);
933 nvme_complete_rq(req);
934 }
935
936 /* We read the CQE phase first to check if the rest of the entry is valid */
937 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
938 {
939 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
940 nvmeq->cq_phase;
941 }
942
943 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
944 {
945 u16 head = nvmeq->cq_head;
946
947 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
948 nvmeq->dbbuf_cq_ei))
949 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
950 }
951
952 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
953 {
954 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
955 struct request *req;
956
957 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
958 dev_warn(nvmeq->dev->ctrl.device,
959 "invalid id %d completed on queue %d\n",
960 cqe->command_id, le16_to_cpu(cqe->sq_id));
961 return;
962 }
963
964 /*
965 * AEN requests are special as they don't time out and can
966 * survive any kind of queue freeze and often don't respond to
967 * aborts. We don't even bother to allocate a struct request
968 * for them but rather special case them here.
969 */
970 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
971 nvme_complete_async_event(&nvmeq->dev->ctrl,
972 cqe->status, &cqe->result);
973 return;
974 }
975
976 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
977 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
978 nvme_end_request(req, cqe->status, cqe->result);
979 }
980
981 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
982 {
983 while (start != end) {
984 nvme_handle_cqe(nvmeq, start);
985 if (++start == nvmeq->q_depth)
986 start = 0;
987 }
988 }
989
990 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
991 {
992 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
993 nvmeq->cq_head = 0;
994 nvmeq->cq_phase = !nvmeq->cq_phase;
995 } else {
996 nvmeq->cq_head++;
997 }
998 }
999
1000 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1001 u16 *end, unsigned int tag)
1002 {
1003 int found = 0;
1004
1005 *start = nvmeq->cq_head;
1006 while (nvme_cqe_pending(nvmeq)) {
1007 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1008 found++;
1009 nvme_update_cq_head(nvmeq);
1010 }
1011 *end = nvmeq->cq_head;
1012
1013 if (*start != *end)
1014 nvme_ring_cq_doorbell(nvmeq);
1015 return found;
1016 }
1017
1018 static irqreturn_t nvme_irq(int irq, void *data)
1019 {
1020 struct nvme_queue *nvmeq = data;
1021 irqreturn_t ret = IRQ_NONE;
1022 u16 start, end;
1023
1024 /*
1025 * The rmb/wmb pair ensures we see all updates from a previous run of
1026 * the irq handler, even if that was on another CPU.
1027 */
1028 rmb();
1029 if (nvmeq->cq_head != nvmeq->last_cq_head)
1030 ret = IRQ_HANDLED;
1031 nvme_process_cq(nvmeq, &start, &end, -1);
1032 nvmeq->last_cq_head = nvmeq->cq_head;
1033 wmb();
1034
1035 if (start != end) {
1036 nvme_complete_cqes(nvmeq, start, end);
1037 return IRQ_HANDLED;
1038 }
1039
1040 return ret;
1041 }
1042
1043 static irqreturn_t nvme_irq_check(int irq, void *data)
1044 {
1045 struct nvme_queue *nvmeq = data;
1046 if (nvme_cqe_pending(nvmeq))
1047 return IRQ_WAKE_THREAD;
1048 return IRQ_NONE;
1049 }
1050
1051 /*
1052 * Poll for completions any queue, including those not dedicated to polling.
1053 * Can be called from any context.
1054 */
1055 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1056 {
1057 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1058 u16 start, end;
1059 int found;
1060
1061 /*
1062 * For a poll queue we need to protect against the polling thread
1063 * using the CQ lock. For normal interrupt driven threads we have
1064 * to disable the interrupt to avoid racing with it.
1065 */
1066 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1067 spin_lock(&nvmeq->cq_poll_lock);
1068 found = nvme_process_cq(nvmeq, &start, &end, tag);
1069 spin_unlock(&nvmeq->cq_poll_lock);
1070 } else {
1071 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1072 found = nvme_process_cq(nvmeq, &start, &end, tag);
1073 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1074 }
1075
1076 nvme_complete_cqes(nvmeq, start, end);
1077 return found;
1078 }
1079
1080 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1081 {
1082 struct nvme_queue *nvmeq = hctx->driver_data;
1083 u16 start, end;
1084 bool found;
1085
1086 if (!nvme_cqe_pending(nvmeq))
1087 return 0;
1088
1089 spin_lock(&nvmeq->cq_poll_lock);
1090 found = nvme_process_cq(nvmeq, &start, &end, -1);
1091 spin_unlock(&nvmeq->cq_poll_lock);
1092
1093 nvme_complete_cqes(nvmeq, start, end);
1094 return found;
1095 }
1096
1097 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1098 {
1099 struct nvme_dev *dev = to_nvme_dev(ctrl);
1100 struct nvme_queue *nvmeq = &dev->queues[0];
1101 struct nvme_command c;
1102
1103 memset(&c, 0, sizeof(c));
1104 c.common.opcode = nvme_admin_async_event;
1105 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1106 nvme_submit_cmd(nvmeq, &c, true);
1107 }
1108
1109 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1110 {
1111 struct nvme_command c;
1112
1113 memset(&c, 0, sizeof(c));
1114 c.delete_queue.opcode = opcode;
1115 c.delete_queue.qid = cpu_to_le16(id);
1116
1117 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1118 }
1119
1120 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1121 struct nvme_queue *nvmeq, s16 vector)
1122 {
1123 struct nvme_command c;
1124 int flags = NVME_QUEUE_PHYS_CONTIG;
1125
1126 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1127 flags |= NVME_CQ_IRQ_ENABLED;
1128
1129 /*
1130 * Note: we (ab)use the fact that the prp fields survive if no data
1131 * is attached to the request.
1132 */
1133 memset(&c, 0, sizeof(c));
1134 c.create_cq.opcode = nvme_admin_create_cq;
1135 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1136 c.create_cq.cqid = cpu_to_le16(qid);
1137 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1138 c.create_cq.cq_flags = cpu_to_le16(flags);
1139 c.create_cq.irq_vector = cpu_to_le16(vector);
1140
1141 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1142 }
1143
1144 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1145 struct nvme_queue *nvmeq)
1146 {
1147 struct nvme_ctrl *ctrl = &dev->ctrl;
1148 struct nvme_command c;
1149 int flags = NVME_QUEUE_PHYS_CONTIG;
1150
1151 /*
1152 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1153 * set. Since URGENT priority is zeroes, it makes all queues
1154 * URGENT.
1155 */
1156 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1157 flags |= NVME_SQ_PRIO_MEDIUM;
1158
1159 /*
1160 * Note: we (ab)use the fact that the prp fields survive if no data
1161 * is attached to the request.
1162 */
1163 memset(&c, 0, sizeof(c));
1164 c.create_sq.opcode = nvme_admin_create_sq;
1165 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1166 c.create_sq.sqid = cpu_to_le16(qid);
1167 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1168 c.create_sq.sq_flags = cpu_to_le16(flags);
1169 c.create_sq.cqid = cpu_to_le16(qid);
1170
1171 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1172 }
1173
1174 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1175 {
1176 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1177 }
1178
1179 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1180 {
1181 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1182 }
1183
1184 static void abort_endio(struct request *req, blk_status_t error)
1185 {
1186 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1187 struct nvme_queue *nvmeq = iod->nvmeq;
1188
1189 dev_warn(nvmeq->dev->ctrl.device,
1190 "Abort status: 0x%x", nvme_req(req)->status);
1191 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1192 blk_mq_free_request(req);
1193 }
1194
1195 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1196 {
1197
1198 /* If true, indicates loss of adapter communication, possibly by a
1199 * NVMe Subsystem reset.
1200 */
1201 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1202
1203 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1204 switch (dev->ctrl.state) {
1205 case NVME_CTRL_RESETTING:
1206 case NVME_CTRL_CONNECTING:
1207 return false;
1208 default:
1209 break;
1210 }
1211
1212 /* We shouldn't reset unless the controller is on fatal error state
1213 * _or_ if we lost the communication with it.
1214 */
1215 if (!(csts & NVME_CSTS_CFS) && !nssro)
1216 return false;
1217
1218 return true;
1219 }
1220
1221 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1222 {
1223 /* Read a config register to help see what died. */
1224 u16 pci_status;
1225 int result;
1226
1227 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1228 &pci_status);
1229 if (result == PCIBIOS_SUCCESSFUL)
1230 dev_warn(dev->ctrl.device,
1231 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1232 csts, pci_status);
1233 else
1234 dev_warn(dev->ctrl.device,
1235 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1236 csts, result);
1237 }
1238
1239 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1240 {
1241 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1242 struct nvme_queue *nvmeq = iod->nvmeq;
1243 struct nvme_dev *dev = nvmeq->dev;
1244 struct request *abort_req;
1245 struct nvme_command cmd;
1246 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1247
1248 /* If PCI error recovery process is happening, we cannot reset or
1249 * the recovery mechanism will surely fail.
1250 */
1251 mb();
1252 if (pci_channel_offline(to_pci_dev(dev->dev)))
1253 return BLK_EH_RESET_TIMER;
1254
1255 /*
1256 * Reset immediately if the controller is failed
1257 */
1258 if (nvme_should_reset(dev, csts)) {
1259 nvme_warn_reset(dev, csts);
1260 nvme_dev_disable(dev, false);
1261 nvme_reset_ctrl(&dev->ctrl);
1262 return BLK_EH_DONE;
1263 }
1264
1265 /*
1266 * Did we miss an interrupt?
1267 */
1268 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1269 dev_warn(dev->ctrl.device,
1270 "I/O %d QID %d timeout, completion polled\n",
1271 req->tag, nvmeq->qid);
1272 return BLK_EH_DONE;
1273 }
1274
1275 /*
1276 * Shutdown immediately if controller times out while starting. The
1277 * reset work will see the pci device disabled when it gets the forced
1278 * cancellation error. All outstanding requests are completed on
1279 * shutdown, so we return BLK_EH_DONE.
1280 */
1281 switch (dev->ctrl.state) {
1282 case NVME_CTRL_CONNECTING:
1283 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1284 /* fall through */
1285 case NVME_CTRL_DELETING:
1286 dev_warn_ratelimited(dev->ctrl.device,
1287 "I/O %d QID %d timeout, disable controller\n",
1288 req->tag, nvmeq->qid);
1289 nvme_dev_disable(dev, true);
1290 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1291 return BLK_EH_DONE;
1292 case NVME_CTRL_RESETTING:
1293 return BLK_EH_RESET_TIMER;
1294 default:
1295 break;
1296 }
1297
1298 /*
1299 * Shutdown the controller immediately and schedule a reset if the
1300 * command was already aborted once before and still hasn't been
1301 * returned to the driver, or if this is the admin queue.
1302 */
1303 if (!nvmeq->qid || iod->aborted) {
1304 dev_warn(dev->ctrl.device,
1305 "I/O %d QID %d timeout, reset controller\n",
1306 req->tag, nvmeq->qid);
1307 nvme_dev_disable(dev, false);
1308 nvme_reset_ctrl(&dev->ctrl);
1309
1310 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1311 return BLK_EH_DONE;
1312 }
1313
1314 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1315 atomic_inc(&dev->ctrl.abort_limit);
1316 return BLK_EH_RESET_TIMER;
1317 }
1318 iod->aborted = 1;
1319
1320 memset(&cmd, 0, sizeof(cmd));
1321 cmd.abort.opcode = nvme_admin_abort_cmd;
1322 cmd.abort.cid = req->tag;
1323 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1324
1325 dev_warn(nvmeq->dev->ctrl.device,
1326 "I/O %d QID %d timeout, aborting\n",
1327 req->tag, nvmeq->qid);
1328
1329 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1330 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1331 if (IS_ERR(abort_req)) {
1332 atomic_inc(&dev->ctrl.abort_limit);
1333 return BLK_EH_RESET_TIMER;
1334 }
1335
1336 abort_req->timeout = ADMIN_TIMEOUT;
1337 abort_req->end_io_data = NULL;
1338 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1339
1340 /*
1341 * The aborted req will be completed on receiving the abort req.
1342 * We enable the timer again. If hit twice, it'll cause a device reset,
1343 * as the device then is in a faulty state.
1344 */
1345 return BLK_EH_RESET_TIMER;
1346 }
1347
1348 static void nvme_free_queue(struct nvme_queue *nvmeq)
1349 {
1350 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1351 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1352 if (!nvmeq->sq_cmds)
1353 return;
1354
1355 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1356 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1357 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1358 } else {
1359 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1360 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1361 }
1362 }
1363
1364 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1365 {
1366 int i;
1367
1368 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1369 dev->ctrl.queue_count--;
1370 nvme_free_queue(&dev->queues[i]);
1371 }
1372 }
1373
1374 /**
1375 * nvme_suspend_queue - put queue into suspended state
1376 * @nvmeq: queue to suspend
1377 */
1378 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1379 {
1380 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1381 return 1;
1382
1383 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1384 mb();
1385
1386 nvmeq->dev->online_queues--;
1387 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1388 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1389 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1390 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1391 return 0;
1392 }
1393
1394 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1395 {
1396 int i;
1397
1398 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1399 nvme_suspend_queue(&dev->queues[i]);
1400 }
1401
1402 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1403 {
1404 struct nvme_queue *nvmeq = &dev->queues[0];
1405
1406 if (shutdown)
1407 nvme_shutdown_ctrl(&dev->ctrl);
1408 else
1409 nvme_disable_ctrl(&dev->ctrl);
1410
1411 nvme_poll_irqdisable(nvmeq, -1);
1412 }
1413
1414 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1415 int entry_size)
1416 {
1417 int q_depth = dev->q_depth;
1418 unsigned q_size_aligned = roundup(q_depth * entry_size,
1419 dev->ctrl.page_size);
1420
1421 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1422 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1423 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1424 q_depth = div_u64(mem_per_q, entry_size);
1425
1426 /*
1427 * Ensure the reduced q_depth is above some threshold where it
1428 * would be better to map queues in system memory with the
1429 * original depth
1430 */
1431 if (q_depth < 64)
1432 return -ENOMEM;
1433 }
1434
1435 return q_depth;
1436 }
1437
1438 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1439 int qid)
1440 {
1441 struct pci_dev *pdev = to_pci_dev(dev->dev);
1442
1443 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1444 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1445 if (nvmeq->sq_cmds) {
1446 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1447 nvmeq->sq_cmds);
1448 if (nvmeq->sq_dma_addr) {
1449 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1450 return 0;
1451 }
1452
1453 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1454 }
1455 }
1456
1457 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1458 &nvmeq->sq_dma_addr, GFP_KERNEL);
1459 if (!nvmeq->sq_cmds)
1460 return -ENOMEM;
1461 return 0;
1462 }
1463
1464 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1465 {
1466 struct nvme_queue *nvmeq = &dev->queues[qid];
1467
1468 if (dev->ctrl.queue_count > qid)
1469 return 0;
1470
1471 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1472 nvmeq->q_depth = depth;
1473 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1474 &nvmeq->cq_dma_addr, GFP_KERNEL);
1475 if (!nvmeq->cqes)
1476 goto free_nvmeq;
1477
1478 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1479 goto free_cqdma;
1480
1481 nvmeq->dev = dev;
1482 spin_lock_init(&nvmeq->sq_lock);
1483 spin_lock_init(&nvmeq->cq_poll_lock);
1484 nvmeq->cq_head = 0;
1485 nvmeq->cq_phase = 1;
1486 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1487 nvmeq->qid = qid;
1488 dev->ctrl.queue_count++;
1489
1490 return 0;
1491
1492 free_cqdma:
1493 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1494 nvmeq->cq_dma_addr);
1495 free_nvmeq:
1496 return -ENOMEM;
1497 }
1498
1499 static int queue_request_irq(struct nvme_queue *nvmeq)
1500 {
1501 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1502 int nr = nvmeq->dev->ctrl.instance;
1503
1504 if (use_threaded_interrupts) {
1505 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1506 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1507 } else {
1508 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1509 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1510 }
1511 }
1512
1513 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1514 {
1515 struct nvme_dev *dev = nvmeq->dev;
1516
1517 nvmeq->sq_tail = 0;
1518 nvmeq->last_sq_tail = 0;
1519 nvmeq->cq_head = 0;
1520 nvmeq->cq_phase = 1;
1521 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1522 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1523 nvme_dbbuf_init(dev, nvmeq, qid);
1524 dev->online_queues++;
1525 wmb(); /* ensure the first interrupt sees the initialization */
1526 }
1527
1528 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1529 {
1530 struct nvme_dev *dev = nvmeq->dev;
1531 int result;
1532 u16 vector = 0;
1533
1534 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1535
1536 /*
1537 * A queue's vector matches the queue identifier unless the controller
1538 * has only one vector available.
1539 */
1540 if (!polled)
1541 vector = dev->num_vecs == 1 ? 0 : qid;
1542 else
1543 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1544
1545 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1546 if (result)
1547 return result;
1548
1549 result = adapter_alloc_sq(dev, qid, nvmeq);
1550 if (result < 0)
1551 return result;
1552 else if (result)
1553 goto release_cq;
1554
1555 nvmeq->cq_vector = vector;
1556 nvme_init_queue(nvmeq, qid);
1557
1558 if (!polled) {
1559 result = queue_request_irq(nvmeq);
1560 if (result < 0)
1561 goto release_sq;
1562 }
1563
1564 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1565 return result;
1566
1567 release_sq:
1568 dev->online_queues--;
1569 adapter_delete_sq(dev, qid);
1570 release_cq:
1571 adapter_delete_cq(dev, qid);
1572 return result;
1573 }
1574
1575 static const struct blk_mq_ops nvme_mq_admin_ops = {
1576 .queue_rq = nvme_queue_rq,
1577 .complete = nvme_pci_complete_rq,
1578 .init_hctx = nvme_admin_init_hctx,
1579 .exit_hctx = nvme_admin_exit_hctx,
1580 .init_request = nvme_init_request,
1581 .timeout = nvme_timeout,
1582 };
1583
1584 static const struct blk_mq_ops nvme_mq_ops = {
1585 .queue_rq = nvme_queue_rq,
1586 .complete = nvme_pci_complete_rq,
1587 .commit_rqs = nvme_commit_rqs,
1588 .init_hctx = nvme_init_hctx,
1589 .init_request = nvme_init_request,
1590 .map_queues = nvme_pci_map_queues,
1591 .timeout = nvme_timeout,
1592 .poll = nvme_poll,
1593 };
1594
1595 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1596 {
1597 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1598 /*
1599 * If the controller was reset during removal, it's possible
1600 * user requests may be waiting on a stopped queue. Start the
1601 * queue to flush these to completion.
1602 */
1603 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1604 blk_cleanup_queue(dev->ctrl.admin_q);
1605 blk_mq_free_tag_set(&dev->admin_tagset);
1606 }
1607 }
1608
1609 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1610 {
1611 if (!dev->ctrl.admin_q) {
1612 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1613 dev->admin_tagset.nr_hw_queues = 1;
1614
1615 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1616 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1617 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1618 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1619 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1620 dev->admin_tagset.driver_data = dev;
1621
1622 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1623 return -ENOMEM;
1624 dev->ctrl.admin_tagset = &dev->admin_tagset;
1625
1626 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1627 if (IS_ERR(dev->ctrl.admin_q)) {
1628 blk_mq_free_tag_set(&dev->admin_tagset);
1629 return -ENOMEM;
1630 }
1631 if (!blk_get_queue(dev->ctrl.admin_q)) {
1632 nvme_dev_remove_admin(dev);
1633 dev->ctrl.admin_q = NULL;
1634 return -ENODEV;
1635 }
1636 } else
1637 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1638
1639 return 0;
1640 }
1641
1642 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1643 {
1644 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1645 }
1646
1647 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1648 {
1649 struct pci_dev *pdev = to_pci_dev(dev->dev);
1650
1651 if (size <= dev->bar_mapped_size)
1652 return 0;
1653 if (size > pci_resource_len(pdev, 0))
1654 return -ENOMEM;
1655 if (dev->bar)
1656 iounmap(dev->bar);
1657 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1658 if (!dev->bar) {
1659 dev->bar_mapped_size = 0;
1660 return -ENOMEM;
1661 }
1662 dev->bar_mapped_size = size;
1663 dev->dbs = dev->bar + NVME_REG_DBS;
1664
1665 return 0;
1666 }
1667
1668 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1669 {
1670 int result;
1671 u32 aqa;
1672 struct nvme_queue *nvmeq;
1673
1674 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1675 if (result < 0)
1676 return result;
1677
1678 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1679 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1680
1681 if (dev->subsystem &&
1682 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1683 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1684
1685 result = nvme_disable_ctrl(&dev->ctrl);
1686 if (result < 0)
1687 return result;
1688
1689 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1690 if (result)
1691 return result;
1692
1693 nvmeq = &dev->queues[0];
1694 aqa = nvmeq->q_depth - 1;
1695 aqa |= aqa << 16;
1696
1697 writel(aqa, dev->bar + NVME_REG_AQA);
1698 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1699 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1700
1701 result = nvme_enable_ctrl(&dev->ctrl);
1702 if (result)
1703 return result;
1704
1705 nvmeq->cq_vector = 0;
1706 nvme_init_queue(nvmeq, 0);
1707 result = queue_request_irq(nvmeq);
1708 if (result) {
1709 dev->online_queues--;
1710 return result;
1711 }
1712
1713 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1714 return result;
1715 }
1716
1717 static int nvme_create_io_queues(struct nvme_dev *dev)
1718 {
1719 unsigned i, max, rw_queues;
1720 int ret = 0;
1721
1722 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1723 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1724 ret = -ENOMEM;
1725 break;
1726 }
1727 }
1728
1729 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1730 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1731 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1732 dev->io_queues[HCTX_TYPE_READ];
1733 } else {
1734 rw_queues = max;
1735 }
1736
1737 for (i = dev->online_queues; i <= max; i++) {
1738 bool polled = i > rw_queues;
1739
1740 ret = nvme_create_queue(&dev->queues[i], i, polled);
1741 if (ret)
1742 break;
1743 }
1744
1745 /*
1746 * Ignore failing Create SQ/CQ commands, we can continue with less
1747 * than the desired amount of queues, and even a controller without
1748 * I/O queues can still be used to issue admin commands. This might
1749 * be useful to upgrade a buggy firmware for example.
1750 */
1751 return ret >= 0 ? 0 : ret;
1752 }
1753
1754 static ssize_t nvme_cmb_show(struct device *dev,
1755 struct device_attribute *attr,
1756 char *buf)
1757 {
1758 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1759
1760 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1761 ndev->cmbloc, ndev->cmbsz);
1762 }
1763 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1764
1765 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1766 {
1767 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1768
1769 return 1ULL << (12 + 4 * szu);
1770 }
1771
1772 static u32 nvme_cmb_size(struct nvme_dev *dev)
1773 {
1774 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1775 }
1776
1777 static void nvme_map_cmb(struct nvme_dev *dev)
1778 {
1779 u64 size, offset;
1780 resource_size_t bar_size;
1781 struct pci_dev *pdev = to_pci_dev(dev->dev);
1782 int bar;
1783
1784 if (dev->cmb_size)
1785 return;
1786
1787 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1788 if (!dev->cmbsz)
1789 return;
1790 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1791
1792 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1793 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1794 bar = NVME_CMB_BIR(dev->cmbloc);
1795 bar_size = pci_resource_len(pdev, bar);
1796
1797 if (offset > bar_size)
1798 return;
1799
1800 /*
1801 * Controllers may support a CMB size larger than their BAR,
1802 * for example, due to being behind a bridge. Reduce the CMB to
1803 * the reported size of the BAR
1804 */
1805 if (size > bar_size - offset)
1806 size = bar_size - offset;
1807
1808 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1809 dev_warn(dev->ctrl.device,
1810 "failed to register the CMB\n");
1811 return;
1812 }
1813
1814 dev->cmb_size = size;
1815 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1816
1817 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1818 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1819 pci_p2pmem_publish(pdev, true);
1820
1821 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1822 &dev_attr_cmb.attr, NULL))
1823 dev_warn(dev->ctrl.device,
1824 "failed to add sysfs attribute for CMB\n");
1825 }
1826
1827 static inline void nvme_release_cmb(struct nvme_dev *dev)
1828 {
1829 if (dev->cmb_size) {
1830 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1831 &dev_attr_cmb.attr, NULL);
1832 dev->cmb_size = 0;
1833 }
1834 }
1835
1836 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1837 {
1838 u64 dma_addr = dev->host_mem_descs_dma;
1839 struct nvme_command c;
1840 int ret;
1841
1842 memset(&c, 0, sizeof(c));
1843 c.features.opcode = nvme_admin_set_features;
1844 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1845 c.features.dword11 = cpu_to_le32(bits);
1846 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1847 ilog2(dev->ctrl.page_size));
1848 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1849 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1850 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1851
1852 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1853 if (ret) {
1854 dev_warn(dev->ctrl.device,
1855 "failed to set host mem (err %d, flags %#x).\n",
1856 ret, bits);
1857 }
1858 return ret;
1859 }
1860
1861 static void nvme_free_host_mem(struct nvme_dev *dev)
1862 {
1863 int i;
1864
1865 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1866 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1867 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1868
1869 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1870 le64_to_cpu(desc->addr),
1871 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1872 }
1873
1874 kfree(dev->host_mem_desc_bufs);
1875 dev->host_mem_desc_bufs = NULL;
1876 dma_free_coherent(dev->dev,
1877 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1878 dev->host_mem_descs, dev->host_mem_descs_dma);
1879 dev->host_mem_descs = NULL;
1880 dev->nr_host_mem_descs = 0;
1881 }
1882
1883 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1884 u32 chunk_size)
1885 {
1886 struct nvme_host_mem_buf_desc *descs;
1887 u32 max_entries, len;
1888 dma_addr_t descs_dma;
1889 int i = 0;
1890 void **bufs;
1891 u64 size, tmp;
1892
1893 tmp = (preferred + chunk_size - 1);
1894 do_div(tmp, chunk_size);
1895 max_entries = tmp;
1896
1897 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1898 max_entries = dev->ctrl.hmmaxd;
1899
1900 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1901 &descs_dma, GFP_KERNEL);
1902 if (!descs)
1903 goto out;
1904
1905 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1906 if (!bufs)
1907 goto out_free_descs;
1908
1909 for (size = 0; size < preferred && i < max_entries; size += len) {
1910 dma_addr_t dma_addr;
1911
1912 len = min_t(u64, chunk_size, preferred - size);
1913 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1914 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1915 if (!bufs[i])
1916 break;
1917
1918 descs[i].addr = cpu_to_le64(dma_addr);
1919 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1920 i++;
1921 }
1922
1923 if (!size)
1924 goto out_free_bufs;
1925
1926 dev->nr_host_mem_descs = i;
1927 dev->host_mem_size = size;
1928 dev->host_mem_descs = descs;
1929 dev->host_mem_descs_dma = descs_dma;
1930 dev->host_mem_desc_bufs = bufs;
1931 return 0;
1932
1933 out_free_bufs:
1934 while (--i >= 0) {
1935 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1936
1937 dma_free_attrs(dev->dev, size, bufs[i],
1938 le64_to_cpu(descs[i].addr),
1939 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1940 }
1941
1942 kfree(bufs);
1943 out_free_descs:
1944 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1945 descs_dma);
1946 out:
1947 dev->host_mem_descs = NULL;
1948 return -ENOMEM;
1949 }
1950
1951 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1952 {
1953 u32 chunk_size;
1954
1955 /* start big and work our way down */
1956 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1957 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1958 chunk_size /= 2) {
1959 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1960 if (!min || dev->host_mem_size >= min)
1961 return 0;
1962 nvme_free_host_mem(dev);
1963 }
1964 }
1965
1966 return -ENOMEM;
1967 }
1968
1969 static int nvme_setup_host_mem(struct nvme_dev *dev)
1970 {
1971 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1972 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1973 u64 min = (u64)dev->ctrl.hmmin * 4096;
1974 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1975 int ret;
1976
1977 preferred = min(preferred, max);
1978 if (min > max) {
1979 dev_warn(dev->ctrl.device,
1980 "min host memory (%lld MiB) above limit (%d MiB).\n",
1981 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1982 nvme_free_host_mem(dev);
1983 return 0;
1984 }
1985
1986 /*
1987 * If we already have a buffer allocated check if we can reuse it.
1988 */
1989 if (dev->host_mem_descs) {
1990 if (dev->host_mem_size >= min)
1991 enable_bits |= NVME_HOST_MEM_RETURN;
1992 else
1993 nvme_free_host_mem(dev);
1994 }
1995
1996 if (!dev->host_mem_descs) {
1997 if (nvme_alloc_host_mem(dev, min, preferred)) {
1998 dev_warn(dev->ctrl.device,
1999 "failed to allocate host memory buffer.\n");
2000 return 0; /* controller must work without HMB */
2001 }
2002
2003 dev_info(dev->ctrl.device,
2004 "allocated %lld MiB host memory buffer.\n",
2005 dev->host_mem_size >> ilog2(SZ_1M));
2006 }
2007
2008 ret = nvme_set_host_mem(dev, enable_bits);
2009 if (ret)
2010 nvme_free_host_mem(dev);
2011 return ret;
2012 }
2013
2014 /*
2015 * nirqs is the number of interrupts available for write and read
2016 * queues. The core already reserved an interrupt for the admin queue.
2017 */
2018 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2019 {
2020 struct nvme_dev *dev = affd->priv;
2021 unsigned int nr_read_queues;
2022
2023 /*
2024 * If there is no interupt available for queues, ensure that
2025 * the default queue is set to 1. The affinity set size is
2026 * also set to one, but the irq core ignores it for this case.
2027 *
2028 * If only one interrupt is available or 'write_queue' == 0, combine
2029 * write and read queues.
2030 *
2031 * If 'write_queues' > 0, ensure it leaves room for at least one read
2032 * queue.
2033 */
2034 if (!nrirqs) {
2035 nrirqs = 1;
2036 nr_read_queues = 0;
2037 } else if (nrirqs == 1 || !write_queues) {
2038 nr_read_queues = 0;
2039 } else if (write_queues >= nrirqs) {
2040 nr_read_queues = 1;
2041 } else {
2042 nr_read_queues = nrirqs - write_queues;
2043 }
2044
2045 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2046 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2047 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2048 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2049 affd->nr_sets = nr_read_queues ? 2 : 1;
2050 }
2051
2052 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2053 {
2054 struct pci_dev *pdev = to_pci_dev(dev->dev);
2055 struct irq_affinity affd = {
2056 .pre_vectors = 1,
2057 .calc_sets = nvme_calc_irq_sets,
2058 .priv = dev,
2059 };
2060 unsigned int irq_queues, this_p_queues;
2061 unsigned int nr_cpus = num_possible_cpus();
2062
2063 /*
2064 * Poll queues don't need interrupts, but we need at least one IO
2065 * queue left over for non-polled IO.
2066 */
2067 this_p_queues = poll_queues;
2068 if (this_p_queues >= nr_io_queues) {
2069 this_p_queues = nr_io_queues - 1;
2070 irq_queues = 1;
2071 } else {
2072 if (nr_cpus < nr_io_queues - this_p_queues)
2073 irq_queues = nr_cpus + 1;
2074 else
2075 irq_queues = nr_io_queues - this_p_queues + 1;
2076 }
2077 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2078
2079 /* Initialize for the single interrupt case */
2080 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2081 dev->io_queues[HCTX_TYPE_READ] = 0;
2082
2083 /*
2084 * Some Apple controllers require all queues to use the
2085 * first vector.
2086 */
2087 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2088 irq_queues = 1;
2089
2090 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2091 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2092 }
2093
2094 static void nvme_disable_io_queues(struct nvme_dev *dev)
2095 {
2096 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2097 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2098 }
2099
2100 static int nvme_setup_io_queues(struct nvme_dev *dev)
2101 {
2102 struct nvme_queue *adminq = &dev->queues[0];
2103 struct pci_dev *pdev = to_pci_dev(dev->dev);
2104 int result, nr_io_queues;
2105 unsigned long size;
2106
2107 nr_io_queues = max_io_queues();
2108
2109 /*
2110 * If tags are shared with admin queue (Apple bug), then
2111 * make sure we only use one IO queue.
2112 */
2113 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2114 nr_io_queues = 1;
2115
2116 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2117 if (result < 0)
2118 return result;
2119
2120 if (nr_io_queues == 0)
2121 return 0;
2122
2123 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2124
2125 if (dev->cmb_use_sqes) {
2126 result = nvme_cmb_qdepth(dev, nr_io_queues,
2127 sizeof(struct nvme_command));
2128 if (result > 0)
2129 dev->q_depth = result;
2130 else
2131 dev->cmb_use_sqes = false;
2132 }
2133
2134 do {
2135 size = db_bar_size(dev, nr_io_queues);
2136 result = nvme_remap_bar(dev, size);
2137 if (!result)
2138 break;
2139 if (!--nr_io_queues)
2140 return -ENOMEM;
2141 } while (1);
2142 adminq->q_db = dev->dbs;
2143
2144 retry:
2145 /* Deregister the admin queue's interrupt */
2146 pci_free_irq(pdev, 0, adminq);
2147
2148 /*
2149 * If we enable msix early due to not intx, disable it again before
2150 * setting up the full range we need.
2151 */
2152 pci_free_irq_vectors(pdev);
2153
2154 result = nvme_setup_irqs(dev, nr_io_queues);
2155 if (result <= 0)
2156 return -EIO;
2157
2158 dev->num_vecs = result;
2159 result = max(result - 1, 1);
2160 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2161
2162 /*
2163 * Should investigate if there's a performance win from allocating
2164 * more queues than interrupt vectors; it might allow the submission
2165 * path to scale better, even if the receive path is limited by the
2166 * number of interrupts.
2167 */
2168 result = queue_request_irq(adminq);
2169 if (result)
2170 return result;
2171 set_bit(NVMEQ_ENABLED, &adminq->flags);
2172
2173 result = nvme_create_io_queues(dev);
2174 if (result || dev->online_queues < 2)
2175 return result;
2176
2177 if (dev->online_queues - 1 < dev->max_qid) {
2178 nr_io_queues = dev->online_queues - 1;
2179 nvme_disable_io_queues(dev);
2180 nvme_suspend_io_queues(dev);
2181 goto retry;
2182 }
2183 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2184 dev->io_queues[HCTX_TYPE_DEFAULT],
2185 dev->io_queues[HCTX_TYPE_READ],
2186 dev->io_queues[HCTX_TYPE_POLL]);
2187 return 0;
2188 }
2189
2190 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2191 {
2192 struct nvme_queue *nvmeq = req->end_io_data;
2193
2194 blk_mq_free_request(req);
2195 complete(&nvmeq->delete_done);
2196 }
2197
2198 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2199 {
2200 struct nvme_queue *nvmeq = req->end_io_data;
2201
2202 if (error)
2203 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2204
2205 nvme_del_queue_end(req, error);
2206 }
2207
2208 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2209 {
2210 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2211 struct request *req;
2212 struct nvme_command cmd;
2213
2214 memset(&cmd, 0, sizeof(cmd));
2215 cmd.delete_queue.opcode = opcode;
2216 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2217
2218 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2219 if (IS_ERR(req))
2220 return PTR_ERR(req);
2221
2222 req->timeout = ADMIN_TIMEOUT;
2223 req->end_io_data = nvmeq;
2224
2225 init_completion(&nvmeq->delete_done);
2226 blk_execute_rq_nowait(q, NULL, req, false,
2227 opcode == nvme_admin_delete_cq ?
2228 nvme_del_cq_end : nvme_del_queue_end);
2229 return 0;
2230 }
2231
2232 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2233 {
2234 int nr_queues = dev->online_queues - 1, sent = 0;
2235 unsigned long timeout;
2236
2237 retry:
2238 timeout = ADMIN_TIMEOUT;
2239 while (nr_queues > 0) {
2240 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2241 break;
2242 nr_queues--;
2243 sent++;
2244 }
2245 while (sent) {
2246 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2247
2248 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2249 timeout);
2250 if (timeout == 0)
2251 return false;
2252
2253 /* handle any remaining CQEs */
2254 if (opcode == nvme_admin_delete_cq &&
2255 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2256 nvme_poll_irqdisable(nvmeq, -1);
2257
2258 sent--;
2259 if (nr_queues)
2260 goto retry;
2261 }
2262 return true;
2263 }
2264
2265 static void nvme_dev_add(struct nvme_dev *dev)
2266 {
2267 int ret;
2268
2269 if (!dev->ctrl.tagset) {
2270 dev->tagset.ops = &nvme_mq_ops;
2271 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2272 dev->tagset.nr_maps = 2; /* default + read */
2273 if (dev->io_queues[HCTX_TYPE_POLL])
2274 dev->tagset.nr_maps++;
2275 dev->tagset.timeout = NVME_IO_TIMEOUT;
2276 dev->tagset.numa_node = dev_to_node(dev->dev);
2277 dev->tagset.queue_depth =
2278 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2279 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2280 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2281 dev->tagset.driver_data = dev;
2282
2283 /*
2284 * Some Apple controllers requires tags to be unique
2285 * across admin and IO queue, so reserve the first 32
2286 * tags of the IO queue.
2287 */
2288 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2289 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2290
2291 ret = blk_mq_alloc_tag_set(&dev->tagset);
2292 if (ret) {
2293 dev_warn(dev->ctrl.device,
2294 "IO queues tagset allocation failed %d\n", ret);
2295 return;
2296 }
2297 dev->ctrl.tagset = &dev->tagset;
2298 } else {
2299 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2300
2301 /* Free previously allocated queues that are no longer usable */
2302 nvme_free_queues(dev, dev->online_queues);
2303 }
2304
2305 nvme_dbbuf_set(dev);
2306 }
2307
2308 static int nvme_pci_enable(struct nvme_dev *dev)
2309 {
2310 int result = -ENOMEM;
2311 struct pci_dev *pdev = to_pci_dev(dev->dev);
2312
2313 if (pci_enable_device_mem(pdev))
2314 return result;
2315
2316 pci_set_master(pdev);
2317
2318 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2319 goto disable;
2320
2321 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2322 result = -ENODEV;
2323 goto disable;
2324 }
2325
2326 /*
2327 * Some devices and/or platforms don't advertise or work with INTx
2328 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2329 * adjust this later.
2330 */
2331 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2332 if (result < 0)
2333 return result;
2334
2335 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2336
2337 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2338 io_queue_depth);
2339 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2340 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2341 dev->dbs = dev->bar + 4096;
2342
2343 /*
2344 * Some Apple controllers require a non-standard SQE size.
2345 * Interestingly they also seem to ignore the CC:IOSQES register
2346 * so we don't bother updating it here.
2347 */
2348 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2349 dev->io_sqes = 7;
2350 else
2351 dev->io_sqes = NVME_NVM_IOSQES;
2352
2353 /*
2354 * Temporary fix for the Apple controller found in the MacBook8,1 and
2355 * some MacBook7,1 to avoid controller resets and data loss.
2356 */
2357 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2358 dev->q_depth = 2;
2359 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2360 "set queue depth=%u to work around controller resets\n",
2361 dev->q_depth);
2362 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2363 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2364 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2365 dev->q_depth = 64;
2366 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2367 "set queue depth=%u\n", dev->q_depth);
2368 }
2369
2370 /*
2371 * Controllers with the shared tags quirk need the IO queue to be
2372 * big enough so that we get 32 tags for the admin queue
2373 */
2374 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2375 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2376 dev->q_depth = NVME_AQ_DEPTH + 2;
2377 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2378 dev->q_depth);
2379 }
2380
2381
2382 nvme_map_cmb(dev);
2383
2384 pci_enable_pcie_error_reporting(pdev);
2385 pci_save_state(pdev);
2386 return 0;
2387
2388 disable:
2389 pci_disable_device(pdev);
2390 return result;
2391 }
2392
2393 static void nvme_dev_unmap(struct nvme_dev *dev)
2394 {
2395 if (dev->bar)
2396 iounmap(dev->bar);
2397 pci_release_mem_regions(to_pci_dev(dev->dev));
2398 }
2399
2400 static void nvme_pci_disable(struct nvme_dev *dev)
2401 {
2402 struct pci_dev *pdev = to_pci_dev(dev->dev);
2403
2404 pci_free_irq_vectors(pdev);
2405
2406 if (pci_is_enabled(pdev)) {
2407 pci_disable_pcie_error_reporting(pdev);
2408 pci_disable_device(pdev);
2409 }
2410 }
2411
2412 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2413 {
2414 bool dead = true, freeze = false;
2415 struct pci_dev *pdev = to_pci_dev(dev->dev);
2416
2417 mutex_lock(&dev->shutdown_lock);
2418 if (pci_is_enabled(pdev)) {
2419 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2420
2421 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2422 dev->ctrl.state == NVME_CTRL_RESETTING) {
2423 freeze = true;
2424 nvme_start_freeze(&dev->ctrl);
2425 }
2426 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2427 pdev->error_state != pci_channel_io_normal);
2428 }
2429
2430 /*
2431 * Give the controller a chance to complete all entered requests if
2432 * doing a safe shutdown.
2433 */
2434 if (!dead && shutdown && freeze)
2435 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2436
2437 nvme_stop_queues(&dev->ctrl);
2438
2439 if (!dead && dev->ctrl.queue_count > 0) {
2440 nvme_disable_io_queues(dev);
2441 nvme_disable_admin_queue(dev, shutdown);
2442 }
2443 nvme_suspend_io_queues(dev);
2444 nvme_suspend_queue(&dev->queues[0]);
2445 nvme_pci_disable(dev);
2446
2447 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2448 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2449 blk_mq_tagset_wait_completed_request(&dev->tagset);
2450 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2451
2452 /*
2453 * The driver will not be starting up queues again if shutting down so
2454 * must flush all entered requests to their failed completion to avoid
2455 * deadlocking blk-mq hot-cpu notifier.
2456 */
2457 if (shutdown) {
2458 nvme_start_queues(&dev->ctrl);
2459 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2460 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2461 }
2462 mutex_unlock(&dev->shutdown_lock);
2463 }
2464
2465 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2466 {
2467 if (!nvme_wait_reset(&dev->ctrl))
2468 return -EBUSY;
2469 nvme_dev_disable(dev, shutdown);
2470 return 0;
2471 }
2472
2473 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2474 {
2475 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2476 PAGE_SIZE, PAGE_SIZE, 0);
2477 if (!dev->prp_page_pool)
2478 return -ENOMEM;
2479
2480 /* Optimisation for I/Os between 4k and 128k */
2481 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2482 256, 256, 0);
2483 if (!dev->prp_small_pool) {
2484 dma_pool_destroy(dev->prp_page_pool);
2485 return -ENOMEM;
2486 }
2487 return 0;
2488 }
2489
2490 static void nvme_release_prp_pools(struct nvme_dev *dev)
2491 {
2492 dma_pool_destroy(dev->prp_page_pool);
2493 dma_pool_destroy(dev->prp_small_pool);
2494 }
2495
2496 static void nvme_free_tagset(struct nvme_dev *dev)
2497 {
2498 if (dev->tagset.tags)
2499 blk_mq_free_tag_set(&dev->tagset);
2500 dev->ctrl.tagset = NULL;
2501 }
2502
2503 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2504 {
2505 struct nvme_dev *dev = to_nvme_dev(ctrl);
2506
2507 nvme_dbbuf_dma_free(dev);
2508 put_device(dev->dev);
2509 nvme_free_tagset(dev);
2510 if (dev->ctrl.admin_q)
2511 blk_put_queue(dev->ctrl.admin_q);
2512 kfree(dev->queues);
2513 free_opal_dev(dev->ctrl.opal_dev);
2514 mempool_destroy(dev->iod_mempool);
2515 kfree(dev);
2516 }
2517
2518 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2519 {
2520 /*
2521 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2522 * may be holding this pci_dev's device lock.
2523 */
2524 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2525 nvme_get_ctrl(&dev->ctrl);
2526 nvme_dev_disable(dev, false);
2527 nvme_kill_queues(&dev->ctrl);
2528 if (!queue_work(nvme_wq, &dev->remove_work))
2529 nvme_put_ctrl(&dev->ctrl);
2530 }
2531
2532 static void nvme_reset_work(struct work_struct *work)
2533 {
2534 struct nvme_dev *dev =
2535 container_of(work, struct nvme_dev, ctrl.reset_work);
2536 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2537 int result;
2538
2539 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2540 result = -ENODEV;
2541 goto out;
2542 }
2543
2544 /*
2545 * If we're called to reset a live controller first shut it down before
2546 * moving on.
2547 */
2548 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2549 nvme_dev_disable(dev, false);
2550 nvme_sync_queues(&dev->ctrl);
2551
2552 mutex_lock(&dev->shutdown_lock);
2553 result = nvme_pci_enable(dev);
2554 if (result)
2555 goto out_unlock;
2556
2557 result = nvme_pci_configure_admin_queue(dev);
2558 if (result)
2559 goto out_unlock;
2560
2561 result = nvme_alloc_admin_tags(dev);
2562 if (result)
2563 goto out_unlock;
2564
2565 /*
2566 * Limit the max command size to prevent iod->sg allocations going
2567 * over a single page.
2568 */
2569 dev->ctrl.max_hw_sectors = min_t(u32,
2570 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2571 dev->ctrl.max_segments = NVME_MAX_SEGS;
2572
2573 /*
2574 * Don't limit the IOMMU merged segment size.
2575 */
2576 dma_set_max_seg_size(dev->dev, 0xffffffff);
2577
2578 mutex_unlock(&dev->shutdown_lock);
2579
2580 /*
2581 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2582 * initializing procedure here.
2583 */
2584 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2585 dev_warn(dev->ctrl.device,
2586 "failed to mark controller CONNECTING\n");
2587 result = -EBUSY;
2588 goto out;
2589 }
2590
2591 result = nvme_init_identify(&dev->ctrl);
2592 if (result)
2593 goto out;
2594
2595 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2596 if (!dev->ctrl.opal_dev)
2597 dev->ctrl.opal_dev =
2598 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2599 else if (was_suspend)
2600 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2601 } else {
2602 free_opal_dev(dev->ctrl.opal_dev);
2603 dev->ctrl.opal_dev = NULL;
2604 }
2605
2606 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2607 result = nvme_dbbuf_dma_alloc(dev);
2608 if (result)
2609 dev_warn(dev->dev,
2610 "unable to allocate dma for dbbuf\n");
2611 }
2612
2613 if (dev->ctrl.hmpre) {
2614 result = nvme_setup_host_mem(dev);
2615 if (result < 0)
2616 goto out;
2617 }
2618
2619 result = nvme_setup_io_queues(dev);
2620 if (result)
2621 goto out;
2622
2623 /*
2624 * Keep the controller around but remove all namespaces if we don't have
2625 * any working I/O queue.
2626 */
2627 if (dev->online_queues < 2) {
2628 dev_warn(dev->ctrl.device, "IO queues not created\n");
2629 nvme_kill_queues(&dev->ctrl);
2630 nvme_remove_namespaces(&dev->ctrl);
2631 nvme_free_tagset(dev);
2632 } else {
2633 nvme_start_queues(&dev->ctrl);
2634 nvme_wait_freeze(&dev->ctrl);
2635 nvme_dev_add(dev);
2636 nvme_unfreeze(&dev->ctrl);
2637 }
2638
2639 /*
2640 * If only admin queue live, keep it to do further investigation or
2641 * recovery.
2642 */
2643 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2644 dev_warn(dev->ctrl.device,
2645 "failed to mark controller live state\n");
2646 result = -ENODEV;
2647 goto out;
2648 }
2649
2650 nvme_start_ctrl(&dev->ctrl);
2651 return;
2652
2653 out_unlock:
2654 mutex_unlock(&dev->shutdown_lock);
2655 out:
2656 if (result)
2657 dev_warn(dev->ctrl.device,
2658 "Removing after probe failure status: %d\n", result);
2659 nvme_remove_dead_ctrl(dev);
2660 }
2661
2662 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2663 {
2664 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2665 struct pci_dev *pdev = to_pci_dev(dev->dev);
2666
2667 if (pci_get_drvdata(pdev))
2668 device_release_driver(&pdev->dev);
2669 nvme_put_ctrl(&dev->ctrl);
2670 }
2671
2672 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2673 {
2674 *val = readl(to_nvme_dev(ctrl)->bar + off);
2675 return 0;
2676 }
2677
2678 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2679 {
2680 writel(val, to_nvme_dev(ctrl)->bar + off);
2681 return 0;
2682 }
2683
2684 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2685 {
2686 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2687 return 0;
2688 }
2689
2690 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2691 {
2692 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2693
2694 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2695 }
2696
2697 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2698 .name = "pcie",
2699 .module = THIS_MODULE,
2700 .flags = NVME_F_METADATA_SUPPORTED |
2701 NVME_F_PCI_P2PDMA,
2702 .reg_read32 = nvme_pci_reg_read32,
2703 .reg_write32 = nvme_pci_reg_write32,
2704 .reg_read64 = nvme_pci_reg_read64,
2705 .free_ctrl = nvme_pci_free_ctrl,
2706 .submit_async_event = nvme_pci_submit_async_event,
2707 .get_address = nvme_pci_get_address,
2708 };
2709
2710 static int nvme_dev_map(struct nvme_dev *dev)
2711 {
2712 struct pci_dev *pdev = to_pci_dev(dev->dev);
2713
2714 if (pci_request_mem_regions(pdev, "nvme"))
2715 return -ENODEV;
2716
2717 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2718 goto release;
2719
2720 return 0;
2721 release:
2722 pci_release_mem_regions(pdev);
2723 return -ENODEV;
2724 }
2725
2726 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2727 {
2728 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2729 /*
2730 * Several Samsung devices seem to drop off the PCIe bus
2731 * randomly when APST is on and uses the deepest sleep state.
2732 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2733 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2734 * 950 PRO 256GB", but it seems to be restricted to two Dell
2735 * laptops.
2736 */
2737 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2738 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2739 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2740 return NVME_QUIRK_NO_DEEPEST_PS;
2741 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2742 /*
2743 * Samsung SSD 960 EVO drops off the PCIe bus after system
2744 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2745 * within few minutes after bootup on a Coffee Lake board -
2746 * ASUS PRIME Z370-A
2747 */
2748 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2749 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2750 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2751 return NVME_QUIRK_NO_APST;
2752 }
2753
2754 return 0;
2755 }
2756
2757 static void nvme_async_probe(void *data, async_cookie_t cookie)
2758 {
2759 struct nvme_dev *dev = data;
2760
2761 flush_work(&dev->ctrl.reset_work);
2762 flush_work(&dev->ctrl.scan_work);
2763 nvme_put_ctrl(&dev->ctrl);
2764 }
2765
2766 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2767 {
2768 int node, result = -ENOMEM;
2769 struct nvme_dev *dev;
2770 unsigned long quirks = id->driver_data;
2771 size_t alloc_size;
2772
2773 node = dev_to_node(&pdev->dev);
2774 if (node == NUMA_NO_NODE)
2775 set_dev_node(&pdev->dev, first_memory_node);
2776
2777 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2778 if (!dev)
2779 return -ENOMEM;
2780
2781 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2782 GFP_KERNEL, node);
2783 if (!dev->queues)
2784 goto free;
2785
2786 dev->dev = get_device(&pdev->dev);
2787 pci_set_drvdata(pdev, dev);
2788
2789 result = nvme_dev_map(dev);
2790 if (result)
2791 goto put_pci;
2792
2793 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2794 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2795 mutex_init(&dev->shutdown_lock);
2796
2797 result = nvme_setup_prp_pools(dev);
2798 if (result)
2799 goto unmap;
2800
2801 quirks |= check_vendor_combination_bug(pdev);
2802
2803 /*
2804 * Double check that our mempool alloc size will cover the biggest
2805 * command we support.
2806 */
2807 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2808 NVME_MAX_SEGS, true);
2809 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2810
2811 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2812 mempool_kfree,
2813 (void *) alloc_size,
2814 GFP_KERNEL, node);
2815 if (!dev->iod_mempool) {
2816 result = -ENOMEM;
2817 goto release_pools;
2818 }
2819
2820 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2821 quirks);
2822 if (result)
2823 goto release_mempool;
2824
2825 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2826
2827 nvme_reset_ctrl(&dev->ctrl);
2828 nvme_get_ctrl(&dev->ctrl);
2829 async_schedule(nvme_async_probe, dev);
2830
2831 return 0;
2832
2833 release_mempool:
2834 mempool_destroy(dev->iod_mempool);
2835 release_pools:
2836 nvme_release_prp_pools(dev);
2837 unmap:
2838 nvme_dev_unmap(dev);
2839 put_pci:
2840 put_device(dev->dev);
2841 free:
2842 kfree(dev->queues);
2843 kfree(dev);
2844 return result;
2845 }
2846
2847 static void nvme_reset_prepare(struct pci_dev *pdev)
2848 {
2849 struct nvme_dev *dev = pci_get_drvdata(pdev);
2850
2851 /*
2852 * We don't need to check the return value from waiting for the reset
2853 * state as pci_dev device lock is held, making it impossible to race
2854 * with ->remove().
2855 */
2856 nvme_disable_prepare_reset(dev, false);
2857 nvme_sync_queues(&dev->ctrl);
2858 }
2859
2860 static void nvme_reset_done(struct pci_dev *pdev)
2861 {
2862 struct nvme_dev *dev = pci_get_drvdata(pdev);
2863
2864 if (!nvme_try_sched_reset(&dev->ctrl))
2865 flush_work(&dev->ctrl.reset_work);
2866 }
2867
2868 static void nvme_shutdown(struct pci_dev *pdev)
2869 {
2870 struct nvme_dev *dev = pci_get_drvdata(pdev);
2871 nvme_disable_prepare_reset(dev, true);
2872 }
2873
2874 /*
2875 * The driver's remove may be called on a device in a partially initialized
2876 * state. This function must not have any dependencies on the device state in
2877 * order to proceed.
2878 */
2879 static void nvme_remove(struct pci_dev *pdev)
2880 {
2881 struct nvme_dev *dev = pci_get_drvdata(pdev);
2882
2883 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2884 pci_set_drvdata(pdev, NULL);
2885
2886 if (!pci_device_is_present(pdev)) {
2887 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2888 nvme_dev_disable(dev, true);
2889 nvme_dev_remove_admin(dev);
2890 }
2891
2892 flush_work(&dev->ctrl.reset_work);
2893 nvme_stop_ctrl(&dev->ctrl);
2894 nvme_remove_namespaces(&dev->ctrl);
2895 nvme_dev_disable(dev, true);
2896 nvme_release_cmb(dev);
2897 nvme_free_host_mem(dev);
2898 nvme_dev_remove_admin(dev);
2899 nvme_free_queues(dev, 0);
2900 nvme_uninit_ctrl(&dev->ctrl);
2901 nvme_release_prp_pools(dev);
2902 nvme_dev_unmap(dev);
2903 nvme_put_ctrl(&dev->ctrl);
2904 }
2905
2906 #ifdef CONFIG_PM_SLEEP
2907 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2908 {
2909 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2910 }
2911
2912 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2913 {
2914 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2915 }
2916
2917 static int nvme_resume(struct device *dev)
2918 {
2919 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2920 struct nvme_ctrl *ctrl = &ndev->ctrl;
2921
2922 if (ndev->last_ps == U32_MAX ||
2923 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2924 return nvme_try_sched_reset(&ndev->ctrl);
2925 return 0;
2926 }
2927
2928 static int nvme_suspend(struct device *dev)
2929 {
2930 struct pci_dev *pdev = to_pci_dev(dev);
2931 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2932 struct nvme_ctrl *ctrl = &ndev->ctrl;
2933 int ret = -EBUSY;
2934
2935 ndev->last_ps = U32_MAX;
2936
2937 /*
2938 * The platform does not remove power for a kernel managed suspend so
2939 * use host managed nvme power settings for lowest idle power if
2940 * possible. This should have quicker resume latency than a full device
2941 * shutdown. But if the firmware is involved after the suspend or the
2942 * device does not support any non-default power states, shut down the
2943 * device fully.
2944 *
2945 * If ASPM is not enabled for the device, shut down the device and allow
2946 * the PCI bus layer to put it into D3 in order to take the PCIe link
2947 * down, so as to allow the platform to achieve its minimum low-power
2948 * state (which may not be possible if the link is up).
2949 */
2950 if (pm_suspend_via_firmware() || !ctrl->npss ||
2951 !pcie_aspm_enabled(pdev) ||
2952 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2953 return nvme_disable_prepare_reset(ndev, true);
2954
2955 nvme_start_freeze(ctrl);
2956 nvme_wait_freeze(ctrl);
2957 nvme_sync_queues(ctrl);
2958
2959 if (ctrl->state != NVME_CTRL_LIVE)
2960 goto unfreeze;
2961
2962 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2963 if (ret < 0)
2964 goto unfreeze;
2965
2966 /*
2967 * A saved state prevents pci pm from generically controlling the
2968 * device's power. If we're using protocol specific settings, we don't
2969 * want pci interfering.
2970 */
2971 pci_save_state(pdev);
2972
2973 ret = nvme_set_power_state(ctrl, ctrl->npss);
2974 if (ret < 0)
2975 goto unfreeze;
2976
2977 if (ret) {
2978 /* discard the saved state */
2979 pci_load_saved_state(pdev, NULL);
2980
2981 /*
2982 * Clearing npss forces a controller reset on resume. The
2983 * correct value will be rediscovered then.
2984 */
2985 ret = nvme_disable_prepare_reset(ndev, true);
2986 ctrl->npss = 0;
2987 }
2988 unfreeze:
2989 nvme_unfreeze(ctrl);
2990 return ret;
2991 }
2992
2993 static int nvme_simple_suspend(struct device *dev)
2994 {
2995 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2996 return nvme_disable_prepare_reset(ndev, true);
2997 }
2998
2999 static int nvme_simple_resume(struct device *dev)
3000 {
3001 struct pci_dev *pdev = to_pci_dev(dev);
3002 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3003
3004 return nvme_try_sched_reset(&ndev->ctrl);
3005 }
3006
3007 static const struct dev_pm_ops nvme_dev_pm_ops = {
3008 .suspend = nvme_suspend,
3009 .resume = nvme_resume,
3010 .freeze = nvme_simple_suspend,
3011 .thaw = nvme_simple_resume,
3012 .poweroff = nvme_simple_suspend,
3013 .restore = nvme_simple_resume,
3014 };
3015 #endif /* CONFIG_PM_SLEEP */
3016
3017 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3018 pci_channel_state_t state)
3019 {
3020 struct nvme_dev *dev = pci_get_drvdata(pdev);
3021
3022 /*
3023 * A frozen channel requires a reset. When detected, this method will
3024 * shutdown the controller to quiesce. The controller will be restarted
3025 * after the slot reset through driver's slot_reset callback.
3026 */
3027 switch (state) {
3028 case pci_channel_io_normal:
3029 return PCI_ERS_RESULT_CAN_RECOVER;
3030 case pci_channel_io_frozen:
3031 dev_warn(dev->ctrl.device,
3032 "frozen state error detected, reset controller\n");
3033 nvme_dev_disable(dev, false);
3034 return PCI_ERS_RESULT_NEED_RESET;
3035 case pci_channel_io_perm_failure:
3036 dev_warn(dev->ctrl.device,
3037 "failure state error detected, request disconnect\n");
3038 return PCI_ERS_RESULT_DISCONNECT;
3039 }
3040 return PCI_ERS_RESULT_NEED_RESET;
3041 }
3042
3043 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3044 {
3045 struct nvme_dev *dev = pci_get_drvdata(pdev);
3046
3047 dev_info(dev->ctrl.device, "restart after slot reset\n");
3048 pci_restore_state(pdev);
3049 nvme_reset_ctrl(&dev->ctrl);
3050 return PCI_ERS_RESULT_RECOVERED;
3051 }
3052
3053 static void nvme_error_resume(struct pci_dev *pdev)
3054 {
3055 struct nvme_dev *dev = pci_get_drvdata(pdev);
3056
3057 flush_work(&dev->ctrl.reset_work);
3058 }
3059
3060 static const struct pci_error_handlers nvme_err_handler = {
3061 .error_detected = nvme_error_detected,
3062 .slot_reset = nvme_slot_reset,
3063 .resume = nvme_error_resume,
3064 .reset_prepare = nvme_reset_prepare,
3065 .reset_done = nvme_reset_done,
3066 };
3067
3068 static const struct pci_device_id nvme_id_table[] = {
3069 { PCI_VDEVICE(INTEL, 0x0953),
3070 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3071 NVME_QUIRK_DEALLOCATE_ZEROES, },
3072 { PCI_VDEVICE(INTEL, 0x0a53),
3073 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3074 NVME_QUIRK_DEALLOCATE_ZEROES, },
3075 { PCI_VDEVICE(INTEL, 0x0a54),
3076 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3077 NVME_QUIRK_DEALLOCATE_ZEROES, },
3078 { PCI_VDEVICE(INTEL, 0x0a55),
3079 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3080 NVME_QUIRK_DEALLOCATE_ZEROES, },
3081 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3082 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3083 NVME_QUIRK_MEDIUM_PRIO_SQ |
3084 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3085 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3086 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3087 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3088 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3089 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3090 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3091 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3092 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3093 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3094 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3095 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3096 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3097 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3098 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3099 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3100 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3101 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3102 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3103 .driver_data = NVME_QUIRK_LIGHTNVM, },
3104 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3105 .driver_data = NVME_QUIRK_LIGHTNVM, },
3106 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3107 .driver_data = NVME_QUIRK_LIGHTNVM, },
3108 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3109 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3110 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3111 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3112 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3113 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3114 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3115 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3116 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3117 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3118 NVME_QUIRK_128_BYTES_SQES |
3119 NVME_QUIRK_SHARED_TAGS },
3120 { 0, }
3121 };
3122 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3123
3124 static struct pci_driver nvme_driver = {
3125 .name = "nvme",
3126 .id_table = nvme_id_table,
3127 .probe = nvme_probe,
3128 .remove = nvme_remove,
3129 .shutdown = nvme_shutdown,
3130 #ifdef CONFIG_PM_SLEEP
3131 .driver = {
3132 .pm = &nvme_dev_pm_ops,
3133 },
3134 #endif
3135 .sriov_configure = pci_sriov_configure_simple,
3136 .err_handler = &nvme_err_handler,
3137 };
3138
3139 static int __init nvme_init(void)
3140 {
3141 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3142 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3143 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3144 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3145 return pci_register_driver(&nvme_driver);
3146 }
3147
3148 static void __exit nvme_exit(void)
3149 {
3150 pci_unregister_driver(&nvme_driver);
3151 flush_workqueue(nvme_wq);
3152 }
3153
3154 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3155 MODULE_LICENSE("GPL");
3156 MODULE_VERSION("1.0");
3157 module_init(nvme_init);
3158 module_exit(nvme_exit);