]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 #include <linux/sed-opal.h>
47
48 #include "nvme.h"
49
50 #define NVME_Q_DEPTH 1024
51 #define NVME_AQ_DEPTH 256
52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54
55 /*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
59 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60
61 static int use_threaded_interrupts;
62 module_param(use_threaded_interrupts, int, 0);
63
64 static bool use_cmb_sqes = true;
65 module_param(use_cmb_sqes, bool, 0644);
66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
68 static struct workqueue_struct *nvme_workq;
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static int nvme_reset(struct nvme_dev *dev);
74 static void nvme_process_cq(struct nvme_queue *nvmeq);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76
77 /*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80 struct nvme_dev {
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct remove_work;
96 struct timer_list watchdog_timer;
97 struct mutex shutdown_lock;
98 bool subsystem;
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
103 u32 cmbloc;
104 struct nvme_ctrl ctrl;
105 struct completion ioq_wait;
106 };
107
108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 {
110 return container_of(ctrl, struct nvme_dev, ctrl);
111 }
112
113 /*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117 struct nvme_queue {
118 struct device *q_dmadev;
119 struct nvme_dev *dev;
120 char irqname[24]; /* nvme4294967295-65535\0 */
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
123 struct nvme_command __iomem *sq_cmds_io;
124 volatile struct nvme_completion *cqes;
125 struct blk_mq_tags **tags;
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
128 u32 __iomem *q_db;
129 u16 q_depth;
130 s16 cq_vector;
131 u16 sq_tail;
132 u16 cq_head;
133 u16 qid;
134 u8 cq_phase;
135 u8 cqe_seen;
136 };
137
138 /*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
141 * me express that. Use nvme_init_iod to ensure there's enough space
142 * allocated to store the PRP list.
143 */
144 struct nvme_iod {
145 struct nvme_request req;
146 struct nvme_queue *nvmeq;
147 int aborted;
148 int npages; /* In the PRP list. 0 means small pool in use */
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
155 };
156
157 /*
158 * Check we didin't inadvertently grow the command struct
159 */
160 static inline void _nvme_check_size(void)
161 {
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
174 }
175
176 /*
177 * Max size of iod being embedded in the request payload
178 */
179 #define NVME_INT_PAGES 2
180 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
181
182 /*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187 static int nvme_npages(unsigned size, struct nvme_dev *dev)
188 {
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192 }
193
194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
196 {
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199 }
200
201 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202 {
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
205 }
206
207 static int nvmeq_irq(struct nvme_queue *nvmeq)
208 {
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
214 {
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
222 hctx->driver_data = nvmeq;
223 nvmeq->tags = &dev->admin_tagset.tags[0];
224 return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
237 {
238 struct nvme_dev *dev = data;
239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
243 iod->nvmeq = nvmeq;
244 return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
249 {
250 struct nvme_dev *dev = data;
251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 hctx->driver_data = nvmeq;
258 return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
270 iod->nvmeq = nvmeq;
271 return 0;
272 }
273
274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275 {
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279 }
280
281 /**
282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
290 {
291 u16 tail = nvmeq->sq_tail;
292
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
300 writel(tail, nvmeq->q_db);
301 nvmeq->sq_tail = tail;
302 }
303
304 static __le64 **iod_list(struct request *req)
305 {
306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
308 }
309
310 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
311 {
312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313 int nseg = blk_rq_nr_phys_segments(rq);
314 unsigned int size = blk_rq_payload_bytes(rq);
315
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
322 }
323
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
328
329 if (!(rq->rq_flags & RQF_DONTPREP)) {
330 rq->retries = 0;
331 rq->rq_flags |= RQF_DONTPREP;
332 }
333 return BLK_MQ_RQ_QUEUE_OK;
334 }
335
336 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
337 {
338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
339 const int last_prp = dev->ctrl.page_size / 8 - 1;
340 int i;
341 __le64 **list = iod_list(req);
342 dma_addr_t prp_dma = iod->first_dma;
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
352
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
355 }
356
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359 {
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362 }
363
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365 {
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368 }
369
370 /**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380 static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382 {
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 ts = ns->disk->queue->integrity.tuple_size;
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410 }
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414 {
415 }
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417 {
418 }
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420 {
421 }
422 #endif
423
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
425 {
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 struct dma_pool *pool;
428 int length = blk_rq_payload_bytes(req);
429 struct scatterlist *sg = iod->sg;
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
432 u32 page_size = dev->ctrl.page_size;
433 int offset = dma_addr & (page_size - 1);
434 __le64 *prp_list;
435 __le64 **list = iod_list(req);
436 dma_addr_t prp_dma;
437 int nprps, i;
438
439 length -= (page_size - offset);
440 if (length <= 0)
441 return true;
442
443 dma_len -= (page_size - offset);
444 if (dma_len) {
445 dma_addr += (page_size - offset);
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
452 if (length <= page_size) {
453 iod->first_dma = dma_addr;
454 return true;
455 }
456
457 nprps = DIV_ROUND_UP(length, page_size);
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
460 iod->npages = 0;
461 } else {
462 pool = dev->prp_page_pool;
463 iod->npages = 1;
464 }
465
466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 if (!prp_list) {
468 iod->first_dma = dma_addr;
469 iod->npages = -1;
470 return false;
471 }
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
474 i = 0;
475 for (;;) {
476 if (i == page_size >> 3) {
477 __le64 *old_prp_list = prp_list;
478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 if (!prp_list)
480 return false;
481 list[iod->npages++] = prp_list;
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
498 }
499
500 return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 struct nvme_command *cmnd)
505 {
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
516
517 ret = BLK_MQ_RQ_QUEUE_BUSY;
518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 DMA_ATTR_NO_WARN))
520 goto out;
521
522 if (!nvme_setup_prps(dev, req))
523 goto out_unmap;
524
525 ret = BLK_MQ_RQ_QUEUE_ERROR;
526 if (blk_integrity_rq(req)) {
527 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 goto out_unmap;
529
530 sg_init_table(&iod->meta_sg, 1);
531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532 goto out_unmap;
533
534 if (rq_data_dir(req))
535 nvme_dif_remap(req, nvme_dif_prep);
536
537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538 goto out_unmap;
539 }
540
541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543 if (blk_integrity_rq(req))
544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545 return BLK_MQ_RQ_QUEUE_OK;
546
547 out_unmap:
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550 return ret;
551 }
552
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559 if (iod->nents) {
560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 if (blk_integrity_rq(req)) {
562 if (!rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_complete);
564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565 }
566 }
567
568 nvme_cleanup_cmd(req);
569 nvme_free_iod(dev, req);
570 }
571
572 /*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
577 {
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 int ret = BLK_MQ_RQ_QUEUE_OK;
584
585 /*
586 * If formated with metadata, require the block layer provide a buffer
587 * unless this namespace is formated such that the metadata can be
588 * stripped/generated by the controller with PRACT=1.
589 */
590 if (ns && ns->ms && !blk_integrity_rq(req)) {
591 if (!(ns->pi_type && ns->ms == 8) &&
592 !blk_rq_is_passthrough(req)) {
593 blk_mq_end_request(req, -EFAULT);
594 return BLK_MQ_RQ_QUEUE_OK;
595 }
596 }
597
598 ret = nvme_setup_cmd(ns, req, &cmnd);
599 if (ret != BLK_MQ_RQ_QUEUE_OK)
600 return ret;
601
602 ret = nvme_init_iod(req, dev);
603 if (ret != BLK_MQ_RQ_QUEUE_OK)
604 goto out_free_cmd;
605
606 if (blk_rq_nr_phys_segments(req))
607 ret = nvme_map_data(dev, req, &cmnd);
608
609 if (ret != BLK_MQ_RQ_QUEUE_OK)
610 goto out_cleanup_iod;
611
612 blk_mq_start_request(req);
613
614 spin_lock_irq(&nvmeq->q_lock);
615 if (unlikely(nvmeq->cq_vector < 0)) {
616 ret = BLK_MQ_RQ_QUEUE_ERROR;
617 spin_unlock_irq(&nvmeq->q_lock);
618 goto out_cleanup_iod;
619 }
620 __nvme_submit_cmd(nvmeq, &cmnd);
621 nvme_process_cq(nvmeq);
622 spin_unlock_irq(&nvmeq->q_lock);
623 return BLK_MQ_RQ_QUEUE_OK;
624 out_cleanup_iod:
625 nvme_free_iod(dev, req);
626 out_free_cmd:
627 nvme_cleanup_cmd(req);
628 return ret;
629 }
630
631 static void nvme_complete_rq(struct request *req)
632 {
633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634 struct nvme_dev *dev = iod->nvmeq->dev;
635 int error = 0;
636
637 nvme_unmap_data(dev, req);
638
639 if (unlikely(req->errors)) {
640 if (nvme_req_needs_retry(req, req->errors)) {
641 req->retries++;
642 nvme_requeue_req(req);
643 return;
644 }
645
646 if (blk_rq_is_passthrough(req))
647 error = req->errors;
648 else
649 error = nvme_error_status(req->errors);
650 }
651
652 if (unlikely(iod->aborted)) {
653 dev_warn(dev->ctrl.device,
654 "completing aborted command with status: %04x\n",
655 req->errors);
656 }
657
658 blk_mq_end_request(req, error);
659 }
660
661 /* We read the CQE phase first to check if the rest of the entry is valid */
662 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
663 u16 phase)
664 {
665 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
666 }
667
668 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
669 {
670 u16 head, phase;
671
672 head = nvmeq->cq_head;
673 phase = nvmeq->cq_phase;
674
675 while (nvme_cqe_valid(nvmeq, head, phase)) {
676 struct nvme_completion cqe = nvmeq->cqes[head];
677 struct request *req;
678
679 if (++head == nvmeq->q_depth) {
680 head = 0;
681 phase = !phase;
682 }
683
684 if (tag && *tag == cqe.command_id)
685 *tag = -1;
686
687 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
688 dev_warn(nvmeq->dev->ctrl.device,
689 "invalid id %d completed on queue %d\n",
690 cqe.command_id, le16_to_cpu(cqe.sq_id));
691 continue;
692 }
693
694 /*
695 * AEN requests are special as they don't time out and can
696 * survive any kind of queue freeze and often don't respond to
697 * aborts. We don't even bother to allocate a struct request
698 * for them but rather special case them here.
699 */
700 if (unlikely(nvmeq->qid == 0 &&
701 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
702 nvme_complete_async_event(&nvmeq->dev->ctrl,
703 cqe.status, &cqe.result);
704 continue;
705 }
706
707 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
708 nvme_req(req)->result = cqe.result;
709 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
710 }
711
712 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
713 return;
714
715 if (likely(nvmeq->cq_vector >= 0))
716 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
717 nvmeq->cq_head = head;
718 nvmeq->cq_phase = phase;
719
720 nvmeq->cqe_seen = 1;
721 }
722
723 static void nvme_process_cq(struct nvme_queue *nvmeq)
724 {
725 __nvme_process_cq(nvmeq, NULL);
726 }
727
728 static irqreturn_t nvme_irq(int irq, void *data)
729 {
730 irqreturn_t result;
731 struct nvme_queue *nvmeq = data;
732 spin_lock(&nvmeq->q_lock);
733 nvme_process_cq(nvmeq);
734 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
735 nvmeq->cqe_seen = 0;
736 spin_unlock(&nvmeq->q_lock);
737 return result;
738 }
739
740 static irqreturn_t nvme_irq_check(int irq, void *data)
741 {
742 struct nvme_queue *nvmeq = data;
743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
744 return IRQ_WAKE_THREAD;
745 return IRQ_NONE;
746 }
747
748 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
749 {
750 struct nvme_queue *nvmeq = hctx->driver_data;
751
752 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
753 spin_lock_irq(&nvmeq->q_lock);
754 __nvme_process_cq(nvmeq, &tag);
755 spin_unlock_irq(&nvmeq->q_lock);
756
757 if (tag == -1)
758 return 1;
759 }
760
761 return 0;
762 }
763
764 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
765 {
766 struct nvme_dev *dev = to_nvme_dev(ctrl);
767 struct nvme_queue *nvmeq = dev->queues[0];
768 struct nvme_command c;
769
770 memset(&c, 0, sizeof(c));
771 c.common.opcode = nvme_admin_async_event;
772 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
773
774 spin_lock_irq(&nvmeq->q_lock);
775 __nvme_submit_cmd(nvmeq, &c);
776 spin_unlock_irq(&nvmeq->q_lock);
777 }
778
779 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
780 {
781 struct nvme_command c;
782
783 memset(&c, 0, sizeof(c));
784 c.delete_queue.opcode = opcode;
785 c.delete_queue.qid = cpu_to_le16(id);
786
787 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
788 }
789
790 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
791 struct nvme_queue *nvmeq)
792 {
793 struct nvme_command c;
794 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
795
796 /*
797 * Note: we (ab)use the fact the the prp fields survive if no data
798 * is attached to the request.
799 */
800 memset(&c, 0, sizeof(c));
801 c.create_cq.opcode = nvme_admin_create_cq;
802 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
803 c.create_cq.cqid = cpu_to_le16(qid);
804 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
805 c.create_cq.cq_flags = cpu_to_le16(flags);
806 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
807
808 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
809 }
810
811 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
812 struct nvme_queue *nvmeq)
813 {
814 struct nvme_command c;
815 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
816
817 /*
818 * Note: we (ab)use the fact the the prp fields survive if no data
819 * is attached to the request.
820 */
821 memset(&c, 0, sizeof(c));
822 c.create_sq.opcode = nvme_admin_create_sq;
823 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
824 c.create_sq.sqid = cpu_to_le16(qid);
825 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
826 c.create_sq.sq_flags = cpu_to_le16(flags);
827 c.create_sq.cqid = cpu_to_le16(qid);
828
829 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
830 }
831
832 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
833 {
834 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
835 }
836
837 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
838 {
839 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
840 }
841
842 static void abort_endio(struct request *req, int error)
843 {
844 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
845 struct nvme_queue *nvmeq = iod->nvmeq;
846 u16 status = req->errors;
847
848 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
849 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
850 blk_mq_free_request(req);
851 }
852
853 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
854 {
855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
856 struct nvme_queue *nvmeq = iod->nvmeq;
857 struct nvme_dev *dev = nvmeq->dev;
858 struct request *abort_req;
859 struct nvme_command cmd;
860
861 /*
862 * Shutdown immediately if controller times out while starting. The
863 * reset work will see the pci device disabled when it gets the forced
864 * cancellation error. All outstanding requests are completed on
865 * shutdown, so we return BLK_EH_HANDLED.
866 */
867 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
868 dev_warn(dev->ctrl.device,
869 "I/O %d QID %d timeout, disable controller\n",
870 req->tag, nvmeq->qid);
871 nvme_dev_disable(dev, false);
872 req->errors = NVME_SC_CANCELLED;
873 return BLK_EH_HANDLED;
874 }
875
876 /*
877 * Shutdown the controller immediately and schedule a reset if the
878 * command was already aborted once before and still hasn't been
879 * returned to the driver, or if this is the admin queue.
880 */
881 if (!nvmeq->qid || iod->aborted) {
882 dev_warn(dev->ctrl.device,
883 "I/O %d QID %d timeout, reset controller\n",
884 req->tag, nvmeq->qid);
885 nvme_dev_disable(dev, false);
886 nvme_reset(dev);
887
888 /*
889 * Mark the request as handled, since the inline shutdown
890 * forces all outstanding requests to complete.
891 */
892 req->errors = NVME_SC_CANCELLED;
893 return BLK_EH_HANDLED;
894 }
895
896 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
897 atomic_inc(&dev->ctrl.abort_limit);
898 return BLK_EH_RESET_TIMER;
899 }
900 iod->aborted = 1;
901
902 memset(&cmd, 0, sizeof(cmd));
903 cmd.abort.opcode = nvme_admin_abort_cmd;
904 cmd.abort.cid = req->tag;
905 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
906
907 dev_warn(nvmeq->dev->ctrl.device,
908 "I/O %d QID %d timeout, aborting\n",
909 req->tag, nvmeq->qid);
910
911 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
912 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
913 if (IS_ERR(abort_req)) {
914 atomic_inc(&dev->ctrl.abort_limit);
915 return BLK_EH_RESET_TIMER;
916 }
917
918 abort_req->timeout = ADMIN_TIMEOUT;
919 abort_req->end_io_data = NULL;
920 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
921
922 /*
923 * The aborted req will be completed on receiving the abort req.
924 * We enable the timer again. If hit twice, it'll cause a device reset,
925 * as the device then is in a faulty state.
926 */
927 return BLK_EH_RESET_TIMER;
928 }
929
930 static void nvme_free_queue(struct nvme_queue *nvmeq)
931 {
932 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
933 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
934 if (nvmeq->sq_cmds)
935 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
936 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
937 kfree(nvmeq);
938 }
939
940 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
941 {
942 int i;
943
944 for (i = dev->queue_count - 1; i >= lowest; i--) {
945 struct nvme_queue *nvmeq = dev->queues[i];
946 dev->queue_count--;
947 dev->queues[i] = NULL;
948 nvme_free_queue(nvmeq);
949 }
950 }
951
952 /**
953 * nvme_suspend_queue - put queue into suspended state
954 * @nvmeq - queue to suspend
955 */
956 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
957 {
958 int vector;
959
960 spin_lock_irq(&nvmeq->q_lock);
961 if (nvmeq->cq_vector == -1) {
962 spin_unlock_irq(&nvmeq->q_lock);
963 return 1;
964 }
965 vector = nvmeq_irq(nvmeq);
966 nvmeq->dev->online_queues--;
967 nvmeq->cq_vector = -1;
968 spin_unlock_irq(&nvmeq->q_lock);
969
970 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
971 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
972
973 free_irq(vector, nvmeq);
974
975 return 0;
976 }
977
978 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
979 {
980 struct nvme_queue *nvmeq = dev->queues[0];
981
982 if (!nvmeq)
983 return;
984 if (nvme_suspend_queue(nvmeq))
985 return;
986
987 if (shutdown)
988 nvme_shutdown_ctrl(&dev->ctrl);
989 else
990 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
991 dev->bar + NVME_REG_CAP));
992
993 spin_lock_irq(&nvmeq->q_lock);
994 nvme_process_cq(nvmeq);
995 spin_unlock_irq(&nvmeq->q_lock);
996 }
997
998 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
999 int entry_size)
1000 {
1001 int q_depth = dev->q_depth;
1002 unsigned q_size_aligned = roundup(q_depth * entry_size,
1003 dev->ctrl.page_size);
1004
1005 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1006 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1007 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1008 q_depth = div_u64(mem_per_q, entry_size);
1009
1010 /*
1011 * Ensure the reduced q_depth is above some threshold where it
1012 * would be better to map queues in system memory with the
1013 * original depth
1014 */
1015 if (q_depth < 64)
1016 return -ENOMEM;
1017 }
1018
1019 return q_depth;
1020 }
1021
1022 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1023 int qid, int depth)
1024 {
1025 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1026 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1027 dev->ctrl.page_size);
1028 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1029 nvmeq->sq_cmds_io = dev->cmb + offset;
1030 } else {
1031 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1032 &nvmeq->sq_dma_addr, GFP_KERNEL);
1033 if (!nvmeq->sq_cmds)
1034 return -ENOMEM;
1035 }
1036
1037 return 0;
1038 }
1039
1040 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1041 int depth)
1042 {
1043 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1044 if (!nvmeq)
1045 return NULL;
1046
1047 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1048 &nvmeq->cq_dma_addr, GFP_KERNEL);
1049 if (!nvmeq->cqes)
1050 goto free_nvmeq;
1051
1052 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1053 goto free_cqdma;
1054
1055 nvmeq->q_dmadev = dev->dev;
1056 nvmeq->dev = dev;
1057 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1058 dev->ctrl.instance, qid);
1059 spin_lock_init(&nvmeq->q_lock);
1060 nvmeq->cq_head = 0;
1061 nvmeq->cq_phase = 1;
1062 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1063 nvmeq->q_depth = depth;
1064 nvmeq->qid = qid;
1065 nvmeq->cq_vector = -1;
1066 dev->queues[qid] = nvmeq;
1067 dev->queue_count++;
1068
1069 return nvmeq;
1070
1071 free_cqdma:
1072 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1073 nvmeq->cq_dma_addr);
1074 free_nvmeq:
1075 kfree(nvmeq);
1076 return NULL;
1077 }
1078
1079 static int queue_request_irq(struct nvme_queue *nvmeq)
1080 {
1081 if (use_threaded_interrupts)
1082 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1083 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1084 else
1085 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1086 nvmeq->irqname, nvmeq);
1087 }
1088
1089 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1090 {
1091 struct nvme_dev *dev = nvmeq->dev;
1092
1093 spin_lock_irq(&nvmeq->q_lock);
1094 nvmeq->sq_tail = 0;
1095 nvmeq->cq_head = 0;
1096 nvmeq->cq_phase = 1;
1097 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1098 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1099 dev->online_queues++;
1100 spin_unlock_irq(&nvmeq->q_lock);
1101 }
1102
1103 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1104 {
1105 struct nvme_dev *dev = nvmeq->dev;
1106 int result;
1107
1108 nvmeq->cq_vector = qid - 1;
1109 result = adapter_alloc_cq(dev, qid, nvmeq);
1110 if (result < 0)
1111 return result;
1112
1113 result = adapter_alloc_sq(dev, qid, nvmeq);
1114 if (result < 0)
1115 goto release_cq;
1116
1117 result = queue_request_irq(nvmeq);
1118 if (result < 0)
1119 goto release_sq;
1120
1121 nvme_init_queue(nvmeq, qid);
1122 return result;
1123
1124 release_sq:
1125 adapter_delete_sq(dev, qid);
1126 release_cq:
1127 adapter_delete_cq(dev, qid);
1128 return result;
1129 }
1130
1131 static struct blk_mq_ops nvme_mq_admin_ops = {
1132 .queue_rq = nvme_queue_rq,
1133 .complete = nvme_complete_rq,
1134 .init_hctx = nvme_admin_init_hctx,
1135 .exit_hctx = nvme_admin_exit_hctx,
1136 .init_request = nvme_admin_init_request,
1137 .timeout = nvme_timeout,
1138 };
1139
1140 static struct blk_mq_ops nvme_mq_ops = {
1141 .queue_rq = nvme_queue_rq,
1142 .complete = nvme_complete_rq,
1143 .init_hctx = nvme_init_hctx,
1144 .init_request = nvme_init_request,
1145 .map_queues = nvme_pci_map_queues,
1146 .timeout = nvme_timeout,
1147 .poll = nvme_poll,
1148 };
1149
1150 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1151 {
1152 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1153 /*
1154 * If the controller was reset during removal, it's possible
1155 * user requests may be waiting on a stopped queue. Start the
1156 * queue to flush these to completion.
1157 */
1158 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1159 blk_cleanup_queue(dev->ctrl.admin_q);
1160 blk_mq_free_tag_set(&dev->admin_tagset);
1161 }
1162 }
1163
1164 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1165 {
1166 if (!dev->ctrl.admin_q) {
1167 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1168 dev->admin_tagset.nr_hw_queues = 1;
1169
1170 /*
1171 * Subtract one to leave an empty queue entry for 'Full Queue'
1172 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1173 */
1174 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1175 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1176 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1177 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1178 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1179 dev->admin_tagset.driver_data = dev;
1180
1181 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1182 return -ENOMEM;
1183
1184 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1185 if (IS_ERR(dev->ctrl.admin_q)) {
1186 blk_mq_free_tag_set(&dev->admin_tagset);
1187 return -ENOMEM;
1188 }
1189 if (!blk_get_queue(dev->ctrl.admin_q)) {
1190 nvme_dev_remove_admin(dev);
1191 dev->ctrl.admin_q = NULL;
1192 return -ENODEV;
1193 }
1194 } else
1195 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1196
1197 return 0;
1198 }
1199
1200 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1201 {
1202 int result;
1203 u32 aqa;
1204 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1205 struct nvme_queue *nvmeq;
1206
1207 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1208 NVME_CAP_NSSRC(cap) : 0;
1209
1210 if (dev->subsystem &&
1211 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1212 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1213
1214 result = nvme_disable_ctrl(&dev->ctrl, cap);
1215 if (result < 0)
1216 return result;
1217
1218 nvmeq = dev->queues[0];
1219 if (!nvmeq) {
1220 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1221 if (!nvmeq)
1222 return -ENOMEM;
1223 }
1224
1225 aqa = nvmeq->q_depth - 1;
1226 aqa |= aqa << 16;
1227
1228 writel(aqa, dev->bar + NVME_REG_AQA);
1229 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1230 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1231
1232 result = nvme_enable_ctrl(&dev->ctrl, cap);
1233 if (result)
1234 return result;
1235
1236 nvmeq->cq_vector = 0;
1237 result = queue_request_irq(nvmeq);
1238 if (result) {
1239 nvmeq->cq_vector = -1;
1240 return result;
1241 }
1242
1243 return result;
1244 }
1245
1246 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1247 {
1248
1249 /* If true, indicates loss of adapter communication, possibly by a
1250 * NVMe Subsystem reset.
1251 */
1252 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1253
1254 /* If there is a reset ongoing, we shouldn't reset again. */
1255 if (work_busy(&dev->reset_work))
1256 return false;
1257
1258 /* We shouldn't reset unless the controller is on fatal error state
1259 * _or_ if we lost the communication with it.
1260 */
1261 if (!(csts & NVME_CSTS_CFS) && !nssro)
1262 return false;
1263
1264 /* If PCI error recovery process is happening, we cannot reset or
1265 * the recovery mechanism will surely fail.
1266 */
1267 if (pci_channel_offline(to_pci_dev(dev->dev)))
1268 return false;
1269
1270 return true;
1271 }
1272
1273 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1274 {
1275 /* Read a config register to help see what died. */
1276 u16 pci_status;
1277 int result;
1278
1279 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1280 &pci_status);
1281 if (result == PCIBIOS_SUCCESSFUL)
1282 dev_warn(dev->dev,
1283 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1284 csts, pci_status);
1285 else
1286 dev_warn(dev->dev,
1287 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1288 csts, result);
1289 }
1290
1291 static void nvme_watchdog_timer(unsigned long data)
1292 {
1293 struct nvme_dev *dev = (struct nvme_dev *)data;
1294 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1295
1296 /* Skip controllers under certain specific conditions. */
1297 if (nvme_should_reset(dev, csts)) {
1298 if (!nvme_reset(dev))
1299 nvme_warn_reset(dev, csts);
1300 return;
1301 }
1302
1303 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1304 }
1305
1306 static int nvme_create_io_queues(struct nvme_dev *dev)
1307 {
1308 unsigned i, max;
1309 int ret = 0;
1310
1311 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1312 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1313 ret = -ENOMEM;
1314 break;
1315 }
1316 }
1317
1318 max = min(dev->max_qid, dev->queue_count - 1);
1319 for (i = dev->online_queues; i <= max; i++) {
1320 ret = nvme_create_queue(dev->queues[i], i);
1321 if (ret)
1322 break;
1323 }
1324
1325 /*
1326 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 * than the desired aount of queues, and even a controller without
1328 * I/O queues an still be used to issue admin commands. This might
1329 * be useful to upgrade a buggy firmware for example.
1330 */
1331 return ret >= 0 ? 0 : ret;
1332 }
1333
1334 static ssize_t nvme_cmb_show(struct device *dev,
1335 struct device_attribute *attr,
1336 char *buf)
1337 {
1338 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1339
1340 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1341 ndev->cmbloc, ndev->cmbsz);
1342 }
1343 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1344
1345 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1346 {
1347 u64 szu, size, offset;
1348 resource_size_t bar_size;
1349 struct pci_dev *pdev = to_pci_dev(dev->dev);
1350 void __iomem *cmb;
1351 dma_addr_t dma_addr;
1352
1353 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1354 if (!(NVME_CMB_SZ(dev->cmbsz)))
1355 return NULL;
1356 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1357
1358 if (!use_cmb_sqes)
1359 return NULL;
1360
1361 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1362 size = szu * NVME_CMB_SZ(dev->cmbsz);
1363 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1364 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1365
1366 if (offset > bar_size)
1367 return NULL;
1368
1369 /*
1370 * Controllers may support a CMB size larger than their BAR,
1371 * for example, due to being behind a bridge. Reduce the CMB to
1372 * the reported size of the BAR
1373 */
1374 if (size > bar_size - offset)
1375 size = bar_size - offset;
1376
1377 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1378 cmb = ioremap_wc(dma_addr, size);
1379 if (!cmb)
1380 return NULL;
1381
1382 dev->cmb_dma_addr = dma_addr;
1383 dev->cmb_size = size;
1384 return cmb;
1385 }
1386
1387 static inline void nvme_release_cmb(struct nvme_dev *dev)
1388 {
1389 if (dev->cmb) {
1390 iounmap(dev->cmb);
1391 dev->cmb = NULL;
1392 }
1393 }
1394
1395 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1396 {
1397 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1398 }
1399
1400 static int nvme_setup_io_queues(struct nvme_dev *dev)
1401 {
1402 struct nvme_queue *adminq = dev->queues[0];
1403 struct pci_dev *pdev = to_pci_dev(dev->dev);
1404 int result, nr_io_queues, size;
1405
1406 nr_io_queues = num_online_cpus();
1407 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1408 if (result < 0)
1409 return result;
1410
1411 if (nr_io_queues == 0)
1412 return 0;
1413
1414 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1415 result = nvme_cmb_qdepth(dev, nr_io_queues,
1416 sizeof(struct nvme_command));
1417 if (result > 0)
1418 dev->q_depth = result;
1419 else
1420 nvme_release_cmb(dev);
1421 }
1422
1423 size = db_bar_size(dev, nr_io_queues);
1424 if (size > 8192) {
1425 iounmap(dev->bar);
1426 do {
1427 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1428 if (dev->bar)
1429 break;
1430 if (!--nr_io_queues)
1431 return -ENOMEM;
1432 size = db_bar_size(dev, nr_io_queues);
1433 } while (1);
1434 dev->dbs = dev->bar + 4096;
1435 adminq->q_db = dev->dbs;
1436 }
1437
1438 /* Deregister the admin queue's interrupt */
1439 free_irq(pci_irq_vector(pdev, 0), adminq);
1440
1441 /*
1442 * If we enable msix early due to not intx, disable it again before
1443 * setting up the full range we need.
1444 */
1445 pci_free_irq_vectors(pdev);
1446 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1447 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1448 if (nr_io_queues <= 0)
1449 return -EIO;
1450 dev->max_qid = nr_io_queues;
1451
1452 /*
1453 * Should investigate if there's a performance win from allocating
1454 * more queues than interrupt vectors; it might allow the submission
1455 * path to scale better, even if the receive path is limited by the
1456 * number of interrupts.
1457 */
1458
1459 result = queue_request_irq(adminq);
1460 if (result) {
1461 adminq->cq_vector = -1;
1462 return result;
1463 }
1464 return nvme_create_io_queues(dev);
1465 }
1466
1467 static void nvme_del_queue_end(struct request *req, int error)
1468 {
1469 struct nvme_queue *nvmeq = req->end_io_data;
1470
1471 blk_mq_free_request(req);
1472 complete(&nvmeq->dev->ioq_wait);
1473 }
1474
1475 static void nvme_del_cq_end(struct request *req, int error)
1476 {
1477 struct nvme_queue *nvmeq = req->end_io_data;
1478
1479 if (!error) {
1480 unsigned long flags;
1481
1482 /*
1483 * We might be called with the AQ q_lock held
1484 * and the I/O queue q_lock should always
1485 * nest inside the AQ one.
1486 */
1487 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1488 SINGLE_DEPTH_NESTING);
1489 nvme_process_cq(nvmeq);
1490 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1491 }
1492
1493 nvme_del_queue_end(req, error);
1494 }
1495
1496 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1497 {
1498 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1499 struct request *req;
1500 struct nvme_command cmd;
1501
1502 memset(&cmd, 0, sizeof(cmd));
1503 cmd.delete_queue.opcode = opcode;
1504 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1505
1506 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1507 if (IS_ERR(req))
1508 return PTR_ERR(req);
1509
1510 req->timeout = ADMIN_TIMEOUT;
1511 req->end_io_data = nvmeq;
1512
1513 blk_execute_rq_nowait(q, NULL, req, false,
1514 opcode == nvme_admin_delete_cq ?
1515 nvme_del_cq_end : nvme_del_queue_end);
1516 return 0;
1517 }
1518
1519 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1520 {
1521 int pass;
1522 unsigned long timeout;
1523 u8 opcode = nvme_admin_delete_sq;
1524
1525 for (pass = 0; pass < 2; pass++) {
1526 int sent = 0, i = queues;
1527
1528 reinit_completion(&dev->ioq_wait);
1529 retry:
1530 timeout = ADMIN_TIMEOUT;
1531 for (; i > 0; i--, sent++)
1532 if (nvme_delete_queue(dev->queues[i], opcode))
1533 break;
1534
1535 while (sent--) {
1536 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1537 if (timeout == 0)
1538 return;
1539 if (i)
1540 goto retry;
1541 }
1542 opcode = nvme_admin_delete_cq;
1543 }
1544 }
1545
1546 /*
1547 * Return: error value if an error occurred setting up the queues or calling
1548 * Identify Device. 0 if these succeeded, even if adding some of the
1549 * namespaces failed. At the moment, these failures are silent. TBD which
1550 * failures should be reported.
1551 */
1552 static int nvme_dev_add(struct nvme_dev *dev)
1553 {
1554 if (!dev->ctrl.tagset) {
1555 dev->tagset.ops = &nvme_mq_ops;
1556 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1557 dev->tagset.timeout = NVME_IO_TIMEOUT;
1558 dev->tagset.numa_node = dev_to_node(dev->dev);
1559 dev->tagset.queue_depth =
1560 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1561 dev->tagset.cmd_size = nvme_cmd_size(dev);
1562 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1563 dev->tagset.driver_data = dev;
1564
1565 if (blk_mq_alloc_tag_set(&dev->tagset))
1566 return 0;
1567 dev->ctrl.tagset = &dev->tagset;
1568 } else {
1569 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1570
1571 /* Free previously allocated queues that are no longer usable */
1572 nvme_free_queues(dev, dev->online_queues);
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int nvme_pci_enable(struct nvme_dev *dev)
1579 {
1580 u64 cap;
1581 int result = -ENOMEM;
1582 struct pci_dev *pdev = to_pci_dev(dev->dev);
1583
1584 if (pci_enable_device_mem(pdev))
1585 return result;
1586
1587 pci_set_master(pdev);
1588
1589 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1590 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1591 goto disable;
1592
1593 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1594 result = -ENODEV;
1595 goto disable;
1596 }
1597
1598 /*
1599 * Some devices and/or platforms don't advertise or work with INTx
1600 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1601 * adjust this later.
1602 */
1603 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1604 if (result < 0)
1605 return result;
1606
1607 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1608
1609 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1610 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1611 dev->dbs = dev->bar + 4096;
1612
1613 /*
1614 * Temporary fix for the Apple controller found in the MacBook8,1 and
1615 * some MacBook7,1 to avoid controller resets and data loss.
1616 */
1617 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1618 dev->q_depth = 2;
1619 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1620 "queue depth=%u to work around controller resets\n",
1621 dev->q_depth);
1622 }
1623
1624 /*
1625 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1626 * populate sysfs if a CMB is implemented. Note that we add the
1627 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1628 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1629 * NULL as final argument to sysfs_add_file_to_group.
1630 */
1631
1632 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1633 dev->cmb = nvme_map_cmb(dev);
1634
1635 if (dev->cmbsz) {
1636 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1637 &dev_attr_cmb.attr, NULL))
1638 dev_warn(dev->dev,
1639 "failed to add sysfs attribute for CMB\n");
1640 }
1641 }
1642
1643 pci_enable_pcie_error_reporting(pdev);
1644 pci_save_state(pdev);
1645 return 0;
1646
1647 disable:
1648 pci_disable_device(pdev);
1649 return result;
1650 }
1651
1652 static void nvme_dev_unmap(struct nvme_dev *dev)
1653 {
1654 if (dev->bar)
1655 iounmap(dev->bar);
1656 pci_release_mem_regions(to_pci_dev(dev->dev));
1657 }
1658
1659 static void nvme_pci_disable(struct nvme_dev *dev)
1660 {
1661 struct pci_dev *pdev = to_pci_dev(dev->dev);
1662
1663 pci_free_irq_vectors(pdev);
1664
1665 if (pci_is_enabled(pdev)) {
1666 pci_disable_pcie_error_reporting(pdev);
1667 pci_disable_device(pdev);
1668 }
1669 }
1670
1671 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1672 {
1673 int i, queues;
1674 u32 csts = -1;
1675
1676 del_timer_sync(&dev->watchdog_timer);
1677
1678 mutex_lock(&dev->shutdown_lock);
1679 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1680 nvme_stop_queues(&dev->ctrl);
1681 csts = readl(dev->bar + NVME_REG_CSTS);
1682 }
1683
1684 queues = dev->online_queues - 1;
1685 for (i = dev->queue_count - 1; i > 0; i--)
1686 nvme_suspend_queue(dev->queues[i]);
1687
1688 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1689 /* A device might become IO incapable very soon during
1690 * probe, before the admin queue is configured. Thus,
1691 * queue_count can be 0 here.
1692 */
1693 if (dev->queue_count)
1694 nvme_suspend_queue(dev->queues[0]);
1695 } else {
1696 nvme_disable_io_queues(dev, queues);
1697 nvme_disable_admin_queue(dev, shutdown);
1698 }
1699 nvme_pci_disable(dev);
1700
1701 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1702 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1703 mutex_unlock(&dev->shutdown_lock);
1704 }
1705
1706 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1707 {
1708 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1709 PAGE_SIZE, PAGE_SIZE, 0);
1710 if (!dev->prp_page_pool)
1711 return -ENOMEM;
1712
1713 /* Optimisation for I/Os between 4k and 128k */
1714 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1715 256, 256, 0);
1716 if (!dev->prp_small_pool) {
1717 dma_pool_destroy(dev->prp_page_pool);
1718 return -ENOMEM;
1719 }
1720 return 0;
1721 }
1722
1723 static void nvme_release_prp_pools(struct nvme_dev *dev)
1724 {
1725 dma_pool_destroy(dev->prp_page_pool);
1726 dma_pool_destroy(dev->prp_small_pool);
1727 }
1728
1729 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1730 {
1731 struct nvme_dev *dev = to_nvme_dev(ctrl);
1732
1733 put_device(dev->dev);
1734 if (dev->tagset.tags)
1735 blk_mq_free_tag_set(&dev->tagset);
1736 if (dev->ctrl.admin_q)
1737 blk_put_queue(dev->ctrl.admin_q);
1738 kfree(dev->queues);
1739 free_opal_dev(dev->ctrl.opal_dev);
1740 kfree(dev);
1741 }
1742
1743 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1744 {
1745 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1746
1747 kref_get(&dev->ctrl.kref);
1748 nvme_dev_disable(dev, false);
1749 if (!schedule_work(&dev->remove_work))
1750 nvme_put_ctrl(&dev->ctrl);
1751 }
1752
1753 static void nvme_reset_work(struct work_struct *work)
1754 {
1755 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1756 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1757 int result = -ENODEV;
1758
1759 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1760 goto out;
1761
1762 /*
1763 * If we're called to reset a live controller first shut it down before
1764 * moving on.
1765 */
1766 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1767 nvme_dev_disable(dev, false);
1768
1769 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1770 goto out;
1771
1772 result = nvme_pci_enable(dev);
1773 if (result)
1774 goto out;
1775
1776 result = nvme_configure_admin_queue(dev);
1777 if (result)
1778 goto out;
1779
1780 nvme_init_queue(dev->queues[0], 0);
1781 result = nvme_alloc_admin_tags(dev);
1782 if (result)
1783 goto out;
1784
1785 result = nvme_init_identify(&dev->ctrl);
1786 if (result)
1787 goto out;
1788
1789 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1790 if (!dev->ctrl.opal_dev)
1791 dev->ctrl.opal_dev =
1792 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1793 else if (was_suspend)
1794 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1795 } else {
1796 free_opal_dev(dev->ctrl.opal_dev);
1797 dev->ctrl.opal_dev = NULL;
1798 }
1799
1800 result = nvme_setup_io_queues(dev);
1801 if (result)
1802 goto out;
1803
1804 /*
1805 * A controller that can not execute IO typically requires user
1806 * intervention to correct. For such degraded controllers, the driver
1807 * should not submit commands the user did not request, so skip
1808 * registering for asynchronous event notification on this condition.
1809 */
1810 if (dev->online_queues > 1)
1811 nvme_queue_async_events(&dev->ctrl);
1812
1813 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1814
1815 /*
1816 * Keep the controller around but remove all namespaces if we don't have
1817 * any working I/O queue.
1818 */
1819 if (dev->online_queues < 2) {
1820 dev_warn(dev->ctrl.device, "IO queues not created\n");
1821 nvme_kill_queues(&dev->ctrl);
1822 nvme_remove_namespaces(&dev->ctrl);
1823 } else {
1824 nvme_start_queues(&dev->ctrl);
1825 nvme_dev_add(dev);
1826 }
1827
1828 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1829 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1830 goto out;
1831 }
1832
1833 if (dev->online_queues > 1)
1834 nvme_queue_scan(&dev->ctrl);
1835 return;
1836
1837 out:
1838 nvme_remove_dead_ctrl(dev, result);
1839 }
1840
1841 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1842 {
1843 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1844 struct pci_dev *pdev = to_pci_dev(dev->dev);
1845
1846 nvme_kill_queues(&dev->ctrl);
1847 if (pci_get_drvdata(pdev))
1848 device_release_driver(&pdev->dev);
1849 nvme_put_ctrl(&dev->ctrl);
1850 }
1851
1852 static int nvme_reset(struct nvme_dev *dev)
1853 {
1854 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1855 return -ENODEV;
1856 if (work_busy(&dev->reset_work))
1857 return -ENODEV;
1858 if (!queue_work(nvme_workq, &dev->reset_work))
1859 return -EBUSY;
1860 return 0;
1861 }
1862
1863 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1864 {
1865 *val = readl(to_nvme_dev(ctrl)->bar + off);
1866 return 0;
1867 }
1868
1869 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1870 {
1871 writel(val, to_nvme_dev(ctrl)->bar + off);
1872 return 0;
1873 }
1874
1875 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1876 {
1877 *val = readq(to_nvme_dev(ctrl)->bar + off);
1878 return 0;
1879 }
1880
1881 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1882 {
1883 struct nvme_dev *dev = to_nvme_dev(ctrl);
1884 int ret = nvme_reset(dev);
1885
1886 if (!ret)
1887 flush_work(&dev->reset_work);
1888 return ret;
1889 }
1890
1891 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1892 .name = "pcie",
1893 .module = THIS_MODULE,
1894 .reg_read32 = nvme_pci_reg_read32,
1895 .reg_write32 = nvme_pci_reg_write32,
1896 .reg_read64 = nvme_pci_reg_read64,
1897 .reset_ctrl = nvme_pci_reset_ctrl,
1898 .free_ctrl = nvme_pci_free_ctrl,
1899 .submit_async_event = nvme_pci_submit_async_event,
1900 };
1901
1902 static int nvme_dev_map(struct nvme_dev *dev)
1903 {
1904 struct pci_dev *pdev = to_pci_dev(dev->dev);
1905
1906 if (pci_request_mem_regions(pdev, "nvme"))
1907 return -ENODEV;
1908
1909 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1910 if (!dev->bar)
1911 goto release;
1912
1913 return 0;
1914 release:
1915 pci_release_mem_regions(pdev);
1916 return -ENODEV;
1917 }
1918
1919 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1920 {
1921 int node, result = -ENOMEM;
1922 struct nvme_dev *dev;
1923
1924 node = dev_to_node(&pdev->dev);
1925 if (node == NUMA_NO_NODE)
1926 set_dev_node(&pdev->dev, first_memory_node);
1927
1928 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1929 if (!dev)
1930 return -ENOMEM;
1931 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1932 GFP_KERNEL, node);
1933 if (!dev->queues)
1934 goto free;
1935
1936 dev->dev = get_device(&pdev->dev);
1937 pci_set_drvdata(pdev, dev);
1938
1939 result = nvme_dev_map(dev);
1940 if (result)
1941 goto free;
1942
1943 INIT_WORK(&dev->reset_work, nvme_reset_work);
1944 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1945 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1946 (unsigned long)dev);
1947 mutex_init(&dev->shutdown_lock);
1948 init_completion(&dev->ioq_wait);
1949
1950 result = nvme_setup_prp_pools(dev);
1951 if (result)
1952 goto put_pci;
1953
1954 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1955 id->driver_data);
1956 if (result)
1957 goto release_pools;
1958
1959 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1960
1961 queue_work(nvme_workq, &dev->reset_work);
1962 return 0;
1963
1964 release_pools:
1965 nvme_release_prp_pools(dev);
1966 put_pci:
1967 put_device(dev->dev);
1968 nvme_dev_unmap(dev);
1969 free:
1970 kfree(dev->queues);
1971 kfree(dev);
1972 return result;
1973 }
1974
1975 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1976 {
1977 struct nvme_dev *dev = pci_get_drvdata(pdev);
1978
1979 if (prepare)
1980 nvme_dev_disable(dev, false);
1981 else
1982 nvme_reset(dev);
1983 }
1984
1985 static void nvme_shutdown(struct pci_dev *pdev)
1986 {
1987 struct nvme_dev *dev = pci_get_drvdata(pdev);
1988 nvme_dev_disable(dev, true);
1989 }
1990
1991 /*
1992 * The driver's remove may be called on a device in a partially initialized
1993 * state. This function must not have any dependencies on the device state in
1994 * order to proceed.
1995 */
1996 static void nvme_remove(struct pci_dev *pdev)
1997 {
1998 struct nvme_dev *dev = pci_get_drvdata(pdev);
1999
2000 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2001
2002 pci_set_drvdata(pdev, NULL);
2003
2004 if (!pci_device_is_present(pdev)) {
2005 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2006 nvme_dev_disable(dev, false);
2007 }
2008
2009 flush_work(&dev->reset_work);
2010 nvme_uninit_ctrl(&dev->ctrl);
2011 nvme_dev_disable(dev, true);
2012 nvme_dev_remove_admin(dev);
2013 nvme_free_queues(dev, 0);
2014 nvme_release_cmb(dev);
2015 nvme_release_prp_pools(dev);
2016 nvme_dev_unmap(dev);
2017 nvme_put_ctrl(&dev->ctrl);
2018 }
2019
2020 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2021 {
2022 int ret = 0;
2023
2024 if (numvfs == 0) {
2025 if (pci_vfs_assigned(pdev)) {
2026 dev_warn(&pdev->dev,
2027 "Cannot disable SR-IOV VFs while assigned\n");
2028 return -EPERM;
2029 }
2030 pci_disable_sriov(pdev);
2031 return 0;
2032 }
2033
2034 ret = pci_enable_sriov(pdev, numvfs);
2035 return ret ? ret : numvfs;
2036 }
2037
2038 #ifdef CONFIG_PM_SLEEP
2039 static int nvme_suspend(struct device *dev)
2040 {
2041 struct pci_dev *pdev = to_pci_dev(dev);
2042 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2043
2044 nvme_dev_disable(ndev, true);
2045 return 0;
2046 }
2047
2048 static int nvme_resume(struct device *dev)
2049 {
2050 struct pci_dev *pdev = to_pci_dev(dev);
2051 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2052
2053 nvme_reset(ndev);
2054 return 0;
2055 }
2056 #endif
2057
2058 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2059
2060 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2061 pci_channel_state_t state)
2062 {
2063 struct nvme_dev *dev = pci_get_drvdata(pdev);
2064
2065 /*
2066 * A frozen channel requires a reset. When detected, this method will
2067 * shutdown the controller to quiesce. The controller will be restarted
2068 * after the slot reset through driver's slot_reset callback.
2069 */
2070 switch (state) {
2071 case pci_channel_io_normal:
2072 return PCI_ERS_RESULT_CAN_RECOVER;
2073 case pci_channel_io_frozen:
2074 dev_warn(dev->ctrl.device,
2075 "frozen state error detected, reset controller\n");
2076 nvme_dev_disable(dev, false);
2077 return PCI_ERS_RESULT_NEED_RESET;
2078 case pci_channel_io_perm_failure:
2079 dev_warn(dev->ctrl.device,
2080 "failure state error detected, request disconnect\n");
2081 return PCI_ERS_RESULT_DISCONNECT;
2082 }
2083 return PCI_ERS_RESULT_NEED_RESET;
2084 }
2085
2086 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2087 {
2088 struct nvme_dev *dev = pci_get_drvdata(pdev);
2089
2090 dev_info(dev->ctrl.device, "restart after slot reset\n");
2091 pci_restore_state(pdev);
2092 nvme_reset(dev);
2093 return PCI_ERS_RESULT_RECOVERED;
2094 }
2095
2096 static void nvme_error_resume(struct pci_dev *pdev)
2097 {
2098 pci_cleanup_aer_uncorrect_error_status(pdev);
2099 }
2100
2101 static const struct pci_error_handlers nvme_err_handler = {
2102 .error_detected = nvme_error_detected,
2103 .slot_reset = nvme_slot_reset,
2104 .resume = nvme_error_resume,
2105 .reset_notify = nvme_reset_notify,
2106 };
2107
2108 static const struct pci_device_id nvme_id_table[] = {
2109 { PCI_VDEVICE(INTEL, 0x0953),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a53),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DISCARD_ZEROES, },
2115 { PCI_VDEVICE(INTEL, 0x0a54),
2116 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2117 NVME_QUIRK_DISCARD_ZEROES, },
2118 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2119 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2120 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2121 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2122 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2123 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2124 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2125 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2126 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2127 { 0, }
2128 };
2129 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2130
2131 static struct pci_driver nvme_driver = {
2132 .name = "nvme",
2133 .id_table = nvme_id_table,
2134 .probe = nvme_probe,
2135 .remove = nvme_remove,
2136 .shutdown = nvme_shutdown,
2137 .driver = {
2138 .pm = &nvme_dev_pm_ops,
2139 },
2140 .sriov_configure = nvme_pci_sriov_configure,
2141 .err_handler = &nvme_err_handler,
2142 };
2143
2144 static int __init nvme_init(void)
2145 {
2146 int result;
2147
2148 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2149 if (!nvme_workq)
2150 return -ENOMEM;
2151
2152 result = pci_register_driver(&nvme_driver);
2153 if (result)
2154 destroy_workqueue(nvme_workq);
2155 return result;
2156 }
2157
2158 static void __exit nvme_exit(void)
2159 {
2160 pci_unregister_driver(&nvme_driver);
2161 destroy_workqueue(nvme_workq);
2162 _nvme_check_size();
2163 }
2164
2165 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2166 MODULE_LICENSE("GPL");
2167 MODULE_VERSION("1.0");
2168 module_init(nvme_init);
2169 module_exit(nvme_exit);