]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/nvme/host/pci.c
Merge tag 'platform-drivers-x86-v4.10-2' of git://git.infradead.org/users/dvhart...
[mirror_ubuntu-hirsute-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54 /*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 u32 cmbloc;
103 struct nvme_ctrl ctrl;
104 struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109 return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
115 */
116 struct nvme_queue {
117 struct device *q_dmadev;
118 struct nvme_dev *dev;
119 char irqname[24]; /* nvme4294967295-65535\0 */
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
122 struct nvme_command __iomem *sq_cmds_io;
123 volatile struct nvme_completion *cqes;
124 struct blk_mq_tags **tags;
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
127 u32 __iomem *q_db;
128 u16 q_depth;
129 s16 cq_vector;
130 u16 sq_tail;
131 u16 cq_head;
132 u16 qid;
133 u8 cq_phase;
134 u8 cqe_seen;
135 };
136
137 /*
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
140 * me express that. Use nvme_init_iod to ensure there's enough space
141 * allocated to store the PRP list.
142 */
143 struct nvme_iod {
144 struct nvme_request req;
145 struct nvme_queue *nvmeq;
146 int aborted;
147 int npages; /* In the PRP list. 0 means small pool in use */
148 int nents; /* Used in scatterlist */
149 int length; /* Of data, in bytes */
150 dma_addr_t first_dma;
151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152 struct scatterlist *sg;
153 struct scatterlist inline_sg[0];
154 };
155
156 /*
157 * Check we didin't inadvertently grow the command struct
158 */
159 static inline void _nvme_check_size(void)
160 {
161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176 * Max size of iod being embedded in the request payload
177 */
178 #define NVME_INT_PAGES 2
179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182 * Will slightly overestimate the number of pages needed. This is OK
183 * as it only leads to a small amount of wasted memory for the lifetime of
184 * the I/O.
185 */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 dev->ctrl.page_size);
190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 unsigned int size, unsigned int nseg)
195 {
196 return sizeof(__le64 *) * nvme_npages(size, dev) +
197 sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202 return sizeof(struct nvme_iod) +
203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
213 {
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[0];
216
217 WARN_ON(hctx_idx != 0);
218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219 WARN_ON(nvmeq->tags);
220
221 hctx->driver_data = nvmeq;
222 nvmeq->tags = &dev->admin_tagset.tags[0];
223 return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228 struct nvme_queue *nvmeq = hctx->driver_data;
229
230 nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234 unsigned int hctx_idx, unsigned int rq_idx,
235 unsigned int numa_node)
236 {
237 struct nvme_dev *dev = data;
238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239 struct nvme_queue *nvmeq = dev->queues[0];
240
241 BUG_ON(!nvmeq);
242 iod->nvmeq = nvmeq;
243 return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247 unsigned int hctx_idx)
248 {
249 struct nvme_dev *dev = data;
250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252 if (!nvmeq->tags)
253 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256 hctx->driver_data = nvmeq;
257 return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
263 {
264 struct nvme_dev *dev = data;
265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 BUG_ON(!nvmeq);
269 iod->nvmeq = nvmeq;
270 return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275 struct nvme_dev *dev = set->driver_data;
276
277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282 * @nvmeq: The queue to use
283 * @cmd: The command to send
284 *
285 * Safe to use from interrupt context
286 */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288 struct nvme_command *cmd)
289 {
290 u16 tail = nvmeq->sq_tail;
291
292 if (nvmeq->sq_cmds_io)
293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294 else
295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297 if (++tail == nvmeq->q_depth)
298 tail = 0;
299 writel(tail, nvmeq->q_db);
300 nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, unsigned size,
310 struct nvme_dev *dev)
311 {
312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313 int nseg = blk_rq_nr_phys_segments(rq);
314
315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317 if (!iod->sg)
318 return BLK_MQ_RQ_QUEUE_BUSY;
319 } else {
320 iod->sg = iod->inline_sg;
321 }
322
323 iod->aborted = 0;
324 iod->npages = -1;
325 iod->nents = 0;
326 iod->length = size;
327
328 if (!(rq->rq_flags & RQF_DONTPREP)) {
329 rq->retries = 0;
330 rq->rq_flags |= RQF_DONTPREP;
331 }
332 return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338 const int last_prp = dev->ctrl.page_size / 8 - 1;
339 int i;
340 __le64 **list = iod_list(req);
341 dma_addr_t prp_dma = iod->first_dma;
342
343 if (iod->npages == 0)
344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 for (i = 0; i < iod->npages; i++) {
346 __le64 *prp_list = list[i];
347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 prp_dma = next_prp_dma;
350 }
351
352 if (iod->sg != iod->inline_sg)
353 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 if (be32_to_cpu(pi->ref_tag) == v)
360 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 if (be32_to_cpu(pi->ref_tag) == p)
366 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371 *
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
376 *
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
378 */
379 static void nvme_dif_remap(struct request *req,
380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 struct nvme_ns *ns = req->rq_disk->private_data;
383 struct bio_integrity_payload *bip;
384 struct t10_pi_tuple *pi;
385 void *p, *pmap;
386 u32 i, nlb, ts, phys, virt;
387
388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 return;
390
391 bip = bio_integrity(req->bio);
392 if (!bip)
393 return;
394
395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397 p = pmap;
398 virt = bip_get_seed(bip);
399 phys = nvme_block_nr(ns, blk_rq_pos(req));
400 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 ts = ns->disk->queue->integrity.tuple_size;
402
403 for (i = 0; i < nlb; i++, virt++, phys++) {
404 pi = (struct t10_pi_tuple *)p;
405 dif_swap(phys, virt, pi);
406 p += ts;
407 }
408 kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
424 int total_len)
425 {
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 struct dma_pool *pool;
428 int length = total_len;
429 struct scatterlist *sg = iod->sg;
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
432 u32 page_size = dev->ctrl.page_size;
433 int offset = dma_addr & (page_size - 1);
434 __le64 *prp_list;
435 __le64 **list = iod_list(req);
436 dma_addr_t prp_dma;
437 int nprps, i;
438
439 length -= (page_size - offset);
440 if (length <= 0)
441 return true;
442
443 dma_len -= (page_size - offset);
444 if (dma_len) {
445 dma_addr += (page_size - offset);
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
452 if (length <= page_size) {
453 iod->first_dma = dma_addr;
454 return true;
455 }
456
457 nprps = DIV_ROUND_UP(length, page_size);
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
460 iod->npages = 0;
461 } else {
462 pool = dev->prp_page_pool;
463 iod->npages = 1;
464 }
465
466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 if (!prp_list) {
468 iod->first_dma = dma_addr;
469 iod->npages = -1;
470 return false;
471 }
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
474 i = 0;
475 for (;;) {
476 if (i == page_size >> 3) {
477 __le64 *old_prp_list = prp_list;
478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 if (!prp_list)
480 return false;
481 list[iod->npages++] = prp_list;
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
498 }
499
500 return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 unsigned size, struct nvme_command *cmnd)
505 {
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
516
517 ret = BLK_MQ_RQ_QUEUE_BUSY;
518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 DMA_ATTR_NO_WARN))
520 goto out;
521
522 if (!nvme_setup_prps(dev, req, size))
523 goto out_unmap;
524
525 ret = BLK_MQ_RQ_QUEUE_ERROR;
526 if (blk_integrity_rq(req)) {
527 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 goto out_unmap;
529
530 sg_init_table(&iod->meta_sg, 1);
531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532 goto out_unmap;
533
534 if (rq_data_dir(req))
535 nvme_dif_remap(req, nvme_dif_prep);
536
537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538 goto out_unmap;
539 }
540
541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543 if (blk_integrity_rq(req))
544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545 return BLK_MQ_RQ_QUEUE_OK;
546
547 out_unmap:
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550 return ret;
551 }
552
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559 if (iod->nents) {
560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 if (blk_integrity_rq(req)) {
562 if (!rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_complete);
564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565 }
566 }
567
568 nvme_cleanup_cmd(req);
569 nvme_free_iod(dev, req);
570 }
571
572 /*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
577 {
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 unsigned map_len;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
585
586 /*
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
590 */
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 req->cmd_type != REQ_TYPE_DRV_PRIV) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
596 }
597 }
598
599 ret = nvme_setup_cmd(ns, req, &cmnd);
600 if (ret != BLK_MQ_RQ_QUEUE_OK)
601 return ret;
602
603 map_len = nvme_map_len(req);
604 ret = nvme_init_iod(req, map_len, dev);
605 if (ret != BLK_MQ_RQ_QUEUE_OK)
606 goto out_free_cmd;
607
608 if (blk_rq_nr_phys_segments(req))
609 ret = nvme_map_data(dev, req, map_len, &cmnd);
610
611 if (ret != BLK_MQ_RQ_QUEUE_OK)
612 goto out_cleanup_iod;
613
614 blk_mq_start_request(req);
615
616 spin_lock_irq(&nvmeq->q_lock);
617 if (unlikely(nvmeq->cq_vector < 0)) {
618 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
619 ret = BLK_MQ_RQ_QUEUE_BUSY;
620 else
621 ret = BLK_MQ_RQ_QUEUE_ERROR;
622 spin_unlock_irq(&nvmeq->q_lock);
623 goto out_cleanup_iod;
624 }
625 __nvme_submit_cmd(nvmeq, &cmnd);
626 nvme_process_cq(nvmeq);
627 spin_unlock_irq(&nvmeq->q_lock);
628 return BLK_MQ_RQ_QUEUE_OK;
629 out_cleanup_iod:
630 nvme_free_iod(dev, req);
631 out_free_cmd:
632 nvme_cleanup_cmd(req);
633 return ret;
634 }
635
636 static void nvme_complete_rq(struct request *req)
637 {
638 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
639 struct nvme_dev *dev = iod->nvmeq->dev;
640 int error = 0;
641
642 nvme_unmap_data(dev, req);
643
644 if (unlikely(req->errors)) {
645 if (nvme_req_needs_retry(req, req->errors)) {
646 req->retries++;
647 nvme_requeue_req(req);
648 return;
649 }
650
651 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
652 error = req->errors;
653 else
654 error = nvme_error_status(req->errors);
655 }
656
657 if (unlikely(iod->aborted)) {
658 dev_warn(dev->ctrl.device,
659 "completing aborted command with status: %04x\n",
660 req->errors);
661 }
662
663 blk_mq_end_request(req, error);
664 }
665
666 /* We read the CQE phase first to check if the rest of the entry is valid */
667 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
668 u16 phase)
669 {
670 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
671 }
672
673 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
674 {
675 u16 head, phase;
676
677 head = nvmeq->cq_head;
678 phase = nvmeq->cq_phase;
679
680 while (nvme_cqe_valid(nvmeq, head, phase)) {
681 struct nvme_completion cqe = nvmeq->cqes[head];
682 struct request *req;
683
684 if (++head == nvmeq->q_depth) {
685 head = 0;
686 phase = !phase;
687 }
688
689 if (tag && *tag == cqe.command_id)
690 *tag = -1;
691
692 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
693 dev_warn(nvmeq->dev->ctrl.device,
694 "invalid id %d completed on queue %d\n",
695 cqe.command_id, le16_to_cpu(cqe.sq_id));
696 continue;
697 }
698
699 /*
700 * AEN requests are special as they don't time out and can
701 * survive any kind of queue freeze and often don't respond to
702 * aborts. We don't even bother to allocate a struct request
703 * for them but rather special case them here.
704 */
705 if (unlikely(nvmeq->qid == 0 &&
706 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
707 nvme_complete_async_event(&nvmeq->dev->ctrl,
708 cqe.status, &cqe.result);
709 continue;
710 }
711
712 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
713 nvme_req(req)->result = cqe.result;
714 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
715
716 }
717
718 /* If the controller ignores the cq head doorbell and continuously
719 * writes to the queue, it is theoretically possible to wrap around
720 * the queue twice and mistakenly return IRQ_NONE. Linux only
721 * requires that 0.1% of your interrupts are handled, so this isn't
722 * a big problem.
723 */
724 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
725 return;
726
727 if (likely(nvmeq->cq_vector >= 0))
728 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
729 nvmeq->cq_head = head;
730 nvmeq->cq_phase = phase;
731
732 nvmeq->cqe_seen = 1;
733 }
734
735 static void nvme_process_cq(struct nvme_queue *nvmeq)
736 {
737 __nvme_process_cq(nvmeq, NULL);
738 }
739
740 static irqreturn_t nvme_irq(int irq, void *data)
741 {
742 irqreturn_t result;
743 struct nvme_queue *nvmeq = data;
744 spin_lock(&nvmeq->q_lock);
745 nvme_process_cq(nvmeq);
746 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
747 nvmeq->cqe_seen = 0;
748 spin_unlock(&nvmeq->q_lock);
749 return result;
750 }
751
752 static irqreturn_t nvme_irq_check(int irq, void *data)
753 {
754 struct nvme_queue *nvmeq = data;
755 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
756 return IRQ_WAKE_THREAD;
757 return IRQ_NONE;
758 }
759
760 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
761 {
762 struct nvme_queue *nvmeq = hctx->driver_data;
763
764 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
765 spin_lock_irq(&nvmeq->q_lock);
766 __nvme_process_cq(nvmeq, &tag);
767 spin_unlock_irq(&nvmeq->q_lock);
768
769 if (tag == -1)
770 return 1;
771 }
772
773 return 0;
774 }
775
776 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
777 {
778 struct nvme_dev *dev = to_nvme_dev(ctrl);
779 struct nvme_queue *nvmeq = dev->queues[0];
780 struct nvme_command c;
781
782 memset(&c, 0, sizeof(c));
783 c.common.opcode = nvme_admin_async_event;
784 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
785
786 spin_lock_irq(&nvmeq->q_lock);
787 __nvme_submit_cmd(nvmeq, &c);
788 spin_unlock_irq(&nvmeq->q_lock);
789 }
790
791 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
792 {
793 struct nvme_command c;
794
795 memset(&c, 0, sizeof(c));
796 c.delete_queue.opcode = opcode;
797 c.delete_queue.qid = cpu_to_le16(id);
798
799 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
800 }
801
802 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
803 struct nvme_queue *nvmeq)
804 {
805 struct nvme_command c;
806 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
807
808 /*
809 * Note: we (ab)use the fact the the prp fields survive if no data
810 * is attached to the request.
811 */
812 memset(&c, 0, sizeof(c));
813 c.create_cq.opcode = nvme_admin_create_cq;
814 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
815 c.create_cq.cqid = cpu_to_le16(qid);
816 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817 c.create_cq.cq_flags = cpu_to_le16(flags);
818 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
819
820 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
821 }
822
823 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
824 struct nvme_queue *nvmeq)
825 {
826 struct nvme_command c;
827 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
828
829 /*
830 * Note: we (ab)use the fact the the prp fields survive if no data
831 * is attached to the request.
832 */
833 memset(&c, 0, sizeof(c));
834 c.create_sq.opcode = nvme_admin_create_sq;
835 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
836 c.create_sq.sqid = cpu_to_le16(qid);
837 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
838 c.create_sq.sq_flags = cpu_to_le16(flags);
839 c.create_sq.cqid = cpu_to_le16(qid);
840
841 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
842 }
843
844 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
845 {
846 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
847 }
848
849 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
850 {
851 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
852 }
853
854 static void abort_endio(struct request *req, int error)
855 {
856 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
857 struct nvme_queue *nvmeq = iod->nvmeq;
858 u16 status = req->errors;
859
860 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
861 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
862 blk_mq_free_request(req);
863 }
864
865 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
866 {
867 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
868 struct nvme_queue *nvmeq = iod->nvmeq;
869 struct nvme_dev *dev = nvmeq->dev;
870 struct request *abort_req;
871 struct nvme_command cmd;
872
873 /*
874 * Shutdown immediately if controller times out while starting. The
875 * reset work will see the pci device disabled when it gets the forced
876 * cancellation error. All outstanding requests are completed on
877 * shutdown, so we return BLK_EH_HANDLED.
878 */
879 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
880 dev_warn(dev->ctrl.device,
881 "I/O %d QID %d timeout, disable controller\n",
882 req->tag, nvmeq->qid);
883 nvme_dev_disable(dev, false);
884 req->errors = NVME_SC_CANCELLED;
885 return BLK_EH_HANDLED;
886 }
887
888 /*
889 * Shutdown the controller immediately and schedule a reset if the
890 * command was already aborted once before and still hasn't been
891 * returned to the driver, or if this is the admin queue.
892 */
893 if (!nvmeq->qid || iod->aborted) {
894 dev_warn(dev->ctrl.device,
895 "I/O %d QID %d timeout, reset controller\n",
896 req->tag, nvmeq->qid);
897 nvme_dev_disable(dev, false);
898 nvme_reset(dev);
899
900 /*
901 * Mark the request as handled, since the inline shutdown
902 * forces all outstanding requests to complete.
903 */
904 req->errors = NVME_SC_CANCELLED;
905 return BLK_EH_HANDLED;
906 }
907
908 iod->aborted = 1;
909
910 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
911 atomic_inc(&dev->ctrl.abort_limit);
912 return BLK_EH_RESET_TIMER;
913 }
914
915 memset(&cmd, 0, sizeof(cmd));
916 cmd.abort.opcode = nvme_admin_abort_cmd;
917 cmd.abort.cid = req->tag;
918 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
919
920 dev_warn(nvmeq->dev->ctrl.device,
921 "I/O %d QID %d timeout, aborting\n",
922 req->tag, nvmeq->qid);
923
924 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
925 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
926 if (IS_ERR(abort_req)) {
927 atomic_inc(&dev->ctrl.abort_limit);
928 return BLK_EH_RESET_TIMER;
929 }
930
931 abort_req->timeout = ADMIN_TIMEOUT;
932 abort_req->end_io_data = NULL;
933 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
934
935 /*
936 * The aborted req will be completed on receiving the abort req.
937 * We enable the timer again. If hit twice, it'll cause a device reset,
938 * as the device then is in a faulty state.
939 */
940 return BLK_EH_RESET_TIMER;
941 }
942
943 static void nvme_free_queue(struct nvme_queue *nvmeq)
944 {
945 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
946 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
947 if (nvmeq->sq_cmds)
948 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
949 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
950 kfree(nvmeq);
951 }
952
953 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
954 {
955 int i;
956
957 for (i = dev->queue_count - 1; i >= lowest; i--) {
958 struct nvme_queue *nvmeq = dev->queues[i];
959 dev->queue_count--;
960 dev->queues[i] = NULL;
961 nvme_free_queue(nvmeq);
962 }
963 }
964
965 /**
966 * nvme_suspend_queue - put queue into suspended state
967 * @nvmeq - queue to suspend
968 */
969 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
970 {
971 int vector;
972
973 spin_lock_irq(&nvmeq->q_lock);
974 if (nvmeq->cq_vector == -1) {
975 spin_unlock_irq(&nvmeq->q_lock);
976 return 1;
977 }
978 vector = nvmeq_irq(nvmeq);
979 nvmeq->dev->online_queues--;
980 nvmeq->cq_vector = -1;
981 spin_unlock_irq(&nvmeq->q_lock);
982
983 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
984 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
985
986 free_irq(vector, nvmeq);
987
988 return 0;
989 }
990
991 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
992 {
993 struct nvme_queue *nvmeq = dev->queues[0];
994
995 if (!nvmeq)
996 return;
997 if (nvme_suspend_queue(nvmeq))
998 return;
999
1000 if (shutdown)
1001 nvme_shutdown_ctrl(&dev->ctrl);
1002 else
1003 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1004 dev->bar + NVME_REG_CAP));
1005
1006 spin_lock_irq(&nvmeq->q_lock);
1007 nvme_process_cq(nvmeq);
1008 spin_unlock_irq(&nvmeq->q_lock);
1009 }
1010
1011 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1012 int entry_size)
1013 {
1014 int q_depth = dev->q_depth;
1015 unsigned q_size_aligned = roundup(q_depth * entry_size,
1016 dev->ctrl.page_size);
1017
1018 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1019 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1020 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1021 q_depth = div_u64(mem_per_q, entry_size);
1022
1023 /*
1024 * Ensure the reduced q_depth is above some threshold where it
1025 * would be better to map queues in system memory with the
1026 * original depth
1027 */
1028 if (q_depth < 64)
1029 return -ENOMEM;
1030 }
1031
1032 return q_depth;
1033 }
1034
1035 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1036 int qid, int depth)
1037 {
1038 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1039 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1040 dev->ctrl.page_size);
1041 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1042 nvmeq->sq_cmds_io = dev->cmb + offset;
1043 } else {
1044 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1045 &nvmeq->sq_dma_addr, GFP_KERNEL);
1046 if (!nvmeq->sq_cmds)
1047 return -ENOMEM;
1048 }
1049
1050 return 0;
1051 }
1052
1053 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1054 int depth)
1055 {
1056 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1057 if (!nvmeq)
1058 return NULL;
1059
1060 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1061 &nvmeq->cq_dma_addr, GFP_KERNEL);
1062 if (!nvmeq->cqes)
1063 goto free_nvmeq;
1064
1065 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1066 goto free_cqdma;
1067
1068 nvmeq->q_dmadev = dev->dev;
1069 nvmeq->dev = dev;
1070 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1071 dev->ctrl.instance, qid);
1072 spin_lock_init(&nvmeq->q_lock);
1073 nvmeq->cq_head = 0;
1074 nvmeq->cq_phase = 1;
1075 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1076 nvmeq->q_depth = depth;
1077 nvmeq->qid = qid;
1078 nvmeq->cq_vector = -1;
1079 dev->queues[qid] = nvmeq;
1080 dev->queue_count++;
1081
1082 return nvmeq;
1083
1084 free_cqdma:
1085 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1086 nvmeq->cq_dma_addr);
1087 free_nvmeq:
1088 kfree(nvmeq);
1089 return NULL;
1090 }
1091
1092 static int queue_request_irq(struct nvme_queue *nvmeq)
1093 {
1094 if (use_threaded_interrupts)
1095 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1096 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1097 else
1098 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1099 nvmeq->irqname, nvmeq);
1100 }
1101
1102 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1103 {
1104 struct nvme_dev *dev = nvmeq->dev;
1105
1106 spin_lock_irq(&nvmeq->q_lock);
1107 nvmeq->sq_tail = 0;
1108 nvmeq->cq_head = 0;
1109 nvmeq->cq_phase = 1;
1110 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1111 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1112 dev->online_queues++;
1113 spin_unlock_irq(&nvmeq->q_lock);
1114 }
1115
1116 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1117 {
1118 struct nvme_dev *dev = nvmeq->dev;
1119 int result;
1120
1121 nvmeq->cq_vector = qid - 1;
1122 result = adapter_alloc_cq(dev, qid, nvmeq);
1123 if (result < 0)
1124 return result;
1125
1126 result = adapter_alloc_sq(dev, qid, nvmeq);
1127 if (result < 0)
1128 goto release_cq;
1129
1130 result = queue_request_irq(nvmeq);
1131 if (result < 0)
1132 goto release_sq;
1133
1134 nvme_init_queue(nvmeq, qid);
1135 return result;
1136
1137 release_sq:
1138 adapter_delete_sq(dev, qid);
1139 release_cq:
1140 adapter_delete_cq(dev, qid);
1141 return result;
1142 }
1143
1144 static struct blk_mq_ops nvme_mq_admin_ops = {
1145 .queue_rq = nvme_queue_rq,
1146 .complete = nvme_complete_rq,
1147 .init_hctx = nvme_admin_init_hctx,
1148 .exit_hctx = nvme_admin_exit_hctx,
1149 .init_request = nvme_admin_init_request,
1150 .timeout = nvme_timeout,
1151 };
1152
1153 static struct blk_mq_ops nvme_mq_ops = {
1154 .queue_rq = nvme_queue_rq,
1155 .complete = nvme_complete_rq,
1156 .init_hctx = nvme_init_hctx,
1157 .init_request = nvme_init_request,
1158 .map_queues = nvme_pci_map_queues,
1159 .timeout = nvme_timeout,
1160 .poll = nvme_poll,
1161 };
1162
1163 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1164 {
1165 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1166 /*
1167 * If the controller was reset during removal, it's possible
1168 * user requests may be waiting on a stopped queue. Start the
1169 * queue to flush these to completion.
1170 */
1171 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1172 blk_cleanup_queue(dev->ctrl.admin_q);
1173 blk_mq_free_tag_set(&dev->admin_tagset);
1174 }
1175 }
1176
1177 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1178 {
1179 if (!dev->ctrl.admin_q) {
1180 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1181 dev->admin_tagset.nr_hw_queues = 1;
1182
1183 /*
1184 * Subtract one to leave an empty queue entry for 'Full Queue'
1185 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1186 */
1187 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1188 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1189 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1190 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1191 dev->admin_tagset.driver_data = dev;
1192
1193 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1194 return -ENOMEM;
1195
1196 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1197 if (IS_ERR(dev->ctrl.admin_q)) {
1198 blk_mq_free_tag_set(&dev->admin_tagset);
1199 return -ENOMEM;
1200 }
1201 if (!blk_get_queue(dev->ctrl.admin_q)) {
1202 nvme_dev_remove_admin(dev);
1203 dev->ctrl.admin_q = NULL;
1204 return -ENODEV;
1205 }
1206 } else
1207 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1208
1209 return 0;
1210 }
1211
1212 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1213 {
1214 int result;
1215 u32 aqa;
1216 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1217 struct nvme_queue *nvmeq;
1218
1219 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1220 NVME_CAP_NSSRC(cap) : 0;
1221
1222 if (dev->subsystem &&
1223 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1224 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1225
1226 result = nvme_disable_ctrl(&dev->ctrl, cap);
1227 if (result < 0)
1228 return result;
1229
1230 nvmeq = dev->queues[0];
1231 if (!nvmeq) {
1232 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1233 if (!nvmeq)
1234 return -ENOMEM;
1235 }
1236
1237 aqa = nvmeq->q_depth - 1;
1238 aqa |= aqa << 16;
1239
1240 writel(aqa, dev->bar + NVME_REG_AQA);
1241 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1242 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1243
1244 result = nvme_enable_ctrl(&dev->ctrl, cap);
1245 if (result)
1246 return result;
1247
1248 nvmeq->cq_vector = 0;
1249 result = queue_request_irq(nvmeq);
1250 if (result) {
1251 nvmeq->cq_vector = -1;
1252 return result;
1253 }
1254
1255 return result;
1256 }
1257
1258 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1259 {
1260
1261 /* If true, indicates loss of adapter communication, possibly by a
1262 * NVMe Subsystem reset.
1263 */
1264 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1265
1266 /* If there is a reset ongoing, we shouldn't reset again. */
1267 if (work_busy(&dev->reset_work))
1268 return false;
1269
1270 /* We shouldn't reset unless the controller is on fatal error state
1271 * _or_ if we lost the communication with it.
1272 */
1273 if (!(csts & NVME_CSTS_CFS) && !nssro)
1274 return false;
1275
1276 /* If PCI error recovery process is happening, we cannot reset or
1277 * the recovery mechanism will surely fail.
1278 */
1279 if (pci_channel_offline(to_pci_dev(dev->dev)))
1280 return false;
1281
1282 return true;
1283 }
1284
1285 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1286 {
1287 /* Read a config register to help see what died. */
1288 u16 pci_status;
1289 int result;
1290
1291 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1292 &pci_status);
1293 if (result == PCIBIOS_SUCCESSFUL)
1294 dev_warn(dev->dev,
1295 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1296 csts, pci_status);
1297 else
1298 dev_warn(dev->dev,
1299 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1300 csts, result);
1301 }
1302
1303 static void nvme_watchdog_timer(unsigned long data)
1304 {
1305 struct nvme_dev *dev = (struct nvme_dev *)data;
1306 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1307
1308 /* Skip controllers under certain specific conditions. */
1309 if (nvme_should_reset(dev, csts)) {
1310 if (!nvme_reset(dev))
1311 nvme_warn_reset(dev, csts);
1312 return;
1313 }
1314
1315 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1316 }
1317
1318 static int nvme_create_io_queues(struct nvme_dev *dev)
1319 {
1320 unsigned i, max;
1321 int ret = 0;
1322
1323 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1324 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1325 ret = -ENOMEM;
1326 break;
1327 }
1328 }
1329
1330 max = min(dev->max_qid, dev->queue_count - 1);
1331 for (i = dev->online_queues; i <= max; i++) {
1332 ret = nvme_create_queue(dev->queues[i], i);
1333 if (ret)
1334 break;
1335 }
1336
1337 /*
1338 * Ignore failing Create SQ/CQ commands, we can continue with less
1339 * than the desired aount of queues, and even a controller without
1340 * I/O queues an still be used to issue admin commands. This might
1341 * be useful to upgrade a buggy firmware for example.
1342 */
1343 return ret >= 0 ? 0 : ret;
1344 }
1345
1346 static ssize_t nvme_cmb_show(struct device *dev,
1347 struct device_attribute *attr,
1348 char *buf)
1349 {
1350 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1351
1352 return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1353 ndev->cmbloc, ndev->cmbsz);
1354 }
1355 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1356
1357 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1358 {
1359 u64 szu, size, offset;
1360 resource_size_t bar_size;
1361 struct pci_dev *pdev = to_pci_dev(dev->dev);
1362 void __iomem *cmb;
1363 dma_addr_t dma_addr;
1364
1365 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1366 if (!(NVME_CMB_SZ(dev->cmbsz)))
1367 return NULL;
1368 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1369
1370 if (!use_cmb_sqes)
1371 return NULL;
1372
1373 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1374 size = szu * NVME_CMB_SZ(dev->cmbsz);
1375 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1376 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1377
1378 if (offset > bar_size)
1379 return NULL;
1380
1381 /*
1382 * Controllers may support a CMB size larger than their BAR,
1383 * for example, due to being behind a bridge. Reduce the CMB to
1384 * the reported size of the BAR
1385 */
1386 if (size > bar_size - offset)
1387 size = bar_size - offset;
1388
1389 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1390 cmb = ioremap_wc(dma_addr, size);
1391 if (!cmb)
1392 return NULL;
1393
1394 dev->cmb_dma_addr = dma_addr;
1395 dev->cmb_size = size;
1396 return cmb;
1397 }
1398
1399 static inline void nvme_release_cmb(struct nvme_dev *dev)
1400 {
1401 if (dev->cmb) {
1402 iounmap(dev->cmb);
1403 dev->cmb = NULL;
1404 }
1405 }
1406
1407 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1408 {
1409 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1410 }
1411
1412 static int nvme_setup_io_queues(struct nvme_dev *dev)
1413 {
1414 struct nvme_queue *adminq = dev->queues[0];
1415 struct pci_dev *pdev = to_pci_dev(dev->dev);
1416 int result, nr_io_queues, size;
1417
1418 nr_io_queues = num_online_cpus();
1419 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1420 if (result < 0)
1421 return result;
1422
1423 if (nr_io_queues == 0)
1424 return 0;
1425
1426 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1427 result = nvme_cmb_qdepth(dev, nr_io_queues,
1428 sizeof(struct nvme_command));
1429 if (result > 0)
1430 dev->q_depth = result;
1431 else
1432 nvme_release_cmb(dev);
1433 }
1434
1435 size = db_bar_size(dev, nr_io_queues);
1436 if (size > 8192) {
1437 iounmap(dev->bar);
1438 do {
1439 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1440 if (dev->bar)
1441 break;
1442 if (!--nr_io_queues)
1443 return -ENOMEM;
1444 size = db_bar_size(dev, nr_io_queues);
1445 } while (1);
1446 dev->dbs = dev->bar + 4096;
1447 adminq->q_db = dev->dbs;
1448 }
1449
1450 /* Deregister the admin queue's interrupt */
1451 free_irq(pci_irq_vector(pdev, 0), adminq);
1452
1453 /*
1454 * If we enable msix early due to not intx, disable it again before
1455 * setting up the full range we need.
1456 */
1457 pci_free_irq_vectors(pdev);
1458 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1459 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1460 if (nr_io_queues <= 0)
1461 return -EIO;
1462 dev->max_qid = nr_io_queues;
1463
1464 /*
1465 * Should investigate if there's a performance win from allocating
1466 * more queues than interrupt vectors; it might allow the submission
1467 * path to scale better, even if the receive path is limited by the
1468 * number of interrupts.
1469 */
1470
1471 result = queue_request_irq(adminq);
1472 if (result) {
1473 adminq->cq_vector = -1;
1474 return result;
1475 }
1476 return nvme_create_io_queues(dev);
1477 }
1478
1479 static void nvme_del_queue_end(struct request *req, int error)
1480 {
1481 struct nvme_queue *nvmeq = req->end_io_data;
1482
1483 blk_mq_free_request(req);
1484 complete(&nvmeq->dev->ioq_wait);
1485 }
1486
1487 static void nvme_del_cq_end(struct request *req, int error)
1488 {
1489 struct nvme_queue *nvmeq = req->end_io_data;
1490
1491 if (!error) {
1492 unsigned long flags;
1493
1494 /*
1495 * We might be called with the AQ q_lock held
1496 * and the I/O queue q_lock should always
1497 * nest inside the AQ one.
1498 */
1499 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1500 SINGLE_DEPTH_NESTING);
1501 nvme_process_cq(nvmeq);
1502 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1503 }
1504
1505 nvme_del_queue_end(req, error);
1506 }
1507
1508 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1509 {
1510 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1511 struct request *req;
1512 struct nvme_command cmd;
1513
1514 memset(&cmd, 0, sizeof(cmd));
1515 cmd.delete_queue.opcode = opcode;
1516 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1517
1518 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1519 if (IS_ERR(req))
1520 return PTR_ERR(req);
1521
1522 req->timeout = ADMIN_TIMEOUT;
1523 req->end_io_data = nvmeq;
1524
1525 blk_execute_rq_nowait(q, NULL, req, false,
1526 opcode == nvme_admin_delete_cq ?
1527 nvme_del_cq_end : nvme_del_queue_end);
1528 return 0;
1529 }
1530
1531 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1532 {
1533 int pass;
1534 unsigned long timeout;
1535 u8 opcode = nvme_admin_delete_sq;
1536
1537 for (pass = 0; pass < 2; pass++) {
1538 int sent = 0, i = queues;
1539
1540 reinit_completion(&dev->ioq_wait);
1541 retry:
1542 timeout = ADMIN_TIMEOUT;
1543 for (; i > 0; i--, sent++)
1544 if (nvme_delete_queue(dev->queues[i], opcode))
1545 break;
1546
1547 while (sent--) {
1548 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1549 if (timeout == 0)
1550 return;
1551 if (i)
1552 goto retry;
1553 }
1554 opcode = nvme_admin_delete_cq;
1555 }
1556 }
1557
1558 /*
1559 * Return: error value if an error occurred setting up the queues or calling
1560 * Identify Device. 0 if these succeeded, even if adding some of the
1561 * namespaces failed. At the moment, these failures are silent. TBD which
1562 * failures should be reported.
1563 */
1564 static int nvme_dev_add(struct nvme_dev *dev)
1565 {
1566 if (!dev->ctrl.tagset) {
1567 dev->tagset.ops = &nvme_mq_ops;
1568 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1569 dev->tagset.timeout = NVME_IO_TIMEOUT;
1570 dev->tagset.numa_node = dev_to_node(dev->dev);
1571 dev->tagset.queue_depth =
1572 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1573 dev->tagset.cmd_size = nvme_cmd_size(dev);
1574 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1575 dev->tagset.driver_data = dev;
1576
1577 if (blk_mq_alloc_tag_set(&dev->tagset))
1578 return 0;
1579 dev->ctrl.tagset = &dev->tagset;
1580 } else {
1581 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1582
1583 /* Free previously allocated queues that are no longer usable */
1584 nvme_free_queues(dev, dev->online_queues);
1585 }
1586
1587 return 0;
1588 }
1589
1590 static int nvme_pci_enable(struct nvme_dev *dev)
1591 {
1592 u64 cap;
1593 int result = -ENOMEM;
1594 struct pci_dev *pdev = to_pci_dev(dev->dev);
1595
1596 if (pci_enable_device_mem(pdev))
1597 return result;
1598
1599 pci_set_master(pdev);
1600
1601 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1602 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1603 goto disable;
1604
1605 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1606 result = -ENODEV;
1607 goto disable;
1608 }
1609
1610 /*
1611 * Some devices and/or platforms don't advertise or work with INTx
1612 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1613 * adjust this later.
1614 */
1615 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1616 if (result < 0)
1617 return result;
1618
1619 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1620
1621 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1622 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1623 dev->dbs = dev->bar + 4096;
1624
1625 /*
1626 * Temporary fix for the Apple controller found in the MacBook8,1 and
1627 * some MacBook7,1 to avoid controller resets and data loss.
1628 */
1629 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1630 dev->q_depth = 2;
1631 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1632 "queue depth=%u to work around controller resets\n",
1633 dev->q_depth);
1634 }
1635
1636 /*
1637 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1638 * populate sysfs if a CMB is implemented. Note that we add the
1639 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1640 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1641 * NULL as final argument to sysfs_add_file_to_group.
1642 */
1643
1644 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1645 dev->cmb = nvme_map_cmb(dev);
1646
1647 if (dev->cmbsz) {
1648 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1649 &dev_attr_cmb.attr, NULL))
1650 dev_warn(dev->dev,
1651 "failed to add sysfs attribute for CMB\n");
1652 }
1653 }
1654
1655 pci_enable_pcie_error_reporting(pdev);
1656 pci_save_state(pdev);
1657 return 0;
1658
1659 disable:
1660 pci_disable_device(pdev);
1661 return result;
1662 }
1663
1664 static void nvme_dev_unmap(struct nvme_dev *dev)
1665 {
1666 if (dev->bar)
1667 iounmap(dev->bar);
1668 pci_release_mem_regions(to_pci_dev(dev->dev));
1669 }
1670
1671 static void nvme_pci_disable(struct nvme_dev *dev)
1672 {
1673 struct pci_dev *pdev = to_pci_dev(dev->dev);
1674
1675 pci_free_irq_vectors(pdev);
1676
1677 if (pci_is_enabled(pdev)) {
1678 pci_disable_pcie_error_reporting(pdev);
1679 pci_disable_device(pdev);
1680 }
1681 }
1682
1683 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1684 {
1685 int i, queues;
1686 u32 csts = -1;
1687
1688 del_timer_sync(&dev->watchdog_timer);
1689
1690 mutex_lock(&dev->shutdown_lock);
1691 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1692 nvme_stop_queues(&dev->ctrl);
1693 csts = readl(dev->bar + NVME_REG_CSTS);
1694 }
1695
1696 queues = dev->online_queues - 1;
1697 for (i = dev->queue_count - 1; i > 0; i--)
1698 nvme_suspend_queue(dev->queues[i]);
1699
1700 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1701 /* A device might become IO incapable very soon during
1702 * probe, before the admin queue is configured. Thus,
1703 * queue_count can be 0 here.
1704 */
1705 if (dev->queue_count)
1706 nvme_suspend_queue(dev->queues[0]);
1707 } else {
1708 nvme_disable_io_queues(dev, queues);
1709 nvme_disable_admin_queue(dev, shutdown);
1710 }
1711 nvme_pci_disable(dev);
1712
1713 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1714 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1715 mutex_unlock(&dev->shutdown_lock);
1716 }
1717
1718 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1719 {
1720 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1721 PAGE_SIZE, PAGE_SIZE, 0);
1722 if (!dev->prp_page_pool)
1723 return -ENOMEM;
1724
1725 /* Optimisation for I/Os between 4k and 128k */
1726 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1727 256, 256, 0);
1728 if (!dev->prp_small_pool) {
1729 dma_pool_destroy(dev->prp_page_pool);
1730 return -ENOMEM;
1731 }
1732 return 0;
1733 }
1734
1735 static void nvme_release_prp_pools(struct nvme_dev *dev)
1736 {
1737 dma_pool_destroy(dev->prp_page_pool);
1738 dma_pool_destroy(dev->prp_small_pool);
1739 }
1740
1741 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1742 {
1743 struct nvme_dev *dev = to_nvme_dev(ctrl);
1744
1745 put_device(dev->dev);
1746 if (dev->tagset.tags)
1747 blk_mq_free_tag_set(&dev->tagset);
1748 if (dev->ctrl.admin_q)
1749 blk_put_queue(dev->ctrl.admin_q);
1750 kfree(dev->queues);
1751 kfree(dev);
1752 }
1753
1754 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1755 {
1756 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1757
1758 kref_get(&dev->ctrl.kref);
1759 nvme_dev_disable(dev, false);
1760 if (!schedule_work(&dev->remove_work))
1761 nvme_put_ctrl(&dev->ctrl);
1762 }
1763
1764 static void nvme_reset_work(struct work_struct *work)
1765 {
1766 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1767 int result = -ENODEV;
1768
1769 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1770 goto out;
1771
1772 /*
1773 * If we're called to reset a live controller first shut it down before
1774 * moving on.
1775 */
1776 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1777 nvme_dev_disable(dev, false);
1778
1779 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1780 goto out;
1781
1782 result = nvme_pci_enable(dev);
1783 if (result)
1784 goto out;
1785
1786 result = nvme_configure_admin_queue(dev);
1787 if (result)
1788 goto out;
1789
1790 nvme_init_queue(dev->queues[0], 0);
1791 result = nvme_alloc_admin_tags(dev);
1792 if (result)
1793 goto out;
1794
1795 result = nvme_init_identify(&dev->ctrl);
1796 if (result)
1797 goto out;
1798
1799 result = nvme_setup_io_queues(dev);
1800 if (result)
1801 goto out;
1802
1803 /*
1804 * A controller that can not execute IO typically requires user
1805 * intervention to correct. For such degraded controllers, the driver
1806 * should not submit commands the user did not request, so skip
1807 * registering for asynchronous event notification on this condition.
1808 */
1809 if (dev->online_queues > 1)
1810 nvme_queue_async_events(&dev->ctrl);
1811
1812 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1813
1814 /*
1815 * Keep the controller around but remove all namespaces if we don't have
1816 * any working I/O queue.
1817 */
1818 if (dev->online_queues < 2) {
1819 dev_warn(dev->ctrl.device, "IO queues not created\n");
1820 nvme_kill_queues(&dev->ctrl);
1821 nvme_remove_namespaces(&dev->ctrl);
1822 } else {
1823 nvme_start_queues(&dev->ctrl);
1824 nvme_dev_add(dev);
1825 }
1826
1827 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1828 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1829 goto out;
1830 }
1831
1832 if (dev->online_queues > 1)
1833 nvme_queue_scan(&dev->ctrl);
1834 return;
1835
1836 out:
1837 nvme_remove_dead_ctrl(dev, result);
1838 }
1839
1840 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1841 {
1842 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1843 struct pci_dev *pdev = to_pci_dev(dev->dev);
1844
1845 nvme_kill_queues(&dev->ctrl);
1846 if (pci_get_drvdata(pdev))
1847 device_release_driver(&pdev->dev);
1848 nvme_put_ctrl(&dev->ctrl);
1849 }
1850
1851 static int nvme_reset(struct nvme_dev *dev)
1852 {
1853 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1854 return -ENODEV;
1855 if (work_busy(&dev->reset_work))
1856 return -ENODEV;
1857 if (!queue_work(nvme_workq, &dev->reset_work))
1858 return -EBUSY;
1859 return 0;
1860 }
1861
1862 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1863 {
1864 *val = readl(to_nvme_dev(ctrl)->bar + off);
1865 return 0;
1866 }
1867
1868 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1869 {
1870 writel(val, to_nvme_dev(ctrl)->bar + off);
1871 return 0;
1872 }
1873
1874 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1875 {
1876 *val = readq(to_nvme_dev(ctrl)->bar + off);
1877 return 0;
1878 }
1879
1880 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1881 {
1882 struct nvme_dev *dev = to_nvme_dev(ctrl);
1883 int ret = nvme_reset(dev);
1884
1885 if (!ret)
1886 flush_work(&dev->reset_work);
1887 return ret;
1888 }
1889
1890 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1891 .name = "pcie",
1892 .module = THIS_MODULE,
1893 .reg_read32 = nvme_pci_reg_read32,
1894 .reg_write32 = nvme_pci_reg_write32,
1895 .reg_read64 = nvme_pci_reg_read64,
1896 .reset_ctrl = nvme_pci_reset_ctrl,
1897 .free_ctrl = nvme_pci_free_ctrl,
1898 .submit_async_event = nvme_pci_submit_async_event,
1899 };
1900
1901 static int nvme_dev_map(struct nvme_dev *dev)
1902 {
1903 struct pci_dev *pdev = to_pci_dev(dev->dev);
1904
1905 if (pci_request_mem_regions(pdev, "nvme"))
1906 return -ENODEV;
1907
1908 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1909 if (!dev->bar)
1910 goto release;
1911
1912 return 0;
1913 release:
1914 pci_release_mem_regions(pdev);
1915 return -ENODEV;
1916 }
1917
1918 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1919 {
1920 int node, result = -ENOMEM;
1921 struct nvme_dev *dev;
1922
1923 node = dev_to_node(&pdev->dev);
1924 if (node == NUMA_NO_NODE)
1925 set_dev_node(&pdev->dev, first_memory_node);
1926
1927 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1928 if (!dev)
1929 return -ENOMEM;
1930 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1931 GFP_KERNEL, node);
1932 if (!dev->queues)
1933 goto free;
1934
1935 dev->dev = get_device(&pdev->dev);
1936 pci_set_drvdata(pdev, dev);
1937
1938 result = nvme_dev_map(dev);
1939 if (result)
1940 goto free;
1941
1942 INIT_WORK(&dev->reset_work, nvme_reset_work);
1943 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1944 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1945 (unsigned long)dev);
1946 mutex_init(&dev->shutdown_lock);
1947 init_completion(&dev->ioq_wait);
1948
1949 result = nvme_setup_prp_pools(dev);
1950 if (result)
1951 goto put_pci;
1952
1953 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1954 id->driver_data);
1955 if (result)
1956 goto release_pools;
1957
1958 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1959
1960 queue_work(nvme_workq, &dev->reset_work);
1961 return 0;
1962
1963 release_pools:
1964 nvme_release_prp_pools(dev);
1965 put_pci:
1966 put_device(dev->dev);
1967 nvme_dev_unmap(dev);
1968 free:
1969 kfree(dev->queues);
1970 kfree(dev);
1971 return result;
1972 }
1973
1974 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1975 {
1976 struct nvme_dev *dev = pci_get_drvdata(pdev);
1977
1978 if (prepare)
1979 nvme_dev_disable(dev, false);
1980 else
1981 nvme_reset(dev);
1982 }
1983
1984 static void nvme_shutdown(struct pci_dev *pdev)
1985 {
1986 struct nvme_dev *dev = pci_get_drvdata(pdev);
1987 nvme_dev_disable(dev, true);
1988 }
1989
1990 /*
1991 * The driver's remove may be called on a device in a partially initialized
1992 * state. This function must not have any dependencies on the device state in
1993 * order to proceed.
1994 */
1995 static void nvme_remove(struct pci_dev *pdev)
1996 {
1997 struct nvme_dev *dev = pci_get_drvdata(pdev);
1998
1999 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2000
2001 pci_set_drvdata(pdev, NULL);
2002
2003 if (!pci_device_is_present(pdev))
2004 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2005
2006 flush_work(&dev->reset_work);
2007 nvme_uninit_ctrl(&dev->ctrl);
2008 nvme_dev_disable(dev, true);
2009 nvme_dev_remove_admin(dev);
2010 nvme_free_queues(dev, 0);
2011 nvme_release_cmb(dev);
2012 nvme_release_prp_pools(dev);
2013 nvme_dev_unmap(dev);
2014 nvme_put_ctrl(&dev->ctrl);
2015 }
2016
2017 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2018 {
2019 int ret = 0;
2020
2021 if (numvfs == 0) {
2022 if (pci_vfs_assigned(pdev)) {
2023 dev_warn(&pdev->dev,
2024 "Cannot disable SR-IOV VFs while assigned\n");
2025 return -EPERM;
2026 }
2027 pci_disable_sriov(pdev);
2028 return 0;
2029 }
2030
2031 ret = pci_enable_sriov(pdev, numvfs);
2032 return ret ? ret : numvfs;
2033 }
2034
2035 #ifdef CONFIG_PM_SLEEP
2036 static int nvme_suspend(struct device *dev)
2037 {
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
2041 nvme_dev_disable(ndev, true);
2042 return 0;
2043 }
2044
2045 static int nvme_resume(struct device *dev)
2046 {
2047 struct pci_dev *pdev = to_pci_dev(dev);
2048 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2049
2050 nvme_reset(ndev);
2051 return 0;
2052 }
2053 #endif
2054
2055 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2056
2057 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2058 pci_channel_state_t state)
2059 {
2060 struct nvme_dev *dev = pci_get_drvdata(pdev);
2061
2062 /*
2063 * A frozen channel requires a reset. When detected, this method will
2064 * shutdown the controller to quiesce. The controller will be restarted
2065 * after the slot reset through driver's slot_reset callback.
2066 */
2067 switch (state) {
2068 case pci_channel_io_normal:
2069 return PCI_ERS_RESULT_CAN_RECOVER;
2070 case pci_channel_io_frozen:
2071 dev_warn(dev->ctrl.device,
2072 "frozen state error detected, reset controller\n");
2073 nvme_dev_disable(dev, false);
2074 return PCI_ERS_RESULT_NEED_RESET;
2075 case pci_channel_io_perm_failure:
2076 dev_warn(dev->ctrl.device,
2077 "failure state error detected, request disconnect\n");
2078 return PCI_ERS_RESULT_DISCONNECT;
2079 }
2080 return PCI_ERS_RESULT_NEED_RESET;
2081 }
2082
2083 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2084 {
2085 struct nvme_dev *dev = pci_get_drvdata(pdev);
2086
2087 dev_info(dev->ctrl.device, "restart after slot reset\n");
2088 pci_restore_state(pdev);
2089 nvme_reset(dev);
2090 return PCI_ERS_RESULT_RECOVERED;
2091 }
2092
2093 static void nvme_error_resume(struct pci_dev *pdev)
2094 {
2095 pci_cleanup_aer_uncorrect_error_status(pdev);
2096 }
2097
2098 static const struct pci_error_handlers nvme_err_handler = {
2099 .error_detected = nvme_error_detected,
2100 .slot_reset = nvme_slot_reset,
2101 .resume = nvme_error_resume,
2102 .reset_notify = nvme_reset_notify,
2103 };
2104
2105 static const struct pci_device_id nvme_id_table[] = {
2106 { PCI_VDEVICE(INTEL, 0x0953),
2107 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2108 NVME_QUIRK_DISCARD_ZEROES, },
2109 { PCI_VDEVICE(INTEL, 0x0a53),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a54),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DISCARD_ZEROES, },
2115 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2116 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2117 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2118 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2119 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2120 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2121 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2122 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2123 { 0, }
2124 };
2125 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2126
2127 static struct pci_driver nvme_driver = {
2128 .name = "nvme",
2129 .id_table = nvme_id_table,
2130 .probe = nvme_probe,
2131 .remove = nvme_remove,
2132 .shutdown = nvme_shutdown,
2133 .driver = {
2134 .pm = &nvme_dev_pm_ops,
2135 },
2136 .sriov_configure = nvme_pci_sriov_configure,
2137 .err_handler = &nvme_err_handler,
2138 };
2139
2140 static int __init nvme_init(void)
2141 {
2142 int result;
2143
2144 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2145 if (!nvme_workq)
2146 return -ENOMEM;
2147
2148 result = pci_register_driver(&nvme_driver);
2149 if (result)
2150 destroy_workqueue(nvme_workq);
2151 return result;
2152 }
2153
2154 static void __exit nvme_exit(void)
2155 {
2156 pci_unregister_driver(&nvme_driver);
2157 destroy_workqueue(nvme_workq);
2158 _nvme_check_size();
2159 }
2160
2161 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2162 MODULE_LICENSE("GPL");
2163 MODULE_VERSION("1.0");
2164 module_init(nvme_init);
2165 module_exit(nvme_exit);