]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
nvme: Check for Security send/recv support before issuing commands.
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 #include <linux/sed-opal.h>
47
48 #include "nvme.h"
49
50 #define NVME_Q_DEPTH 1024
51 #define NVME_AQ_DEPTH 256
52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54
55 /*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
59 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60
61 static int use_threaded_interrupts;
62 module_param(use_threaded_interrupts, int, 0);
63
64 static bool use_cmb_sqes = true;
65 module_param(use_cmb_sqes, bool, 0644);
66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
68 static struct workqueue_struct *nvme_workq;
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static int nvme_reset(struct nvme_dev *dev);
74 static void nvme_process_cq(struct nvme_queue *nvmeq);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76
77 /*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80 struct nvme_dev {
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct remove_work;
96 struct timer_list watchdog_timer;
97 struct mutex shutdown_lock;
98 bool subsystem;
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
103 u32 cmbloc;
104 struct nvme_ctrl ctrl;
105 struct completion ioq_wait;
106 };
107
108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 {
110 return container_of(ctrl, struct nvme_dev, ctrl);
111 }
112
113 /*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117 struct nvme_queue {
118 struct device *q_dmadev;
119 struct nvme_dev *dev;
120 char irqname[24]; /* nvme4294967295-65535\0 */
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
123 struct nvme_command __iomem *sq_cmds_io;
124 volatile struct nvme_completion *cqes;
125 struct blk_mq_tags **tags;
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
128 u32 __iomem *q_db;
129 u16 q_depth;
130 s16 cq_vector;
131 u16 sq_tail;
132 u16 cq_head;
133 u16 qid;
134 u8 cq_phase;
135 u8 cqe_seen;
136 };
137
138 /*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
141 * me express that. Use nvme_init_iod to ensure there's enough space
142 * allocated to store the PRP list.
143 */
144 struct nvme_iod {
145 struct nvme_request req;
146 struct nvme_queue *nvmeq;
147 int aborted;
148 int npages; /* In the PRP list. 0 means small pool in use */
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
155 };
156
157 /*
158 * Check we didin't inadvertently grow the command struct
159 */
160 static inline void _nvme_check_size(void)
161 {
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
174 }
175
176 /*
177 * Max size of iod being embedded in the request payload
178 */
179 #define NVME_INT_PAGES 2
180 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
181
182 /*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187 static int nvme_npages(unsigned size, struct nvme_dev *dev)
188 {
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192 }
193
194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
196 {
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199 }
200
201 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202 {
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
205 }
206
207 static int nvmeq_irq(struct nvme_queue *nvmeq)
208 {
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
214 {
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
222 hctx->driver_data = nvmeq;
223 nvmeq->tags = &dev->admin_tagset.tags[0];
224 return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
237 {
238 struct nvme_dev *dev = data;
239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
243 iod->nvmeq = nvmeq;
244 return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
249 {
250 struct nvme_dev *dev = data;
251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 hctx->driver_data = nvmeq;
258 return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
270 iod->nvmeq = nvmeq;
271 return 0;
272 }
273
274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275 {
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279 }
280
281 /**
282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
290 {
291 u16 tail = nvmeq->sq_tail;
292
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
300 writel(tail, nvmeq->q_db);
301 nvmeq->sq_tail = tail;
302 }
303
304 static __le64 **iod_list(struct request *req)
305 {
306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
308 }
309
310 static int nvme_init_iod(struct request *rq, unsigned size,
311 struct nvme_dev *dev)
312 {
313 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
314 int nseg = blk_rq_nr_phys_segments(rq);
315
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
322 }
323
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
328
329 if (!(rq->rq_flags & RQF_DONTPREP)) {
330 rq->retries = 0;
331 rq->rq_flags |= RQF_DONTPREP;
332 }
333 return BLK_MQ_RQ_QUEUE_OK;
334 }
335
336 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
337 {
338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
339 const int last_prp = dev->ctrl.page_size / 8 - 1;
340 int i;
341 __le64 **list = iod_list(req);
342 dma_addr_t prp_dma = iod->first_dma;
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
352
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
355 }
356
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359 {
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362 }
363
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365 {
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368 }
369
370 /**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380 static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382 {
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 ts = ns->disk->queue->integrity.tuple_size;
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410 }
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414 {
415 }
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417 {
418 }
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420 {
421 }
422 #endif
423
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
425 int total_len)
426 {
427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 struct dma_pool *pool;
429 int length = total_len;
430 struct scatterlist *sg = iod->sg;
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
433 u32 page_size = dev->ctrl.page_size;
434 int offset = dma_addr & (page_size - 1);
435 __le64 *prp_list;
436 __le64 **list = iod_list(req);
437 dma_addr_t prp_dma;
438 int nprps, i;
439
440 length -= (page_size - offset);
441 if (length <= 0)
442 return true;
443
444 dma_len -= (page_size - offset);
445 if (dma_len) {
446 dma_addr += (page_size - offset);
447 } else {
448 sg = sg_next(sg);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
451 }
452
453 if (length <= page_size) {
454 iod->first_dma = dma_addr;
455 return true;
456 }
457
458 nprps = DIV_ROUND_UP(length, page_size);
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
461 iod->npages = 0;
462 } else {
463 pool = dev->prp_page_pool;
464 iod->npages = 1;
465 }
466
467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
468 if (!prp_list) {
469 iod->first_dma = dma_addr;
470 iod->npages = -1;
471 return false;
472 }
473 list[0] = prp_list;
474 iod->first_dma = prp_dma;
475 i = 0;
476 for (;;) {
477 if (i == page_size >> 3) {
478 __le64 *old_prp_list = prp_list;
479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
480 if (!prp_list)
481 return false;
482 list[iod->npages++] = prp_list;
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485 i = 1;
486 }
487 prp_list[i++] = cpu_to_le64(dma_addr);
488 dma_len -= page_size;
489 dma_addr += page_size;
490 length -= page_size;
491 if (length <= 0)
492 break;
493 if (dma_len > 0)
494 continue;
495 BUG_ON(dma_len < 0);
496 sg = sg_next(sg);
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
499 }
500
501 return true;
502 }
503
504 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505 unsigned size, struct nvme_command *cmnd)
506 {
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
512
513 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
515 if (!iod->nents)
516 goto out;
517
518 ret = BLK_MQ_RQ_QUEUE_BUSY;
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520 DMA_ATTR_NO_WARN))
521 goto out;
522
523 if (!nvme_setup_prps(dev, req, size))
524 goto out_unmap;
525
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529 goto out_unmap;
530
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
533 goto out_unmap;
534
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
537
538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
539 goto out_unmap;
540 }
541
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544 if (blk_integrity_rq(req))
545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546 return BLK_MQ_RQ_QUEUE_OK;
547
548 out_unmap:
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550 out:
551 return ret;
552 }
553
554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
555 {
556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
559
560 if (iod->nents) {
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
566 }
567 }
568
569 nvme_cleanup_cmd(req);
570 nvme_free_iod(dev, req);
571 }
572
573 /*
574 * NOTE: ns is NULL when called on the admin queue.
575 */
576 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
577 const struct blk_mq_queue_data *bd)
578 {
579 struct nvme_ns *ns = hctx->queue->queuedata;
580 struct nvme_queue *nvmeq = hctx->driver_data;
581 struct nvme_dev *dev = nvmeq->dev;
582 struct request *req = bd->rq;
583 struct nvme_command cmnd;
584 unsigned map_len;
585 int ret = BLK_MQ_RQ_QUEUE_OK;
586
587 /*
588 * If formated with metadata, require the block layer provide a buffer
589 * unless this namespace is formated such that the metadata can be
590 * stripped/generated by the controller with PRACT=1.
591 */
592 if (ns && ns->ms && !blk_integrity_rq(req)) {
593 if (!(ns->pi_type && ns->ms == 8) &&
594 req->cmd_type != REQ_TYPE_DRV_PRIV) {
595 blk_mq_end_request(req, -EFAULT);
596 return BLK_MQ_RQ_QUEUE_OK;
597 }
598 }
599
600 ret = nvme_setup_cmd(ns, req, &cmnd);
601 if (ret != BLK_MQ_RQ_QUEUE_OK)
602 return ret;
603
604 map_len = nvme_map_len(req);
605 ret = nvme_init_iod(req, map_len, dev);
606 if (ret != BLK_MQ_RQ_QUEUE_OK)
607 goto out_free_cmd;
608
609 if (blk_rq_nr_phys_segments(req))
610 ret = nvme_map_data(dev, req, map_len, &cmnd);
611
612 if (ret != BLK_MQ_RQ_QUEUE_OK)
613 goto out_cleanup_iod;
614
615 blk_mq_start_request(req);
616
617 spin_lock_irq(&nvmeq->q_lock);
618 if (unlikely(nvmeq->cq_vector < 0)) {
619 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
620 ret = BLK_MQ_RQ_QUEUE_BUSY;
621 else
622 ret = BLK_MQ_RQ_QUEUE_ERROR;
623 spin_unlock_irq(&nvmeq->q_lock);
624 goto out_cleanup_iod;
625 }
626 __nvme_submit_cmd(nvmeq, &cmnd);
627 nvme_process_cq(nvmeq);
628 spin_unlock_irq(&nvmeq->q_lock);
629 return BLK_MQ_RQ_QUEUE_OK;
630 out_cleanup_iod:
631 nvme_free_iod(dev, req);
632 out_free_cmd:
633 nvme_cleanup_cmd(req);
634 return ret;
635 }
636
637 static void nvme_complete_rq(struct request *req)
638 {
639 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
640 struct nvme_dev *dev = iod->nvmeq->dev;
641 int error = 0;
642
643 nvme_unmap_data(dev, req);
644
645 if (unlikely(req->errors)) {
646 if (nvme_req_needs_retry(req, req->errors)) {
647 req->retries++;
648 nvme_requeue_req(req);
649 return;
650 }
651
652 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
653 error = req->errors;
654 else
655 error = nvme_error_status(req->errors);
656 }
657
658 if (unlikely(iod->aborted)) {
659 dev_warn(dev->ctrl.device,
660 "completing aborted command with status: %04x\n",
661 req->errors);
662 }
663
664 blk_mq_end_request(req, error);
665 }
666
667 /* We read the CQE phase first to check if the rest of the entry is valid */
668 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
669 u16 phase)
670 {
671 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
672 }
673
674 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
675 {
676 u16 head, phase;
677
678 head = nvmeq->cq_head;
679 phase = nvmeq->cq_phase;
680
681 while (nvme_cqe_valid(nvmeq, head, phase)) {
682 struct nvme_completion cqe = nvmeq->cqes[head];
683 struct request *req;
684
685 if (++head == nvmeq->q_depth) {
686 head = 0;
687 phase = !phase;
688 }
689
690 if (tag && *tag == cqe.command_id)
691 *tag = -1;
692
693 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
694 dev_warn(nvmeq->dev->ctrl.device,
695 "invalid id %d completed on queue %d\n",
696 cqe.command_id, le16_to_cpu(cqe.sq_id));
697 continue;
698 }
699
700 /*
701 * AEN requests are special as they don't time out and can
702 * survive any kind of queue freeze and often don't respond to
703 * aborts. We don't even bother to allocate a struct request
704 * for them but rather special case them here.
705 */
706 if (unlikely(nvmeq->qid == 0 &&
707 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
708 nvme_complete_async_event(&nvmeq->dev->ctrl,
709 cqe.status, &cqe.result);
710 continue;
711 }
712
713 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
714 nvme_req(req)->result = cqe.result;
715 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
716 }
717
718 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
719 return;
720
721 if (likely(nvmeq->cq_vector >= 0))
722 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
723 nvmeq->cq_head = head;
724 nvmeq->cq_phase = phase;
725
726 nvmeq->cqe_seen = 1;
727 }
728
729 static void nvme_process_cq(struct nvme_queue *nvmeq)
730 {
731 __nvme_process_cq(nvmeq, NULL);
732 }
733
734 static irqreturn_t nvme_irq(int irq, void *data)
735 {
736 irqreturn_t result;
737 struct nvme_queue *nvmeq = data;
738 spin_lock(&nvmeq->q_lock);
739 nvme_process_cq(nvmeq);
740 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
741 nvmeq->cqe_seen = 0;
742 spin_unlock(&nvmeq->q_lock);
743 return result;
744 }
745
746 static irqreturn_t nvme_irq_check(int irq, void *data)
747 {
748 struct nvme_queue *nvmeq = data;
749 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
750 return IRQ_WAKE_THREAD;
751 return IRQ_NONE;
752 }
753
754 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
755 {
756 struct nvme_queue *nvmeq = hctx->driver_data;
757
758 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
759 spin_lock_irq(&nvmeq->q_lock);
760 __nvme_process_cq(nvmeq, &tag);
761 spin_unlock_irq(&nvmeq->q_lock);
762
763 if (tag == -1)
764 return 1;
765 }
766
767 return 0;
768 }
769
770 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
771 {
772 struct nvme_dev *dev = to_nvme_dev(ctrl);
773 struct nvme_queue *nvmeq = dev->queues[0];
774 struct nvme_command c;
775
776 memset(&c, 0, sizeof(c));
777 c.common.opcode = nvme_admin_async_event;
778 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
779
780 spin_lock_irq(&nvmeq->q_lock);
781 __nvme_submit_cmd(nvmeq, &c);
782 spin_unlock_irq(&nvmeq->q_lock);
783 }
784
785 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
786 {
787 struct nvme_command c;
788
789 memset(&c, 0, sizeof(c));
790 c.delete_queue.opcode = opcode;
791 c.delete_queue.qid = cpu_to_le16(id);
792
793 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
794 }
795
796 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
797 struct nvme_queue *nvmeq)
798 {
799 struct nvme_command c;
800 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
801
802 /*
803 * Note: we (ab)use the fact the the prp fields survive if no data
804 * is attached to the request.
805 */
806 memset(&c, 0, sizeof(c));
807 c.create_cq.opcode = nvme_admin_create_cq;
808 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
809 c.create_cq.cqid = cpu_to_le16(qid);
810 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
811 c.create_cq.cq_flags = cpu_to_le16(flags);
812 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
813
814 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
815 }
816
817 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
818 struct nvme_queue *nvmeq)
819 {
820 struct nvme_command c;
821 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
822
823 /*
824 * Note: we (ab)use the fact the the prp fields survive if no data
825 * is attached to the request.
826 */
827 memset(&c, 0, sizeof(c));
828 c.create_sq.opcode = nvme_admin_create_sq;
829 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
830 c.create_sq.sqid = cpu_to_le16(qid);
831 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
832 c.create_sq.sq_flags = cpu_to_le16(flags);
833 c.create_sq.cqid = cpu_to_le16(qid);
834
835 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
836 }
837
838 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
839 {
840 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
841 }
842
843 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
844 {
845 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
846 }
847
848 static void abort_endio(struct request *req, int error)
849 {
850 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
851 struct nvme_queue *nvmeq = iod->nvmeq;
852 u16 status = req->errors;
853
854 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
855 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
856 blk_mq_free_request(req);
857 }
858
859 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
860 {
861 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
862 struct nvme_queue *nvmeq = iod->nvmeq;
863 struct nvme_dev *dev = nvmeq->dev;
864 struct request *abort_req;
865 struct nvme_command cmd;
866
867 /*
868 * Shutdown immediately if controller times out while starting. The
869 * reset work will see the pci device disabled when it gets the forced
870 * cancellation error. All outstanding requests are completed on
871 * shutdown, so we return BLK_EH_HANDLED.
872 */
873 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
874 dev_warn(dev->ctrl.device,
875 "I/O %d QID %d timeout, disable controller\n",
876 req->tag, nvmeq->qid);
877 nvme_dev_disable(dev, false);
878 req->errors = NVME_SC_CANCELLED;
879 return BLK_EH_HANDLED;
880 }
881
882 /*
883 * Shutdown the controller immediately and schedule a reset if the
884 * command was already aborted once before and still hasn't been
885 * returned to the driver, or if this is the admin queue.
886 */
887 if (!nvmeq->qid || iod->aborted) {
888 dev_warn(dev->ctrl.device,
889 "I/O %d QID %d timeout, reset controller\n",
890 req->tag, nvmeq->qid);
891 nvme_dev_disable(dev, false);
892 nvme_reset(dev);
893
894 /*
895 * Mark the request as handled, since the inline shutdown
896 * forces all outstanding requests to complete.
897 */
898 req->errors = NVME_SC_CANCELLED;
899 return BLK_EH_HANDLED;
900 }
901
902 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
903 atomic_inc(&dev->ctrl.abort_limit);
904 return BLK_EH_RESET_TIMER;
905 }
906 iod->aborted = 1;
907
908 memset(&cmd, 0, sizeof(cmd));
909 cmd.abort.opcode = nvme_admin_abort_cmd;
910 cmd.abort.cid = req->tag;
911 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
912
913 dev_warn(nvmeq->dev->ctrl.device,
914 "I/O %d QID %d timeout, aborting\n",
915 req->tag, nvmeq->qid);
916
917 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
918 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
919 if (IS_ERR(abort_req)) {
920 atomic_inc(&dev->ctrl.abort_limit);
921 return BLK_EH_RESET_TIMER;
922 }
923
924 abort_req->timeout = ADMIN_TIMEOUT;
925 abort_req->end_io_data = NULL;
926 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
927
928 /*
929 * The aborted req will be completed on receiving the abort req.
930 * We enable the timer again. If hit twice, it'll cause a device reset,
931 * as the device then is in a faulty state.
932 */
933 return BLK_EH_RESET_TIMER;
934 }
935
936 static void nvme_free_queue(struct nvme_queue *nvmeq)
937 {
938 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
939 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
940 if (nvmeq->sq_cmds)
941 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
942 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
943 kfree(nvmeq);
944 }
945
946 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
947 {
948 int i;
949
950 for (i = dev->queue_count - 1; i >= lowest; i--) {
951 struct nvme_queue *nvmeq = dev->queues[i];
952 dev->queue_count--;
953 dev->queues[i] = NULL;
954 nvme_free_queue(nvmeq);
955 }
956 }
957
958 /**
959 * nvme_suspend_queue - put queue into suspended state
960 * @nvmeq - queue to suspend
961 */
962 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
963 {
964 int vector;
965
966 spin_lock_irq(&nvmeq->q_lock);
967 if (nvmeq->cq_vector == -1) {
968 spin_unlock_irq(&nvmeq->q_lock);
969 return 1;
970 }
971 vector = nvmeq_irq(nvmeq);
972 nvmeq->dev->online_queues--;
973 nvmeq->cq_vector = -1;
974 spin_unlock_irq(&nvmeq->q_lock);
975
976 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
977 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
978
979 free_irq(vector, nvmeq);
980
981 return 0;
982 }
983
984 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
985 {
986 struct nvme_queue *nvmeq = dev->queues[0];
987
988 if (!nvmeq)
989 return;
990 if (nvme_suspend_queue(nvmeq))
991 return;
992
993 if (shutdown)
994 nvme_shutdown_ctrl(&dev->ctrl);
995 else
996 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
997 dev->bar + NVME_REG_CAP));
998
999 spin_lock_irq(&nvmeq->q_lock);
1000 nvme_process_cq(nvmeq);
1001 spin_unlock_irq(&nvmeq->q_lock);
1002 }
1003
1004 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1005 int entry_size)
1006 {
1007 int q_depth = dev->q_depth;
1008 unsigned q_size_aligned = roundup(q_depth * entry_size,
1009 dev->ctrl.page_size);
1010
1011 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1012 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1013 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1014 q_depth = div_u64(mem_per_q, entry_size);
1015
1016 /*
1017 * Ensure the reduced q_depth is above some threshold where it
1018 * would be better to map queues in system memory with the
1019 * original depth
1020 */
1021 if (q_depth < 64)
1022 return -ENOMEM;
1023 }
1024
1025 return q_depth;
1026 }
1027
1028 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1029 int qid, int depth)
1030 {
1031 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1032 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1033 dev->ctrl.page_size);
1034 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1035 nvmeq->sq_cmds_io = dev->cmb + offset;
1036 } else {
1037 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1038 &nvmeq->sq_dma_addr, GFP_KERNEL);
1039 if (!nvmeq->sq_cmds)
1040 return -ENOMEM;
1041 }
1042
1043 return 0;
1044 }
1045
1046 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1047 int depth)
1048 {
1049 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1050 if (!nvmeq)
1051 return NULL;
1052
1053 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1054 &nvmeq->cq_dma_addr, GFP_KERNEL);
1055 if (!nvmeq->cqes)
1056 goto free_nvmeq;
1057
1058 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1059 goto free_cqdma;
1060
1061 nvmeq->q_dmadev = dev->dev;
1062 nvmeq->dev = dev;
1063 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1064 dev->ctrl.instance, qid);
1065 spin_lock_init(&nvmeq->q_lock);
1066 nvmeq->cq_head = 0;
1067 nvmeq->cq_phase = 1;
1068 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1069 nvmeq->q_depth = depth;
1070 nvmeq->qid = qid;
1071 nvmeq->cq_vector = -1;
1072 dev->queues[qid] = nvmeq;
1073 dev->queue_count++;
1074
1075 return nvmeq;
1076
1077 free_cqdma:
1078 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1079 nvmeq->cq_dma_addr);
1080 free_nvmeq:
1081 kfree(nvmeq);
1082 return NULL;
1083 }
1084
1085 static int queue_request_irq(struct nvme_queue *nvmeq)
1086 {
1087 if (use_threaded_interrupts)
1088 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1089 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1090 else
1091 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1092 nvmeq->irqname, nvmeq);
1093 }
1094
1095 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1096 {
1097 struct nvme_dev *dev = nvmeq->dev;
1098
1099 spin_lock_irq(&nvmeq->q_lock);
1100 nvmeq->sq_tail = 0;
1101 nvmeq->cq_head = 0;
1102 nvmeq->cq_phase = 1;
1103 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1104 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1105 dev->online_queues++;
1106 spin_unlock_irq(&nvmeq->q_lock);
1107 }
1108
1109 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1110 {
1111 struct nvme_dev *dev = nvmeq->dev;
1112 int result;
1113
1114 nvmeq->cq_vector = qid - 1;
1115 result = adapter_alloc_cq(dev, qid, nvmeq);
1116 if (result < 0)
1117 return result;
1118
1119 result = adapter_alloc_sq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto release_cq;
1122
1123 result = queue_request_irq(nvmeq);
1124 if (result < 0)
1125 goto release_sq;
1126
1127 nvme_init_queue(nvmeq, qid);
1128 return result;
1129
1130 release_sq:
1131 adapter_delete_sq(dev, qid);
1132 release_cq:
1133 adapter_delete_cq(dev, qid);
1134 return result;
1135 }
1136
1137 static struct blk_mq_ops nvme_mq_admin_ops = {
1138 .queue_rq = nvme_queue_rq,
1139 .complete = nvme_complete_rq,
1140 .init_hctx = nvme_admin_init_hctx,
1141 .exit_hctx = nvme_admin_exit_hctx,
1142 .init_request = nvme_admin_init_request,
1143 .timeout = nvme_timeout,
1144 };
1145
1146 static struct blk_mq_ops nvme_mq_ops = {
1147 .queue_rq = nvme_queue_rq,
1148 .complete = nvme_complete_rq,
1149 .init_hctx = nvme_init_hctx,
1150 .init_request = nvme_init_request,
1151 .map_queues = nvme_pci_map_queues,
1152 .timeout = nvme_timeout,
1153 .poll = nvme_poll,
1154 };
1155
1156 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1157 {
1158 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1159 /*
1160 * If the controller was reset during removal, it's possible
1161 * user requests may be waiting on a stopped queue. Start the
1162 * queue to flush these to completion.
1163 */
1164 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1165 blk_cleanup_queue(dev->ctrl.admin_q);
1166 blk_mq_free_tag_set(&dev->admin_tagset);
1167 }
1168 }
1169
1170 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1171 {
1172 if (!dev->ctrl.admin_q) {
1173 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1174 dev->admin_tagset.nr_hw_queues = 1;
1175
1176 /*
1177 * Subtract one to leave an empty queue entry for 'Full Queue'
1178 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1179 */
1180 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1181 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1182 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1183 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1184 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1185 dev->admin_tagset.driver_data = dev;
1186
1187 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1188 return -ENOMEM;
1189
1190 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1191 if (IS_ERR(dev->ctrl.admin_q)) {
1192 blk_mq_free_tag_set(&dev->admin_tagset);
1193 return -ENOMEM;
1194 }
1195 if (!blk_get_queue(dev->ctrl.admin_q)) {
1196 nvme_dev_remove_admin(dev);
1197 dev->ctrl.admin_q = NULL;
1198 return -ENODEV;
1199 }
1200 } else
1201 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1202
1203 return 0;
1204 }
1205
1206 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1207 {
1208 int result;
1209 u32 aqa;
1210 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1211 struct nvme_queue *nvmeq;
1212
1213 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1214 NVME_CAP_NSSRC(cap) : 0;
1215
1216 if (dev->subsystem &&
1217 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1218 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1219
1220 result = nvme_disable_ctrl(&dev->ctrl, cap);
1221 if (result < 0)
1222 return result;
1223
1224 nvmeq = dev->queues[0];
1225 if (!nvmeq) {
1226 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1227 if (!nvmeq)
1228 return -ENOMEM;
1229 }
1230
1231 aqa = nvmeq->q_depth - 1;
1232 aqa |= aqa << 16;
1233
1234 writel(aqa, dev->bar + NVME_REG_AQA);
1235 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1236 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1237
1238 result = nvme_enable_ctrl(&dev->ctrl, cap);
1239 if (result)
1240 return result;
1241
1242 nvmeq->cq_vector = 0;
1243 result = queue_request_irq(nvmeq);
1244 if (result) {
1245 nvmeq->cq_vector = -1;
1246 return result;
1247 }
1248
1249 return result;
1250 }
1251
1252 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254
1255 /* If true, indicates loss of adapter communication, possibly by a
1256 * NVMe Subsystem reset.
1257 */
1258 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1259
1260 /* If there is a reset ongoing, we shouldn't reset again. */
1261 if (work_busy(&dev->reset_work))
1262 return false;
1263
1264 /* We shouldn't reset unless the controller is on fatal error state
1265 * _or_ if we lost the communication with it.
1266 */
1267 if (!(csts & NVME_CSTS_CFS) && !nssro)
1268 return false;
1269
1270 /* If PCI error recovery process is happening, we cannot reset or
1271 * the recovery mechanism will surely fail.
1272 */
1273 if (pci_channel_offline(to_pci_dev(dev->dev)))
1274 return false;
1275
1276 return true;
1277 }
1278
1279 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1280 {
1281 /* Read a config register to help see what died. */
1282 u16 pci_status;
1283 int result;
1284
1285 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1286 &pci_status);
1287 if (result == PCIBIOS_SUCCESSFUL)
1288 dev_warn(dev->dev,
1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1290 csts, pci_status);
1291 else
1292 dev_warn(dev->dev,
1293 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1294 csts, result);
1295 }
1296
1297 static void nvme_watchdog_timer(unsigned long data)
1298 {
1299 struct nvme_dev *dev = (struct nvme_dev *)data;
1300 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1301
1302 /* Skip controllers under certain specific conditions. */
1303 if (nvme_should_reset(dev, csts)) {
1304 if (!nvme_reset(dev))
1305 nvme_warn_reset(dev, csts);
1306 return;
1307 }
1308
1309 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1310 }
1311
1312 static int nvme_create_io_queues(struct nvme_dev *dev)
1313 {
1314 unsigned i, max;
1315 int ret = 0;
1316
1317 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1318 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1319 ret = -ENOMEM;
1320 break;
1321 }
1322 }
1323
1324 max = min(dev->max_qid, dev->queue_count - 1);
1325 for (i = dev->online_queues; i <= max; i++) {
1326 ret = nvme_create_queue(dev->queues[i], i);
1327 if (ret)
1328 break;
1329 }
1330
1331 /*
1332 * Ignore failing Create SQ/CQ commands, we can continue with less
1333 * than the desired aount of queues, and even a controller without
1334 * I/O queues an still be used to issue admin commands. This might
1335 * be useful to upgrade a buggy firmware for example.
1336 */
1337 return ret >= 0 ? 0 : ret;
1338 }
1339
1340 static ssize_t nvme_cmb_show(struct device *dev,
1341 struct device_attribute *attr,
1342 char *buf)
1343 {
1344 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1345
1346 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1347 ndev->cmbloc, ndev->cmbsz);
1348 }
1349 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1350
1351 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1352 {
1353 u64 szu, size, offset;
1354 resource_size_t bar_size;
1355 struct pci_dev *pdev = to_pci_dev(dev->dev);
1356 void __iomem *cmb;
1357 dma_addr_t dma_addr;
1358
1359 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1360 if (!(NVME_CMB_SZ(dev->cmbsz)))
1361 return NULL;
1362 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1363
1364 if (!use_cmb_sqes)
1365 return NULL;
1366
1367 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1368 size = szu * NVME_CMB_SZ(dev->cmbsz);
1369 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1370 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1371
1372 if (offset > bar_size)
1373 return NULL;
1374
1375 /*
1376 * Controllers may support a CMB size larger than their BAR,
1377 * for example, due to being behind a bridge. Reduce the CMB to
1378 * the reported size of the BAR
1379 */
1380 if (size > bar_size - offset)
1381 size = bar_size - offset;
1382
1383 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1384 cmb = ioremap_wc(dma_addr, size);
1385 if (!cmb)
1386 return NULL;
1387
1388 dev->cmb_dma_addr = dma_addr;
1389 dev->cmb_size = size;
1390 return cmb;
1391 }
1392
1393 static inline void nvme_release_cmb(struct nvme_dev *dev)
1394 {
1395 if (dev->cmb) {
1396 iounmap(dev->cmb);
1397 dev->cmb = NULL;
1398 }
1399 }
1400
1401 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1402 {
1403 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1404 }
1405
1406 static int nvme_setup_io_queues(struct nvme_dev *dev)
1407 {
1408 struct nvme_queue *adminq = dev->queues[0];
1409 struct pci_dev *pdev = to_pci_dev(dev->dev);
1410 int result, nr_io_queues, size;
1411
1412 nr_io_queues = num_online_cpus();
1413 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1414 if (result < 0)
1415 return result;
1416
1417 if (nr_io_queues == 0)
1418 return 0;
1419
1420 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1421 result = nvme_cmb_qdepth(dev, nr_io_queues,
1422 sizeof(struct nvme_command));
1423 if (result > 0)
1424 dev->q_depth = result;
1425 else
1426 nvme_release_cmb(dev);
1427 }
1428
1429 size = db_bar_size(dev, nr_io_queues);
1430 if (size > 8192) {
1431 iounmap(dev->bar);
1432 do {
1433 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1434 if (dev->bar)
1435 break;
1436 if (!--nr_io_queues)
1437 return -ENOMEM;
1438 size = db_bar_size(dev, nr_io_queues);
1439 } while (1);
1440 dev->dbs = dev->bar + 4096;
1441 adminq->q_db = dev->dbs;
1442 }
1443
1444 /* Deregister the admin queue's interrupt */
1445 free_irq(pci_irq_vector(pdev, 0), adminq);
1446
1447 /*
1448 * If we enable msix early due to not intx, disable it again before
1449 * setting up the full range we need.
1450 */
1451 pci_free_irq_vectors(pdev);
1452 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1453 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1454 if (nr_io_queues <= 0)
1455 return -EIO;
1456 dev->max_qid = nr_io_queues;
1457
1458 /*
1459 * Should investigate if there's a performance win from allocating
1460 * more queues than interrupt vectors; it might allow the submission
1461 * path to scale better, even if the receive path is limited by the
1462 * number of interrupts.
1463 */
1464
1465 result = queue_request_irq(adminq);
1466 if (result) {
1467 adminq->cq_vector = -1;
1468 return result;
1469 }
1470 return nvme_create_io_queues(dev);
1471 }
1472
1473 static void nvme_del_queue_end(struct request *req, int error)
1474 {
1475 struct nvme_queue *nvmeq = req->end_io_data;
1476
1477 blk_mq_free_request(req);
1478 complete(&nvmeq->dev->ioq_wait);
1479 }
1480
1481 static void nvme_del_cq_end(struct request *req, int error)
1482 {
1483 struct nvme_queue *nvmeq = req->end_io_data;
1484
1485 if (!error) {
1486 unsigned long flags;
1487
1488 /*
1489 * We might be called with the AQ q_lock held
1490 * and the I/O queue q_lock should always
1491 * nest inside the AQ one.
1492 */
1493 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1494 SINGLE_DEPTH_NESTING);
1495 nvme_process_cq(nvmeq);
1496 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1497 }
1498
1499 nvme_del_queue_end(req, error);
1500 }
1501
1502 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1503 {
1504 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1505 struct request *req;
1506 struct nvme_command cmd;
1507
1508 memset(&cmd, 0, sizeof(cmd));
1509 cmd.delete_queue.opcode = opcode;
1510 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1511
1512 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1513 if (IS_ERR(req))
1514 return PTR_ERR(req);
1515
1516 req->timeout = ADMIN_TIMEOUT;
1517 req->end_io_data = nvmeq;
1518
1519 blk_execute_rq_nowait(q, NULL, req, false,
1520 opcode == nvme_admin_delete_cq ?
1521 nvme_del_cq_end : nvme_del_queue_end);
1522 return 0;
1523 }
1524
1525 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1526 {
1527 int pass;
1528 unsigned long timeout;
1529 u8 opcode = nvme_admin_delete_sq;
1530
1531 for (pass = 0; pass < 2; pass++) {
1532 int sent = 0, i = queues;
1533
1534 reinit_completion(&dev->ioq_wait);
1535 retry:
1536 timeout = ADMIN_TIMEOUT;
1537 for (; i > 0; i--, sent++)
1538 if (nvme_delete_queue(dev->queues[i], opcode))
1539 break;
1540
1541 while (sent--) {
1542 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1543 if (timeout == 0)
1544 return;
1545 if (i)
1546 goto retry;
1547 }
1548 opcode = nvme_admin_delete_cq;
1549 }
1550 }
1551
1552 /*
1553 * Return: error value if an error occurred setting up the queues or calling
1554 * Identify Device. 0 if these succeeded, even if adding some of the
1555 * namespaces failed. At the moment, these failures are silent. TBD which
1556 * failures should be reported.
1557 */
1558 static int nvme_dev_add(struct nvme_dev *dev)
1559 {
1560 if (!dev->ctrl.tagset) {
1561 dev->tagset.ops = &nvme_mq_ops;
1562 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1563 dev->tagset.timeout = NVME_IO_TIMEOUT;
1564 dev->tagset.numa_node = dev_to_node(dev->dev);
1565 dev->tagset.queue_depth =
1566 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1567 dev->tagset.cmd_size = nvme_cmd_size(dev);
1568 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1569 dev->tagset.driver_data = dev;
1570
1571 if (blk_mq_alloc_tag_set(&dev->tagset))
1572 return 0;
1573 dev->ctrl.tagset = &dev->tagset;
1574 } else {
1575 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1576
1577 /* Free previously allocated queues that are no longer usable */
1578 nvme_free_queues(dev, dev->online_queues);
1579 }
1580
1581 return 0;
1582 }
1583
1584 static int nvme_pci_enable(struct nvme_dev *dev)
1585 {
1586 u64 cap;
1587 int result = -ENOMEM;
1588 struct pci_dev *pdev = to_pci_dev(dev->dev);
1589
1590 if (pci_enable_device_mem(pdev))
1591 return result;
1592
1593 pci_set_master(pdev);
1594
1595 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1596 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1597 goto disable;
1598
1599 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1600 result = -ENODEV;
1601 goto disable;
1602 }
1603
1604 /*
1605 * Some devices and/or platforms don't advertise or work with INTx
1606 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1607 * adjust this later.
1608 */
1609 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1610 if (result < 0)
1611 return result;
1612
1613 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1614
1615 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1616 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1617 dev->dbs = dev->bar + 4096;
1618
1619 /*
1620 * Temporary fix for the Apple controller found in the MacBook8,1 and
1621 * some MacBook7,1 to avoid controller resets and data loss.
1622 */
1623 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1624 dev->q_depth = 2;
1625 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1626 "queue depth=%u to work around controller resets\n",
1627 dev->q_depth);
1628 }
1629
1630 /*
1631 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1632 * populate sysfs if a CMB is implemented. Note that we add the
1633 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1634 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1635 * NULL as final argument to sysfs_add_file_to_group.
1636 */
1637
1638 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1639 dev->cmb = nvme_map_cmb(dev);
1640
1641 if (dev->cmbsz) {
1642 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1643 &dev_attr_cmb.attr, NULL))
1644 dev_warn(dev->dev,
1645 "failed to add sysfs attribute for CMB\n");
1646 }
1647 }
1648
1649 pci_enable_pcie_error_reporting(pdev);
1650 pci_save_state(pdev);
1651 return 0;
1652
1653 disable:
1654 pci_disable_device(pdev);
1655 return result;
1656 }
1657
1658 static void nvme_dev_unmap(struct nvme_dev *dev)
1659 {
1660 if (dev->bar)
1661 iounmap(dev->bar);
1662 pci_release_mem_regions(to_pci_dev(dev->dev));
1663 }
1664
1665 static void nvme_pci_disable(struct nvme_dev *dev)
1666 {
1667 struct pci_dev *pdev = to_pci_dev(dev->dev);
1668
1669 pci_free_irq_vectors(pdev);
1670
1671 if (pci_is_enabled(pdev)) {
1672 pci_disable_pcie_error_reporting(pdev);
1673 pci_disable_device(pdev);
1674 }
1675 }
1676
1677 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1678 {
1679 int i, queues;
1680 u32 csts = -1;
1681
1682 del_timer_sync(&dev->watchdog_timer);
1683
1684 mutex_lock(&dev->shutdown_lock);
1685 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1686 nvme_stop_queues(&dev->ctrl);
1687 csts = readl(dev->bar + NVME_REG_CSTS);
1688 }
1689
1690 queues = dev->online_queues - 1;
1691 for (i = dev->queue_count - 1; i > 0; i--)
1692 nvme_suspend_queue(dev->queues[i]);
1693
1694 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1695 /* A device might become IO incapable very soon during
1696 * probe, before the admin queue is configured. Thus,
1697 * queue_count can be 0 here.
1698 */
1699 if (dev->queue_count)
1700 nvme_suspend_queue(dev->queues[0]);
1701 } else {
1702 nvme_disable_io_queues(dev, queues);
1703 nvme_disable_admin_queue(dev, shutdown);
1704 }
1705 nvme_pci_disable(dev);
1706
1707 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1708 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1709 mutex_unlock(&dev->shutdown_lock);
1710 }
1711
1712 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1713 {
1714 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1715 PAGE_SIZE, PAGE_SIZE, 0);
1716 if (!dev->prp_page_pool)
1717 return -ENOMEM;
1718
1719 /* Optimisation for I/Os between 4k and 128k */
1720 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1721 256, 256, 0);
1722 if (!dev->prp_small_pool) {
1723 dma_pool_destroy(dev->prp_page_pool);
1724 return -ENOMEM;
1725 }
1726 return 0;
1727 }
1728
1729 static void nvme_release_prp_pools(struct nvme_dev *dev)
1730 {
1731 dma_pool_destroy(dev->prp_page_pool);
1732 dma_pool_destroy(dev->prp_small_pool);
1733 }
1734
1735 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1736 {
1737 struct nvme_dev *dev = to_nvme_dev(ctrl);
1738
1739 put_device(dev->dev);
1740 if (dev->tagset.tags)
1741 blk_mq_free_tag_set(&dev->tagset);
1742 if (dev->ctrl.admin_q)
1743 blk_put_queue(dev->ctrl.admin_q);
1744 kfree(dev->queues);
1745 kfree(dev->ctrl.opal_dev);
1746 kfree(dev);
1747 }
1748
1749 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1750 {
1751 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1752
1753 kref_get(&dev->ctrl.kref);
1754 nvme_dev_disable(dev, false);
1755 if (!schedule_work(&dev->remove_work))
1756 nvme_put_ctrl(&dev->ctrl);
1757 }
1758
1759 static void nvme_reset_work(struct work_struct *work)
1760 {
1761 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1762 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1763 int result = -ENODEV;
1764
1765 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1766 goto out;
1767
1768 /*
1769 * If we're called to reset a live controller first shut it down before
1770 * moving on.
1771 */
1772 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1773 nvme_dev_disable(dev, false);
1774
1775 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1776 goto out;
1777
1778 result = nvme_pci_enable(dev);
1779 if (result)
1780 goto out;
1781
1782 result = nvme_configure_admin_queue(dev);
1783 if (result)
1784 goto out;
1785
1786 nvme_init_queue(dev->queues[0], 0);
1787 result = nvme_alloc_admin_tags(dev);
1788 if (result)
1789 goto out;
1790
1791 result = nvme_init_identify(&dev->ctrl);
1792 if (result)
1793 goto out;
1794
1795 if ((dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) && !dev->ctrl.opal_dev) {
1796 dev->ctrl.opal_dev =
1797 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1798 }
1799
1800 if (was_suspend)
1801 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1802
1803 result = nvme_setup_io_queues(dev);
1804 if (result)
1805 goto out;
1806
1807 /*
1808 * A controller that can not execute IO typically requires user
1809 * intervention to correct. For such degraded controllers, the driver
1810 * should not submit commands the user did not request, so skip
1811 * registering for asynchronous event notification on this condition.
1812 */
1813 if (dev->online_queues > 1)
1814 nvme_queue_async_events(&dev->ctrl);
1815
1816 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1817
1818 /*
1819 * Keep the controller around but remove all namespaces if we don't have
1820 * any working I/O queue.
1821 */
1822 if (dev->online_queues < 2) {
1823 dev_warn(dev->ctrl.device, "IO queues not created\n");
1824 nvme_kill_queues(&dev->ctrl);
1825 nvme_remove_namespaces(&dev->ctrl);
1826 } else {
1827 nvme_start_queues(&dev->ctrl);
1828 nvme_dev_add(dev);
1829 }
1830
1831 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1832 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1833 goto out;
1834 }
1835
1836 if (dev->online_queues > 1)
1837 nvme_queue_scan(&dev->ctrl);
1838 return;
1839
1840 out:
1841 nvme_remove_dead_ctrl(dev, result);
1842 }
1843
1844 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1845 {
1846 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1847 struct pci_dev *pdev = to_pci_dev(dev->dev);
1848
1849 nvme_kill_queues(&dev->ctrl);
1850 if (pci_get_drvdata(pdev))
1851 device_release_driver(&pdev->dev);
1852 nvme_put_ctrl(&dev->ctrl);
1853 }
1854
1855 static int nvme_reset(struct nvme_dev *dev)
1856 {
1857 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1858 return -ENODEV;
1859 if (work_busy(&dev->reset_work))
1860 return -ENODEV;
1861 if (!queue_work(nvme_workq, &dev->reset_work))
1862 return -EBUSY;
1863 return 0;
1864 }
1865
1866 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1867 {
1868 *val = readl(to_nvme_dev(ctrl)->bar + off);
1869 return 0;
1870 }
1871
1872 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1873 {
1874 writel(val, to_nvme_dev(ctrl)->bar + off);
1875 return 0;
1876 }
1877
1878 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1879 {
1880 *val = readq(to_nvme_dev(ctrl)->bar + off);
1881 return 0;
1882 }
1883
1884 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1885 {
1886 struct nvme_dev *dev = to_nvme_dev(ctrl);
1887 int ret = nvme_reset(dev);
1888
1889 if (!ret)
1890 flush_work(&dev->reset_work);
1891 return ret;
1892 }
1893
1894 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1895 .name = "pcie",
1896 .module = THIS_MODULE,
1897 .reg_read32 = nvme_pci_reg_read32,
1898 .reg_write32 = nvme_pci_reg_write32,
1899 .reg_read64 = nvme_pci_reg_read64,
1900 .reset_ctrl = nvme_pci_reset_ctrl,
1901 .free_ctrl = nvme_pci_free_ctrl,
1902 .submit_async_event = nvme_pci_submit_async_event,
1903 };
1904
1905 static int nvme_dev_map(struct nvme_dev *dev)
1906 {
1907 struct pci_dev *pdev = to_pci_dev(dev->dev);
1908
1909 if (pci_request_mem_regions(pdev, "nvme"))
1910 return -ENODEV;
1911
1912 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1913 if (!dev->bar)
1914 goto release;
1915
1916 return 0;
1917 release:
1918 pci_release_mem_regions(pdev);
1919 return -ENODEV;
1920 }
1921
1922 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1923 {
1924 int node, result = -ENOMEM;
1925 struct nvme_dev *dev;
1926
1927 node = dev_to_node(&pdev->dev);
1928 if (node == NUMA_NO_NODE)
1929 set_dev_node(&pdev->dev, first_memory_node);
1930
1931 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1932 if (!dev)
1933 return -ENOMEM;
1934 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1935 GFP_KERNEL, node);
1936 if (!dev->queues)
1937 goto free;
1938
1939 dev->dev = get_device(&pdev->dev);
1940 pci_set_drvdata(pdev, dev);
1941
1942 result = nvme_dev_map(dev);
1943 if (result)
1944 goto free;
1945
1946 INIT_WORK(&dev->reset_work, nvme_reset_work);
1947 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1948 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1949 (unsigned long)dev);
1950 mutex_init(&dev->shutdown_lock);
1951 init_completion(&dev->ioq_wait);
1952
1953 result = nvme_setup_prp_pools(dev);
1954 if (result)
1955 goto put_pci;
1956
1957 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1958 id->driver_data);
1959 if (result)
1960 goto release_pools;
1961
1962 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1963
1964 queue_work(nvme_workq, &dev->reset_work);
1965 return 0;
1966
1967 release_pools:
1968 nvme_release_prp_pools(dev);
1969 put_pci:
1970 put_device(dev->dev);
1971 nvme_dev_unmap(dev);
1972 free:
1973 kfree(dev->queues);
1974 kfree(dev);
1975 return result;
1976 }
1977
1978 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1979 {
1980 struct nvme_dev *dev = pci_get_drvdata(pdev);
1981
1982 if (prepare)
1983 nvme_dev_disable(dev, false);
1984 else
1985 nvme_reset(dev);
1986 }
1987
1988 static void nvme_shutdown(struct pci_dev *pdev)
1989 {
1990 struct nvme_dev *dev = pci_get_drvdata(pdev);
1991 nvme_dev_disable(dev, true);
1992 }
1993
1994 /*
1995 * The driver's remove may be called on a device in a partially initialized
1996 * state. This function must not have any dependencies on the device state in
1997 * order to proceed.
1998 */
1999 static void nvme_remove(struct pci_dev *pdev)
2000 {
2001 struct nvme_dev *dev = pci_get_drvdata(pdev);
2002
2003 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2004
2005 pci_set_drvdata(pdev, NULL);
2006
2007 if (!pci_device_is_present(pdev))
2008 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2009
2010 flush_work(&dev->reset_work);
2011 nvme_uninit_ctrl(&dev->ctrl);
2012 nvme_dev_disable(dev, true);
2013 nvme_dev_remove_admin(dev);
2014 nvme_free_queues(dev, 0);
2015 nvme_release_cmb(dev);
2016 nvme_release_prp_pools(dev);
2017 nvme_dev_unmap(dev);
2018 nvme_put_ctrl(&dev->ctrl);
2019 }
2020
2021 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2022 {
2023 int ret = 0;
2024
2025 if (numvfs == 0) {
2026 if (pci_vfs_assigned(pdev)) {
2027 dev_warn(&pdev->dev,
2028 "Cannot disable SR-IOV VFs while assigned\n");
2029 return -EPERM;
2030 }
2031 pci_disable_sriov(pdev);
2032 return 0;
2033 }
2034
2035 ret = pci_enable_sriov(pdev, numvfs);
2036 return ret ? ret : numvfs;
2037 }
2038
2039 #ifdef CONFIG_PM_SLEEP
2040 static int nvme_suspend(struct device *dev)
2041 {
2042 struct pci_dev *pdev = to_pci_dev(dev);
2043 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2044
2045 nvme_dev_disable(ndev, true);
2046 return 0;
2047 }
2048
2049 static int nvme_resume(struct device *dev)
2050 {
2051 struct pci_dev *pdev = to_pci_dev(dev);
2052 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2053
2054 nvme_reset(ndev);
2055 return 0;
2056 }
2057 #endif
2058
2059 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2060
2061 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2062 pci_channel_state_t state)
2063 {
2064 struct nvme_dev *dev = pci_get_drvdata(pdev);
2065
2066 /*
2067 * A frozen channel requires a reset. When detected, this method will
2068 * shutdown the controller to quiesce. The controller will be restarted
2069 * after the slot reset through driver's slot_reset callback.
2070 */
2071 switch (state) {
2072 case pci_channel_io_normal:
2073 return PCI_ERS_RESULT_CAN_RECOVER;
2074 case pci_channel_io_frozen:
2075 dev_warn(dev->ctrl.device,
2076 "frozen state error detected, reset controller\n");
2077 nvme_dev_disable(dev, false);
2078 return PCI_ERS_RESULT_NEED_RESET;
2079 case pci_channel_io_perm_failure:
2080 dev_warn(dev->ctrl.device,
2081 "failure state error detected, request disconnect\n");
2082 return PCI_ERS_RESULT_DISCONNECT;
2083 }
2084 return PCI_ERS_RESULT_NEED_RESET;
2085 }
2086
2087 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2088 {
2089 struct nvme_dev *dev = pci_get_drvdata(pdev);
2090
2091 dev_info(dev->ctrl.device, "restart after slot reset\n");
2092 pci_restore_state(pdev);
2093 nvme_reset(dev);
2094 return PCI_ERS_RESULT_RECOVERED;
2095 }
2096
2097 static void nvme_error_resume(struct pci_dev *pdev)
2098 {
2099 pci_cleanup_aer_uncorrect_error_status(pdev);
2100 }
2101
2102 static const struct pci_error_handlers nvme_err_handler = {
2103 .error_detected = nvme_error_detected,
2104 .slot_reset = nvme_slot_reset,
2105 .resume = nvme_error_resume,
2106 .reset_notify = nvme_reset_notify,
2107 };
2108
2109 static const struct pci_device_id nvme_id_table[] = {
2110 { PCI_VDEVICE(INTEL, 0x0953),
2111 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2112 NVME_QUIRK_DISCARD_ZEROES, },
2113 { PCI_VDEVICE(INTEL, 0x0a53),
2114 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2115 NVME_QUIRK_DISCARD_ZEROES, },
2116 { PCI_VDEVICE(INTEL, 0x0a54),
2117 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2118 NVME_QUIRK_DISCARD_ZEROES, },
2119 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2120 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2121 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2122 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2123 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2124 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2125 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2126 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2127 { 0, }
2128 };
2129 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2130
2131 static struct pci_driver nvme_driver = {
2132 .name = "nvme",
2133 .id_table = nvme_id_table,
2134 .probe = nvme_probe,
2135 .remove = nvme_remove,
2136 .shutdown = nvme_shutdown,
2137 .driver = {
2138 .pm = &nvme_dev_pm_ops,
2139 },
2140 .sriov_configure = nvme_pci_sriov_configure,
2141 .err_handler = &nvme_err_handler,
2142 };
2143
2144 static int __init nvme_init(void)
2145 {
2146 int result;
2147
2148 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2149 if (!nvme_workq)
2150 return -ENOMEM;
2151
2152 result = pci_register_driver(&nvme_driver);
2153 if (result)
2154 destroy_workqueue(nvme_workq);
2155 return result;
2156 }
2157
2158 static void __exit nvme_exit(void)
2159 {
2160 pci_unregister_driver(&nvme_driver);
2161 destroy_workqueue(nvme_workq);
2162 _nvme_check_size();
2163 }
2164
2165 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2166 MODULE_LICENSE("GPL");
2167 MODULE_VERSION("1.0");
2168 module_init(nvme_init);
2169 module_exit(nvme_exit);