]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
40
41 /*
42 * We handle AEN commands ourselves and don't even let the
43 * block layer know about them.
44 */
45 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
90 void __iomem *bar;
91 unsigned long bar_mapped_size;
92 struct work_struct remove_work;
93 struct mutex shutdown_lock;
94 bool subsystem;
95 void __iomem *cmb;
96 pci_bus_addr_t cmb_bus_addr;
97 u64 cmb_size;
98 u32 cmbsz;
99 u32 cmbloc;
100 struct nvme_ctrl ctrl;
101 struct completion ioq_wait;
102
103 /* shadow doorbell buffer support: */
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 dma_addr_t host_mem_descs_dma;
113 struct nvme_host_mem_buf_desc *host_mem_descs;
114 void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119 int n = 0, ret;
120
121 ret = kstrtoint(val, 10, &n);
122 if (ret != 0 || n < 2)
123 return -EINVAL;
124
125 return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130 return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135 return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140 return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144 * An NVM Express queue. Each device has at least two (one for admin
145 * commands and one for I/O commands).
146 */
147 struct nvme_queue {
148 struct device *q_dmadev;
149 struct nvme_dev *dev;
150 spinlock_t q_lock;
151 struct nvme_command *sq_cmds;
152 struct nvme_command __iomem *sq_cmds_io;
153 volatile struct nvme_completion *cqes;
154 struct blk_mq_tags **tags;
155 dma_addr_t sq_dma_addr;
156 dma_addr_t cq_dma_addr;
157 u32 __iomem *q_db;
158 u16 q_depth;
159 s16 cq_vector;
160 u16 sq_tail;
161 u16 cq_head;
162 u16 qid;
163 u8 cq_phase;
164 u8 cqe_seen;
165 u32 *dbbuf_sq_db;
166 u32 *dbbuf_cq_db;
167 u32 *dbbuf_sq_ei;
168 u32 *dbbuf_cq_ei;
169 };
170
171 /*
172 * The nvme_iod describes the data in an I/O, including the list of PRP
173 * entries. You can't see it in this data structure because C doesn't let
174 * me express that. Use nvme_init_iod to ensure there's enough space
175 * allocated to store the PRP list.
176 */
177 struct nvme_iod {
178 struct nvme_request req;
179 struct nvme_queue *nvmeq;
180 int aborted;
181 int npages; /* In the PRP list. 0 means small pool in use */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
188 };
189
190 /*
191 * Check we didin't inadvertently grow the command struct
192 */
193 static inline void _nvme_check_size(void)
194 {
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212 return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219 if (dev->dbbuf_dbs)
220 return 0;
221
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
235 }
236
237 return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
248 }
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
253 }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
258 {
259 if (!dev->dbbuf_dbs || !qid)
260 return;
261
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270 struct nvme_command c;
271
272 if (!dev->dbbuf_dbs)
273 return;
274
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
284 }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
295 {
296 if (dbbuf_db) {
297 u16 old_value;
298
299 /*
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
302 */
303 wmb();
304
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
307
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
310 }
311
312 return true;
313 }
314
315 /*
316 * Max size of iod being embedded in the request payload
317 */
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
325 */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
334 unsigned int size, unsigned int nseg)
335 {
336 return sizeof(__le64 *) * nvme_npages(size, dev) +
337 sizeof(struct scatterlist) * nseg;
338 }
339
340 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
341 {
342 return sizeof(struct nvme_iod) +
343 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
344 }
345
346 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347 unsigned int hctx_idx)
348 {
349 struct nvme_dev *dev = data;
350 struct nvme_queue *nvmeq = dev->queues[0];
351
352 WARN_ON(hctx_idx != 0);
353 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
354 WARN_ON(nvmeq->tags);
355
356 hctx->driver_data = nvmeq;
357 nvmeq->tags = &dev->admin_tagset.tags[0];
358 return 0;
359 }
360
361 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
362 {
363 struct nvme_queue *nvmeq = hctx->driver_data;
364
365 nvmeq->tags = NULL;
366 }
367
368 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
369 unsigned int hctx_idx)
370 {
371 struct nvme_dev *dev = data;
372 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
373
374 if (!nvmeq->tags)
375 nvmeq->tags = &dev->tagset.tags[hctx_idx];
376
377 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
378 hctx->driver_data = nvmeq;
379 return 0;
380 }
381
382 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
383 unsigned int hctx_idx, unsigned int numa_node)
384 {
385 struct nvme_dev *dev = set->driver_data;
386 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
387 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
388 struct nvme_queue *nvmeq = dev->queues[queue_idx];
389
390 BUG_ON(!nvmeq);
391 iod->nvmeq = nvmeq;
392 return 0;
393 }
394
395 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
396 {
397 struct nvme_dev *dev = set->driver_data;
398
399 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
400 }
401
402 /**
403 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
404 * @nvmeq: The queue to use
405 * @cmd: The command to send
406 *
407 * Safe to use from interrupt context
408 */
409 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
410 struct nvme_command *cmd)
411 {
412 u16 tail = nvmeq->sq_tail;
413
414 if (nvmeq->sq_cmds_io)
415 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
416 else
417 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
418
419 if (++tail == nvmeq->q_depth)
420 tail = 0;
421 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
422 nvmeq->dbbuf_sq_ei))
423 writel(tail, nvmeq->q_db);
424 nvmeq->sq_tail = tail;
425 }
426
427 static __le64 **iod_list(struct request *req)
428 {
429 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
431 }
432
433 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
434 {
435 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
436 int nseg = blk_rq_nr_phys_segments(rq);
437 unsigned int size = blk_rq_payload_bytes(rq);
438
439 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
440 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
441 if (!iod->sg)
442 return BLK_STS_RESOURCE;
443 } else {
444 iod->sg = iod->inline_sg;
445 }
446
447 iod->aborted = 0;
448 iod->npages = -1;
449 iod->nents = 0;
450 iod->length = size;
451
452 return BLK_STS_OK;
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
456 {
457 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
458 const int last_prp = dev->ctrl.page_size / 8 - 1;
459 int i;
460 __le64 **list = iod_list(req);
461 dma_addr_t prp_dma = iod->first_dma;
462
463 if (iod->npages == 0)
464 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
465 for (i = 0; i < iod->npages; i++) {
466 __le64 *prp_list = list[i];
467 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
468 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
469 prp_dma = next_prp_dma;
470 }
471
472 if (iod->sg != iod->inline_sg)
473 kfree(iod->sg);
474 }
475
476 #ifdef CONFIG_BLK_DEV_INTEGRITY
477 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
478 {
479 if (be32_to_cpu(pi->ref_tag) == v)
480 pi->ref_tag = cpu_to_be32(p);
481 }
482
483 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
484 {
485 if (be32_to_cpu(pi->ref_tag) == p)
486 pi->ref_tag = cpu_to_be32(v);
487 }
488
489 /**
490 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
491 *
492 * The virtual start sector is the one that was originally submitted by the
493 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
494 * start sector may be different. Remap protection information to match the
495 * physical LBA on writes, and back to the original seed on reads.
496 *
497 * Type 0 and 3 do not have a ref tag, so no remapping required.
498 */
499 static void nvme_dif_remap(struct request *req,
500 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
501 {
502 struct nvme_ns *ns = req->rq_disk->private_data;
503 struct bio_integrity_payload *bip;
504 struct t10_pi_tuple *pi;
505 void *p, *pmap;
506 u32 i, nlb, ts, phys, virt;
507
508 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
509 return;
510
511 bip = bio_integrity(req->bio);
512 if (!bip)
513 return;
514
515 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
516
517 p = pmap;
518 virt = bip_get_seed(bip);
519 phys = nvme_block_nr(ns, blk_rq_pos(req));
520 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
521 ts = ns->disk->queue->integrity.tuple_size;
522
523 for (i = 0; i < nlb; i++, virt++, phys++) {
524 pi = (struct t10_pi_tuple *)p;
525 dif_swap(phys, virt, pi);
526 p += ts;
527 }
528 kunmap_atomic(pmap);
529 }
530 #else /* CONFIG_BLK_DEV_INTEGRITY */
531 static void nvme_dif_remap(struct request *req,
532 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
533 {
534 }
535 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 }
541 #endif
542
543 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
544 {
545 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
546 struct dma_pool *pool;
547 int length = blk_rq_payload_bytes(req);
548 struct scatterlist *sg = iod->sg;
549 int dma_len = sg_dma_len(sg);
550 u64 dma_addr = sg_dma_address(sg);
551 u32 page_size = dev->ctrl.page_size;
552 int offset = dma_addr & (page_size - 1);
553 __le64 *prp_list;
554 __le64 **list = iod_list(req);
555 dma_addr_t prp_dma;
556 int nprps, i;
557
558 length -= (page_size - offset);
559 if (length <= 0)
560 return BLK_STS_OK;
561
562 dma_len -= (page_size - offset);
563 if (dma_len) {
564 dma_addr += (page_size - offset);
565 } else {
566 sg = sg_next(sg);
567 dma_addr = sg_dma_address(sg);
568 dma_len = sg_dma_len(sg);
569 }
570
571 if (length <= page_size) {
572 iod->first_dma = dma_addr;
573 return BLK_STS_OK;
574 }
575
576 nprps = DIV_ROUND_UP(length, page_size);
577 if (nprps <= (256 / 8)) {
578 pool = dev->prp_small_pool;
579 iod->npages = 0;
580 } else {
581 pool = dev->prp_page_pool;
582 iod->npages = 1;
583 }
584
585 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
586 if (!prp_list) {
587 iod->first_dma = dma_addr;
588 iod->npages = -1;
589 return BLK_STS_RESOURCE;
590 }
591 list[0] = prp_list;
592 iod->first_dma = prp_dma;
593 i = 0;
594 for (;;) {
595 if (i == page_size >> 3) {
596 __le64 *old_prp_list = prp_list;
597 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
598 if (!prp_list)
599 return BLK_STS_RESOURCE;
600 list[iod->npages++] = prp_list;
601 prp_list[0] = old_prp_list[i - 1];
602 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
603 i = 1;
604 }
605 prp_list[i++] = cpu_to_le64(dma_addr);
606 dma_len -= page_size;
607 dma_addr += page_size;
608 length -= page_size;
609 if (length <= 0)
610 break;
611 if (dma_len > 0)
612 continue;
613 if (unlikely(dma_len < 0))
614 goto bad_sgl;
615 sg = sg_next(sg);
616 dma_addr = sg_dma_address(sg);
617 dma_len = sg_dma_len(sg);
618 }
619
620 return BLK_STS_OK;
621
622 bad_sgl:
623 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
624 blk_rq_payload_bytes(req), iod->nents)) {
625 for_each_sg(iod->sg, sg, iod->nents, i) {
626 dma_addr_t phys = sg_phys(sg);
627 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
628 "dma_address:%pad dma_length:%d\n", i, &phys,
629 sg->offset, sg->length,
630 &sg_dma_address(sg),
631 sg_dma_len(sg));
632 }
633 }
634 return BLK_STS_IOERR;
635
636 }
637
638 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
639 struct nvme_command *cmnd)
640 {
641 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
642 struct request_queue *q = req->q;
643 enum dma_data_direction dma_dir = rq_data_dir(req) ?
644 DMA_TO_DEVICE : DMA_FROM_DEVICE;
645 blk_status_t ret = BLK_STS_IOERR;
646
647 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
648 iod->nents = blk_rq_map_sg(q, req, iod->sg);
649 if (!iod->nents)
650 goto out;
651
652 ret = BLK_STS_RESOURCE;
653 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
654 DMA_ATTR_NO_WARN))
655 goto out;
656
657 ret = nvme_setup_prps(dev, req);
658 if (ret != BLK_STS_OK)
659 goto out_unmap;
660
661 ret = BLK_STS_IOERR;
662 if (blk_integrity_rq(req)) {
663 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
664 goto out_unmap;
665
666 sg_init_table(&iod->meta_sg, 1);
667 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
668 goto out_unmap;
669
670 if (rq_data_dir(req))
671 nvme_dif_remap(req, nvme_dif_prep);
672
673 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
674 goto out_unmap;
675 }
676
677 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
678 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
679 if (blk_integrity_rq(req))
680 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
681 return BLK_STS_OK;
682
683 out_unmap:
684 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
685 out:
686 return ret;
687 }
688
689 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
690 {
691 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
692 enum dma_data_direction dma_dir = rq_data_dir(req) ?
693 DMA_TO_DEVICE : DMA_FROM_DEVICE;
694
695 if (iod->nents) {
696 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
697 if (blk_integrity_rq(req)) {
698 if (!rq_data_dir(req))
699 nvme_dif_remap(req, nvme_dif_complete);
700 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
701 }
702 }
703
704 nvme_cleanup_cmd(req);
705 nvme_free_iod(dev, req);
706 }
707
708 /*
709 * NOTE: ns is NULL when called on the admin queue.
710 */
711 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
712 const struct blk_mq_queue_data *bd)
713 {
714 struct nvme_ns *ns = hctx->queue->queuedata;
715 struct nvme_queue *nvmeq = hctx->driver_data;
716 struct nvme_dev *dev = nvmeq->dev;
717 struct request *req = bd->rq;
718 struct nvme_command cmnd;
719 blk_status_t ret;
720
721 ret = nvme_setup_cmd(ns, req, &cmnd);
722 if (ret)
723 return ret;
724
725 ret = nvme_init_iod(req, dev);
726 if (ret)
727 goto out_free_cmd;
728
729 if (blk_rq_nr_phys_segments(req)) {
730 ret = nvme_map_data(dev, req, &cmnd);
731 if (ret)
732 goto out_cleanup_iod;
733 }
734
735 blk_mq_start_request(req);
736
737 spin_lock_irq(&nvmeq->q_lock);
738 if (unlikely(nvmeq->cq_vector < 0)) {
739 ret = BLK_STS_IOERR;
740 spin_unlock_irq(&nvmeq->q_lock);
741 goto out_cleanup_iod;
742 }
743 __nvme_submit_cmd(nvmeq, &cmnd);
744 nvme_process_cq(nvmeq);
745 spin_unlock_irq(&nvmeq->q_lock);
746 return BLK_STS_OK;
747 out_cleanup_iod:
748 nvme_free_iod(dev, req);
749 out_free_cmd:
750 nvme_cleanup_cmd(req);
751 return ret;
752 }
753
754 static void nvme_pci_complete_rq(struct request *req)
755 {
756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758 nvme_unmap_data(iod->nvmeq->dev, req);
759 nvme_complete_rq(req);
760 }
761
762 /* We read the CQE phase first to check if the rest of the entry is valid */
763 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
764 u16 phase)
765 {
766 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
767 }
768
769 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
770 {
771 u16 head = nvmeq->cq_head;
772
773 if (likely(nvmeq->cq_vector >= 0)) {
774 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
775 nvmeq->dbbuf_cq_ei))
776 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
777 }
778 }
779
780 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
781 struct nvme_completion *cqe)
782 {
783 struct request *req;
784
785 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
786 dev_warn(nvmeq->dev->ctrl.device,
787 "invalid id %d completed on queue %d\n",
788 cqe->command_id, le16_to_cpu(cqe->sq_id));
789 return;
790 }
791
792 /*
793 * AEN requests are special as they don't time out and can
794 * survive any kind of queue freeze and often don't respond to
795 * aborts. We don't even bother to allocate a struct request
796 * for them but rather special case them here.
797 */
798 if (unlikely(nvmeq->qid == 0 &&
799 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
800 nvme_complete_async_event(&nvmeq->dev->ctrl,
801 cqe->status, &cqe->result);
802 return;
803 }
804
805 nvmeq->cqe_seen = 1;
806 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
807 nvme_end_request(req, cqe->status, cqe->result);
808 }
809
810 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
811 struct nvme_completion *cqe)
812 {
813 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
814 *cqe = nvmeq->cqes[nvmeq->cq_head];
815
816 if (++nvmeq->cq_head == nvmeq->q_depth) {
817 nvmeq->cq_head = 0;
818 nvmeq->cq_phase = !nvmeq->cq_phase;
819 }
820 return true;
821 }
822 return false;
823 }
824
825 static void nvme_process_cq(struct nvme_queue *nvmeq)
826 {
827 struct nvme_completion cqe;
828 int consumed = 0;
829
830 while (nvme_read_cqe(nvmeq, &cqe)) {
831 nvme_handle_cqe(nvmeq, &cqe);
832 consumed++;
833 }
834
835 if (consumed)
836 nvme_ring_cq_doorbell(nvmeq);
837 }
838
839 static irqreturn_t nvme_irq(int irq, void *data)
840 {
841 irqreturn_t result;
842 struct nvme_queue *nvmeq = data;
843 spin_lock(&nvmeq->q_lock);
844 nvme_process_cq(nvmeq);
845 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
846 nvmeq->cqe_seen = 0;
847 spin_unlock(&nvmeq->q_lock);
848 return result;
849 }
850
851 static irqreturn_t nvme_irq_check(int irq, void *data)
852 {
853 struct nvme_queue *nvmeq = data;
854 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
855 return IRQ_WAKE_THREAD;
856 return IRQ_NONE;
857 }
858
859 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
860 {
861 struct nvme_completion cqe;
862 int found = 0, consumed = 0;
863
864 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
865 return 0;
866
867 spin_lock_irq(&nvmeq->q_lock);
868 while (nvme_read_cqe(nvmeq, &cqe)) {
869 nvme_handle_cqe(nvmeq, &cqe);
870 consumed++;
871
872 if (tag == cqe.command_id) {
873 found = 1;
874 break;
875 }
876 }
877
878 if (consumed)
879 nvme_ring_cq_doorbell(nvmeq);
880 spin_unlock_irq(&nvmeq->q_lock);
881
882 return found;
883 }
884
885 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
886 {
887 struct nvme_queue *nvmeq = hctx->driver_data;
888
889 return __nvme_poll(nvmeq, tag);
890 }
891
892 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
893 {
894 struct nvme_dev *dev = to_nvme_dev(ctrl);
895 struct nvme_queue *nvmeq = dev->queues[0];
896 struct nvme_command c;
897
898 memset(&c, 0, sizeof(c));
899 c.common.opcode = nvme_admin_async_event;
900 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
901
902 spin_lock_irq(&nvmeq->q_lock);
903 __nvme_submit_cmd(nvmeq, &c);
904 spin_unlock_irq(&nvmeq->q_lock);
905 }
906
907 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
908 {
909 struct nvme_command c;
910
911 memset(&c, 0, sizeof(c));
912 c.delete_queue.opcode = opcode;
913 c.delete_queue.qid = cpu_to_le16(id);
914
915 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
916 }
917
918 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
919 struct nvme_queue *nvmeq)
920 {
921 struct nvme_command c;
922 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
923
924 /*
925 * Note: we (ab)use the fact the the prp fields survive if no data
926 * is attached to the request.
927 */
928 memset(&c, 0, sizeof(c));
929 c.create_cq.opcode = nvme_admin_create_cq;
930 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
931 c.create_cq.cqid = cpu_to_le16(qid);
932 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933 c.create_cq.cq_flags = cpu_to_le16(flags);
934 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
935
936 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
937 }
938
939 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
940 struct nvme_queue *nvmeq)
941 {
942 struct nvme_command c;
943 int flags = NVME_QUEUE_PHYS_CONTIG;
944
945 /*
946 * Note: we (ab)use the fact the the prp fields survive if no data
947 * is attached to the request.
948 */
949 memset(&c, 0, sizeof(c));
950 c.create_sq.opcode = nvme_admin_create_sq;
951 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
952 c.create_sq.sqid = cpu_to_le16(qid);
953 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
954 c.create_sq.sq_flags = cpu_to_le16(flags);
955 c.create_sq.cqid = cpu_to_le16(qid);
956
957 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
958 }
959
960 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
961 {
962 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
963 }
964
965 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
966 {
967 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
968 }
969
970 static void abort_endio(struct request *req, blk_status_t error)
971 {
972 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
973 struct nvme_queue *nvmeq = iod->nvmeq;
974
975 dev_warn(nvmeq->dev->ctrl.device,
976 "Abort status: 0x%x", nvme_req(req)->status);
977 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
978 blk_mq_free_request(req);
979 }
980
981 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
982 {
983
984 /* If true, indicates loss of adapter communication, possibly by a
985 * NVMe Subsystem reset.
986 */
987 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
988
989 /* If there is a reset ongoing, we shouldn't reset again. */
990 if (dev->ctrl.state == NVME_CTRL_RESETTING)
991 return false;
992
993 /* We shouldn't reset unless the controller is on fatal error state
994 * _or_ if we lost the communication with it.
995 */
996 if (!(csts & NVME_CSTS_CFS) && !nssro)
997 return false;
998
999 /* If PCI error recovery process is happening, we cannot reset or
1000 * the recovery mechanism will surely fail.
1001 */
1002 if (pci_channel_offline(to_pci_dev(dev->dev)))
1003 return false;
1004
1005 return true;
1006 }
1007
1008 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1009 {
1010 /* Read a config register to help see what died. */
1011 u16 pci_status;
1012 int result;
1013
1014 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1015 &pci_status);
1016 if (result == PCIBIOS_SUCCESSFUL)
1017 dev_warn(dev->ctrl.device,
1018 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1019 csts, pci_status);
1020 else
1021 dev_warn(dev->ctrl.device,
1022 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1023 csts, result);
1024 }
1025
1026 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1027 {
1028 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1029 struct nvme_queue *nvmeq = iod->nvmeq;
1030 struct nvme_dev *dev = nvmeq->dev;
1031 struct request *abort_req;
1032 struct nvme_command cmd;
1033 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1034
1035 /*
1036 * Reset immediately if the controller is failed
1037 */
1038 if (nvme_should_reset(dev, csts)) {
1039 nvme_warn_reset(dev, csts);
1040 nvme_dev_disable(dev, false);
1041 nvme_reset_ctrl(&dev->ctrl);
1042 return BLK_EH_HANDLED;
1043 }
1044
1045 /*
1046 * Did we miss an interrupt?
1047 */
1048 if (__nvme_poll(nvmeq, req->tag)) {
1049 dev_warn(dev->ctrl.device,
1050 "I/O %d QID %d timeout, completion polled\n",
1051 req->tag, nvmeq->qid);
1052 return BLK_EH_HANDLED;
1053 }
1054
1055 /*
1056 * Shutdown immediately if controller times out while starting. The
1057 * reset work will see the pci device disabled when it gets the forced
1058 * cancellation error. All outstanding requests are completed on
1059 * shutdown, so we return BLK_EH_HANDLED.
1060 */
1061 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1062 dev_warn(dev->ctrl.device,
1063 "I/O %d QID %d timeout, disable controller\n",
1064 req->tag, nvmeq->qid);
1065 nvme_dev_disable(dev, false);
1066 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1067 return BLK_EH_HANDLED;
1068 }
1069
1070 /*
1071 * Shutdown the controller immediately and schedule a reset if the
1072 * command was already aborted once before and still hasn't been
1073 * returned to the driver, or if this is the admin queue.
1074 */
1075 if (!nvmeq->qid || iod->aborted) {
1076 dev_warn(dev->ctrl.device,
1077 "I/O %d QID %d timeout, reset controller\n",
1078 req->tag, nvmeq->qid);
1079 nvme_dev_disable(dev, false);
1080 nvme_reset_ctrl(&dev->ctrl);
1081
1082 /*
1083 * Mark the request as handled, since the inline shutdown
1084 * forces all outstanding requests to complete.
1085 */
1086 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1087 return BLK_EH_HANDLED;
1088 }
1089
1090 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1091 atomic_inc(&dev->ctrl.abort_limit);
1092 return BLK_EH_RESET_TIMER;
1093 }
1094 iod->aborted = 1;
1095
1096 memset(&cmd, 0, sizeof(cmd));
1097 cmd.abort.opcode = nvme_admin_abort_cmd;
1098 cmd.abort.cid = req->tag;
1099 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1100
1101 dev_warn(nvmeq->dev->ctrl.device,
1102 "I/O %d QID %d timeout, aborting\n",
1103 req->tag, nvmeq->qid);
1104
1105 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1106 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1107 if (IS_ERR(abort_req)) {
1108 atomic_inc(&dev->ctrl.abort_limit);
1109 return BLK_EH_RESET_TIMER;
1110 }
1111
1112 abort_req->timeout = ADMIN_TIMEOUT;
1113 abort_req->end_io_data = NULL;
1114 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1115
1116 /*
1117 * The aborted req will be completed on receiving the abort req.
1118 * We enable the timer again. If hit twice, it'll cause a device reset,
1119 * as the device then is in a faulty state.
1120 */
1121 return BLK_EH_RESET_TIMER;
1122 }
1123
1124 static void nvme_free_queue(struct nvme_queue *nvmeq)
1125 {
1126 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1127 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1128 if (nvmeq->sq_cmds)
1129 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1130 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1131 kfree(nvmeq);
1132 }
1133
1134 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1135 {
1136 int i;
1137
1138 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1139 struct nvme_queue *nvmeq = dev->queues[i];
1140 dev->ctrl.queue_count--;
1141 dev->queues[i] = NULL;
1142 nvme_free_queue(nvmeq);
1143 }
1144 }
1145
1146 /**
1147 * nvme_suspend_queue - put queue into suspended state
1148 * @nvmeq - queue to suspend
1149 */
1150 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1151 {
1152 int vector;
1153
1154 spin_lock_irq(&nvmeq->q_lock);
1155 if (nvmeq->cq_vector == -1) {
1156 spin_unlock_irq(&nvmeq->q_lock);
1157 return 1;
1158 }
1159 vector = nvmeq->cq_vector;
1160 nvmeq->dev->online_queues--;
1161 nvmeq->cq_vector = -1;
1162 spin_unlock_irq(&nvmeq->q_lock);
1163
1164 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1165 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1166
1167 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1168
1169 return 0;
1170 }
1171
1172 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1173 {
1174 struct nvme_queue *nvmeq = dev->queues[0];
1175
1176 if (!nvmeq)
1177 return;
1178 if (nvme_suspend_queue(nvmeq))
1179 return;
1180
1181 if (shutdown)
1182 nvme_shutdown_ctrl(&dev->ctrl);
1183 else
1184 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1185
1186 spin_lock_irq(&nvmeq->q_lock);
1187 nvme_process_cq(nvmeq);
1188 spin_unlock_irq(&nvmeq->q_lock);
1189 }
1190
1191 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1192 int entry_size)
1193 {
1194 int q_depth = dev->q_depth;
1195 unsigned q_size_aligned = roundup(q_depth * entry_size,
1196 dev->ctrl.page_size);
1197
1198 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1199 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1200 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1201 q_depth = div_u64(mem_per_q, entry_size);
1202
1203 /*
1204 * Ensure the reduced q_depth is above some threshold where it
1205 * would be better to map queues in system memory with the
1206 * original depth
1207 */
1208 if (q_depth < 64)
1209 return -ENOMEM;
1210 }
1211
1212 return q_depth;
1213 }
1214
1215 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1216 int qid, int depth)
1217 {
1218 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1219 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1220 dev->ctrl.page_size);
1221 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1222 nvmeq->sq_cmds_io = dev->cmb + offset;
1223 } else {
1224 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1225 &nvmeq->sq_dma_addr, GFP_KERNEL);
1226 if (!nvmeq->sq_cmds)
1227 return -ENOMEM;
1228 }
1229
1230 return 0;
1231 }
1232
1233 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1234 int depth, int node)
1235 {
1236 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1237 node);
1238 if (!nvmeq)
1239 return NULL;
1240
1241 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1242 &nvmeq->cq_dma_addr, GFP_KERNEL);
1243 if (!nvmeq->cqes)
1244 goto free_nvmeq;
1245
1246 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1247 goto free_cqdma;
1248
1249 nvmeq->q_dmadev = dev->dev;
1250 nvmeq->dev = dev;
1251 spin_lock_init(&nvmeq->q_lock);
1252 nvmeq->cq_head = 0;
1253 nvmeq->cq_phase = 1;
1254 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1255 nvmeq->q_depth = depth;
1256 nvmeq->qid = qid;
1257 nvmeq->cq_vector = -1;
1258 dev->queues[qid] = nvmeq;
1259 dev->ctrl.queue_count++;
1260
1261 return nvmeq;
1262
1263 free_cqdma:
1264 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1265 nvmeq->cq_dma_addr);
1266 free_nvmeq:
1267 kfree(nvmeq);
1268 return NULL;
1269 }
1270
1271 static int queue_request_irq(struct nvme_queue *nvmeq)
1272 {
1273 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1274 int nr = nvmeq->dev->ctrl.instance;
1275
1276 if (use_threaded_interrupts) {
1277 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1278 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1279 } else {
1280 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1281 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1282 }
1283 }
1284
1285 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1286 {
1287 struct nvme_dev *dev = nvmeq->dev;
1288
1289 spin_lock_irq(&nvmeq->q_lock);
1290 nvmeq->sq_tail = 0;
1291 nvmeq->cq_head = 0;
1292 nvmeq->cq_phase = 1;
1293 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1294 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1295 nvme_dbbuf_init(dev, nvmeq, qid);
1296 dev->online_queues++;
1297 spin_unlock_irq(&nvmeq->q_lock);
1298 }
1299
1300 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1301 {
1302 struct nvme_dev *dev = nvmeq->dev;
1303 int result;
1304
1305 nvmeq->cq_vector = qid - 1;
1306 result = adapter_alloc_cq(dev, qid, nvmeq);
1307 if (result < 0)
1308 return result;
1309
1310 result = adapter_alloc_sq(dev, qid, nvmeq);
1311 if (result < 0)
1312 goto release_cq;
1313
1314 result = queue_request_irq(nvmeq);
1315 if (result < 0)
1316 goto release_sq;
1317
1318 nvme_init_queue(nvmeq, qid);
1319 return result;
1320
1321 release_sq:
1322 adapter_delete_sq(dev, qid);
1323 release_cq:
1324 adapter_delete_cq(dev, qid);
1325 return result;
1326 }
1327
1328 static const struct blk_mq_ops nvme_mq_admin_ops = {
1329 .queue_rq = nvme_queue_rq,
1330 .complete = nvme_pci_complete_rq,
1331 .init_hctx = nvme_admin_init_hctx,
1332 .exit_hctx = nvme_admin_exit_hctx,
1333 .init_request = nvme_init_request,
1334 .timeout = nvme_timeout,
1335 };
1336
1337 static const struct blk_mq_ops nvme_mq_ops = {
1338 .queue_rq = nvme_queue_rq,
1339 .complete = nvme_pci_complete_rq,
1340 .init_hctx = nvme_init_hctx,
1341 .init_request = nvme_init_request,
1342 .map_queues = nvme_pci_map_queues,
1343 .timeout = nvme_timeout,
1344 .poll = nvme_poll,
1345 };
1346
1347 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1348 {
1349 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1350 /*
1351 * If the controller was reset during removal, it's possible
1352 * user requests may be waiting on a stopped queue. Start the
1353 * queue to flush these to completion.
1354 */
1355 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1356 blk_cleanup_queue(dev->ctrl.admin_q);
1357 blk_mq_free_tag_set(&dev->admin_tagset);
1358 }
1359 }
1360
1361 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1362 {
1363 if (!dev->ctrl.admin_q) {
1364 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1365 dev->admin_tagset.nr_hw_queues = 1;
1366
1367 /*
1368 * Subtract one to leave an empty queue entry for 'Full Queue'
1369 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1370 */
1371 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1372 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1373 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1374 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1375 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1376 dev->admin_tagset.driver_data = dev;
1377
1378 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1379 return -ENOMEM;
1380
1381 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1382 if (IS_ERR(dev->ctrl.admin_q)) {
1383 blk_mq_free_tag_set(&dev->admin_tagset);
1384 return -ENOMEM;
1385 }
1386 if (!blk_get_queue(dev->ctrl.admin_q)) {
1387 nvme_dev_remove_admin(dev);
1388 dev->ctrl.admin_q = NULL;
1389 return -ENODEV;
1390 }
1391 } else
1392 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1393
1394 return 0;
1395 }
1396
1397 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401
1402 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1403 {
1404 struct pci_dev *pdev = to_pci_dev(dev->dev);
1405
1406 if (size <= dev->bar_mapped_size)
1407 return 0;
1408 if (size > pci_resource_len(pdev, 0))
1409 return -ENOMEM;
1410 if (dev->bar)
1411 iounmap(dev->bar);
1412 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1413 if (!dev->bar) {
1414 dev->bar_mapped_size = 0;
1415 return -ENOMEM;
1416 }
1417 dev->bar_mapped_size = size;
1418 dev->dbs = dev->bar + NVME_REG_DBS;
1419
1420 return 0;
1421 }
1422
1423 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1424 {
1425 int result;
1426 u32 aqa;
1427 struct nvme_queue *nvmeq;
1428
1429 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1430 if (result < 0)
1431 return result;
1432
1433 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1434 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1435
1436 if (dev->subsystem &&
1437 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1438 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1439
1440 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1441 if (result < 0)
1442 return result;
1443
1444 nvmeq = dev->queues[0];
1445 if (!nvmeq) {
1446 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1447 dev_to_node(dev->dev));
1448 if (!nvmeq)
1449 return -ENOMEM;
1450 }
1451
1452 aqa = nvmeq->q_depth - 1;
1453 aqa |= aqa << 16;
1454
1455 writel(aqa, dev->bar + NVME_REG_AQA);
1456 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1457 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1458
1459 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1460 if (result)
1461 return result;
1462
1463 nvmeq->cq_vector = 0;
1464 result = queue_request_irq(nvmeq);
1465 if (result) {
1466 nvmeq->cq_vector = -1;
1467 return result;
1468 }
1469
1470 return result;
1471 }
1472
1473 static int nvme_create_io_queues(struct nvme_dev *dev)
1474 {
1475 unsigned i, max;
1476 int ret = 0;
1477
1478 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1479 /* vector == qid - 1, match nvme_create_queue */
1480 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1481 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1482 ret = -ENOMEM;
1483 break;
1484 }
1485 }
1486
1487 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1488 for (i = dev->online_queues; i <= max; i++) {
1489 ret = nvme_create_queue(dev->queues[i], i);
1490 if (ret)
1491 break;
1492 }
1493
1494 /*
1495 * Ignore failing Create SQ/CQ commands, we can continue with less
1496 * than the desired aount of queues, and even a controller without
1497 * I/O queues an still be used to issue admin commands. This might
1498 * be useful to upgrade a buggy firmware for example.
1499 */
1500 return ret >= 0 ? 0 : ret;
1501 }
1502
1503 static ssize_t nvme_cmb_show(struct device *dev,
1504 struct device_attribute *attr,
1505 char *buf)
1506 {
1507 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1508
1509 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1510 ndev->cmbloc, ndev->cmbsz);
1511 }
1512 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1513
1514 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1515 {
1516 u64 szu, size, offset;
1517 resource_size_t bar_size;
1518 struct pci_dev *pdev = to_pci_dev(dev->dev);
1519 void __iomem *cmb;
1520 int bar;
1521
1522 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1523 if (!(NVME_CMB_SZ(dev->cmbsz)))
1524 return NULL;
1525 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1526
1527 if (!use_cmb_sqes)
1528 return NULL;
1529
1530 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1531 size = szu * NVME_CMB_SZ(dev->cmbsz);
1532 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1533 bar = NVME_CMB_BIR(dev->cmbloc);
1534 bar_size = pci_resource_len(pdev, bar);
1535
1536 if (offset > bar_size)
1537 return NULL;
1538
1539 /*
1540 * Controllers may support a CMB size larger than their BAR,
1541 * for example, due to being behind a bridge. Reduce the CMB to
1542 * the reported size of the BAR
1543 */
1544 if (size > bar_size - offset)
1545 size = bar_size - offset;
1546
1547 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1548 if (!cmb)
1549 return NULL;
1550
1551 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1552 dev->cmb_size = size;
1553 return cmb;
1554 }
1555
1556 static inline void nvme_release_cmb(struct nvme_dev *dev)
1557 {
1558 if (dev->cmb) {
1559 iounmap(dev->cmb);
1560 dev->cmb = NULL;
1561 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1562 &dev_attr_cmb.attr, NULL);
1563 dev->cmbsz = 0;
1564 }
1565 }
1566
1567 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1568 {
1569 u64 dma_addr = dev->host_mem_descs_dma;
1570 struct nvme_command c;
1571 int ret;
1572
1573 memset(&c, 0, sizeof(c));
1574 c.features.opcode = nvme_admin_set_features;
1575 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1576 c.features.dword11 = cpu_to_le32(bits);
1577 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1578 ilog2(dev->ctrl.page_size));
1579 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1580 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1581 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1582
1583 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1584 if (ret) {
1585 dev_warn(dev->ctrl.device,
1586 "failed to set host mem (err %d, flags %#x).\n",
1587 ret, bits);
1588 }
1589 return ret;
1590 }
1591
1592 static void nvme_free_host_mem(struct nvme_dev *dev)
1593 {
1594 int i;
1595
1596 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1597 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1598 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1599
1600 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1601 le64_to_cpu(desc->addr));
1602 }
1603
1604 kfree(dev->host_mem_desc_bufs);
1605 dev->host_mem_desc_bufs = NULL;
1606 dma_free_coherent(dev->dev,
1607 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1608 dev->host_mem_descs, dev->host_mem_descs_dma);
1609 dev->host_mem_descs = NULL;
1610 }
1611
1612 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1613 u32 chunk_size)
1614 {
1615 struct nvme_host_mem_buf_desc *descs;
1616 u32 max_entries, len;
1617 dma_addr_t descs_dma;
1618 int i = 0;
1619 void **bufs;
1620 u64 size = 0, tmp;
1621
1622 tmp = (preferred + chunk_size - 1);
1623 do_div(tmp, chunk_size);
1624 max_entries = tmp;
1625 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1626 &descs_dma, GFP_KERNEL);
1627 if (!descs)
1628 goto out;
1629
1630 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1631 if (!bufs)
1632 goto out_free_descs;
1633
1634 for (size = 0; size < preferred; size += len) {
1635 dma_addr_t dma_addr;
1636
1637 len = min_t(u64, chunk_size, preferred - size);
1638 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1639 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1640 if (!bufs[i])
1641 break;
1642
1643 descs[i].addr = cpu_to_le64(dma_addr);
1644 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1645 i++;
1646 }
1647
1648 if (!size)
1649 goto out_free_bufs;
1650
1651 dev->nr_host_mem_descs = i;
1652 dev->host_mem_size = size;
1653 dev->host_mem_descs = descs;
1654 dev->host_mem_descs_dma = descs_dma;
1655 dev->host_mem_desc_bufs = bufs;
1656 return 0;
1657
1658 out_free_bufs:
1659 while (--i >= 0) {
1660 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1661
1662 dma_free_coherent(dev->dev, size, bufs[i],
1663 le64_to_cpu(descs[i].addr));
1664 }
1665
1666 kfree(bufs);
1667 out_free_descs:
1668 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1669 descs_dma);
1670 out:
1671 dev->host_mem_descs = NULL;
1672 return -ENOMEM;
1673 }
1674
1675 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1676 {
1677 u32 chunk_size;
1678
1679 /* start big and work our way down */
1680 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1681 chunk_size >= PAGE_SIZE * 2;
1682 chunk_size /= 2) {
1683 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1684 if (!min || dev->host_mem_size >= min)
1685 return 0;
1686 nvme_free_host_mem(dev);
1687 }
1688 }
1689
1690 return -ENOMEM;
1691 }
1692
1693 static int nvme_setup_host_mem(struct nvme_dev *dev)
1694 {
1695 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1696 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1697 u64 min = (u64)dev->ctrl.hmmin * 4096;
1698 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1699 int ret = 0;
1700
1701 preferred = min(preferred, max);
1702 if (min > max) {
1703 dev_warn(dev->ctrl.device,
1704 "min host memory (%lld MiB) above limit (%d MiB).\n",
1705 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1706 nvme_free_host_mem(dev);
1707 return 0;
1708 }
1709
1710 /*
1711 * If we already have a buffer allocated check if we can reuse it.
1712 */
1713 if (dev->host_mem_descs) {
1714 if (dev->host_mem_size >= min)
1715 enable_bits |= NVME_HOST_MEM_RETURN;
1716 else
1717 nvme_free_host_mem(dev);
1718 }
1719
1720 if (!dev->host_mem_descs) {
1721 if (nvme_alloc_host_mem(dev, min, preferred)) {
1722 dev_warn(dev->ctrl.device,
1723 "failed to allocate host memory buffer.\n");
1724 return 0; /* controller must work without HMB */
1725 }
1726
1727 dev_info(dev->ctrl.device,
1728 "allocated %lld MiB host memory buffer.\n",
1729 dev->host_mem_size >> ilog2(SZ_1M));
1730 }
1731
1732 ret = nvme_set_host_mem(dev, enable_bits);
1733 if (ret)
1734 nvme_free_host_mem(dev);
1735 return ret;
1736 }
1737
1738 static int nvme_setup_io_queues(struct nvme_dev *dev)
1739 {
1740 struct nvme_queue *adminq = dev->queues[0];
1741 struct pci_dev *pdev = to_pci_dev(dev->dev);
1742 int result, nr_io_queues;
1743 unsigned long size;
1744
1745 nr_io_queues = num_present_cpus();
1746 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1747 if (result < 0)
1748 return result;
1749
1750 if (nr_io_queues == 0)
1751 return 0;
1752
1753 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1754 result = nvme_cmb_qdepth(dev, nr_io_queues,
1755 sizeof(struct nvme_command));
1756 if (result > 0)
1757 dev->q_depth = result;
1758 else
1759 nvme_release_cmb(dev);
1760 }
1761
1762 do {
1763 size = db_bar_size(dev, nr_io_queues);
1764 result = nvme_remap_bar(dev, size);
1765 if (!result)
1766 break;
1767 if (!--nr_io_queues)
1768 return -ENOMEM;
1769 } while (1);
1770 adminq->q_db = dev->dbs;
1771
1772 /* Deregister the admin queue's interrupt */
1773 pci_free_irq(pdev, 0, adminq);
1774
1775 /*
1776 * If we enable msix early due to not intx, disable it again before
1777 * setting up the full range we need.
1778 */
1779 pci_free_irq_vectors(pdev);
1780 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1781 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1782 if (nr_io_queues <= 0)
1783 return -EIO;
1784 dev->max_qid = nr_io_queues;
1785
1786 /*
1787 * Should investigate if there's a performance win from allocating
1788 * more queues than interrupt vectors; it might allow the submission
1789 * path to scale better, even if the receive path is limited by the
1790 * number of interrupts.
1791 */
1792
1793 result = queue_request_irq(adminq);
1794 if (result) {
1795 adminq->cq_vector = -1;
1796 return result;
1797 }
1798 return nvme_create_io_queues(dev);
1799 }
1800
1801 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1802 {
1803 struct nvme_queue *nvmeq = req->end_io_data;
1804
1805 blk_mq_free_request(req);
1806 complete(&nvmeq->dev->ioq_wait);
1807 }
1808
1809 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1810 {
1811 struct nvme_queue *nvmeq = req->end_io_data;
1812
1813 if (!error) {
1814 unsigned long flags;
1815
1816 /*
1817 * We might be called with the AQ q_lock held
1818 * and the I/O queue q_lock should always
1819 * nest inside the AQ one.
1820 */
1821 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1822 SINGLE_DEPTH_NESTING);
1823 nvme_process_cq(nvmeq);
1824 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1825 }
1826
1827 nvme_del_queue_end(req, error);
1828 }
1829
1830 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1831 {
1832 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1833 struct request *req;
1834 struct nvme_command cmd;
1835
1836 memset(&cmd, 0, sizeof(cmd));
1837 cmd.delete_queue.opcode = opcode;
1838 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1839
1840 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1841 if (IS_ERR(req))
1842 return PTR_ERR(req);
1843
1844 req->timeout = ADMIN_TIMEOUT;
1845 req->end_io_data = nvmeq;
1846
1847 blk_execute_rq_nowait(q, NULL, req, false,
1848 opcode == nvme_admin_delete_cq ?
1849 nvme_del_cq_end : nvme_del_queue_end);
1850 return 0;
1851 }
1852
1853 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1854 {
1855 int pass;
1856 unsigned long timeout;
1857 u8 opcode = nvme_admin_delete_sq;
1858
1859 for (pass = 0; pass < 2; pass++) {
1860 int sent = 0, i = queues;
1861
1862 reinit_completion(&dev->ioq_wait);
1863 retry:
1864 timeout = ADMIN_TIMEOUT;
1865 for (; i > 0; i--, sent++)
1866 if (nvme_delete_queue(dev->queues[i], opcode))
1867 break;
1868
1869 while (sent--) {
1870 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1871 if (timeout == 0)
1872 return;
1873 if (i)
1874 goto retry;
1875 }
1876 opcode = nvme_admin_delete_cq;
1877 }
1878 }
1879
1880 /*
1881 * Return: error value if an error occurred setting up the queues or calling
1882 * Identify Device. 0 if these succeeded, even if adding some of the
1883 * namespaces failed. At the moment, these failures are silent. TBD which
1884 * failures should be reported.
1885 */
1886 static int nvme_dev_add(struct nvme_dev *dev)
1887 {
1888 if (!dev->ctrl.tagset) {
1889 dev->tagset.ops = &nvme_mq_ops;
1890 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1891 dev->tagset.timeout = NVME_IO_TIMEOUT;
1892 dev->tagset.numa_node = dev_to_node(dev->dev);
1893 dev->tagset.queue_depth =
1894 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1895 dev->tagset.cmd_size = nvme_cmd_size(dev);
1896 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1897 dev->tagset.driver_data = dev;
1898
1899 if (blk_mq_alloc_tag_set(&dev->tagset))
1900 return 0;
1901 dev->ctrl.tagset = &dev->tagset;
1902
1903 nvme_dbbuf_set(dev);
1904 } else {
1905 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1906
1907 /* Free previously allocated queues that are no longer usable */
1908 nvme_free_queues(dev, dev->online_queues);
1909 }
1910
1911 return 0;
1912 }
1913
1914 static int nvme_pci_enable(struct nvme_dev *dev)
1915 {
1916 int result = -ENOMEM;
1917 struct pci_dev *pdev = to_pci_dev(dev->dev);
1918
1919 if (pci_enable_device_mem(pdev))
1920 return result;
1921
1922 pci_set_master(pdev);
1923
1924 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1925 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1926 goto disable;
1927
1928 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1929 result = -ENODEV;
1930 goto disable;
1931 }
1932
1933 /*
1934 * Some devices and/or platforms don't advertise or work with INTx
1935 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1936 * adjust this later.
1937 */
1938 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1939 if (result < 0)
1940 return result;
1941
1942 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1943
1944 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1945 io_queue_depth);
1946 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1947 dev->dbs = dev->bar + 4096;
1948
1949 /*
1950 * Temporary fix for the Apple controller found in the MacBook8,1 and
1951 * some MacBook7,1 to avoid controller resets and data loss.
1952 */
1953 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1954 dev->q_depth = 2;
1955 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1956 "set queue depth=%u to work around controller resets\n",
1957 dev->q_depth);
1958 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1959 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1960 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1961 dev->q_depth = 64;
1962 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1963 "set queue depth=%u\n", dev->q_depth);
1964 }
1965
1966 /*
1967 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1968 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1969 * has no name we can pass NULL as final argument to
1970 * sysfs_add_file_to_group.
1971 */
1972
1973 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1974 dev->cmb = nvme_map_cmb(dev);
1975 if (dev->cmb) {
1976 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1977 &dev_attr_cmb.attr, NULL))
1978 dev_warn(dev->ctrl.device,
1979 "failed to add sysfs attribute for CMB\n");
1980 }
1981 }
1982
1983 pci_enable_pcie_error_reporting(pdev);
1984 pci_save_state(pdev);
1985 return 0;
1986
1987 disable:
1988 pci_disable_device(pdev);
1989 return result;
1990 }
1991
1992 static void nvme_dev_unmap(struct nvme_dev *dev)
1993 {
1994 if (dev->bar)
1995 iounmap(dev->bar);
1996 pci_release_mem_regions(to_pci_dev(dev->dev));
1997 }
1998
1999 static void nvme_pci_disable(struct nvme_dev *dev)
2000 {
2001 struct pci_dev *pdev = to_pci_dev(dev->dev);
2002
2003 nvme_release_cmb(dev);
2004 pci_free_irq_vectors(pdev);
2005
2006 if (pci_is_enabled(pdev)) {
2007 pci_disable_pcie_error_reporting(pdev);
2008 pci_disable_device(pdev);
2009 }
2010 }
2011
2012 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2013 {
2014 int i, queues;
2015 bool dead = true;
2016 struct pci_dev *pdev = to_pci_dev(dev->dev);
2017
2018 mutex_lock(&dev->shutdown_lock);
2019 if (pci_is_enabled(pdev)) {
2020 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2021
2022 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2023 dev->ctrl.state == NVME_CTRL_RESETTING)
2024 nvme_start_freeze(&dev->ctrl);
2025 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2026 pdev->error_state != pci_channel_io_normal);
2027 }
2028
2029 /*
2030 * Give the controller a chance to complete all entered requests if
2031 * doing a safe shutdown.
2032 */
2033 if (!dead) {
2034 if (shutdown)
2035 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2036
2037 /*
2038 * If the controller is still alive tell it to stop using the
2039 * host memory buffer. In theory the shutdown / reset should
2040 * make sure that it doesn't access the host memoery anymore,
2041 * but I'd rather be safe than sorry..
2042 */
2043 if (dev->host_mem_descs)
2044 nvme_set_host_mem(dev, 0);
2045
2046 }
2047 nvme_stop_queues(&dev->ctrl);
2048
2049 queues = dev->online_queues - 1;
2050 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2051 nvme_suspend_queue(dev->queues[i]);
2052
2053 if (dead) {
2054 /* A device might become IO incapable very soon during
2055 * probe, before the admin queue is configured. Thus,
2056 * queue_count can be 0 here.
2057 */
2058 if (dev->ctrl.queue_count)
2059 nvme_suspend_queue(dev->queues[0]);
2060 } else {
2061 nvme_disable_io_queues(dev, queues);
2062 nvme_disable_admin_queue(dev, shutdown);
2063 }
2064 nvme_pci_disable(dev);
2065
2066 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2067 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2068
2069 /*
2070 * The driver will not be starting up queues again if shutting down so
2071 * must flush all entered requests to their failed completion to avoid
2072 * deadlocking blk-mq hot-cpu notifier.
2073 */
2074 if (shutdown)
2075 nvme_start_queues(&dev->ctrl);
2076 mutex_unlock(&dev->shutdown_lock);
2077 }
2078
2079 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2080 {
2081 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2082 PAGE_SIZE, PAGE_SIZE, 0);
2083 if (!dev->prp_page_pool)
2084 return -ENOMEM;
2085
2086 /* Optimisation for I/Os between 4k and 128k */
2087 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2088 256, 256, 0);
2089 if (!dev->prp_small_pool) {
2090 dma_pool_destroy(dev->prp_page_pool);
2091 return -ENOMEM;
2092 }
2093 return 0;
2094 }
2095
2096 static void nvme_release_prp_pools(struct nvme_dev *dev)
2097 {
2098 dma_pool_destroy(dev->prp_page_pool);
2099 dma_pool_destroy(dev->prp_small_pool);
2100 }
2101
2102 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2103 {
2104 struct nvme_dev *dev = to_nvme_dev(ctrl);
2105
2106 nvme_dbbuf_dma_free(dev);
2107 put_device(dev->dev);
2108 if (dev->tagset.tags)
2109 blk_mq_free_tag_set(&dev->tagset);
2110 if (dev->ctrl.admin_q)
2111 blk_put_queue(dev->ctrl.admin_q);
2112 kfree(dev->queues);
2113 free_opal_dev(dev->ctrl.opal_dev);
2114 kfree(dev);
2115 }
2116
2117 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2118 {
2119 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2120
2121 kref_get(&dev->ctrl.kref);
2122 nvme_dev_disable(dev, false);
2123 if (!schedule_work(&dev->remove_work))
2124 nvme_put_ctrl(&dev->ctrl);
2125 }
2126
2127 static void nvme_reset_work(struct work_struct *work)
2128 {
2129 struct nvme_dev *dev =
2130 container_of(work, struct nvme_dev, ctrl.reset_work);
2131 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2132 int result = -ENODEV;
2133
2134 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2135 goto out;
2136
2137 /*
2138 * If we're called to reset a live controller first shut it down before
2139 * moving on.
2140 */
2141 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2142 nvme_dev_disable(dev, false);
2143
2144 result = nvme_pci_enable(dev);
2145 if (result)
2146 goto out;
2147
2148 result = nvme_pci_configure_admin_queue(dev);
2149 if (result)
2150 goto out;
2151
2152 nvme_init_queue(dev->queues[0], 0);
2153 result = nvme_alloc_admin_tags(dev);
2154 if (result)
2155 goto out;
2156
2157 result = nvme_init_identify(&dev->ctrl);
2158 if (result)
2159 goto out;
2160
2161 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2162 if (!dev->ctrl.opal_dev)
2163 dev->ctrl.opal_dev =
2164 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2165 else if (was_suspend)
2166 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2167 } else {
2168 free_opal_dev(dev->ctrl.opal_dev);
2169 dev->ctrl.opal_dev = NULL;
2170 }
2171
2172 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2173 result = nvme_dbbuf_dma_alloc(dev);
2174 if (result)
2175 dev_warn(dev->dev,
2176 "unable to allocate dma for dbbuf\n");
2177 }
2178
2179 if (dev->ctrl.hmpre) {
2180 result = nvme_setup_host_mem(dev);
2181 if (result < 0)
2182 goto out;
2183 }
2184
2185 result = nvme_setup_io_queues(dev);
2186 if (result)
2187 goto out;
2188
2189 /*
2190 * Keep the controller around but remove all namespaces if we don't have
2191 * any working I/O queue.
2192 */
2193 if (dev->online_queues < 2) {
2194 dev_warn(dev->ctrl.device, "IO queues not created\n");
2195 nvme_kill_queues(&dev->ctrl);
2196 nvme_remove_namespaces(&dev->ctrl);
2197 } else {
2198 nvme_start_queues(&dev->ctrl);
2199 nvme_wait_freeze(&dev->ctrl);
2200 nvme_dev_add(dev);
2201 nvme_unfreeze(&dev->ctrl);
2202 }
2203
2204 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2205 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2206 goto out;
2207 }
2208
2209 nvme_start_ctrl(&dev->ctrl);
2210 return;
2211
2212 out:
2213 nvme_remove_dead_ctrl(dev, result);
2214 }
2215
2216 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2217 {
2218 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2219 struct pci_dev *pdev = to_pci_dev(dev->dev);
2220
2221 nvme_kill_queues(&dev->ctrl);
2222 if (pci_get_drvdata(pdev))
2223 device_release_driver(&pdev->dev);
2224 nvme_put_ctrl(&dev->ctrl);
2225 }
2226
2227 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2228 {
2229 *val = readl(to_nvme_dev(ctrl)->bar + off);
2230 return 0;
2231 }
2232
2233 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2234 {
2235 writel(val, to_nvme_dev(ctrl)->bar + off);
2236 return 0;
2237 }
2238
2239 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2240 {
2241 *val = readq(to_nvme_dev(ctrl)->bar + off);
2242 return 0;
2243 }
2244
2245 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2246 .name = "pcie",
2247 .module = THIS_MODULE,
2248 .flags = NVME_F_METADATA_SUPPORTED,
2249 .reg_read32 = nvme_pci_reg_read32,
2250 .reg_write32 = nvme_pci_reg_write32,
2251 .reg_read64 = nvme_pci_reg_read64,
2252 .free_ctrl = nvme_pci_free_ctrl,
2253 .submit_async_event = nvme_pci_submit_async_event,
2254 };
2255
2256 static int nvme_dev_map(struct nvme_dev *dev)
2257 {
2258 struct pci_dev *pdev = to_pci_dev(dev->dev);
2259
2260 if (pci_request_mem_regions(pdev, "nvme"))
2261 return -ENODEV;
2262
2263 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2264 goto release;
2265
2266 return 0;
2267 release:
2268 pci_release_mem_regions(pdev);
2269 return -ENODEV;
2270 }
2271
2272 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2273 {
2274 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2275 /*
2276 * Several Samsung devices seem to drop off the PCIe bus
2277 * randomly when APST is on and uses the deepest sleep state.
2278 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2279 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2280 * 950 PRO 256GB", but it seems to be restricted to two Dell
2281 * laptops.
2282 */
2283 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2284 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2285 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2286 return NVME_QUIRK_NO_DEEPEST_PS;
2287 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2288 /*
2289 * Samsung SSD 960 EVO drops off the PCIe bus after system
2290 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2291 */
2292 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2293 dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
2294 return NVME_QUIRK_NO_APST;
2295 }
2296
2297 return 0;
2298 }
2299
2300 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2301 {
2302 int node, result = -ENOMEM;
2303 struct nvme_dev *dev;
2304 unsigned long quirks = id->driver_data;
2305
2306 node = dev_to_node(&pdev->dev);
2307 if (node == NUMA_NO_NODE)
2308 set_dev_node(&pdev->dev, first_memory_node);
2309
2310 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2311 if (!dev)
2312 return -ENOMEM;
2313 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2314 GFP_KERNEL, node);
2315 if (!dev->queues)
2316 goto free;
2317
2318 dev->dev = get_device(&pdev->dev);
2319 pci_set_drvdata(pdev, dev);
2320
2321 result = nvme_dev_map(dev);
2322 if (result)
2323 goto put_pci;
2324
2325 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2326 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2327 mutex_init(&dev->shutdown_lock);
2328 init_completion(&dev->ioq_wait);
2329
2330 result = nvme_setup_prp_pools(dev);
2331 if (result)
2332 goto unmap;
2333
2334 quirks |= check_vendor_combination_bug(pdev);
2335
2336 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2337 quirks);
2338 if (result)
2339 goto release_pools;
2340
2341 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2342 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2343
2344 queue_work(nvme_wq, &dev->ctrl.reset_work);
2345 return 0;
2346
2347 release_pools:
2348 nvme_release_prp_pools(dev);
2349 unmap:
2350 nvme_dev_unmap(dev);
2351 put_pci:
2352 put_device(dev->dev);
2353 free:
2354 kfree(dev->queues);
2355 kfree(dev);
2356 return result;
2357 }
2358
2359 static void nvme_reset_prepare(struct pci_dev *pdev)
2360 {
2361 struct nvme_dev *dev = pci_get_drvdata(pdev);
2362 nvme_dev_disable(dev, false);
2363 }
2364
2365 static void nvme_reset_done(struct pci_dev *pdev)
2366 {
2367 struct nvme_dev *dev = pci_get_drvdata(pdev);
2368 nvme_reset_ctrl(&dev->ctrl);
2369 }
2370
2371 static void nvme_shutdown(struct pci_dev *pdev)
2372 {
2373 struct nvme_dev *dev = pci_get_drvdata(pdev);
2374 nvme_dev_disable(dev, true);
2375 }
2376
2377 /*
2378 * The driver's remove may be called on a device in a partially initialized
2379 * state. This function must not have any dependencies on the device state in
2380 * order to proceed.
2381 */
2382 static void nvme_remove(struct pci_dev *pdev)
2383 {
2384 struct nvme_dev *dev = pci_get_drvdata(pdev);
2385
2386 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2387
2388 cancel_work_sync(&dev->ctrl.reset_work);
2389 pci_set_drvdata(pdev, NULL);
2390
2391 if (!pci_device_is_present(pdev)) {
2392 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2393 nvme_dev_disable(dev, false);
2394 }
2395
2396 flush_work(&dev->ctrl.reset_work);
2397 nvme_stop_ctrl(&dev->ctrl);
2398 nvme_remove_namespaces(&dev->ctrl);
2399 nvme_dev_disable(dev, true);
2400 nvme_free_host_mem(dev);
2401 nvme_dev_remove_admin(dev);
2402 nvme_free_queues(dev, 0);
2403 nvme_uninit_ctrl(&dev->ctrl);
2404 nvme_release_prp_pools(dev);
2405 nvme_dev_unmap(dev);
2406 nvme_put_ctrl(&dev->ctrl);
2407 }
2408
2409 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2410 {
2411 int ret = 0;
2412
2413 if (numvfs == 0) {
2414 if (pci_vfs_assigned(pdev)) {
2415 dev_warn(&pdev->dev,
2416 "Cannot disable SR-IOV VFs while assigned\n");
2417 return -EPERM;
2418 }
2419 pci_disable_sriov(pdev);
2420 return 0;
2421 }
2422
2423 ret = pci_enable_sriov(pdev, numvfs);
2424 return ret ? ret : numvfs;
2425 }
2426
2427 #ifdef CONFIG_PM_SLEEP
2428 static int nvme_suspend(struct device *dev)
2429 {
2430 struct pci_dev *pdev = to_pci_dev(dev);
2431 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2432
2433 nvme_dev_disable(ndev, true);
2434 return 0;
2435 }
2436
2437 static int nvme_resume(struct device *dev)
2438 {
2439 struct pci_dev *pdev = to_pci_dev(dev);
2440 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2441
2442 nvme_reset_ctrl(&ndev->ctrl);
2443 return 0;
2444 }
2445 #endif
2446
2447 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2448
2449 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2450 pci_channel_state_t state)
2451 {
2452 struct nvme_dev *dev = pci_get_drvdata(pdev);
2453
2454 /*
2455 * A frozen channel requires a reset. When detected, this method will
2456 * shutdown the controller to quiesce. The controller will be restarted
2457 * after the slot reset through driver's slot_reset callback.
2458 */
2459 switch (state) {
2460 case pci_channel_io_normal:
2461 return PCI_ERS_RESULT_CAN_RECOVER;
2462 case pci_channel_io_frozen:
2463 dev_warn(dev->ctrl.device,
2464 "frozen state error detected, reset controller\n");
2465 nvme_dev_disable(dev, false);
2466 return PCI_ERS_RESULT_NEED_RESET;
2467 case pci_channel_io_perm_failure:
2468 dev_warn(dev->ctrl.device,
2469 "failure state error detected, request disconnect\n");
2470 return PCI_ERS_RESULT_DISCONNECT;
2471 }
2472 return PCI_ERS_RESULT_NEED_RESET;
2473 }
2474
2475 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2476 {
2477 struct nvme_dev *dev = pci_get_drvdata(pdev);
2478
2479 dev_info(dev->ctrl.device, "restart after slot reset\n");
2480 pci_restore_state(pdev);
2481 nvme_reset_ctrl(&dev->ctrl);
2482 return PCI_ERS_RESULT_RECOVERED;
2483 }
2484
2485 static void nvme_error_resume(struct pci_dev *pdev)
2486 {
2487 pci_cleanup_aer_uncorrect_error_status(pdev);
2488 }
2489
2490 static const struct pci_error_handlers nvme_err_handler = {
2491 .error_detected = nvme_error_detected,
2492 .slot_reset = nvme_slot_reset,
2493 .resume = nvme_error_resume,
2494 .reset_prepare = nvme_reset_prepare,
2495 .reset_done = nvme_reset_done,
2496 };
2497
2498 static const struct pci_device_id nvme_id_table[] = {
2499 { PCI_VDEVICE(INTEL, 0x0953),
2500 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2501 NVME_QUIRK_DEALLOCATE_ZEROES, },
2502 { PCI_VDEVICE(INTEL, 0x0a53),
2503 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2504 NVME_QUIRK_DEALLOCATE_ZEROES, },
2505 { PCI_VDEVICE(INTEL, 0x0a54),
2506 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2507 NVME_QUIRK_DEALLOCATE_ZEROES, },
2508 { PCI_VDEVICE(INTEL, 0x0a55),
2509 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2510 NVME_QUIRK_DEALLOCATE_ZEROES, },
2511 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2512 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2513 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2514 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2515 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2516 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2517 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2518 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2519 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2520 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2521 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2522 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2523 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2524 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2525 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2526 { 0, }
2527 };
2528 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2529
2530 static struct pci_driver nvme_driver = {
2531 .name = "nvme",
2532 .id_table = nvme_id_table,
2533 .probe = nvme_probe,
2534 .remove = nvme_remove,
2535 .shutdown = nvme_shutdown,
2536 .driver = {
2537 .pm = &nvme_dev_pm_ops,
2538 },
2539 .sriov_configure = nvme_pci_sriov_configure,
2540 .err_handler = &nvme_err_handler,
2541 };
2542
2543 static int __init nvme_init(void)
2544 {
2545 return pci_register_driver(&nvme_driver);
2546 }
2547
2548 static void __exit nvme_exit(void)
2549 {
2550 pci_unregister_driver(&nvme_driver);
2551 _nvme_check_size();
2552 }
2553
2554 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2555 MODULE_LICENSE("GPL");
2556 MODULE_VERSION("1.0");
2557 module_init(nvme_init);
2558 module_exit(nvme_exit);