]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme: switch delete SQ/CQ to blk_execute_rq_nowait
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44
45 #include "nvme.h"
46
47 #define NVME_Q_DEPTH 1024
48 #define NVME_AQ_DEPTH 256
49 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
51
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79
80 static int nvme_reset(struct nvme_dev *dev);
81 static void nvme_process_cq(struct nvme_queue *nvmeq);
82 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
83 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
84 static void nvme_dev_shutdown(struct nvme_dev *dev);
85
86 struct async_cmd_info {
87 struct kthread_work work;
88 struct kthread_worker *worker;
89 int status;
90 void *ctx;
91 };
92
93 /*
94 * Represents an NVM Express device. Each nvme_dev is a PCI function.
95 */
96 struct nvme_dev {
97 struct list_head node;
98 struct nvme_queue **queues;
99 struct blk_mq_tag_set tagset;
100 struct blk_mq_tag_set admin_tagset;
101 u32 __iomem *dbs;
102 struct device *dev;
103 struct dma_pool *prp_page_pool;
104 struct dma_pool *prp_small_pool;
105 unsigned queue_count;
106 unsigned online_queues;
107 unsigned max_qid;
108 int q_depth;
109 u32 db_stride;
110 struct msix_entry *entry;
111 void __iomem *bar;
112 struct work_struct reset_work;
113 struct work_struct scan_work;
114 struct work_struct remove_work;
115 struct mutex shutdown_lock;
116 bool subsystem;
117 void __iomem *cmb;
118 dma_addr_t cmb_dma_addr;
119 u64 cmb_size;
120 u32 cmbsz;
121 unsigned long flags;
122 #define NVME_CTRL_RESETTING 0
123
124 struct nvme_ctrl ctrl;
125 };
126
127 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
128 {
129 return container_of(ctrl, struct nvme_dev, ctrl);
130 }
131
132 /*
133 * An NVM Express queue. Each device has at least two (one for admin
134 * commands and one for I/O commands).
135 */
136 struct nvme_queue {
137 struct device *q_dmadev;
138 struct nvme_dev *dev;
139 char irqname[24]; /* nvme4294967295-65535\0 */
140 spinlock_t q_lock;
141 struct nvme_command *sq_cmds;
142 struct nvme_command __iomem *sq_cmds_io;
143 volatile struct nvme_completion *cqes;
144 struct blk_mq_tags **tags;
145 dma_addr_t sq_dma_addr;
146 dma_addr_t cq_dma_addr;
147 u32 __iomem *q_db;
148 u16 q_depth;
149 s16 cq_vector;
150 u16 sq_head;
151 u16 sq_tail;
152 u16 cq_head;
153 u16 qid;
154 u8 cq_phase;
155 u8 cqe_seen;
156 struct async_cmd_info cmdinfo;
157 };
158
159 /*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
162 * me express that. Use nvme_alloc_iod to ensure there's enough space
163 * allocated to store the PRP list.
164 */
165 struct nvme_iod {
166 unsigned long private; /* For the use of the submitter of the I/O */
167 int npages; /* In the PRP list. 0 means small pool in use */
168 int offset; /* Of PRP list */
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
172 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
173 struct scatterlist sg[0];
174 };
175
176 /*
177 * Check we didin't inadvertently grow the command struct
178 */
179 static inline void _nvme_check_size(void)
180 {
181 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193 }
194
195 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
196 struct nvme_completion *);
197
198 struct nvme_cmd_info {
199 nvme_completion_fn fn;
200 void *ctx;
201 int aborted;
202 struct nvme_queue *nvmeq;
203 struct nvme_iod iod[0];
204 };
205
206 /*
207 * Max size of iod being embedded in the request payload
208 */
209 #define NVME_INT_PAGES 2
210 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
211 #define NVME_INT_MASK 0x01
212
213 /*
214 * Will slightly overestimate the number of pages needed. This is OK
215 * as it only leads to a small amount of wasted memory for the lifetime of
216 * the I/O.
217 */
218 static int nvme_npages(unsigned size, struct nvme_dev *dev)
219 {
220 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
221 dev->ctrl.page_size);
222 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
223 }
224
225 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
226 {
227 unsigned int ret = sizeof(struct nvme_cmd_info);
228
229 ret += sizeof(struct nvme_iod);
230 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
231 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
232
233 return ret;
234 }
235
236 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
237 unsigned int hctx_idx)
238 {
239 struct nvme_dev *dev = data;
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 WARN_ON(hctx_idx != 0);
243 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
244 WARN_ON(nvmeq->tags);
245
246 hctx->driver_data = nvmeq;
247 nvmeq->tags = &dev->admin_tagset.tags[0];
248 return 0;
249 }
250
251 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
252 {
253 struct nvme_queue *nvmeq = hctx->driver_data;
254
255 nvmeq->tags = NULL;
256 }
257
258 static int nvme_admin_init_request(void *data, struct request *req,
259 unsigned int hctx_idx, unsigned int rq_idx,
260 unsigned int numa_node)
261 {
262 struct nvme_dev *dev = data;
263 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
264 struct nvme_queue *nvmeq = dev->queues[0];
265
266 BUG_ON(!nvmeq);
267 cmd->nvmeq = nvmeq;
268 return 0;
269 }
270
271 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
272 unsigned int hctx_idx)
273 {
274 struct nvme_dev *dev = data;
275 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
276
277 if (!nvmeq->tags)
278 nvmeq->tags = &dev->tagset.tags[hctx_idx];
279
280 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
281 hctx->driver_data = nvmeq;
282 return 0;
283 }
284
285 static int nvme_init_request(void *data, struct request *req,
286 unsigned int hctx_idx, unsigned int rq_idx,
287 unsigned int numa_node)
288 {
289 struct nvme_dev *dev = data;
290 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
291 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
292
293 BUG_ON(!nvmeq);
294 cmd->nvmeq = nvmeq;
295 return 0;
296 }
297
298 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
299 nvme_completion_fn handler)
300 {
301 cmd->fn = handler;
302 cmd->ctx = ctx;
303 cmd->aborted = 0;
304 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
305 }
306
307 static void *iod_get_private(struct nvme_iod *iod)
308 {
309 return (void *) (iod->private & ~0x1UL);
310 }
311
312 /*
313 * If bit 0 is set, the iod is embedded in the request payload.
314 */
315 static bool iod_should_kfree(struct nvme_iod *iod)
316 {
317 return (iod->private & NVME_INT_MASK) == 0;
318 }
319
320 /* Special values must be less than 0x1000 */
321 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
322 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
323 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
324 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
325
326 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
327 struct nvme_completion *cqe)
328 {
329 if (ctx == CMD_CTX_CANCELLED)
330 return;
331 if (ctx == CMD_CTX_COMPLETED) {
332 dev_warn(nvmeq->q_dmadev,
333 "completed id %d twice on queue %d\n",
334 cqe->command_id, le16_to_cpup(&cqe->sq_id));
335 return;
336 }
337 if (ctx == CMD_CTX_INVALID) {
338 dev_warn(nvmeq->q_dmadev,
339 "invalid id %d completed on queue %d\n",
340 cqe->command_id, le16_to_cpup(&cqe->sq_id));
341 return;
342 }
343 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
344 }
345
346 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
347 {
348 void *ctx;
349
350 if (fn)
351 *fn = cmd->fn;
352 ctx = cmd->ctx;
353 cmd->fn = special_completion;
354 cmd->ctx = CMD_CTX_CANCELLED;
355 return ctx;
356 }
357
358 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
359 struct nvme_completion *cqe)
360 {
361 u32 result = le32_to_cpup(&cqe->result);
362 u16 status = le16_to_cpup(&cqe->status) >> 1;
363
364 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
365 ++nvmeq->dev->ctrl.event_limit;
366 if (status != NVME_SC_SUCCESS)
367 return;
368
369 switch (result & 0xff07) {
370 case NVME_AER_NOTICE_NS_CHANGED:
371 dev_info(nvmeq->q_dmadev, "rescanning\n");
372 queue_work(nvme_workq, &nvmeq->dev->scan_work);
373 default:
374 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
375 }
376 }
377
378 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
379 struct nvme_completion *cqe)
380 {
381 struct request *req = ctx;
382
383 u16 status = le16_to_cpup(&cqe->status) >> 1;
384 u32 result = le32_to_cpup(&cqe->result);
385
386 blk_mq_free_request(req);
387
388 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
389 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
390 }
391
392 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
393 unsigned int tag)
394 {
395 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
396
397 return blk_mq_rq_to_pdu(req);
398 }
399
400 /*
401 * Called with local interrupts disabled and the q_lock held. May not sleep.
402 */
403 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
404 nvme_completion_fn *fn)
405 {
406 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
407 void *ctx;
408 if (tag >= nvmeq->q_depth) {
409 *fn = special_completion;
410 return CMD_CTX_INVALID;
411 }
412 if (fn)
413 *fn = cmd->fn;
414 ctx = cmd->ctx;
415 cmd->fn = special_completion;
416 cmd->ctx = CMD_CTX_COMPLETED;
417 return ctx;
418 }
419
420 /**
421 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
424 *
425 * Safe to use from interrupt context
426 */
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 struct nvme_command *cmd)
429 {
430 u16 tail = nvmeq->sq_tail;
431
432 if (nvmeq->sq_cmds_io)
433 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 else
435 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
436
437 if (++tail == nvmeq->q_depth)
438 tail = 0;
439 writel(tail, nvmeq->q_db);
440 nvmeq->sq_tail = tail;
441 }
442
443 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
444 {
445 unsigned long flags;
446 spin_lock_irqsave(&nvmeq->q_lock, flags);
447 __nvme_submit_cmd(nvmeq, cmd);
448 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
449 }
450
451 static __le64 **iod_list(struct nvme_iod *iod)
452 {
453 return ((void *)iod) + iod->offset;
454 }
455
456 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
457 unsigned nseg, unsigned long private)
458 {
459 iod->private = private;
460 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
461 iod->npages = -1;
462 iod->length = nbytes;
463 iod->nents = 0;
464 }
465
466 static struct nvme_iod *
467 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
468 unsigned long priv, gfp_t gfp)
469 {
470 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
471 sizeof(__le64 *) * nvme_npages(bytes, dev) +
472 sizeof(struct scatterlist) * nseg, gfp);
473
474 if (iod)
475 iod_init(iod, bytes, nseg, priv);
476
477 return iod;
478 }
479
480 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
481 gfp_t gfp)
482 {
483 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
484 sizeof(struct nvme_dsm_range);
485 struct nvme_iod *iod;
486
487 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
488 size <= NVME_INT_BYTES(dev)) {
489 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
490
491 iod = cmd->iod;
492 iod_init(iod, size, rq->nr_phys_segments,
493 (unsigned long) rq | NVME_INT_MASK);
494 return iod;
495 }
496
497 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
498 (unsigned long) rq, gfp);
499 }
500
501 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
502 {
503 const int last_prp = dev->ctrl.page_size / 8 - 1;
504 int i;
505 __le64 **list = iod_list(iod);
506 dma_addr_t prp_dma = iod->first_dma;
507
508 if (iod->npages == 0)
509 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
510 for (i = 0; i < iod->npages; i++) {
511 __le64 *prp_list = list[i];
512 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
513 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
514 prp_dma = next_prp_dma;
515 }
516
517 if (iod_should_kfree(iod))
518 kfree(iod);
519 }
520
521 #ifdef CONFIG_BLK_DEV_INTEGRITY
522 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
523 {
524 if (be32_to_cpu(pi->ref_tag) == v)
525 pi->ref_tag = cpu_to_be32(p);
526 }
527
528 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
529 {
530 if (be32_to_cpu(pi->ref_tag) == p)
531 pi->ref_tag = cpu_to_be32(v);
532 }
533
534 /**
535 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
536 *
537 * The virtual start sector is the one that was originally submitted by the
538 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
539 * start sector may be different. Remap protection information to match the
540 * physical LBA on writes, and back to the original seed on reads.
541 *
542 * Type 0 and 3 do not have a ref tag, so no remapping required.
543 */
544 static void nvme_dif_remap(struct request *req,
545 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
546 {
547 struct nvme_ns *ns = req->rq_disk->private_data;
548 struct bio_integrity_payload *bip;
549 struct t10_pi_tuple *pi;
550 void *p, *pmap;
551 u32 i, nlb, ts, phys, virt;
552
553 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
554 return;
555
556 bip = bio_integrity(req->bio);
557 if (!bip)
558 return;
559
560 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
561
562 p = pmap;
563 virt = bip_get_seed(bip);
564 phys = nvme_block_nr(ns, blk_rq_pos(req));
565 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
566 ts = ns->disk->queue->integrity.tuple_size;
567
568 for (i = 0; i < nlb; i++, virt++, phys++) {
569 pi = (struct t10_pi_tuple *)p;
570 dif_swap(phys, virt, pi);
571 p += ts;
572 }
573 kunmap_atomic(pmap);
574 }
575 #else /* CONFIG_BLK_DEV_INTEGRITY */
576 static void nvme_dif_remap(struct request *req,
577 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
578 {
579 }
580 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
581 {
582 }
583 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 #endif
587
588 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
589 struct nvme_completion *cqe)
590 {
591 struct nvme_iod *iod = ctx;
592 struct request *req = iod_get_private(iod);
593 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
594 u16 status = le16_to_cpup(&cqe->status) >> 1;
595 int error = 0;
596
597 if (unlikely(status)) {
598 if (nvme_req_needs_retry(req, status)) {
599 nvme_unmap_data(nvmeq->dev, iod);
600 nvme_requeue_req(req);
601 return;
602 }
603
604 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
605 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
606 error = NVME_SC_CANCELLED;
607 else
608 error = status;
609 } else {
610 error = nvme_error_status(status);
611 }
612 }
613
614 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
615 u32 result = le32_to_cpup(&cqe->result);
616 req->special = (void *)(uintptr_t)result;
617 }
618
619 if (cmd_rq->aborted)
620 dev_warn(nvmeq->dev->dev,
621 "completing aborted command with status:%04x\n",
622 error);
623
624 nvme_unmap_data(nvmeq->dev, iod);
625 blk_mq_complete_request(req, error);
626 }
627
628 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
629 int total_len)
630 {
631 struct dma_pool *pool;
632 int length = total_len;
633 struct scatterlist *sg = iod->sg;
634 int dma_len = sg_dma_len(sg);
635 u64 dma_addr = sg_dma_address(sg);
636 u32 page_size = dev->ctrl.page_size;
637 int offset = dma_addr & (page_size - 1);
638 __le64 *prp_list;
639 __le64 **list = iod_list(iod);
640 dma_addr_t prp_dma;
641 int nprps, i;
642
643 length -= (page_size - offset);
644 if (length <= 0)
645 return true;
646
647 dma_len -= (page_size - offset);
648 if (dma_len) {
649 dma_addr += (page_size - offset);
650 } else {
651 sg = sg_next(sg);
652 dma_addr = sg_dma_address(sg);
653 dma_len = sg_dma_len(sg);
654 }
655
656 if (length <= page_size) {
657 iod->first_dma = dma_addr;
658 return true;
659 }
660
661 nprps = DIV_ROUND_UP(length, page_size);
662 if (nprps <= (256 / 8)) {
663 pool = dev->prp_small_pool;
664 iod->npages = 0;
665 } else {
666 pool = dev->prp_page_pool;
667 iod->npages = 1;
668 }
669
670 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 if (!prp_list) {
672 iod->first_dma = dma_addr;
673 iod->npages = -1;
674 return false;
675 }
676 list[0] = prp_list;
677 iod->first_dma = prp_dma;
678 i = 0;
679 for (;;) {
680 if (i == page_size >> 3) {
681 __le64 *old_prp_list = prp_list;
682 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
683 if (!prp_list)
684 return false;
685 list[iod->npages++] = prp_list;
686 prp_list[0] = old_prp_list[i - 1];
687 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
688 i = 1;
689 }
690 prp_list[i++] = cpu_to_le64(dma_addr);
691 dma_len -= page_size;
692 dma_addr += page_size;
693 length -= page_size;
694 if (length <= 0)
695 break;
696 if (dma_len > 0)
697 continue;
698 BUG_ON(dma_len < 0);
699 sg = sg_next(sg);
700 dma_addr = sg_dma_address(sg);
701 dma_len = sg_dma_len(sg);
702 }
703
704 return true;
705 }
706
707 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
708 struct nvme_command *cmnd)
709 {
710 struct request *req = iod_get_private(iod);
711 struct request_queue *q = req->q;
712 enum dma_data_direction dma_dir = rq_data_dir(req) ?
713 DMA_TO_DEVICE : DMA_FROM_DEVICE;
714 int ret = BLK_MQ_RQ_QUEUE_ERROR;
715
716 sg_init_table(iod->sg, req->nr_phys_segments);
717 iod->nents = blk_rq_map_sg(q, req, iod->sg);
718 if (!iod->nents)
719 goto out;
720
721 ret = BLK_MQ_RQ_QUEUE_BUSY;
722 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
723 goto out;
724
725 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
726 goto out_unmap;
727
728 ret = BLK_MQ_RQ_QUEUE_ERROR;
729 if (blk_integrity_rq(req)) {
730 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
731 goto out_unmap;
732
733 sg_init_table(iod->meta_sg, 1);
734 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
735 goto out_unmap;
736
737 if (rq_data_dir(req))
738 nvme_dif_remap(req, nvme_dif_prep);
739
740 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
741 goto out_unmap;
742 }
743
744 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
745 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
746 if (blk_integrity_rq(req))
747 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
748 return BLK_MQ_RQ_QUEUE_OK;
749
750 out_unmap:
751 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
752 out:
753 return ret;
754 }
755
756 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
757 {
758 struct request *req = iod_get_private(iod);
759 enum dma_data_direction dma_dir = rq_data_dir(req) ?
760 DMA_TO_DEVICE : DMA_FROM_DEVICE;
761
762 if (iod->nents) {
763 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
764 if (blk_integrity_rq(req)) {
765 if (!rq_data_dir(req))
766 nvme_dif_remap(req, nvme_dif_complete);
767 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
768 }
769 }
770
771 nvme_free_iod(dev, iod);
772 }
773
774 /*
775 * We reuse the small pool to allocate the 16-byte range here as it is not
776 * worth having a special pool for these or additional cases to handle freeing
777 * the iod.
778 */
779 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
780 struct nvme_iod *iod, struct nvme_command *cmnd)
781 {
782 struct request *req = iod_get_private(iod);
783 struct nvme_dsm_range *range;
784
785 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
786 &iod->first_dma);
787 if (!range)
788 return BLK_MQ_RQ_QUEUE_BUSY;
789 iod_list(iod)[0] = (__le64 *)range;
790 iod->npages = 0;
791
792 range->cattr = cpu_to_le32(0);
793 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
794 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
795
796 memset(cmnd, 0, sizeof(*cmnd));
797 cmnd->dsm.opcode = nvme_cmd_dsm;
798 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
799 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
800 cmnd->dsm.nr = 0;
801 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
802 return BLK_MQ_RQ_QUEUE_OK;
803 }
804
805 /*
806 * NOTE: ns is NULL when called on the admin queue.
807 */
808 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
809 const struct blk_mq_queue_data *bd)
810 {
811 struct nvme_ns *ns = hctx->queue->queuedata;
812 struct nvme_queue *nvmeq = hctx->driver_data;
813 struct nvme_dev *dev = nvmeq->dev;
814 struct request *req = bd->rq;
815 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
816 struct nvme_iod *iod;
817 struct nvme_command cmnd;
818 int ret = BLK_MQ_RQ_QUEUE_OK;
819
820 /*
821 * If formated with metadata, require the block layer provide a buffer
822 * unless this namespace is formated such that the metadata can be
823 * stripped/generated by the controller with PRACT=1.
824 */
825 if (ns && ns->ms && !blk_integrity_rq(req)) {
826 if (!(ns->pi_type && ns->ms == 8) &&
827 req->cmd_type != REQ_TYPE_DRV_PRIV) {
828 blk_mq_complete_request(req, -EFAULT);
829 return BLK_MQ_RQ_QUEUE_OK;
830 }
831 }
832
833 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
834 if (!iod)
835 return BLK_MQ_RQ_QUEUE_BUSY;
836
837 if (req->cmd_flags & REQ_DISCARD) {
838 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
839 } else {
840 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
841 memcpy(&cmnd, req->cmd, sizeof(cmnd));
842 else if (req->cmd_flags & REQ_FLUSH)
843 nvme_setup_flush(ns, &cmnd);
844 else
845 nvme_setup_rw(ns, req, &cmnd);
846
847 if (req->nr_phys_segments)
848 ret = nvme_map_data(dev, iod, &cmnd);
849 }
850
851 if (ret)
852 goto out;
853
854 cmnd.common.command_id = req->tag;
855 nvme_set_info(cmd, iod, req_completion);
856
857 spin_lock_irq(&nvmeq->q_lock);
858 __nvme_submit_cmd(nvmeq, &cmnd);
859 nvme_process_cq(nvmeq);
860 spin_unlock_irq(&nvmeq->q_lock);
861 return BLK_MQ_RQ_QUEUE_OK;
862 out:
863 nvme_free_iod(dev, iod);
864 return ret;
865 }
866
867 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
868 {
869 u16 head, phase;
870
871 head = nvmeq->cq_head;
872 phase = nvmeq->cq_phase;
873
874 for (;;) {
875 void *ctx;
876 nvme_completion_fn fn;
877 struct nvme_completion cqe = nvmeq->cqes[head];
878 if ((le16_to_cpu(cqe.status) & 1) != phase)
879 break;
880 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
881 if (++head == nvmeq->q_depth) {
882 head = 0;
883 phase = !phase;
884 }
885 if (tag && *tag == cqe.command_id)
886 *tag = -1;
887 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
888 fn(nvmeq, ctx, &cqe);
889 }
890
891 /* If the controller ignores the cq head doorbell and continuously
892 * writes to the queue, it is theoretically possible to wrap around
893 * the queue twice and mistakenly return IRQ_NONE. Linux only
894 * requires that 0.1% of your interrupts are handled, so this isn't
895 * a big problem.
896 */
897 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
898 return;
899
900 if (likely(nvmeq->cq_vector >= 0))
901 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
902 nvmeq->cq_head = head;
903 nvmeq->cq_phase = phase;
904
905 nvmeq->cqe_seen = 1;
906 }
907
908 static void nvme_process_cq(struct nvme_queue *nvmeq)
909 {
910 __nvme_process_cq(nvmeq, NULL);
911 }
912
913 static irqreturn_t nvme_irq(int irq, void *data)
914 {
915 irqreturn_t result;
916 struct nvme_queue *nvmeq = data;
917 spin_lock(&nvmeq->q_lock);
918 nvme_process_cq(nvmeq);
919 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
920 nvmeq->cqe_seen = 0;
921 spin_unlock(&nvmeq->q_lock);
922 return result;
923 }
924
925 static irqreturn_t nvme_irq_check(int irq, void *data)
926 {
927 struct nvme_queue *nvmeq = data;
928 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
929 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
930 return IRQ_NONE;
931 return IRQ_WAKE_THREAD;
932 }
933
934 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
935 {
936 struct nvme_queue *nvmeq = hctx->driver_data;
937
938 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
939 nvmeq->cq_phase) {
940 spin_lock_irq(&nvmeq->q_lock);
941 __nvme_process_cq(nvmeq, &tag);
942 spin_unlock_irq(&nvmeq->q_lock);
943
944 if (tag == -1)
945 return 1;
946 }
947
948 return 0;
949 }
950
951 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
952 {
953 struct nvme_queue *nvmeq = dev->queues[0];
954 struct nvme_command c;
955 struct nvme_cmd_info *cmd_info;
956 struct request *req;
957
958 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
959 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
960 if (IS_ERR(req))
961 return PTR_ERR(req);
962
963 req->cmd_flags |= REQ_NO_TIMEOUT;
964 cmd_info = blk_mq_rq_to_pdu(req);
965 nvme_set_info(cmd_info, NULL, async_req_completion);
966
967 memset(&c, 0, sizeof(c));
968 c.common.opcode = nvme_admin_async_event;
969 c.common.command_id = req->tag;
970
971 blk_mq_free_request(req);
972 __nvme_submit_cmd(nvmeq, &c);
973 return 0;
974 }
975
976 static void async_cmd_info_endio(struct request *req, int error)
977 {
978 struct async_cmd_info *cmdinfo = req->end_io_data;
979
980 cmdinfo->status = req->errors;
981 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
982 blk_mq_free_request(req);
983 }
984
985 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
986 {
987 struct nvme_command c;
988
989 memset(&c, 0, sizeof(c));
990 c.delete_queue.opcode = opcode;
991 c.delete_queue.qid = cpu_to_le16(id);
992
993 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
994 }
995
996 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
997 struct nvme_queue *nvmeq)
998 {
999 struct nvme_command c;
1000 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1001
1002 /*
1003 * Note: we (ab)use the fact the the prp fields survive if no data
1004 * is attached to the request.
1005 */
1006 memset(&c, 0, sizeof(c));
1007 c.create_cq.opcode = nvme_admin_create_cq;
1008 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1009 c.create_cq.cqid = cpu_to_le16(qid);
1010 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1011 c.create_cq.cq_flags = cpu_to_le16(flags);
1012 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1013
1014 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1015 }
1016
1017 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1018 struct nvme_queue *nvmeq)
1019 {
1020 struct nvme_command c;
1021 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1022
1023 /*
1024 * Note: we (ab)use the fact the the prp fields survive if no data
1025 * is attached to the request.
1026 */
1027 memset(&c, 0, sizeof(c));
1028 c.create_sq.opcode = nvme_admin_create_sq;
1029 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1030 c.create_sq.sqid = cpu_to_le16(qid);
1031 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1032 c.create_sq.sq_flags = cpu_to_le16(flags);
1033 c.create_sq.cqid = cpu_to_le16(qid);
1034
1035 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1036 }
1037
1038 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1039 {
1040 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1041 }
1042
1043 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1044 {
1045 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1046 }
1047
1048 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1049 {
1050 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1051 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1052 struct nvme_dev *dev = nvmeq->dev;
1053 struct request *abort_req;
1054 struct nvme_cmd_info *abort_cmd;
1055 struct nvme_command cmd;
1056
1057 /*
1058 * Shutdown immediately if controller times out while starting. The
1059 * reset work will see the pci device disabled when it gets the forced
1060 * cancellation error. All outstanding requests are completed on
1061 * shutdown, so we return BLK_EH_HANDLED.
1062 */
1063 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1064 dev_warn(dev->dev,
1065 "I/O %d QID %d timeout, disable controller\n",
1066 req->tag, nvmeq->qid);
1067 nvme_dev_shutdown(dev);
1068 req->errors = NVME_SC_CANCELLED;
1069 return BLK_EH_HANDLED;
1070 }
1071
1072 /*
1073 * Shutdown the controller immediately and schedule a reset if the
1074 * command was already aborted once before and still hasn't been
1075 * returned to the driver, or if this is the admin queue.
1076 */
1077 if (!nvmeq->qid || cmd_rq->aborted) {
1078 dev_warn(dev->dev,
1079 "I/O %d QID %d timeout, reset controller\n",
1080 req->tag, nvmeq->qid);
1081 nvme_dev_shutdown(dev);
1082 queue_work(nvme_workq, &dev->reset_work);
1083
1084 /*
1085 * Mark the request as handled, since the inline shutdown
1086 * forces all outstanding requests to complete.
1087 */
1088 req->errors = NVME_SC_CANCELLED;
1089 return BLK_EH_HANDLED;
1090 }
1091
1092 if (atomic_dec_and_test(&dev->ctrl.abort_limit))
1093 return BLK_EH_RESET_TIMER;
1094
1095 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1096 BLK_MQ_REQ_NOWAIT);
1097 if (IS_ERR(abort_req)) {
1098 atomic_inc(&dev->ctrl.abort_limit);
1099 return BLK_EH_RESET_TIMER;
1100 }
1101
1102 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1103 nvme_set_info(abort_cmd, abort_req, abort_completion);
1104
1105 memset(&cmd, 0, sizeof(cmd));
1106 cmd.abort.opcode = nvme_admin_abort_cmd;
1107 cmd.abort.cid = req->tag;
1108 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1109 cmd.abort.command_id = abort_req->tag;
1110
1111 cmd_rq->aborted = 1;
1112
1113 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1114 req->tag, nvmeq->qid);
1115 nvme_submit_cmd(dev->queues[0], &cmd);
1116
1117 /*
1118 * The aborted req will be completed on receiving the abort req.
1119 * We enable the timer again. If hit twice, it'll cause a device reset,
1120 * as the device then is in a faulty state.
1121 */
1122 return BLK_EH_RESET_TIMER;
1123 }
1124
1125 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1126 {
1127 struct nvme_queue *nvmeq = data;
1128 void *ctx;
1129 nvme_completion_fn fn;
1130 struct nvme_cmd_info *cmd;
1131 struct nvme_completion cqe;
1132
1133 if (!blk_mq_request_started(req))
1134 return;
1135
1136 cmd = blk_mq_rq_to_pdu(req);
1137
1138 if (cmd->ctx == CMD_CTX_CANCELLED)
1139 return;
1140
1141 if (blk_queue_dying(req->q))
1142 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1143 else
1144 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1145
1146
1147 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1148 req->tag, nvmeq->qid);
1149 ctx = cancel_cmd_info(cmd, &fn);
1150 fn(nvmeq, ctx, &cqe);
1151 }
1152
1153 static void nvme_free_queue(struct nvme_queue *nvmeq)
1154 {
1155 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1156 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1157 if (nvmeq->sq_cmds)
1158 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1159 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1160 kfree(nvmeq);
1161 }
1162
1163 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1164 {
1165 int i;
1166
1167 for (i = dev->queue_count - 1; i >= lowest; i--) {
1168 struct nvme_queue *nvmeq = dev->queues[i];
1169 dev->queue_count--;
1170 dev->queues[i] = NULL;
1171 nvme_free_queue(nvmeq);
1172 }
1173 }
1174
1175 /**
1176 * nvme_suspend_queue - put queue into suspended state
1177 * @nvmeq - queue to suspend
1178 */
1179 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1180 {
1181 int vector;
1182
1183 spin_lock_irq(&nvmeq->q_lock);
1184 if (nvmeq->cq_vector == -1) {
1185 spin_unlock_irq(&nvmeq->q_lock);
1186 return 1;
1187 }
1188 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1189 nvmeq->dev->online_queues--;
1190 nvmeq->cq_vector = -1;
1191 spin_unlock_irq(&nvmeq->q_lock);
1192
1193 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1194 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1195
1196 irq_set_affinity_hint(vector, NULL);
1197 free_irq(vector, nvmeq);
1198
1199 return 0;
1200 }
1201
1202 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1203 {
1204 spin_lock_irq(&nvmeq->q_lock);
1205 if (nvmeq->tags && *nvmeq->tags)
1206 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1207 spin_unlock_irq(&nvmeq->q_lock);
1208 }
1209
1210 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1211 {
1212 struct nvme_queue *nvmeq = dev->queues[qid];
1213
1214 if (!nvmeq)
1215 return;
1216 if (nvme_suspend_queue(nvmeq))
1217 return;
1218
1219 /* Don't tell the adapter to delete the admin queue.
1220 * Don't tell a removed adapter to delete IO queues. */
1221 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1222 adapter_delete_sq(dev, qid);
1223 adapter_delete_cq(dev, qid);
1224 }
1225
1226 spin_lock_irq(&nvmeq->q_lock);
1227 nvme_process_cq(nvmeq);
1228 spin_unlock_irq(&nvmeq->q_lock);
1229 }
1230
1231 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1232 int entry_size)
1233 {
1234 int q_depth = dev->q_depth;
1235 unsigned q_size_aligned = roundup(q_depth * entry_size,
1236 dev->ctrl.page_size);
1237
1238 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1239 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1240 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1241 q_depth = div_u64(mem_per_q, entry_size);
1242
1243 /*
1244 * Ensure the reduced q_depth is above some threshold where it
1245 * would be better to map queues in system memory with the
1246 * original depth
1247 */
1248 if (q_depth < 64)
1249 return -ENOMEM;
1250 }
1251
1252 return q_depth;
1253 }
1254
1255 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1256 int qid, int depth)
1257 {
1258 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1259 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1260 dev->ctrl.page_size);
1261 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1262 nvmeq->sq_cmds_io = dev->cmb + offset;
1263 } else {
1264 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1265 &nvmeq->sq_dma_addr, GFP_KERNEL);
1266 if (!nvmeq->sq_cmds)
1267 return -ENOMEM;
1268 }
1269
1270 return 0;
1271 }
1272
1273 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1274 int depth)
1275 {
1276 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1277 if (!nvmeq)
1278 return NULL;
1279
1280 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1281 &nvmeq->cq_dma_addr, GFP_KERNEL);
1282 if (!nvmeq->cqes)
1283 goto free_nvmeq;
1284
1285 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1286 goto free_cqdma;
1287
1288 nvmeq->q_dmadev = dev->dev;
1289 nvmeq->dev = dev;
1290 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1291 dev->ctrl.instance, qid);
1292 spin_lock_init(&nvmeq->q_lock);
1293 nvmeq->cq_head = 0;
1294 nvmeq->cq_phase = 1;
1295 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1296 nvmeq->q_depth = depth;
1297 nvmeq->qid = qid;
1298 nvmeq->cq_vector = -1;
1299 dev->queues[qid] = nvmeq;
1300
1301 /* make sure queue descriptor is set before queue count, for kthread */
1302 mb();
1303 dev->queue_count++;
1304
1305 return nvmeq;
1306
1307 free_cqdma:
1308 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1309 nvmeq->cq_dma_addr);
1310 free_nvmeq:
1311 kfree(nvmeq);
1312 return NULL;
1313 }
1314
1315 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1316 const char *name)
1317 {
1318 if (use_threaded_interrupts)
1319 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1320 nvme_irq_check, nvme_irq, IRQF_SHARED,
1321 name, nvmeq);
1322 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1323 IRQF_SHARED, name, nvmeq);
1324 }
1325
1326 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1327 {
1328 struct nvme_dev *dev = nvmeq->dev;
1329
1330 spin_lock_irq(&nvmeq->q_lock);
1331 nvmeq->sq_tail = 0;
1332 nvmeq->cq_head = 0;
1333 nvmeq->cq_phase = 1;
1334 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1335 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1336 dev->online_queues++;
1337 spin_unlock_irq(&nvmeq->q_lock);
1338 }
1339
1340 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1341 {
1342 struct nvme_dev *dev = nvmeq->dev;
1343 int result;
1344
1345 nvmeq->cq_vector = qid - 1;
1346 result = adapter_alloc_cq(dev, qid, nvmeq);
1347 if (result < 0)
1348 return result;
1349
1350 result = adapter_alloc_sq(dev, qid, nvmeq);
1351 if (result < 0)
1352 goto release_cq;
1353
1354 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1355 if (result < 0)
1356 goto release_sq;
1357
1358 nvme_init_queue(nvmeq, qid);
1359 return result;
1360
1361 release_sq:
1362 adapter_delete_sq(dev, qid);
1363 release_cq:
1364 adapter_delete_cq(dev, qid);
1365 return result;
1366 }
1367
1368 static struct blk_mq_ops nvme_mq_admin_ops = {
1369 .queue_rq = nvme_queue_rq,
1370 .map_queue = blk_mq_map_queue,
1371 .init_hctx = nvme_admin_init_hctx,
1372 .exit_hctx = nvme_admin_exit_hctx,
1373 .init_request = nvme_admin_init_request,
1374 .timeout = nvme_timeout,
1375 };
1376
1377 static struct blk_mq_ops nvme_mq_ops = {
1378 .queue_rq = nvme_queue_rq,
1379 .map_queue = blk_mq_map_queue,
1380 .init_hctx = nvme_init_hctx,
1381 .init_request = nvme_init_request,
1382 .timeout = nvme_timeout,
1383 .poll = nvme_poll,
1384 };
1385
1386 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1387 {
1388 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1389 blk_cleanup_queue(dev->ctrl.admin_q);
1390 blk_mq_free_tag_set(&dev->admin_tagset);
1391 }
1392 }
1393
1394 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1395 {
1396 if (!dev->ctrl.admin_q) {
1397 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1398 dev->admin_tagset.nr_hw_queues = 1;
1399 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH;
1400 dev->admin_tagset.reserved_tags = 1;
1401 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1402 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1403 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1404 dev->admin_tagset.driver_data = dev;
1405
1406 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1407 return -ENOMEM;
1408
1409 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1410 if (IS_ERR(dev->ctrl.admin_q)) {
1411 blk_mq_free_tag_set(&dev->admin_tagset);
1412 return -ENOMEM;
1413 }
1414 if (!blk_get_queue(dev->ctrl.admin_q)) {
1415 nvme_dev_remove_admin(dev);
1416 dev->ctrl.admin_q = NULL;
1417 return -ENODEV;
1418 }
1419 } else
1420 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1421
1422 return 0;
1423 }
1424
1425 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1426 {
1427 int result;
1428 u32 aqa;
1429 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1430 struct nvme_queue *nvmeq;
1431
1432 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1433 NVME_CAP_NSSRC(cap) : 0;
1434
1435 if (dev->subsystem &&
1436 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1437 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1438
1439 result = nvme_disable_ctrl(&dev->ctrl, cap);
1440 if (result < 0)
1441 return result;
1442
1443 nvmeq = dev->queues[0];
1444 if (!nvmeq) {
1445 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1446 if (!nvmeq)
1447 return -ENOMEM;
1448 }
1449
1450 aqa = nvmeq->q_depth - 1;
1451 aqa |= aqa << 16;
1452
1453 writel(aqa, dev->bar + NVME_REG_AQA);
1454 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1455 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1456
1457 result = nvme_enable_ctrl(&dev->ctrl, cap);
1458 if (result)
1459 goto free_nvmeq;
1460
1461 nvmeq->cq_vector = 0;
1462 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1463 if (result) {
1464 nvmeq->cq_vector = -1;
1465 goto free_nvmeq;
1466 }
1467
1468 return result;
1469
1470 free_nvmeq:
1471 nvme_free_queues(dev, 0);
1472 return result;
1473 }
1474
1475 static int nvme_kthread(void *data)
1476 {
1477 struct nvme_dev *dev, *next;
1478
1479 while (!kthread_should_stop()) {
1480 set_current_state(TASK_INTERRUPTIBLE);
1481 spin_lock(&dev_list_lock);
1482 list_for_each_entry_safe(dev, next, &dev_list, node) {
1483 int i;
1484 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1485
1486 /*
1487 * Skip controllers currently under reset.
1488 */
1489 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1490 continue;
1491
1492 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1493 csts & NVME_CSTS_CFS) {
1494 if (queue_work(nvme_workq, &dev->reset_work)) {
1495 dev_warn(dev->dev,
1496 "Failed status: %x, reset controller\n",
1497 readl(dev->bar + NVME_REG_CSTS));
1498 }
1499 continue;
1500 }
1501 for (i = 0; i < dev->queue_count; i++) {
1502 struct nvme_queue *nvmeq = dev->queues[i];
1503 if (!nvmeq)
1504 continue;
1505 spin_lock_irq(&nvmeq->q_lock);
1506 nvme_process_cq(nvmeq);
1507
1508 while (i == 0 && dev->ctrl.event_limit > 0) {
1509 if (nvme_submit_async_admin_req(dev))
1510 break;
1511 dev->ctrl.event_limit--;
1512 }
1513 spin_unlock_irq(&nvmeq->q_lock);
1514 }
1515 }
1516 spin_unlock(&dev_list_lock);
1517 schedule_timeout(round_jiffies_relative(HZ));
1518 }
1519 return 0;
1520 }
1521
1522 static int nvme_create_io_queues(struct nvme_dev *dev)
1523 {
1524 unsigned i;
1525 int ret = 0;
1526
1527 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1528 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1529 ret = -ENOMEM;
1530 break;
1531 }
1532 }
1533
1534 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1535 ret = nvme_create_queue(dev->queues[i], i);
1536 if (ret) {
1537 nvme_free_queues(dev, i);
1538 break;
1539 }
1540 }
1541
1542 /*
1543 * Ignore failing Create SQ/CQ commands, we can continue with less
1544 * than the desired aount of queues, and even a controller without
1545 * I/O queues an still be used to issue admin commands. This might
1546 * be useful to upgrade a buggy firmware for example.
1547 */
1548 return ret >= 0 ? 0 : ret;
1549 }
1550
1551 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1552 {
1553 u64 szu, size, offset;
1554 u32 cmbloc;
1555 resource_size_t bar_size;
1556 struct pci_dev *pdev = to_pci_dev(dev->dev);
1557 void __iomem *cmb;
1558 dma_addr_t dma_addr;
1559
1560 if (!use_cmb_sqes)
1561 return NULL;
1562
1563 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1564 if (!(NVME_CMB_SZ(dev->cmbsz)))
1565 return NULL;
1566
1567 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1568
1569 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1570 size = szu * NVME_CMB_SZ(dev->cmbsz);
1571 offset = szu * NVME_CMB_OFST(cmbloc);
1572 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1573
1574 if (offset > bar_size)
1575 return NULL;
1576
1577 /*
1578 * Controllers may support a CMB size larger than their BAR,
1579 * for example, due to being behind a bridge. Reduce the CMB to
1580 * the reported size of the BAR
1581 */
1582 if (size > bar_size - offset)
1583 size = bar_size - offset;
1584
1585 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1586 cmb = ioremap_wc(dma_addr, size);
1587 if (!cmb)
1588 return NULL;
1589
1590 dev->cmb_dma_addr = dma_addr;
1591 dev->cmb_size = size;
1592 return cmb;
1593 }
1594
1595 static inline void nvme_release_cmb(struct nvme_dev *dev)
1596 {
1597 if (dev->cmb) {
1598 iounmap(dev->cmb);
1599 dev->cmb = NULL;
1600 }
1601 }
1602
1603 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1604 {
1605 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1606 }
1607
1608 static int nvme_setup_io_queues(struct nvme_dev *dev)
1609 {
1610 struct nvme_queue *adminq = dev->queues[0];
1611 struct pci_dev *pdev = to_pci_dev(dev->dev);
1612 int result, i, vecs, nr_io_queues, size;
1613
1614 nr_io_queues = num_possible_cpus();
1615 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1616 if (result < 0)
1617 return result;
1618
1619 /*
1620 * Degraded controllers might return an error when setting the queue
1621 * count. We still want to be able to bring them online and offer
1622 * access to the admin queue, as that might be only way to fix them up.
1623 */
1624 if (result > 0) {
1625 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1626 nr_io_queues = 0;
1627 result = 0;
1628 }
1629
1630 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1631 result = nvme_cmb_qdepth(dev, nr_io_queues,
1632 sizeof(struct nvme_command));
1633 if (result > 0)
1634 dev->q_depth = result;
1635 else
1636 nvme_release_cmb(dev);
1637 }
1638
1639 size = db_bar_size(dev, nr_io_queues);
1640 if (size > 8192) {
1641 iounmap(dev->bar);
1642 do {
1643 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1644 if (dev->bar)
1645 break;
1646 if (!--nr_io_queues)
1647 return -ENOMEM;
1648 size = db_bar_size(dev, nr_io_queues);
1649 } while (1);
1650 dev->dbs = dev->bar + 4096;
1651 adminq->q_db = dev->dbs;
1652 }
1653
1654 /* Deregister the admin queue's interrupt */
1655 free_irq(dev->entry[0].vector, adminq);
1656
1657 /*
1658 * If we enable msix early due to not intx, disable it again before
1659 * setting up the full range we need.
1660 */
1661 if (!pdev->irq)
1662 pci_disable_msix(pdev);
1663
1664 for (i = 0; i < nr_io_queues; i++)
1665 dev->entry[i].entry = i;
1666 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1667 if (vecs < 0) {
1668 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1669 if (vecs < 0) {
1670 vecs = 1;
1671 } else {
1672 for (i = 0; i < vecs; i++)
1673 dev->entry[i].vector = i + pdev->irq;
1674 }
1675 }
1676
1677 /*
1678 * Should investigate if there's a performance win from allocating
1679 * more queues than interrupt vectors; it might allow the submission
1680 * path to scale better, even if the receive path is limited by the
1681 * number of interrupts.
1682 */
1683 nr_io_queues = vecs;
1684 dev->max_qid = nr_io_queues;
1685
1686 result = queue_request_irq(dev, adminq, adminq->irqname);
1687 if (result) {
1688 adminq->cq_vector = -1;
1689 goto free_queues;
1690 }
1691
1692 /* Free previously allocated queues that are no longer usable */
1693 nvme_free_queues(dev, nr_io_queues + 1);
1694 return nvme_create_io_queues(dev);
1695
1696 free_queues:
1697 nvme_free_queues(dev, 1);
1698 return result;
1699 }
1700
1701 static void nvme_set_irq_hints(struct nvme_dev *dev)
1702 {
1703 struct nvme_queue *nvmeq;
1704 int i;
1705
1706 for (i = 0; i < dev->online_queues; i++) {
1707 nvmeq = dev->queues[i];
1708
1709 if (!nvmeq->tags || !(*nvmeq->tags))
1710 continue;
1711
1712 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1713 blk_mq_tags_cpumask(*nvmeq->tags));
1714 }
1715 }
1716
1717 static void nvme_dev_scan(struct work_struct *work)
1718 {
1719 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1720
1721 if (!dev->tagset.tags)
1722 return;
1723 nvme_scan_namespaces(&dev->ctrl);
1724 nvme_set_irq_hints(dev);
1725 }
1726
1727 /*
1728 * Return: error value if an error occurred setting up the queues or calling
1729 * Identify Device. 0 if these succeeded, even if adding some of the
1730 * namespaces failed. At the moment, these failures are silent. TBD which
1731 * failures should be reported.
1732 */
1733 static int nvme_dev_add(struct nvme_dev *dev)
1734 {
1735 if (!dev->ctrl.tagset) {
1736 dev->tagset.ops = &nvme_mq_ops;
1737 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1738 dev->tagset.timeout = NVME_IO_TIMEOUT;
1739 dev->tagset.numa_node = dev_to_node(dev->dev);
1740 dev->tagset.queue_depth =
1741 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1742 dev->tagset.cmd_size = nvme_cmd_size(dev);
1743 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1744 dev->tagset.driver_data = dev;
1745
1746 if (blk_mq_alloc_tag_set(&dev->tagset))
1747 return 0;
1748 dev->ctrl.tagset = &dev->tagset;
1749 }
1750 queue_work(nvme_workq, &dev->scan_work);
1751 return 0;
1752 }
1753
1754 static int nvme_dev_map(struct nvme_dev *dev)
1755 {
1756 u64 cap;
1757 int bars, result = -ENOMEM;
1758 struct pci_dev *pdev = to_pci_dev(dev->dev);
1759
1760 if (pci_enable_device_mem(pdev))
1761 return result;
1762
1763 dev->entry[0].vector = pdev->irq;
1764 pci_set_master(pdev);
1765 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1766 if (!bars)
1767 goto disable_pci;
1768
1769 if (pci_request_selected_regions(pdev, bars, "nvme"))
1770 goto disable_pci;
1771
1772 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1773 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1774 goto disable;
1775
1776 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1777 if (!dev->bar)
1778 goto disable;
1779
1780 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1781 result = -ENODEV;
1782 goto unmap;
1783 }
1784
1785 /*
1786 * Some devices don't advertse INTx interrupts, pre-enable a single
1787 * MSIX vec for setup. We'll adjust this later.
1788 */
1789 if (!pdev->irq) {
1790 result = pci_enable_msix(pdev, dev->entry, 1);
1791 if (result < 0)
1792 goto unmap;
1793 }
1794
1795 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1796
1797 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1798 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1799 dev->dbs = dev->bar + 4096;
1800 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1801 dev->cmb = nvme_map_cmb(dev);
1802
1803 return 0;
1804
1805 unmap:
1806 iounmap(dev->bar);
1807 dev->bar = NULL;
1808 disable:
1809 pci_release_regions(pdev);
1810 disable_pci:
1811 pci_disable_device(pdev);
1812 return result;
1813 }
1814
1815 static void nvme_dev_unmap(struct nvme_dev *dev)
1816 {
1817 struct pci_dev *pdev = to_pci_dev(dev->dev);
1818
1819 if (pdev->msi_enabled)
1820 pci_disable_msi(pdev);
1821 else if (pdev->msix_enabled)
1822 pci_disable_msix(pdev);
1823
1824 if (dev->bar) {
1825 iounmap(dev->bar);
1826 dev->bar = NULL;
1827 pci_release_regions(pdev);
1828 }
1829
1830 if (pci_is_enabled(pdev))
1831 pci_disable_device(pdev);
1832 }
1833
1834 struct nvme_delq_ctx {
1835 struct task_struct *waiter;
1836 struct kthread_worker *worker;
1837 atomic_t refcount;
1838 };
1839
1840 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1841 {
1842 dq->waiter = current;
1843 mb();
1844
1845 for (;;) {
1846 set_current_state(TASK_KILLABLE);
1847 if (!atomic_read(&dq->refcount))
1848 break;
1849 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1850 fatal_signal_pending(current)) {
1851 /*
1852 * Disable the controller first since we can't trust it
1853 * at this point, but leave the admin queue enabled
1854 * until all queue deletion requests are flushed.
1855 * FIXME: This may take a while if there are more h/w
1856 * queues than admin tags.
1857 */
1858 set_current_state(TASK_RUNNING);
1859 nvme_disable_ctrl(&dev->ctrl,
1860 lo_hi_readq(dev->bar + NVME_REG_CAP));
1861 nvme_clear_queue(dev->queues[0]);
1862 flush_kthread_worker(dq->worker);
1863 nvme_disable_queue(dev, 0);
1864 return;
1865 }
1866 }
1867 set_current_state(TASK_RUNNING);
1868 }
1869
1870 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1871 {
1872 atomic_dec(&dq->refcount);
1873 if (dq->waiter)
1874 wake_up_process(dq->waiter);
1875 }
1876
1877 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1878 {
1879 atomic_inc(&dq->refcount);
1880 return dq;
1881 }
1882
1883 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1884 {
1885 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1886 nvme_put_dq(dq);
1887
1888 spin_lock_irq(&nvmeq->q_lock);
1889 nvme_process_cq(nvmeq);
1890 spin_unlock_irq(&nvmeq->q_lock);
1891 }
1892
1893 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1894 kthread_work_func_t fn)
1895 {
1896 struct request *req;
1897 struct nvme_command c;
1898
1899 memset(&c, 0, sizeof(c));
1900 c.delete_queue.opcode = opcode;
1901 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1902
1903 init_kthread_work(&nvmeq->cmdinfo.work, fn);
1904
1905 req = nvme_alloc_request(nvmeq->dev->ctrl.admin_q, &c, 0);
1906 if (IS_ERR(req))
1907 return PTR_ERR(req);
1908
1909 req->timeout = ADMIN_TIMEOUT;
1910 req->end_io_data = &nvmeq->cmdinfo;
1911 blk_execute_rq_nowait(req->q, NULL, req, 0, async_cmd_info_endio);
1912 return 0;
1913 }
1914
1915 static void nvme_del_cq_work_handler(struct kthread_work *work)
1916 {
1917 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1918 cmdinfo.work);
1919 nvme_del_queue_end(nvmeq);
1920 }
1921
1922 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1923 {
1924 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1925 nvme_del_cq_work_handler);
1926 }
1927
1928 static void nvme_del_sq_work_handler(struct kthread_work *work)
1929 {
1930 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1931 cmdinfo.work);
1932 int status = nvmeq->cmdinfo.status;
1933
1934 if (!status)
1935 status = nvme_delete_cq(nvmeq);
1936 if (status)
1937 nvme_del_queue_end(nvmeq);
1938 }
1939
1940 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1941 {
1942 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1943 nvme_del_sq_work_handler);
1944 }
1945
1946 static void nvme_del_queue_start(struct kthread_work *work)
1947 {
1948 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1949 cmdinfo.work);
1950 if (nvme_delete_sq(nvmeq))
1951 nvme_del_queue_end(nvmeq);
1952 }
1953
1954 static void nvme_disable_io_queues(struct nvme_dev *dev)
1955 {
1956 int i;
1957 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1958 struct nvme_delq_ctx dq;
1959 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1960 &worker, "nvme%d", dev->ctrl.instance);
1961
1962 if (IS_ERR(kworker_task)) {
1963 dev_err(dev->dev,
1964 "Failed to create queue del task\n");
1965 for (i = dev->queue_count - 1; i > 0; i--)
1966 nvme_disable_queue(dev, i);
1967 return;
1968 }
1969
1970 dq.waiter = NULL;
1971 atomic_set(&dq.refcount, 0);
1972 dq.worker = &worker;
1973 for (i = dev->queue_count - 1; i > 0; i--) {
1974 struct nvme_queue *nvmeq = dev->queues[i];
1975
1976 if (nvme_suspend_queue(nvmeq))
1977 continue;
1978 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1979 nvmeq->cmdinfo.worker = dq.worker;
1980 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1981 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1982 }
1983 nvme_wait_dq(&dq, dev);
1984 kthread_stop(kworker_task);
1985 }
1986
1987 static int nvme_dev_list_add(struct nvme_dev *dev)
1988 {
1989 bool start_thread = false;
1990
1991 spin_lock(&dev_list_lock);
1992 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1993 start_thread = true;
1994 nvme_thread = NULL;
1995 }
1996 list_add(&dev->node, &dev_list);
1997 spin_unlock(&dev_list_lock);
1998
1999 if (start_thread) {
2000 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2001 wake_up_all(&nvme_kthread_wait);
2002 } else
2003 wait_event_killable(nvme_kthread_wait, nvme_thread);
2004
2005 if (IS_ERR_OR_NULL(nvme_thread))
2006 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * Remove the node from the device list and check
2013 * for whether or not we need to stop the nvme_thread.
2014 */
2015 static void nvme_dev_list_remove(struct nvme_dev *dev)
2016 {
2017 struct task_struct *tmp = NULL;
2018
2019 spin_lock(&dev_list_lock);
2020 list_del_init(&dev->node);
2021 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2022 tmp = nvme_thread;
2023 nvme_thread = NULL;
2024 }
2025 spin_unlock(&dev_list_lock);
2026
2027 if (tmp)
2028 kthread_stop(tmp);
2029 }
2030
2031 static void nvme_freeze_queues(struct nvme_dev *dev)
2032 {
2033 struct nvme_ns *ns;
2034
2035 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2036 blk_mq_freeze_queue_start(ns->queue);
2037
2038 spin_lock_irq(ns->queue->queue_lock);
2039 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2040 spin_unlock_irq(ns->queue->queue_lock);
2041
2042 blk_mq_cancel_requeue_work(ns->queue);
2043 blk_mq_stop_hw_queues(ns->queue);
2044 }
2045 }
2046
2047 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2048 {
2049 struct nvme_ns *ns;
2050
2051 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2052 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2053 blk_mq_unfreeze_queue(ns->queue);
2054 blk_mq_start_stopped_hw_queues(ns->queue, true);
2055 blk_mq_kick_requeue_list(ns->queue);
2056 }
2057 }
2058
2059 static void nvme_dev_shutdown(struct nvme_dev *dev)
2060 {
2061 int i;
2062 u32 csts = -1;
2063
2064 nvme_dev_list_remove(dev);
2065
2066 mutex_lock(&dev->shutdown_lock);
2067 if (dev->bar) {
2068 nvme_freeze_queues(dev);
2069 csts = readl(dev->bar + NVME_REG_CSTS);
2070 }
2071 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2072 for (i = dev->queue_count - 1; i >= 0; i--) {
2073 struct nvme_queue *nvmeq = dev->queues[i];
2074 nvme_suspend_queue(nvmeq);
2075 }
2076 } else {
2077 nvme_disable_io_queues(dev);
2078 nvme_shutdown_ctrl(&dev->ctrl);
2079 nvme_disable_queue(dev, 0);
2080 }
2081 nvme_dev_unmap(dev);
2082
2083 for (i = dev->queue_count - 1; i >= 0; i--)
2084 nvme_clear_queue(dev->queues[i]);
2085 mutex_unlock(&dev->shutdown_lock);
2086 }
2087
2088 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2089 {
2090 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2091 PAGE_SIZE, PAGE_SIZE, 0);
2092 if (!dev->prp_page_pool)
2093 return -ENOMEM;
2094
2095 /* Optimisation for I/Os between 4k and 128k */
2096 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2097 256, 256, 0);
2098 if (!dev->prp_small_pool) {
2099 dma_pool_destroy(dev->prp_page_pool);
2100 return -ENOMEM;
2101 }
2102 return 0;
2103 }
2104
2105 static void nvme_release_prp_pools(struct nvme_dev *dev)
2106 {
2107 dma_pool_destroy(dev->prp_page_pool);
2108 dma_pool_destroy(dev->prp_small_pool);
2109 }
2110
2111 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2112 {
2113 struct nvme_dev *dev = to_nvme_dev(ctrl);
2114
2115 put_device(dev->dev);
2116 if (dev->tagset.tags)
2117 blk_mq_free_tag_set(&dev->tagset);
2118 if (dev->ctrl.admin_q)
2119 blk_put_queue(dev->ctrl.admin_q);
2120 kfree(dev->queues);
2121 kfree(dev->entry);
2122 kfree(dev);
2123 }
2124
2125 static void nvme_reset_work(struct work_struct *work)
2126 {
2127 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2128 int result;
2129
2130 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2131 goto out;
2132
2133 /*
2134 * If we're called to reset a live controller first shut it down before
2135 * moving on.
2136 */
2137 if (dev->bar)
2138 nvme_dev_shutdown(dev);
2139
2140 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2141
2142 result = nvme_dev_map(dev);
2143 if (result)
2144 goto out;
2145
2146 result = nvme_configure_admin_queue(dev);
2147 if (result)
2148 goto unmap;
2149
2150 nvme_init_queue(dev->queues[0], 0);
2151 result = nvme_alloc_admin_tags(dev);
2152 if (result)
2153 goto disable;
2154
2155 result = nvme_init_identify(&dev->ctrl);
2156 if (result)
2157 goto free_tags;
2158
2159 result = nvme_setup_io_queues(dev);
2160 if (result)
2161 goto free_tags;
2162
2163 dev->ctrl.event_limit = 1;
2164
2165 result = nvme_dev_list_add(dev);
2166 if (result)
2167 goto remove;
2168
2169 /*
2170 * Keep the controller around but remove all namespaces if we don't have
2171 * any working I/O queue.
2172 */
2173 if (dev->online_queues < 2) {
2174 dev_warn(dev->dev, "IO queues not created\n");
2175 nvme_remove_namespaces(&dev->ctrl);
2176 } else {
2177 nvme_unfreeze_queues(dev);
2178 nvme_dev_add(dev);
2179 }
2180
2181 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2182 return;
2183
2184 remove:
2185 nvme_dev_list_remove(dev);
2186 free_tags:
2187 nvme_dev_remove_admin(dev);
2188 blk_put_queue(dev->ctrl.admin_q);
2189 dev->ctrl.admin_q = NULL;
2190 dev->queues[0]->tags = NULL;
2191 disable:
2192 nvme_disable_queue(dev, 0);
2193 unmap:
2194 nvme_dev_unmap(dev);
2195 out:
2196 nvme_remove_dead_ctrl(dev);
2197 }
2198
2199 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2200 {
2201 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2202 struct pci_dev *pdev = to_pci_dev(dev->dev);
2203
2204 if (pci_get_drvdata(pdev))
2205 pci_stop_and_remove_bus_device_locked(pdev);
2206 nvme_put_ctrl(&dev->ctrl);
2207 }
2208
2209 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2210 {
2211 dev_warn(dev->dev, "Removing after probe failure\n");
2212 kref_get(&dev->ctrl.kref);
2213 if (!schedule_work(&dev->remove_work))
2214 nvme_put_ctrl(&dev->ctrl);
2215 }
2216
2217 static int nvme_reset(struct nvme_dev *dev)
2218 {
2219 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2220 return -ENODEV;
2221
2222 if (!queue_work(nvme_workq, &dev->reset_work))
2223 return -EBUSY;
2224
2225 flush_work(&dev->reset_work);
2226 return 0;
2227 }
2228
2229 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2230 {
2231 *val = readl(to_nvme_dev(ctrl)->bar + off);
2232 return 0;
2233 }
2234
2235 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2236 {
2237 writel(val, to_nvme_dev(ctrl)->bar + off);
2238 return 0;
2239 }
2240
2241 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2242 {
2243 *val = readq(to_nvme_dev(ctrl)->bar + off);
2244 return 0;
2245 }
2246
2247 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2248 {
2249 struct nvme_dev *dev = to_nvme_dev(ctrl);
2250
2251 return !dev->bar || dev->online_queues < 2;
2252 }
2253
2254 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2255 {
2256 return nvme_reset(to_nvme_dev(ctrl));
2257 }
2258
2259 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2260 .reg_read32 = nvme_pci_reg_read32,
2261 .reg_write32 = nvme_pci_reg_write32,
2262 .reg_read64 = nvme_pci_reg_read64,
2263 .io_incapable = nvme_pci_io_incapable,
2264 .reset_ctrl = nvme_pci_reset_ctrl,
2265 .free_ctrl = nvme_pci_free_ctrl,
2266 };
2267
2268 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2269 {
2270 int node, result = -ENOMEM;
2271 struct nvme_dev *dev;
2272
2273 node = dev_to_node(&pdev->dev);
2274 if (node == NUMA_NO_NODE)
2275 set_dev_node(&pdev->dev, 0);
2276
2277 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2278 if (!dev)
2279 return -ENOMEM;
2280 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2281 GFP_KERNEL, node);
2282 if (!dev->entry)
2283 goto free;
2284 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2285 GFP_KERNEL, node);
2286 if (!dev->queues)
2287 goto free;
2288
2289 dev->dev = get_device(&pdev->dev);
2290 pci_set_drvdata(pdev, dev);
2291
2292 INIT_LIST_HEAD(&dev->node);
2293 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2294 INIT_WORK(&dev->reset_work, nvme_reset_work);
2295 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2296 mutex_init(&dev->shutdown_lock);
2297
2298 result = nvme_setup_prp_pools(dev);
2299 if (result)
2300 goto put_pci;
2301
2302 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2303 id->driver_data);
2304 if (result)
2305 goto release_pools;
2306
2307 queue_work(nvme_workq, &dev->reset_work);
2308 return 0;
2309
2310 release_pools:
2311 nvme_release_prp_pools(dev);
2312 put_pci:
2313 put_device(dev->dev);
2314 free:
2315 kfree(dev->queues);
2316 kfree(dev->entry);
2317 kfree(dev);
2318 return result;
2319 }
2320
2321 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2322 {
2323 struct nvme_dev *dev = pci_get_drvdata(pdev);
2324
2325 if (prepare)
2326 nvme_dev_shutdown(dev);
2327 else
2328 queue_work(nvme_workq, &dev->reset_work);
2329 }
2330
2331 static void nvme_shutdown(struct pci_dev *pdev)
2332 {
2333 struct nvme_dev *dev = pci_get_drvdata(pdev);
2334 nvme_dev_shutdown(dev);
2335 }
2336
2337 static void nvme_remove(struct pci_dev *pdev)
2338 {
2339 struct nvme_dev *dev = pci_get_drvdata(pdev);
2340
2341 spin_lock(&dev_list_lock);
2342 list_del_init(&dev->node);
2343 spin_unlock(&dev_list_lock);
2344
2345 pci_set_drvdata(pdev, NULL);
2346 flush_work(&dev->reset_work);
2347 flush_work(&dev->scan_work);
2348 nvme_remove_namespaces(&dev->ctrl);
2349 nvme_uninit_ctrl(&dev->ctrl);
2350 nvme_dev_shutdown(dev);
2351 nvme_dev_remove_admin(dev);
2352 nvme_free_queues(dev, 0);
2353 nvme_release_cmb(dev);
2354 nvme_release_prp_pools(dev);
2355 nvme_put_ctrl(&dev->ctrl);
2356 }
2357
2358 /* These functions are yet to be implemented */
2359 #define nvme_error_detected NULL
2360 #define nvme_dump_registers NULL
2361 #define nvme_link_reset NULL
2362 #define nvme_slot_reset NULL
2363 #define nvme_error_resume NULL
2364
2365 #ifdef CONFIG_PM_SLEEP
2366 static int nvme_suspend(struct device *dev)
2367 {
2368 struct pci_dev *pdev = to_pci_dev(dev);
2369 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2370
2371 nvme_dev_shutdown(ndev);
2372 return 0;
2373 }
2374
2375 static int nvme_resume(struct device *dev)
2376 {
2377 struct pci_dev *pdev = to_pci_dev(dev);
2378 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2379
2380 queue_work(nvme_workq, &ndev->reset_work);
2381 return 0;
2382 }
2383 #endif
2384
2385 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2386
2387 static const struct pci_error_handlers nvme_err_handler = {
2388 .error_detected = nvme_error_detected,
2389 .mmio_enabled = nvme_dump_registers,
2390 .link_reset = nvme_link_reset,
2391 .slot_reset = nvme_slot_reset,
2392 .resume = nvme_error_resume,
2393 .reset_notify = nvme_reset_notify,
2394 };
2395
2396 /* Move to pci_ids.h later */
2397 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2398
2399 static const struct pci_device_id nvme_id_table[] = {
2400 { PCI_VDEVICE(INTEL, 0x0953),
2401 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2402 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2403 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2404 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2405 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2406 { 0, }
2407 };
2408 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2409
2410 static struct pci_driver nvme_driver = {
2411 .name = "nvme",
2412 .id_table = nvme_id_table,
2413 .probe = nvme_probe,
2414 .remove = nvme_remove,
2415 .shutdown = nvme_shutdown,
2416 .driver = {
2417 .pm = &nvme_dev_pm_ops,
2418 },
2419 .err_handler = &nvme_err_handler,
2420 };
2421
2422 static int __init nvme_init(void)
2423 {
2424 int result;
2425
2426 init_waitqueue_head(&nvme_kthread_wait);
2427
2428 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2429 if (!nvme_workq)
2430 return -ENOMEM;
2431
2432 result = nvme_core_init();
2433 if (result < 0)
2434 goto kill_workq;
2435
2436 result = pci_register_driver(&nvme_driver);
2437 if (result)
2438 goto core_exit;
2439 return 0;
2440
2441 core_exit:
2442 nvme_core_exit();
2443 kill_workq:
2444 destroy_workqueue(nvme_workq);
2445 return result;
2446 }
2447
2448 static void __exit nvme_exit(void)
2449 {
2450 pci_unregister_driver(&nvme_driver);
2451 nvme_core_exit();
2452 destroy_workqueue(nvme_workq);
2453 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2454 _nvme_check_size();
2455 }
2456
2457 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2458 MODULE_LICENSE("GPL");
2459 MODULE_VERSION("1.0");
2460 module_init(nvme_init);
2461 module_exit(nvme_exit);