]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/rdma.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS 256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
44
45 struct nvme_rdma_device {
46 struct ib_device *dev;
47 struct ib_pd *pd;
48 struct kref ref;
49 struct list_head entry;
50 };
51
52 struct nvme_rdma_qe {
53 struct ib_cqe cqe;
54 void *data;
55 u64 dma;
56 };
57
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60 struct nvme_request req;
61 struct ib_mr *mr;
62 struct nvme_rdma_qe sqe;
63 union nvme_result result;
64 __le16 status;
65 refcount_t ref;
66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67 u32 num_sge;
68 int nents;
69 bool inline_data;
70 struct ib_reg_wr reg_wr;
71 struct ib_cqe reg_cqe;
72 struct nvme_rdma_queue *queue;
73 struct sg_table sg_table;
74 struct scatterlist first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78 NVME_RDMA_Q_ALLOCATED = 0,
79 NVME_RDMA_Q_LIVE = 1,
80 NVME_RDMA_Q_TR_READY = 2,
81 };
82
83 struct nvme_rdma_queue {
84 struct nvme_rdma_qe *rsp_ring;
85 int queue_size;
86 size_t cmnd_capsule_len;
87 struct nvme_rdma_ctrl *ctrl;
88 struct nvme_rdma_device *device;
89 struct ib_cq *ib_cq;
90 struct ib_qp *qp;
91
92 unsigned long flags;
93 struct rdma_cm_id *cm_id;
94 int cm_error;
95 struct completion cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99 /* read only in the hot path */
100 struct nvme_rdma_queue *queues;
101
102 /* other member variables */
103 struct blk_mq_tag_set tag_set;
104 struct work_struct err_work;
105
106 struct nvme_rdma_qe async_event_sqe;
107
108 struct delayed_work reconnect_work;
109
110 struct list_head list;
111
112 struct blk_mq_tag_set admin_tag_set;
113 struct nvme_rdma_device *device;
114
115 u32 max_fr_pages;
116
117 struct sockaddr_storage addr;
118 struct sockaddr_storage src_addr;
119
120 struct nvme_ctrl ctrl;
121 };
122
123 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
124 {
125 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
126 }
127
128 static LIST_HEAD(device_list);
129 static DEFINE_MUTEX(device_list_mutex);
130
131 static LIST_HEAD(nvme_rdma_ctrl_list);
132 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
133
134 /*
135 * Disabling this option makes small I/O goes faster, but is fundamentally
136 * unsafe. With it turned off we will have to register a global rkey that
137 * allows read and write access to all physical memory.
138 */
139 static bool register_always = true;
140 module_param(register_always, bool, 0444);
141 MODULE_PARM_DESC(register_always,
142 "Use memory registration even for contiguous memory regions");
143
144 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
145 struct rdma_cm_event *event);
146 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
147
148 static const struct blk_mq_ops nvme_rdma_mq_ops;
149 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
150
151 /* XXX: really should move to a generic header sooner or later.. */
152 static inline void put_unaligned_le24(u32 val, u8 *p)
153 {
154 *p++ = val;
155 *p++ = val >> 8;
156 *p++ = val >> 16;
157 }
158
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
164 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
165 {
166 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
167 }
168
169 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
170 size_t capsule_size, enum dma_data_direction dir)
171 {
172 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
173 kfree(qe->data);
174 }
175
176 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 qe->data = kzalloc(capsule_size, GFP_KERNEL);
180 if (!qe->data)
181 return -ENOMEM;
182
183 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
184 if (ib_dma_mapping_error(ibdev, qe->dma)) {
185 kfree(qe->data);
186 return -ENOMEM;
187 }
188
189 return 0;
190 }
191
192 static void nvme_rdma_free_ring(struct ib_device *ibdev,
193 struct nvme_rdma_qe *ring, size_t ib_queue_size,
194 size_t capsule_size, enum dma_data_direction dir)
195 {
196 int i;
197
198 for (i = 0; i < ib_queue_size; i++)
199 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
200 kfree(ring);
201 }
202
203 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
204 size_t ib_queue_size, size_t capsule_size,
205 enum dma_data_direction dir)
206 {
207 struct nvme_rdma_qe *ring;
208 int i;
209
210 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
211 if (!ring)
212 return NULL;
213
214 for (i = 0; i < ib_queue_size; i++) {
215 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
216 goto out_free_ring;
217 }
218
219 return ring;
220
221 out_free_ring:
222 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
223 return NULL;
224 }
225
226 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
227 {
228 pr_debug("QP event %s (%d)\n",
229 ib_event_msg(event->event), event->event);
230
231 }
232
233 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
234 {
235 wait_for_completion_interruptible_timeout(&queue->cm_done,
236 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
237 return queue->cm_error;
238 }
239
240 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
241 {
242 struct nvme_rdma_device *dev = queue->device;
243 struct ib_qp_init_attr init_attr;
244 int ret;
245
246 memset(&init_attr, 0, sizeof(init_attr));
247 init_attr.event_handler = nvme_rdma_qp_event;
248 /* +1 for drain */
249 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
250 /* +1 for drain */
251 init_attr.cap.max_recv_wr = queue->queue_size + 1;
252 init_attr.cap.max_recv_sge = 1;
253 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
254 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
255 init_attr.qp_type = IB_QPT_RC;
256 init_attr.send_cq = queue->ib_cq;
257 init_attr.recv_cq = queue->ib_cq;
258
259 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
260
261 queue->qp = queue->cm_id->qp;
262 return ret;
263 }
264
265 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
266 struct request *rq, unsigned int hctx_idx)
267 {
268 struct nvme_rdma_ctrl *ctrl = set->driver_data;
269 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
270 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
271 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
272 struct nvme_rdma_device *dev = queue->device;
273
274 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
275 DMA_TO_DEVICE);
276 }
277
278 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
279 struct request *rq, unsigned int hctx_idx,
280 unsigned int numa_node)
281 {
282 struct nvme_rdma_ctrl *ctrl = set->driver_data;
283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
285 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
286 struct nvme_rdma_device *dev = queue->device;
287 struct ib_device *ibdev = dev->dev;
288 int ret;
289
290 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
291 DMA_TO_DEVICE);
292 if (ret)
293 return ret;
294
295 req->queue = queue;
296
297 return 0;
298 }
299
300 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
301 unsigned int hctx_idx)
302 {
303 struct nvme_rdma_ctrl *ctrl = data;
304 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
305
306 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
307
308 hctx->driver_data = queue;
309 return 0;
310 }
311
312 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
313 unsigned int hctx_idx)
314 {
315 struct nvme_rdma_ctrl *ctrl = data;
316 struct nvme_rdma_queue *queue = &ctrl->queues[0];
317
318 BUG_ON(hctx_idx != 0);
319
320 hctx->driver_data = queue;
321 return 0;
322 }
323
324 static void nvme_rdma_free_dev(struct kref *ref)
325 {
326 struct nvme_rdma_device *ndev =
327 container_of(ref, struct nvme_rdma_device, ref);
328
329 mutex_lock(&device_list_mutex);
330 list_del(&ndev->entry);
331 mutex_unlock(&device_list_mutex);
332
333 ib_dealloc_pd(ndev->pd);
334 kfree(ndev);
335 }
336
337 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
338 {
339 kref_put(&dev->ref, nvme_rdma_free_dev);
340 }
341
342 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
343 {
344 return kref_get_unless_zero(&dev->ref);
345 }
346
347 static struct nvme_rdma_device *
348 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
349 {
350 struct nvme_rdma_device *ndev;
351
352 mutex_lock(&device_list_mutex);
353 list_for_each_entry(ndev, &device_list, entry) {
354 if (ndev->dev->node_guid == cm_id->device->node_guid &&
355 nvme_rdma_dev_get(ndev))
356 goto out_unlock;
357 }
358
359 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
360 if (!ndev)
361 goto out_err;
362
363 ndev->dev = cm_id->device;
364 kref_init(&ndev->ref);
365
366 ndev->pd = ib_alloc_pd(ndev->dev,
367 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
368 if (IS_ERR(ndev->pd))
369 goto out_free_dev;
370
371 if (!(ndev->dev->attrs.device_cap_flags &
372 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
373 dev_err(&ndev->dev->dev,
374 "Memory registrations not supported.\n");
375 goto out_free_pd;
376 }
377
378 list_add(&ndev->entry, &device_list);
379 out_unlock:
380 mutex_unlock(&device_list_mutex);
381 return ndev;
382
383 out_free_pd:
384 ib_dealloc_pd(ndev->pd);
385 out_free_dev:
386 kfree(ndev);
387 out_err:
388 mutex_unlock(&device_list_mutex);
389 return NULL;
390 }
391
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
393 {
394 struct nvme_rdma_device *dev;
395 struct ib_device *ibdev;
396
397 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
398 return;
399
400 dev = queue->device;
401 ibdev = dev->dev;
402
403 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
404
405 /*
406 * The cm_id object might have been destroyed during RDMA connection
407 * establishment error flow to avoid getting other cma events, thus
408 * the destruction of the QP shouldn't use rdma_cm API.
409 */
410 ib_destroy_qp(queue->qp);
411 ib_free_cq(queue->ib_cq);
412
413 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
414 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
415
416 nvme_rdma_dev_put(dev);
417 }
418
419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
420 {
421 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
422 ibdev->attrs.max_fast_reg_page_list_len);
423 }
424
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
426 {
427 struct ib_device *ibdev;
428 const int send_wr_factor = 3; /* MR, SEND, INV */
429 const int cq_factor = send_wr_factor + 1; /* + RECV */
430 int comp_vector, idx = nvme_rdma_queue_idx(queue);
431 int ret;
432
433 queue->device = nvme_rdma_find_get_device(queue->cm_id);
434 if (!queue->device) {
435 dev_err(queue->cm_id->device->dev.parent,
436 "no client data found!\n");
437 return -ECONNREFUSED;
438 }
439 ibdev = queue->device->dev;
440
441 /*
442 * Spread I/O queues completion vectors according their queue index.
443 * Admin queues can always go on completion vector 0.
444 */
445 comp_vector = idx == 0 ? idx : idx - 1;
446
447 /* +1 for ib_stop_cq */
448 queue->ib_cq = ib_alloc_cq(ibdev, queue,
449 cq_factor * queue->queue_size + 1,
450 comp_vector, IB_POLL_SOFTIRQ);
451 if (IS_ERR(queue->ib_cq)) {
452 ret = PTR_ERR(queue->ib_cq);
453 goto out_put_dev;
454 }
455
456 ret = nvme_rdma_create_qp(queue, send_wr_factor);
457 if (ret)
458 goto out_destroy_ib_cq;
459
460 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
461 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
462 if (!queue->rsp_ring) {
463 ret = -ENOMEM;
464 goto out_destroy_qp;
465 }
466
467 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
468 queue->queue_size,
469 IB_MR_TYPE_MEM_REG,
470 nvme_rdma_get_max_fr_pages(ibdev));
471 if (ret) {
472 dev_err(queue->ctrl->ctrl.device,
473 "failed to initialize MR pool sized %d for QID %d\n",
474 queue->queue_size, idx);
475 goto out_destroy_ring;
476 }
477
478 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
479
480 return 0;
481
482 out_destroy_ring:
483 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
484 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
485 out_destroy_qp:
486 rdma_destroy_qp(queue->cm_id);
487 out_destroy_ib_cq:
488 ib_free_cq(queue->ib_cq);
489 out_put_dev:
490 nvme_rdma_dev_put(queue->device);
491 return ret;
492 }
493
494 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
495 int idx, size_t queue_size)
496 {
497 struct nvme_rdma_queue *queue;
498 struct sockaddr *src_addr = NULL;
499 int ret;
500
501 queue = &ctrl->queues[idx];
502 queue->ctrl = ctrl;
503 init_completion(&queue->cm_done);
504
505 if (idx > 0)
506 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
507 else
508 queue->cmnd_capsule_len = sizeof(struct nvme_command);
509
510 queue->queue_size = queue_size;
511
512 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
513 RDMA_PS_TCP, IB_QPT_RC);
514 if (IS_ERR(queue->cm_id)) {
515 dev_info(ctrl->ctrl.device,
516 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
517 return PTR_ERR(queue->cm_id);
518 }
519
520 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
521 src_addr = (struct sockaddr *)&ctrl->src_addr;
522
523 queue->cm_error = -ETIMEDOUT;
524 ret = rdma_resolve_addr(queue->cm_id, src_addr,
525 (struct sockaddr *)&ctrl->addr,
526 NVME_RDMA_CONNECT_TIMEOUT_MS);
527 if (ret) {
528 dev_info(ctrl->ctrl.device,
529 "rdma_resolve_addr failed (%d).\n", ret);
530 goto out_destroy_cm_id;
531 }
532
533 ret = nvme_rdma_wait_for_cm(queue);
534 if (ret) {
535 dev_info(ctrl->ctrl.device,
536 "rdma connection establishment failed (%d)\n", ret);
537 goto out_destroy_cm_id;
538 }
539
540 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
541
542 return 0;
543
544 out_destroy_cm_id:
545 rdma_destroy_id(queue->cm_id);
546 nvme_rdma_destroy_queue_ib(queue);
547 return ret;
548 }
549
550 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
551 {
552 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
553 return;
554
555 rdma_disconnect(queue->cm_id);
556 ib_drain_qp(queue->qp);
557 }
558
559 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
560 {
561 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
562 return;
563
564 if (nvme_rdma_queue_idx(queue) == 0) {
565 nvme_rdma_free_qe(queue->device->dev,
566 &queue->ctrl->async_event_sqe,
567 sizeof(struct nvme_command), DMA_TO_DEVICE);
568 }
569
570 nvme_rdma_destroy_queue_ib(queue);
571 rdma_destroy_id(queue->cm_id);
572 }
573
574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
575 {
576 int i;
577
578 for (i = 1; i < ctrl->ctrl.queue_count; i++)
579 nvme_rdma_free_queue(&ctrl->queues[i]);
580 }
581
582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584 int i;
585
586 for (i = 1; i < ctrl->ctrl.queue_count; i++)
587 nvme_rdma_stop_queue(&ctrl->queues[i]);
588 }
589
590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
591 {
592 int ret;
593
594 if (idx)
595 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
596 else
597 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
598
599 if (!ret)
600 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
601 else
602 dev_info(ctrl->ctrl.device,
603 "failed to connect queue: %d ret=%d\n", idx, ret);
604 return ret;
605 }
606
607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
608 {
609 int i, ret = 0;
610
611 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
612 ret = nvme_rdma_start_queue(ctrl, i);
613 if (ret)
614 goto out_stop_queues;
615 }
616
617 return 0;
618
619 out_stop_queues:
620 for (i--; i >= 1; i--)
621 nvme_rdma_stop_queue(&ctrl->queues[i]);
622 return ret;
623 }
624
625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
628 struct ib_device *ibdev = ctrl->device->dev;
629 unsigned int nr_io_queues;
630 int i, ret;
631
632 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
633
634 /*
635 * we map queues according to the device irq vectors for
636 * optimal locality so we don't need more queues than
637 * completion vectors.
638 */
639 nr_io_queues = min_t(unsigned int, nr_io_queues,
640 ibdev->num_comp_vectors);
641
642 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
643 if (ret)
644 return ret;
645
646 ctrl->ctrl.queue_count = nr_io_queues + 1;
647 if (ctrl->ctrl.queue_count < 2)
648 return 0;
649
650 dev_info(ctrl->ctrl.device,
651 "creating %d I/O queues.\n", nr_io_queues);
652
653 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
654 ret = nvme_rdma_alloc_queue(ctrl, i,
655 ctrl->ctrl.sqsize + 1);
656 if (ret)
657 goto out_free_queues;
658 }
659
660 return 0;
661
662 out_free_queues:
663 for (i--; i >= 1; i--)
664 nvme_rdma_free_queue(&ctrl->queues[i]);
665
666 return ret;
667 }
668
669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
670 struct blk_mq_tag_set *set)
671 {
672 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
673
674 blk_mq_free_tag_set(set);
675 nvme_rdma_dev_put(ctrl->device);
676 }
677
678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
679 bool admin)
680 {
681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682 struct blk_mq_tag_set *set;
683 int ret;
684
685 if (admin) {
686 set = &ctrl->admin_tag_set;
687 memset(set, 0, sizeof(*set));
688 set->ops = &nvme_rdma_admin_mq_ops;
689 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
690 set->reserved_tags = 2; /* connect + keep-alive */
691 set->numa_node = NUMA_NO_NODE;
692 set->cmd_size = sizeof(struct nvme_rdma_request) +
693 SG_CHUNK_SIZE * sizeof(struct scatterlist);
694 set->driver_data = ctrl;
695 set->nr_hw_queues = 1;
696 set->timeout = ADMIN_TIMEOUT;
697 set->flags = BLK_MQ_F_NO_SCHED;
698 } else {
699 set = &ctrl->tag_set;
700 memset(set, 0, sizeof(*set));
701 set->ops = &nvme_rdma_mq_ops;
702 set->queue_depth = nctrl->opts->queue_size;
703 set->reserved_tags = 1; /* fabric connect */
704 set->numa_node = NUMA_NO_NODE;
705 set->flags = BLK_MQ_F_SHOULD_MERGE;
706 set->cmd_size = sizeof(struct nvme_rdma_request) +
707 SG_CHUNK_SIZE * sizeof(struct scatterlist);
708 set->driver_data = ctrl;
709 set->nr_hw_queues = nctrl->queue_count - 1;
710 set->timeout = NVME_IO_TIMEOUT;
711 }
712
713 ret = blk_mq_alloc_tag_set(set);
714 if (ret)
715 goto out;
716
717 /*
718 * We need a reference on the device as long as the tag_set is alive,
719 * as the MRs in the request structures need a valid ib_device.
720 */
721 ret = nvme_rdma_dev_get(ctrl->device);
722 if (!ret) {
723 ret = -EINVAL;
724 goto out_free_tagset;
725 }
726
727 return set;
728
729 out_free_tagset:
730 blk_mq_free_tag_set(set);
731 out:
732 return ERR_PTR(ret);
733 }
734
735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
736 bool remove)
737 {
738 nvme_rdma_stop_queue(&ctrl->queues[0]);
739 if (remove) {
740 blk_cleanup_queue(ctrl->ctrl.admin_q);
741 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
742 }
743 nvme_rdma_free_queue(&ctrl->queues[0]);
744 }
745
746 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
747 bool new)
748 {
749 int error;
750
751 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
752 if (error)
753 return error;
754
755 ctrl->device = ctrl->queues[0].device;
756
757 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
758
759 if (new) {
760 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
761 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
762 error = PTR_ERR(ctrl->ctrl.admin_tagset);
763 goto out_free_queue;
764 }
765
766 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
767 if (IS_ERR(ctrl->ctrl.admin_q)) {
768 error = PTR_ERR(ctrl->ctrl.admin_q);
769 goto out_free_tagset;
770 }
771 }
772
773 error = nvme_rdma_start_queue(ctrl, 0);
774 if (error)
775 goto out_cleanup_queue;
776
777 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
778 &ctrl->ctrl.cap);
779 if (error) {
780 dev_err(ctrl->ctrl.device,
781 "prop_get NVME_REG_CAP failed\n");
782 goto out_cleanup_queue;
783 }
784
785 ctrl->ctrl.sqsize =
786 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
787
788 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
789 if (error)
790 goto out_cleanup_queue;
791
792 ctrl->ctrl.max_hw_sectors =
793 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
794
795 error = nvme_init_identify(&ctrl->ctrl);
796 if (error)
797 goto out_cleanup_queue;
798
799 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
800 &ctrl->async_event_sqe, sizeof(struct nvme_command),
801 DMA_TO_DEVICE);
802 if (error)
803 goto out_cleanup_queue;
804
805 return 0;
806
807 out_cleanup_queue:
808 if (new)
809 blk_cleanup_queue(ctrl->ctrl.admin_q);
810 out_free_tagset:
811 if (new)
812 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
813 out_free_queue:
814 nvme_rdma_free_queue(&ctrl->queues[0]);
815 return error;
816 }
817
818 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
819 bool remove)
820 {
821 nvme_rdma_stop_io_queues(ctrl);
822 if (remove) {
823 blk_cleanup_queue(ctrl->ctrl.connect_q);
824 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
825 }
826 nvme_rdma_free_io_queues(ctrl);
827 }
828
829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
830 {
831 int ret;
832
833 ret = nvme_rdma_alloc_io_queues(ctrl);
834 if (ret)
835 return ret;
836
837 if (new) {
838 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
839 if (IS_ERR(ctrl->ctrl.tagset)) {
840 ret = PTR_ERR(ctrl->ctrl.tagset);
841 goto out_free_io_queues;
842 }
843
844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
845 if (IS_ERR(ctrl->ctrl.connect_q)) {
846 ret = PTR_ERR(ctrl->ctrl.connect_q);
847 goto out_free_tag_set;
848 }
849 } else {
850 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
851 ctrl->ctrl.queue_count - 1);
852 }
853
854 ret = nvme_rdma_start_io_queues(ctrl);
855 if (ret)
856 goto out_cleanup_connect_q;
857
858 return 0;
859
860 out_cleanup_connect_q:
861 if (new)
862 blk_cleanup_queue(ctrl->ctrl.connect_q);
863 out_free_tag_set:
864 if (new)
865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 out_free_io_queues:
867 nvme_rdma_free_io_queues(ctrl);
868 return ret;
869 }
870
871 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
872 {
873 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
874
875 if (list_empty(&ctrl->list))
876 goto free_ctrl;
877
878 mutex_lock(&nvme_rdma_ctrl_mutex);
879 list_del(&ctrl->list);
880 mutex_unlock(&nvme_rdma_ctrl_mutex);
881
882 kfree(ctrl->queues);
883 nvmf_free_options(nctrl->opts);
884 free_ctrl:
885 kfree(ctrl);
886 }
887
888 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
889 {
890 /* If we are resetting/deleting then do nothing */
891 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
892 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
893 ctrl->ctrl.state == NVME_CTRL_LIVE);
894 return;
895 }
896
897 if (nvmf_should_reconnect(&ctrl->ctrl)) {
898 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
899 ctrl->ctrl.opts->reconnect_delay);
900 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
901 ctrl->ctrl.opts->reconnect_delay * HZ);
902 } else {
903 dev_info(ctrl->ctrl.device, "Removing controller...\n");
904 nvme_delete_ctrl(&ctrl->ctrl);
905 }
906 }
907
908 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
909 {
910 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
911 struct nvme_rdma_ctrl, reconnect_work);
912 bool changed;
913 int ret;
914
915 ++ctrl->ctrl.nr_reconnects;
916
917 ret = nvme_rdma_configure_admin_queue(ctrl, false);
918 if (ret)
919 goto requeue;
920
921 if (ctrl->ctrl.queue_count > 1) {
922 ret = nvme_rdma_configure_io_queues(ctrl, false);
923 if (ret)
924 goto destroy_admin;
925 }
926
927 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
928 if (!changed) {
929 /* state change failure is ok if we're in DELETING state */
930 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
931 return;
932 }
933
934 nvme_start_ctrl(&ctrl->ctrl);
935
936 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
937 ctrl->ctrl.nr_reconnects);
938
939 ctrl->ctrl.nr_reconnects = 0;
940
941 return;
942
943 destroy_admin:
944 nvme_rdma_destroy_admin_queue(ctrl, false);
945 requeue:
946 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
947 ctrl->ctrl.nr_reconnects);
948 nvme_rdma_reconnect_or_remove(ctrl);
949 }
950
951 static void nvme_rdma_error_recovery_work(struct work_struct *work)
952 {
953 struct nvme_rdma_ctrl *ctrl = container_of(work,
954 struct nvme_rdma_ctrl, err_work);
955
956 nvme_stop_keep_alive(&ctrl->ctrl);
957
958 if (ctrl->ctrl.queue_count > 1) {
959 nvme_stop_queues(&ctrl->ctrl);
960 blk_mq_tagset_busy_iter(&ctrl->tag_set,
961 nvme_cancel_request, &ctrl->ctrl);
962 nvme_rdma_destroy_io_queues(ctrl, false);
963 }
964
965 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
966 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
967 nvme_cancel_request, &ctrl->ctrl);
968 nvme_rdma_destroy_admin_queue(ctrl, false);
969
970 /*
971 * queues are not a live anymore, so restart the queues to fail fast
972 * new IO
973 */
974 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
975 nvme_start_queues(&ctrl->ctrl);
976
977 nvme_rdma_reconnect_or_remove(ctrl);
978 }
979
980 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
981 {
982 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
983 return;
984
985 queue_work(nvme_wq, &ctrl->err_work);
986 }
987
988 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
989 const char *op)
990 {
991 struct nvme_rdma_queue *queue = cq->cq_context;
992 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
993
994 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
995 dev_info(ctrl->ctrl.device,
996 "%s for CQE 0x%p failed with status %s (%d)\n",
997 op, wc->wr_cqe,
998 ib_wc_status_msg(wc->status), wc->status);
999 nvme_rdma_error_recovery(ctrl);
1000 }
1001
1002 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1003 {
1004 if (unlikely(wc->status != IB_WC_SUCCESS))
1005 nvme_rdma_wr_error(cq, wc, "MEMREG");
1006 }
1007
1008 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010 struct nvme_rdma_request *req =
1011 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1012 struct request *rq = blk_mq_rq_from_pdu(req);
1013
1014 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1016 return;
1017 }
1018
1019 if (refcount_dec_and_test(&req->ref))
1020 nvme_end_request(rq, req->status, req->result);
1021
1022 }
1023
1024 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1025 struct nvme_rdma_request *req)
1026 {
1027 struct ib_send_wr *bad_wr;
1028 struct ib_send_wr wr = {
1029 .opcode = IB_WR_LOCAL_INV,
1030 .next = NULL,
1031 .num_sge = 0,
1032 .send_flags = IB_SEND_SIGNALED,
1033 .ex.invalidate_rkey = req->mr->rkey,
1034 };
1035
1036 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1037 wr.wr_cqe = &req->reg_cqe;
1038
1039 return ib_post_send(queue->qp, &wr, &bad_wr);
1040 }
1041
1042 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1043 struct request *rq)
1044 {
1045 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1046 struct nvme_rdma_device *dev = queue->device;
1047 struct ib_device *ibdev = dev->dev;
1048
1049 if (!blk_rq_bytes(rq))
1050 return;
1051
1052 if (req->mr) {
1053 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1054 req->mr = NULL;
1055 }
1056
1057 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1058 req->nents, rq_data_dir(rq) ==
1059 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1060
1061 nvme_cleanup_cmd(rq);
1062 sg_free_table_chained(&req->sg_table, true);
1063 }
1064
1065 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1066 {
1067 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1068
1069 sg->addr = 0;
1070 put_unaligned_le24(0, sg->length);
1071 put_unaligned_le32(0, sg->key);
1072 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1073 return 0;
1074 }
1075
1076 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1077 struct nvme_rdma_request *req, struct nvme_command *c)
1078 {
1079 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1080
1081 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1082 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1083 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1084
1085 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1086 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1087 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1088
1089 req->inline_data = true;
1090 req->num_sge++;
1091 return 0;
1092 }
1093
1094 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1095 struct nvme_rdma_request *req, struct nvme_command *c)
1096 {
1097 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1098
1099 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1100 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1101 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1102 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1103 return 0;
1104 }
1105
1106 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1107 struct nvme_rdma_request *req, struct nvme_command *c,
1108 int count)
1109 {
1110 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1111 int nr;
1112
1113 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1114 if (WARN_ON_ONCE(!req->mr))
1115 return -EAGAIN;
1116
1117 /*
1118 * Align the MR to a 4K page size to match the ctrl page size and
1119 * the block virtual boundary.
1120 */
1121 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1122 if (unlikely(nr < count)) {
1123 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1124 req->mr = NULL;
1125 if (nr < 0)
1126 return nr;
1127 return -EINVAL;
1128 }
1129
1130 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1131
1132 req->reg_cqe.done = nvme_rdma_memreg_done;
1133 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1134 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1135 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1136 req->reg_wr.wr.num_sge = 0;
1137 req->reg_wr.mr = req->mr;
1138 req->reg_wr.key = req->mr->rkey;
1139 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1140 IB_ACCESS_REMOTE_READ |
1141 IB_ACCESS_REMOTE_WRITE;
1142
1143 sg->addr = cpu_to_le64(req->mr->iova);
1144 put_unaligned_le24(req->mr->length, sg->length);
1145 put_unaligned_le32(req->mr->rkey, sg->key);
1146 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1147 NVME_SGL_FMT_INVALIDATE;
1148
1149 return 0;
1150 }
1151
1152 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1153 struct request *rq, struct nvme_command *c)
1154 {
1155 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1156 struct nvme_rdma_device *dev = queue->device;
1157 struct ib_device *ibdev = dev->dev;
1158 int count, ret;
1159
1160 req->num_sge = 1;
1161 req->inline_data = false;
1162 refcount_set(&req->ref, 2); /* send and recv completions */
1163
1164 c->common.flags |= NVME_CMD_SGL_METABUF;
1165
1166 if (!blk_rq_bytes(rq))
1167 return nvme_rdma_set_sg_null(c);
1168
1169 req->sg_table.sgl = req->first_sgl;
1170 ret = sg_alloc_table_chained(&req->sg_table,
1171 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1172 if (ret)
1173 return -ENOMEM;
1174
1175 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1176
1177 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1178 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1179 if (unlikely(count <= 0)) {
1180 sg_free_table_chained(&req->sg_table, true);
1181 return -EIO;
1182 }
1183
1184 if (count == 1) {
1185 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1186 blk_rq_payload_bytes(rq) <=
1187 nvme_rdma_inline_data_size(queue))
1188 return nvme_rdma_map_sg_inline(queue, req, c);
1189
1190 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1191 return nvme_rdma_map_sg_single(queue, req, c);
1192 }
1193
1194 return nvme_rdma_map_sg_fr(queue, req, c, count);
1195 }
1196
1197 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1198 {
1199 struct nvme_rdma_qe *qe =
1200 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1201 struct nvme_rdma_request *req =
1202 container_of(qe, struct nvme_rdma_request, sqe);
1203 struct request *rq = blk_mq_rq_from_pdu(req);
1204
1205 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1206 nvme_rdma_wr_error(cq, wc, "SEND");
1207 return;
1208 }
1209
1210 if (refcount_dec_and_test(&req->ref))
1211 nvme_end_request(rq, req->status, req->result);
1212 }
1213
1214 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1215 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1216 struct ib_send_wr *first)
1217 {
1218 struct ib_send_wr wr, *bad_wr;
1219 int ret;
1220
1221 sge->addr = qe->dma;
1222 sge->length = sizeof(struct nvme_command),
1223 sge->lkey = queue->device->pd->local_dma_lkey;
1224
1225 wr.next = NULL;
1226 wr.wr_cqe = &qe->cqe;
1227 wr.sg_list = sge;
1228 wr.num_sge = num_sge;
1229 wr.opcode = IB_WR_SEND;
1230 wr.send_flags = IB_SEND_SIGNALED;
1231
1232 if (first)
1233 first->next = &wr;
1234 else
1235 first = &wr;
1236
1237 ret = ib_post_send(queue->qp, first, &bad_wr);
1238 if (unlikely(ret)) {
1239 dev_err(queue->ctrl->ctrl.device,
1240 "%s failed with error code %d\n", __func__, ret);
1241 }
1242 return ret;
1243 }
1244
1245 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1246 struct nvme_rdma_qe *qe)
1247 {
1248 struct ib_recv_wr wr, *bad_wr;
1249 struct ib_sge list;
1250 int ret;
1251
1252 list.addr = qe->dma;
1253 list.length = sizeof(struct nvme_completion);
1254 list.lkey = queue->device->pd->local_dma_lkey;
1255
1256 qe->cqe.done = nvme_rdma_recv_done;
1257
1258 wr.next = NULL;
1259 wr.wr_cqe = &qe->cqe;
1260 wr.sg_list = &list;
1261 wr.num_sge = 1;
1262
1263 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1264 if (unlikely(ret)) {
1265 dev_err(queue->ctrl->ctrl.device,
1266 "%s failed with error code %d\n", __func__, ret);
1267 }
1268 return ret;
1269 }
1270
1271 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1272 {
1273 u32 queue_idx = nvme_rdma_queue_idx(queue);
1274
1275 if (queue_idx == 0)
1276 return queue->ctrl->admin_tag_set.tags[queue_idx];
1277 return queue->ctrl->tag_set.tags[queue_idx - 1];
1278 }
1279
1280 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1281 {
1282 if (unlikely(wc->status != IB_WC_SUCCESS))
1283 nvme_rdma_wr_error(cq, wc, "ASYNC");
1284 }
1285
1286 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1287 {
1288 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1289 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1290 struct ib_device *dev = queue->device->dev;
1291 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1292 struct nvme_command *cmd = sqe->data;
1293 struct ib_sge sge;
1294 int ret;
1295
1296 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1297
1298 memset(cmd, 0, sizeof(*cmd));
1299 cmd->common.opcode = nvme_admin_async_event;
1300 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1301 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1302 nvme_rdma_set_sg_null(cmd);
1303
1304 sqe->cqe.done = nvme_rdma_async_done;
1305
1306 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1307 DMA_TO_DEVICE);
1308
1309 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1310 WARN_ON_ONCE(ret);
1311 }
1312
1313 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1314 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1315 {
1316 struct request *rq;
1317 struct nvme_rdma_request *req;
1318 int ret = 0;
1319
1320 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1321 if (!rq) {
1322 dev_err(queue->ctrl->ctrl.device,
1323 "tag 0x%x on QP %#x not found\n",
1324 cqe->command_id, queue->qp->qp_num);
1325 nvme_rdma_error_recovery(queue->ctrl);
1326 return ret;
1327 }
1328 req = blk_mq_rq_to_pdu(rq);
1329
1330 req->status = cqe->status;
1331 req->result = cqe->result;
1332
1333 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1334 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1335 dev_err(queue->ctrl->ctrl.device,
1336 "Bogus remote invalidation for rkey %#x\n",
1337 req->mr->rkey);
1338 nvme_rdma_error_recovery(queue->ctrl);
1339 }
1340 } else if (req->mr) {
1341 ret = nvme_rdma_inv_rkey(queue, req);
1342 if (unlikely(ret < 0)) {
1343 dev_err(queue->ctrl->ctrl.device,
1344 "Queueing INV WR for rkey %#x failed (%d)\n",
1345 req->mr->rkey, ret);
1346 nvme_rdma_error_recovery(queue->ctrl);
1347 }
1348 /* the local invalidation completion will end the request */
1349 return 0;
1350 }
1351
1352 if (refcount_dec_and_test(&req->ref)) {
1353 if (rq->tag == tag)
1354 ret = 1;
1355 nvme_end_request(rq, req->status, req->result);
1356 }
1357
1358 return ret;
1359 }
1360
1361 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1362 {
1363 struct nvme_rdma_qe *qe =
1364 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1365 struct nvme_rdma_queue *queue = cq->cq_context;
1366 struct ib_device *ibdev = queue->device->dev;
1367 struct nvme_completion *cqe = qe->data;
1368 const size_t len = sizeof(struct nvme_completion);
1369 int ret = 0;
1370
1371 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1372 nvme_rdma_wr_error(cq, wc, "RECV");
1373 return 0;
1374 }
1375
1376 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1377 /*
1378 * AEN requests are special as they don't time out and can
1379 * survive any kind of queue freeze and often don't respond to
1380 * aborts. We don't even bother to allocate a struct request
1381 * for them but rather special case them here.
1382 */
1383 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1384 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1385 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1386 &cqe->result);
1387 else
1388 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1389 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1390
1391 nvme_rdma_post_recv(queue, qe);
1392 return ret;
1393 }
1394
1395 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1396 {
1397 __nvme_rdma_recv_done(cq, wc, -1);
1398 }
1399
1400 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1401 {
1402 int ret, i;
1403
1404 for (i = 0; i < queue->queue_size; i++) {
1405 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1406 if (ret)
1407 goto out_destroy_queue_ib;
1408 }
1409
1410 return 0;
1411
1412 out_destroy_queue_ib:
1413 nvme_rdma_destroy_queue_ib(queue);
1414 return ret;
1415 }
1416
1417 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1418 struct rdma_cm_event *ev)
1419 {
1420 struct rdma_cm_id *cm_id = queue->cm_id;
1421 int status = ev->status;
1422 const char *rej_msg;
1423 const struct nvme_rdma_cm_rej *rej_data;
1424 u8 rej_data_len;
1425
1426 rej_msg = rdma_reject_msg(cm_id, status);
1427 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1428
1429 if (rej_data && rej_data_len >= sizeof(u16)) {
1430 u16 sts = le16_to_cpu(rej_data->sts);
1431
1432 dev_err(queue->ctrl->ctrl.device,
1433 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1434 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1435 } else {
1436 dev_err(queue->ctrl->ctrl.device,
1437 "Connect rejected: status %d (%s).\n", status, rej_msg);
1438 }
1439
1440 return -ECONNRESET;
1441 }
1442
1443 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1444 {
1445 int ret;
1446
1447 ret = nvme_rdma_create_queue_ib(queue);
1448 if (ret)
1449 return ret;
1450
1451 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1452 if (ret) {
1453 dev_err(queue->ctrl->ctrl.device,
1454 "rdma_resolve_route failed (%d).\n",
1455 queue->cm_error);
1456 goto out_destroy_queue;
1457 }
1458
1459 return 0;
1460
1461 out_destroy_queue:
1462 nvme_rdma_destroy_queue_ib(queue);
1463 return ret;
1464 }
1465
1466 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1467 {
1468 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1469 struct rdma_conn_param param = { };
1470 struct nvme_rdma_cm_req priv = { };
1471 int ret;
1472
1473 param.qp_num = queue->qp->qp_num;
1474 param.flow_control = 1;
1475
1476 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1477 /* maximum retry count */
1478 param.retry_count = 7;
1479 param.rnr_retry_count = 7;
1480 param.private_data = &priv;
1481 param.private_data_len = sizeof(priv);
1482
1483 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1484 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1485 /*
1486 * set the admin queue depth to the minimum size
1487 * specified by the Fabrics standard.
1488 */
1489 if (priv.qid == 0) {
1490 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1491 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1492 } else {
1493 /*
1494 * current interpretation of the fabrics spec
1495 * is at minimum you make hrqsize sqsize+1, or a
1496 * 1's based representation of sqsize.
1497 */
1498 priv.hrqsize = cpu_to_le16(queue->queue_size);
1499 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1500 }
1501
1502 ret = rdma_connect(queue->cm_id, &param);
1503 if (ret) {
1504 dev_err(ctrl->ctrl.device,
1505 "rdma_connect failed (%d).\n", ret);
1506 goto out_destroy_queue_ib;
1507 }
1508
1509 return 0;
1510
1511 out_destroy_queue_ib:
1512 nvme_rdma_destroy_queue_ib(queue);
1513 return ret;
1514 }
1515
1516 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1517 struct rdma_cm_event *ev)
1518 {
1519 struct nvme_rdma_queue *queue = cm_id->context;
1520 int cm_error = 0;
1521
1522 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1523 rdma_event_msg(ev->event), ev->event,
1524 ev->status, cm_id);
1525
1526 switch (ev->event) {
1527 case RDMA_CM_EVENT_ADDR_RESOLVED:
1528 cm_error = nvme_rdma_addr_resolved(queue);
1529 break;
1530 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1531 cm_error = nvme_rdma_route_resolved(queue);
1532 break;
1533 case RDMA_CM_EVENT_ESTABLISHED:
1534 queue->cm_error = nvme_rdma_conn_established(queue);
1535 /* complete cm_done regardless of success/failure */
1536 complete(&queue->cm_done);
1537 return 0;
1538 case RDMA_CM_EVENT_REJECTED:
1539 nvme_rdma_destroy_queue_ib(queue);
1540 cm_error = nvme_rdma_conn_rejected(queue, ev);
1541 break;
1542 case RDMA_CM_EVENT_ROUTE_ERROR:
1543 case RDMA_CM_EVENT_CONNECT_ERROR:
1544 case RDMA_CM_EVENT_UNREACHABLE:
1545 nvme_rdma_destroy_queue_ib(queue);
1546 case RDMA_CM_EVENT_ADDR_ERROR:
1547 dev_dbg(queue->ctrl->ctrl.device,
1548 "CM error event %d\n", ev->event);
1549 cm_error = -ECONNRESET;
1550 break;
1551 case RDMA_CM_EVENT_DISCONNECTED:
1552 case RDMA_CM_EVENT_ADDR_CHANGE:
1553 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1554 dev_dbg(queue->ctrl->ctrl.device,
1555 "disconnect received - connection closed\n");
1556 nvme_rdma_error_recovery(queue->ctrl);
1557 break;
1558 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1559 /* device removal is handled via the ib_client API */
1560 break;
1561 default:
1562 dev_err(queue->ctrl->ctrl.device,
1563 "Unexpected RDMA CM event (%d)\n", ev->event);
1564 nvme_rdma_error_recovery(queue->ctrl);
1565 break;
1566 }
1567
1568 if (cm_error) {
1569 queue->cm_error = cm_error;
1570 complete(&queue->cm_done);
1571 }
1572
1573 return 0;
1574 }
1575
1576 static enum blk_eh_timer_return
1577 nvme_rdma_timeout(struct request *rq, bool reserved)
1578 {
1579 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1580
1581 dev_warn(req->queue->ctrl->ctrl.device,
1582 "I/O %d QID %d timeout, reset controller\n",
1583 rq->tag, nvme_rdma_queue_idx(req->queue));
1584
1585 /* queue error recovery */
1586 nvme_rdma_error_recovery(req->queue->ctrl);
1587
1588 /* fail with DNR on cmd timeout */
1589 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1590
1591 return BLK_EH_HANDLED;
1592 }
1593
1594 /*
1595 * We cannot accept any other command until the Connect command has completed.
1596 */
1597 static inline blk_status_t
1598 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1599 {
1600 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
1601 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
1602 return BLK_STS_OK;
1603 }
1604
1605 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1606 const struct blk_mq_queue_data *bd)
1607 {
1608 struct nvme_ns *ns = hctx->queue->queuedata;
1609 struct nvme_rdma_queue *queue = hctx->driver_data;
1610 struct request *rq = bd->rq;
1611 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1612 struct nvme_rdma_qe *sqe = &req->sqe;
1613 struct nvme_command *c = sqe->data;
1614 struct ib_device *dev;
1615 blk_status_t ret;
1616 int err;
1617
1618 WARN_ON_ONCE(rq->tag < 0);
1619
1620 ret = nvme_rdma_is_ready(queue, rq);
1621 if (unlikely(ret))
1622 return ret;
1623
1624 dev = queue->device->dev;
1625 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1626 sizeof(struct nvme_command), DMA_TO_DEVICE);
1627
1628 ret = nvme_setup_cmd(ns, rq, c);
1629 if (ret)
1630 return ret;
1631
1632 blk_mq_start_request(rq);
1633
1634 err = nvme_rdma_map_data(queue, rq, c);
1635 if (unlikely(err < 0)) {
1636 dev_err(queue->ctrl->ctrl.device,
1637 "Failed to map data (%d)\n", err);
1638 nvme_cleanup_cmd(rq);
1639 goto err;
1640 }
1641
1642 sqe->cqe.done = nvme_rdma_send_done;
1643
1644 ib_dma_sync_single_for_device(dev, sqe->dma,
1645 sizeof(struct nvme_command), DMA_TO_DEVICE);
1646
1647 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1648 req->mr ? &req->reg_wr.wr : NULL);
1649 if (unlikely(err)) {
1650 nvme_rdma_unmap_data(queue, rq);
1651 goto err;
1652 }
1653
1654 return BLK_STS_OK;
1655 err:
1656 if (err == -ENOMEM || err == -EAGAIN)
1657 return BLK_STS_RESOURCE;
1658 return BLK_STS_IOERR;
1659 }
1660
1661 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1662 {
1663 struct nvme_rdma_queue *queue = hctx->driver_data;
1664 struct ib_cq *cq = queue->ib_cq;
1665 struct ib_wc wc;
1666 int found = 0;
1667
1668 while (ib_poll_cq(cq, 1, &wc) > 0) {
1669 struct ib_cqe *cqe = wc.wr_cqe;
1670
1671 if (cqe) {
1672 if (cqe->done == nvme_rdma_recv_done)
1673 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1674 else
1675 cqe->done(cq, &wc);
1676 }
1677 }
1678
1679 return found;
1680 }
1681
1682 static void nvme_rdma_complete_rq(struct request *rq)
1683 {
1684 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1685
1686 nvme_rdma_unmap_data(req->queue, rq);
1687 nvme_complete_rq(rq);
1688 }
1689
1690 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1691 {
1692 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1693
1694 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1695 }
1696
1697 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1698 .queue_rq = nvme_rdma_queue_rq,
1699 .complete = nvme_rdma_complete_rq,
1700 .init_request = nvme_rdma_init_request,
1701 .exit_request = nvme_rdma_exit_request,
1702 .init_hctx = nvme_rdma_init_hctx,
1703 .poll = nvme_rdma_poll,
1704 .timeout = nvme_rdma_timeout,
1705 .map_queues = nvme_rdma_map_queues,
1706 };
1707
1708 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1709 .queue_rq = nvme_rdma_queue_rq,
1710 .complete = nvme_rdma_complete_rq,
1711 .init_request = nvme_rdma_init_request,
1712 .exit_request = nvme_rdma_exit_request,
1713 .init_hctx = nvme_rdma_init_admin_hctx,
1714 .timeout = nvme_rdma_timeout,
1715 };
1716
1717 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1718 {
1719 cancel_work_sync(&ctrl->err_work);
1720 cancel_delayed_work_sync(&ctrl->reconnect_work);
1721
1722 if (ctrl->ctrl.queue_count > 1) {
1723 nvme_stop_queues(&ctrl->ctrl);
1724 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1725 nvme_cancel_request, &ctrl->ctrl);
1726 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1727 }
1728
1729 if (shutdown)
1730 nvme_shutdown_ctrl(&ctrl->ctrl);
1731 else
1732 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1733
1734 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1735 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1736 nvme_cancel_request, &ctrl->ctrl);
1737 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1738 nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1739 }
1740
1741 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1742 {
1743 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1744 }
1745
1746 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1747 {
1748 struct nvme_rdma_ctrl *ctrl =
1749 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1750 int ret;
1751 bool changed;
1752
1753 nvme_stop_ctrl(&ctrl->ctrl);
1754 nvme_rdma_shutdown_ctrl(ctrl, false);
1755
1756 ret = nvme_rdma_configure_admin_queue(ctrl, false);
1757 if (ret)
1758 goto out_fail;
1759
1760 if (ctrl->ctrl.queue_count > 1) {
1761 ret = nvme_rdma_configure_io_queues(ctrl, false);
1762 if (ret)
1763 goto out_fail;
1764 }
1765
1766 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1767 if (!changed) {
1768 /* state change failure is ok if we're in DELETING state */
1769 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1770 return;
1771 }
1772
1773 nvme_start_ctrl(&ctrl->ctrl);
1774
1775 return;
1776
1777 out_fail:
1778 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1779 nvme_remove_namespaces(&ctrl->ctrl);
1780 nvme_rdma_shutdown_ctrl(ctrl, true);
1781 nvme_uninit_ctrl(&ctrl->ctrl);
1782 nvme_put_ctrl(&ctrl->ctrl);
1783 }
1784
1785 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1786 .name = "rdma",
1787 .module = THIS_MODULE,
1788 .flags = NVME_F_FABRICS,
1789 .reg_read32 = nvmf_reg_read32,
1790 .reg_read64 = nvmf_reg_read64,
1791 .reg_write32 = nvmf_reg_write32,
1792 .free_ctrl = nvme_rdma_free_ctrl,
1793 .submit_async_event = nvme_rdma_submit_async_event,
1794 .delete_ctrl = nvme_rdma_delete_ctrl,
1795 .get_address = nvmf_get_address,
1796 };
1797
1798 static inline bool
1799 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1800 struct nvmf_ctrl_options *opts)
1801 {
1802 char *stdport = __stringify(NVME_RDMA_IP_PORT);
1803
1804
1805 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1806 strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1807 return false;
1808
1809 if (opts->mask & NVMF_OPT_TRSVCID &&
1810 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1811 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1812 return false;
1813 } else if (opts->mask & NVMF_OPT_TRSVCID) {
1814 if (strcmp(opts->trsvcid, stdport))
1815 return false;
1816 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1817 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1818 return false;
1819 }
1820 /* else, it's a match as both have stdport. Fall to next checks */
1821
1822 /*
1823 * checking the local address is rough. In most cases, one
1824 * is not specified and the host port is selected by the stack.
1825 *
1826 * Assume no match if:
1827 * local address is specified and address is not the same
1828 * local address is not specified but remote is, or vice versa
1829 * (admin using specific host_traddr when it matters).
1830 */
1831 if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1832 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1833 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1834 return false;
1835 } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1836 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1837 return false;
1838 /*
1839 * if neither controller had an host port specified, assume it's
1840 * a match as everything else matched.
1841 */
1842
1843 return true;
1844 }
1845
1846 /*
1847 * Fails a connection request if it matches an existing controller
1848 * (association) with the same tuple:
1849 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1850 *
1851 * if local address is not specified in the request, it will match an
1852 * existing controller with all the other parameters the same and no
1853 * local port address specified as well.
1854 *
1855 * The ports don't need to be compared as they are intrinsically
1856 * already matched by the port pointers supplied.
1857 */
1858 static bool
1859 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1860 {
1861 struct nvme_rdma_ctrl *ctrl;
1862 bool found = false;
1863
1864 mutex_lock(&nvme_rdma_ctrl_mutex);
1865 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1866 found = __nvme_rdma_options_match(ctrl, opts);
1867 if (found)
1868 break;
1869 }
1870 mutex_unlock(&nvme_rdma_ctrl_mutex);
1871
1872 return found;
1873 }
1874
1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1876 struct nvmf_ctrl_options *opts)
1877 {
1878 struct nvme_rdma_ctrl *ctrl;
1879 int ret;
1880 bool changed;
1881 char *port;
1882
1883 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1884 if (!ctrl)
1885 return ERR_PTR(-ENOMEM);
1886 ctrl->ctrl.opts = opts;
1887 INIT_LIST_HEAD(&ctrl->list);
1888
1889 if (opts->mask & NVMF_OPT_TRSVCID)
1890 port = opts->trsvcid;
1891 else
1892 port = __stringify(NVME_RDMA_IP_PORT);
1893
1894 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1895 opts->traddr, port, &ctrl->addr);
1896 if (ret) {
1897 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1898 goto out_free_ctrl;
1899 }
1900
1901 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1902 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1903 opts->host_traddr, NULL, &ctrl->src_addr);
1904 if (ret) {
1905 pr_err("malformed src address passed: %s\n",
1906 opts->host_traddr);
1907 goto out_free_ctrl;
1908 }
1909 }
1910
1911 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1912 ret = -EALREADY;
1913 goto out_free_ctrl;
1914 }
1915
1916 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1917 0 /* no quirks, we're perfect! */);
1918 if (ret)
1919 goto out_free_ctrl;
1920
1921 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1922 nvme_rdma_reconnect_ctrl_work);
1923 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1924 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1925
1926 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1927 ctrl->ctrl.sqsize = opts->queue_size - 1;
1928 ctrl->ctrl.kato = opts->kato;
1929
1930 ret = -ENOMEM;
1931 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1932 GFP_KERNEL);
1933 if (!ctrl->queues)
1934 goto out_uninit_ctrl;
1935
1936 ret = nvme_rdma_configure_admin_queue(ctrl, true);
1937 if (ret)
1938 goto out_kfree_queues;
1939
1940 /* sanity check icdoff */
1941 if (ctrl->ctrl.icdoff) {
1942 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1943 ret = -EINVAL;
1944 goto out_remove_admin_queue;
1945 }
1946
1947 /* sanity check keyed sgls */
1948 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1949 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1950 ret = -EINVAL;
1951 goto out_remove_admin_queue;
1952 }
1953
1954 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1955 /* warn if maxcmd is lower than queue_size */
1956 dev_warn(ctrl->ctrl.device,
1957 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1958 opts->queue_size, ctrl->ctrl.maxcmd);
1959 opts->queue_size = ctrl->ctrl.maxcmd;
1960 }
1961
1962 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1963 /* warn if sqsize is lower than queue_size */
1964 dev_warn(ctrl->ctrl.device,
1965 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1966 opts->queue_size, ctrl->ctrl.sqsize + 1);
1967 opts->queue_size = ctrl->ctrl.sqsize + 1;
1968 }
1969
1970 if (opts->nr_io_queues) {
1971 ret = nvme_rdma_configure_io_queues(ctrl, true);
1972 if (ret)
1973 goto out_remove_admin_queue;
1974 }
1975
1976 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1977 WARN_ON_ONCE(!changed);
1978
1979 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1980 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1981
1982 nvme_get_ctrl(&ctrl->ctrl);
1983
1984 mutex_lock(&nvme_rdma_ctrl_mutex);
1985 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1986 mutex_unlock(&nvme_rdma_ctrl_mutex);
1987
1988 nvme_start_ctrl(&ctrl->ctrl);
1989
1990 return &ctrl->ctrl;
1991
1992 out_remove_admin_queue:
1993 nvme_rdma_destroy_admin_queue(ctrl, true);
1994 out_kfree_queues:
1995 kfree(ctrl->queues);
1996 out_uninit_ctrl:
1997 nvme_uninit_ctrl(&ctrl->ctrl);
1998 nvme_put_ctrl(&ctrl->ctrl);
1999 if (ret > 0)
2000 ret = -EIO;
2001 return ERR_PTR(ret);
2002 out_free_ctrl:
2003 kfree(ctrl);
2004 return ERR_PTR(ret);
2005 }
2006
2007 static struct nvmf_transport_ops nvme_rdma_transport = {
2008 .name = "rdma",
2009 .required_opts = NVMF_OPT_TRADDR,
2010 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2011 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2012 .create_ctrl = nvme_rdma_create_ctrl,
2013 };
2014
2015 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2016 {
2017 struct nvme_rdma_ctrl *ctrl;
2018
2019 /* Delete all controllers using this device */
2020 mutex_lock(&nvme_rdma_ctrl_mutex);
2021 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2022 if (ctrl->device->dev != ib_device)
2023 continue;
2024 dev_info(ctrl->ctrl.device,
2025 "Removing ctrl: NQN \"%s\", addr %pISp\n",
2026 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2027 nvme_delete_ctrl(&ctrl->ctrl);
2028 }
2029 mutex_unlock(&nvme_rdma_ctrl_mutex);
2030
2031 flush_workqueue(nvme_wq);
2032 }
2033
2034 static struct ib_client nvme_rdma_ib_client = {
2035 .name = "nvme_rdma",
2036 .remove = nvme_rdma_remove_one
2037 };
2038
2039 static int __init nvme_rdma_init_module(void)
2040 {
2041 int ret;
2042
2043 ret = ib_register_client(&nvme_rdma_ib_client);
2044 if (ret)
2045 return ret;
2046
2047 ret = nvmf_register_transport(&nvme_rdma_transport);
2048 if (ret)
2049 goto err_unreg_client;
2050
2051 return 0;
2052
2053 err_unreg_client:
2054 ib_unregister_client(&nvme_rdma_ib_client);
2055 return ret;
2056 }
2057
2058 static void __exit nvme_rdma_cleanup_module(void)
2059 {
2060 nvmf_unregister_transport(&nvme_rdma_transport);
2061 ib_unregister_client(&nvme_rdma_ib_client);
2062 }
2063
2064 module_init(nvme_rdma_init_module);
2065 module_exit(nvme_rdma_cleanup_module);
2066
2067 MODULE_LICENSE("GPL v2");