]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/nvme/host/rdma.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/jiffies.h>
22 #include <linux/atomic.h>
23 #include <linux/blk-mq.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <linux/t10-pi.h>
30 #include <asm/unaligned.h>
31
32 #include <rdma/ib_verbs.h>
33 #include <rdma/rdma_cm.h>
34 #include <rdma/ib_cm.h>
35 #include <linux/nvme-rdma.h>
36
37 #include "nvme.h"
38 #include "fabrics.h"
39
40
41 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
42
43 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
44
45 #define NVME_RDMA_MAX_SEGMENTS 256
46
47 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
48
49 #define NVME_RDMA_MAX_PAGES_PER_MR 512
50
51 #define NVME_RDMA_DEF_RECONNECT_DELAY 20
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_RDMA_NR_AEN_COMMANDS 1
58 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
59 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
60
61 struct nvme_rdma_device {
62 struct ib_device *dev;
63 struct ib_pd *pd;
64 struct ib_mr *mr;
65 struct kref ref;
66 struct list_head entry;
67 };
68
69 struct nvme_rdma_qe {
70 struct ib_cqe cqe;
71 void *data;
72 u64 dma;
73 };
74
75 struct nvme_rdma_queue;
76 struct nvme_rdma_request {
77 struct ib_mr *mr;
78 struct nvme_rdma_qe sqe;
79 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
80 u32 num_sge;
81 int nents;
82 bool inline_data;
83 bool need_inval;
84 struct ib_reg_wr reg_wr;
85 struct ib_cqe reg_cqe;
86 struct nvme_rdma_queue *queue;
87 struct sg_table sg_table;
88 struct scatterlist first_sgl[];
89 };
90
91 enum nvme_rdma_queue_flags {
92 NVME_RDMA_Q_CONNECTED = (1 << 0),
93 };
94
95 struct nvme_rdma_queue {
96 struct nvme_rdma_qe *rsp_ring;
97 u8 sig_count;
98 int queue_size;
99 size_t cmnd_capsule_len;
100 struct nvme_rdma_ctrl *ctrl;
101 struct nvme_rdma_device *device;
102 struct ib_cq *ib_cq;
103 struct ib_qp *qp;
104
105 unsigned long flags;
106 struct rdma_cm_id *cm_id;
107 int cm_error;
108 struct completion cm_done;
109 };
110
111 struct nvme_rdma_ctrl {
112 /* read and written in the hot path */
113 spinlock_t lock;
114
115 /* read only in the hot path */
116 struct nvme_rdma_queue *queues;
117 u32 queue_count;
118
119 /* other member variables */
120 struct blk_mq_tag_set tag_set;
121 struct work_struct delete_work;
122 struct work_struct reset_work;
123 struct work_struct err_work;
124
125 struct nvme_rdma_qe async_event_sqe;
126
127 int reconnect_delay;
128 struct delayed_work reconnect_work;
129
130 struct list_head list;
131
132 struct blk_mq_tag_set admin_tag_set;
133 struct nvme_rdma_device *device;
134
135 u64 cap;
136 u32 max_fr_pages;
137
138 union {
139 struct sockaddr addr;
140 struct sockaddr_in addr_in;
141 };
142
143 struct nvme_ctrl ctrl;
144 };
145
146 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
147 {
148 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
149 }
150
151 static LIST_HEAD(device_list);
152 static DEFINE_MUTEX(device_list_mutex);
153
154 static LIST_HEAD(nvme_rdma_ctrl_list);
155 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
156
157 static struct workqueue_struct *nvme_rdma_wq;
158
159 /*
160 * Disabling this option makes small I/O goes faster, but is fundamentally
161 * unsafe. With it turned off we will have to register a global rkey that
162 * allows read and write access to all physical memory.
163 */
164 static bool register_always = true;
165 module_param(register_always, bool, 0444);
166 MODULE_PARM_DESC(register_always,
167 "Use memory registration even for contiguous memory regions");
168
169 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
170 struct rdma_cm_event *event);
171 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
172 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl);
173
174 /* XXX: really should move to a generic header sooner or later.. */
175 static inline void put_unaligned_le24(u32 val, u8 *p)
176 {
177 *p++ = val;
178 *p++ = val >> 8;
179 *p++ = val >> 16;
180 }
181
182 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
183 {
184 return queue - queue->ctrl->queues;
185 }
186
187 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
188 {
189 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
190 }
191
192 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
193 size_t capsule_size, enum dma_data_direction dir)
194 {
195 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
196 kfree(qe->data);
197 }
198
199 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
200 size_t capsule_size, enum dma_data_direction dir)
201 {
202 qe->data = kzalloc(capsule_size, GFP_KERNEL);
203 if (!qe->data)
204 return -ENOMEM;
205
206 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
207 if (ib_dma_mapping_error(ibdev, qe->dma)) {
208 kfree(qe->data);
209 return -ENOMEM;
210 }
211
212 return 0;
213 }
214
215 static void nvme_rdma_free_ring(struct ib_device *ibdev,
216 struct nvme_rdma_qe *ring, size_t ib_queue_size,
217 size_t capsule_size, enum dma_data_direction dir)
218 {
219 int i;
220
221 for (i = 0; i < ib_queue_size; i++)
222 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
223 kfree(ring);
224 }
225
226 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
227 size_t ib_queue_size, size_t capsule_size,
228 enum dma_data_direction dir)
229 {
230 struct nvme_rdma_qe *ring;
231 int i;
232
233 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
234 if (!ring)
235 return NULL;
236
237 for (i = 0; i < ib_queue_size; i++) {
238 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
239 goto out_free_ring;
240 }
241
242 return ring;
243
244 out_free_ring:
245 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
246 return NULL;
247 }
248
249 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
250 {
251 pr_debug("QP event %d\n", event->event);
252 }
253
254 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
255 {
256 wait_for_completion_interruptible_timeout(&queue->cm_done,
257 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
258 return queue->cm_error;
259 }
260
261 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
262 {
263 struct nvme_rdma_device *dev = queue->device;
264 struct ib_qp_init_attr init_attr;
265 int ret;
266
267 memset(&init_attr, 0, sizeof(init_attr));
268 init_attr.event_handler = nvme_rdma_qp_event;
269 /* +1 for drain */
270 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
271 /* +1 for drain */
272 init_attr.cap.max_recv_wr = queue->queue_size + 1;
273 init_attr.cap.max_recv_sge = 1;
274 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
275 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
276 init_attr.qp_type = IB_QPT_RC;
277 init_attr.send_cq = queue->ib_cq;
278 init_attr.recv_cq = queue->ib_cq;
279
280 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
281
282 queue->qp = queue->cm_id->qp;
283 return ret;
284 }
285
286 static int nvme_rdma_reinit_request(void *data, struct request *rq)
287 {
288 struct nvme_rdma_ctrl *ctrl = data;
289 struct nvme_rdma_device *dev = ctrl->device;
290 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
291 int ret = 0;
292
293 if (!req->need_inval)
294 goto out;
295
296 ib_dereg_mr(req->mr);
297
298 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
299 ctrl->max_fr_pages);
300 if (IS_ERR(req->mr)) {
301 ret = PTR_ERR(req->mr);
302 req->mr = NULL;
303 }
304
305 req->need_inval = false;
306
307 out:
308 return ret;
309 }
310
311 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
312 struct request *rq, unsigned int queue_idx)
313 {
314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
315 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
316 struct nvme_rdma_device *dev = queue->device;
317
318 if (req->mr)
319 ib_dereg_mr(req->mr);
320
321 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
322 DMA_TO_DEVICE);
323 }
324
325 static void nvme_rdma_exit_request(void *data, struct request *rq,
326 unsigned int hctx_idx, unsigned int rq_idx)
327 {
328 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
329 }
330
331 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
332 unsigned int hctx_idx, unsigned int rq_idx)
333 {
334 return __nvme_rdma_exit_request(data, rq, 0);
335 }
336
337 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
338 struct request *rq, unsigned int queue_idx)
339 {
340 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
341 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
342 struct nvme_rdma_device *dev = queue->device;
343 struct ib_device *ibdev = dev->dev;
344 int ret;
345
346 BUG_ON(queue_idx >= ctrl->queue_count);
347
348 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
349 DMA_TO_DEVICE);
350 if (ret)
351 return ret;
352
353 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
354 ctrl->max_fr_pages);
355 if (IS_ERR(req->mr)) {
356 ret = PTR_ERR(req->mr);
357 goto out_free_qe;
358 }
359
360 req->queue = queue;
361
362 return 0;
363
364 out_free_qe:
365 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
366 DMA_TO_DEVICE);
367 return -ENOMEM;
368 }
369
370 static int nvme_rdma_init_request(void *data, struct request *rq,
371 unsigned int hctx_idx, unsigned int rq_idx,
372 unsigned int numa_node)
373 {
374 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
375 }
376
377 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
378 unsigned int hctx_idx, unsigned int rq_idx,
379 unsigned int numa_node)
380 {
381 return __nvme_rdma_init_request(data, rq, 0);
382 }
383
384 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
385 unsigned int hctx_idx)
386 {
387 struct nvme_rdma_ctrl *ctrl = data;
388 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
389
390 BUG_ON(hctx_idx >= ctrl->queue_count);
391
392 hctx->driver_data = queue;
393 return 0;
394 }
395
396 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 unsigned int hctx_idx)
398 {
399 struct nvme_rdma_ctrl *ctrl = data;
400 struct nvme_rdma_queue *queue = &ctrl->queues[0];
401
402 BUG_ON(hctx_idx != 0);
403
404 hctx->driver_data = queue;
405 return 0;
406 }
407
408 static void nvme_rdma_free_dev(struct kref *ref)
409 {
410 struct nvme_rdma_device *ndev =
411 container_of(ref, struct nvme_rdma_device, ref);
412
413 mutex_lock(&device_list_mutex);
414 list_del(&ndev->entry);
415 mutex_unlock(&device_list_mutex);
416
417 if (!register_always)
418 ib_dereg_mr(ndev->mr);
419 ib_dealloc_pd(ndev->pd);
420
421 kfree(ndev);
422 }
423
424 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
425 {
426 kref_put(&dev->ref, nvme_rdma_free_dev);
427 }
428
429 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
430 {
431 return kref_get_unless_zero(&dev->ref);
432 }
433
434 static struct nvme_rdma_device *
435 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
436 {
437 struct nvme_rdma_device *ndev;
438
439 mutex_lock(&device_list_mutex);
440 list_for_each_entry(ndev, &device_list, entry) {
441 if (ndev->dev->node_guid == cm_id->device->node_guid &&
442 nvme_rdma_dev_get(ndev))
443 goto out_unlock;
444 }
445
446 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
447 if (!ndev)
448 goto out_err;
449
450 ndev->dev = cm_id->device;
451 kref_init(&ndev->ref);
452
453 ndev->pd = ib_alloc_pd(ndev->dev);
454 if (IS_ERR(ndev->pd))
455 goto out_free_dev;
456
457 if (!register_always) {
458 ndev->mr = ib_get_dma_mr(ndev->pd,
459 IB_ACCESS_LOCAL_WRITE |
460 IB_ACCESS_REMOTE_READ |
461 IB_ACCESS_REMOTE_WRITE);
462 if (IS_ERR(ndev->mr))
463 goto out_free_pd;
464 }
465
466 if (!(ndev->dev->attrs.device_cap_flags &
467 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
468 dev_err(&ndev->dev->dev,
469 "Memory registrations not supported.\n");
470 goto out_free_mr;
471 }
472
473 list_add(&ndev->entry, &device_list);
474 out_unlock:
475 mutex_unlock(&device_list_mutex);
476 return ndev;
477
478 out_free_mr:
479 if (!register_always)
480 ib_dereg_mr(ndev->mr);
481 out_free_pd:
482 ib_dealloc_pd(ndev->pd);
483 out_free_dev:
484 kfree(ndev);
485 out_err:
486 mutex_unlock(&device_list_mutex);
487 return NULL;
488 }
489
490 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
491 {
492 struct nvme_rdma_device *dev = queue->device;
493 struct ib_device *ibdev = dev->dev;
494
495 rdma_destroy_qp(queue->cm_id);
496 ib_free_cq(queue->ib_cq);
497
498 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
499 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
500
501 nvme_rdma_dev_put(dev);
502 }
503
504 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
505 struct nvme_rdma_device *dev)
506 {
507 struct ib_device *ibdev = dev->dev;
508 const int send_wr_factor = 3; /* MR, SEND, INV */
509 const int cq_factor = send_wr_factor + 1; /* + RECV */
510 int comp_vector, idx = nvme_rdma_queue_idx(queue);
511
512 int ret;
513
514 queue->device = dev;
515
516 /*
517 * The admin queue is barely used once the controller is live, so don't
518 * bother to spread it out.
519 */
520 if (idx == 0)
521 comp_vector = 0;
522 else
523 comp_vector = idx % ibdev->num_comp_vectors;
524
525
526 /* +1 for ib_stop_cq */
527 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
528 cq_factor * queue->queue_size + 1, comp_vector,
529 IB_POLL_SOFTIRQ);
530 if (IS_ERR(queue->ib_cq)) {
531 ret = PTR_ERR(queue->ib_cq);
532 goto out;
533 }
534
535 ret = nvme_rdma_create_qp(queue, send_wr_factor);
536 if (ret)
537 goto out_destroy_ib_cq;
538
539 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
540 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
541 if (!queue->rsp_ring) {
542 ret = -ENOMEM;
543 goto out_destroy_qp;
544 }
545
546 return 0;
547
548 out_destroy_qp:
549 ib_destroy_qp(queue->qp);
550 out_destroy_ib_cq:
551 ib_free_cq(queue->ib_cq);
552 out:
553 return ret;
554 }
555
556 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
557 int idx, size_t queue_size)
558 {
559 struct nvme_rdma_queue *queue;
560 int ret;
561
562 queue = &ctrl->queues[idx];
563 queue->ctrl = ctrl;
564 init_completion(&queue->cm_done);
565
566 if (idx > 0)
567 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
568 else
569 queue->cmnd_capsule_len = sizeof(struct nvme_command);
570
571 queue->queue_size = queue_size;
572
573 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
574 RDMA_PS_TCP, IB_QPT_RC);
575 if (IS_ERR(queue->cm_id)) {
576 dev_info(ctrl->ctrl.device,
577 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
578 return PTR_ERR(queue->cm_id);
579 }
580
581 queue->cm_error = -ETIMEDOUT;
582 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
583 NVME_RDMA_CONNECT_TIMEOUT_MS);
584 if (ret) {
585 dev_info(ctrl->ctrl.device,
586 "rdma_resolve_addr failed (%d).\n", ret);
587 goto out_destroy_cm_id;
588 }
589
590 ret = nvme_rdma_wait_for_cm(queue);
591 if (ret) {
592 dev_info(ctrl->ctrl.device,
593 "rdma_resolve_addr wait failed (%d).\n", ret);
594 goto out_destroy_cm_id;
595 }
596
597 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
598
599 return 0;
600
601 out_destroy_cm_id:
602 rdma_destroy_id(queue->cm_id);
603 return ret;
604 }
605
606 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
607 {
608 rdma_disconnect(queue->cm_id);
609 ib_drain_qp(queue->qp);
610 }
611
612 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
613 {
614 nvme_rdma_destroy_queue_ib(queue);
615 rdma_destroy_id(queue->cm_id);
616 }
617
618 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
619 {
620 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
621 return;
622 nvme_rdma_stop_queue(queue);
623 nvme_rdma_free_queue(queue);
624 }
625
626 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
627 {
628 int i;
629
630 for (i = 1; i < ctrl->queue_count; i++)
631 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
632 }
633
634 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
635 {
636 int i, ret = 0;
637
638 for (i = 1; i < ctrl->queue_count; i++) {
639 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
640 if (ret)
641 break;
642 }
643
644 return ret;
645 }
646
647 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
648 {
649 int i, ret;
650
651 for (i = 1; i < ctrl->queue_count; i++) {
652 ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
653 if (ret) {
654 dev_info(ctrl->ctrl.device,
655 "failed to initialize i/o queue: %d\n", ret);
656 goto out_free_queues;
657 }
658 }
659
660 return 0;
661
662 out_free_queues:
663 for (; i >= 1; i--)
664 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
665
666 return ret;
667 }
668
669 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
670 {
671 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
672 sizeof(struct nvme_command), DMA_TO_DEVICE);
673 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
674 blk_cleanup_queue(ctrl->ctrl.admin_q);
675 blk_mq_free_tag_set(&ctrl->admin_tag_set);
676 nvme_rdma_dev_put(ctrl->device);
677 }
678
679 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
680 {
681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682
683 if (list_empty(&ctrl->list))
684 goto free_ctrl;
685
686 mutex_lock(&nvme_rdma_ctrl_mutex);
687 list_del(&ctrl->list);
688 mutex_unlock(&nvme_rdma_ctrl_mutex);
689
690 if (ctrl->ctrl.tagset) {
691 blk_cleanup_queue(ctrl->ctrl.connect_q);
692 blk_mq_free_tag_set(&ctrl->tag_set);
693 nvme_rdma_dev_put(ctrl->device);
694 }
695 kfree(ctrl->queues);
696 nvmf_free_options(nctrl->opts);
697 free_ctrl:
698 kfree(ctrl);
699 }
700
701 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
702 {
703 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
704 struct nvme_rdma_ctrl, reconnect_work);
705 bool changed;
706 int ret;
707
708 if (ctrl->queue_count > 1) {
709 nvme_rdma_free_io_queues(ctrl);
710
711 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
712 if (ret)
713 goto requeue;
714 }
715
716 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
717
718 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
719 if (ret)
720 goto requeue;
721
722 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
723 if (ret)
724 goto requeue;
725
726 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
727
728 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
729 if (ret)
730 goto stop_admin_q;
731
732 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
733 if (ret)
734 goto stop_admin_q;
735
736 nvme_start_keep_alive(&ctrl->ctrl);
737
738 if (ctrl->queue_count > 1) {
739 ret = nvme_rdma_init_io_queues(ctrl);
740 if (ret)
741 goto stop_admin_q;
742
743 ret = nvme_rdma_connect_io_queues(ctrl);
744 if (ret)
745 goto stop_admin_q;
746 }
747
748 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
749 WARN_ON_ONCE(!changed);
750
751 if (ctrl->queue_count > 1)
752 nvme_start_queues(&ctrl->ctrl);
753
754 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
755
756 return;
757
758 stop_admin_q:
759 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
760 requeue:
761 /* Make sure we are not resetting/deleting */
762 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
763 dev_info(ctrl->ctrl.device,
764 "Failed reconnect attempt, requeueing...\n");
765 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
766 ctrl->reconnect_delay * HZ);
767 }
768 }
769
770 static void nvme_rdma_error_recovery_work(struct work_struct *work)
771 {
772 struct nvme_rdma_ctrl *ctrl = container_of(work,
773 struct nvme_rdma_ctrl, err_work);
774
775 nvme_stop_keep_alive(&ctrl->ctrl);
776 if (ctrl->queue_count > 1)
777 nvme_stop_queues(&ctrl->ctrl);
778 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
779
780 /* We must take care of fastfail/requeue all our inflight requests */
781 if (ctrl->queue_count > 1)
782 blk_mq_tagset_busy_iter(&ctrl->tag_set,
783 nvme_cancel_request, &ctrl->ctrl);
784 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
785 nvme_cancel_request, &ctrl->ctrl);
786
787 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
788 ctrl->reconnect_delay);
789
790 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
791 ctrl->reconnect_delay * HZ);
792 }
793
794 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
795 {
796 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
797 return;
798
799 queue_work(nvme_rdma_wq, &ctrl->err_work);
800 }
801
802 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
803 const char *op)
804 {
805 struct nvme_rdma_queue *queue = cq->cq_context;
806 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
807
808 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
809 dev_info(ctrl->ctrl.device,
810 "%s for CQE 0x%p failed with status %s (%d)\n",
811 op, wc->wr_cqe,
812 ib_wc_status_msg(wc->status), wc->status);
813 nvme_rdma_error_recovery(ctrl);
814 }
815
816 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
817 {
818 if (unlikely(wc->status != IB_WC_SUCCESS))
819 nvme_rdma_wr_error(cq, wc, "MEMREG");
820 }
821
822 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
823 {
824 if (unlikely(wc->status != IB_WC_SUCCESS))
825 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
826 }
827
828 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
829 struct nvme_rdma_request *req)
830 {
831 struct ib_send_wr *bad_wr;
832 struct ib_send_wr wr = {
833 .opcode = IB_WR_LOCAL_INV,
834 .next = NULL,
835 .num_sge = 0,
836 .send_flags = 0,
837 .ex.invalidate_rkey = req->mr->rkey,
838 };
839
840 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
841 wr.wr_cqe = &req->reg_cqe;
842
843 return ib_post_send(queue->qp, &wr, &bad_wr);
844 }
845
846 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
847 struct request *rq)
848 {
849 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
850 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
851 struct nvme_rdma_device *dev = queue->device;
852 struct ib_device *ibdev = dev->dev;
853 int res;
854
855 if (!blk_rq_bytes(rq))
856 return;
857
858 if (req->need_inval) {
859 res = nvme_rdma_inv_rkey(queue, req);
860 if (res < 0) {
861 dev_err(ctrl->ctrl.device,
862 "Queueing INV WR for rkey %#x failed (%d)\n",
863 req->mr->rkey, res);
864 nvme_rdma_error_recovery(queue->ctrl);
865 }
866 }
867
868 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
869 req->nents, rq_data_dir(rq) ==
870 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
871
872 nvme_cleanup_cmd(rq);
873 sg_free_table_chained(&req->sg_table, true);
874 }
875
876 static int nvme_rdma_set_sg_null(struct nvme_command *c)
877 {
878 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
879
880 sg->addr = 0;
881 put_unaligned_le24(0, sg->length);
882 put_unaligned_le32(0, sg->key);
883 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
884 return 0;
885 }
886
887 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
888 struct nvme_rdma_request *req, struct nvme_command *c)
889 {
890 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
891
892 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
893 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
894 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
895
896 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
897 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
898 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
899
900 req->inline_data = true;
901 req->num_sge++;
902 return 0;
903 }
904
905 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
906 struct nvme_rdma_request *req, struct nvme_command *c)
907 {
908 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
909
910 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
911 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
912 put_unaligned_le32(queue->device->mr->rkey, sg->key);
913 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
914 return 0;
915 }
916
917 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
918 struct nvme_rdma_request *req, struct nvme_command *c,
919 int count)
920 {
921 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
922 int nr;
923
924 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
925 if (nr < count) {
926 if (nr < 0)
927 return nr;
928 return -EINVAL;
929 }
930
931 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
932
933 req->reg_cqe.done = nvme_rdma_memreg_done;
934 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
935 req->reg_wr.wr.opcode = IB_WR_REG_MR;
936 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
937 req->reg_wr.wr.num_sge = 0;
938 req->reg_wr.mr = req->mr;
939 req->reg_wr.key = req->mr->rkey;
940 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
941 IB_ACCESS_REMOTE_READ |
942 IB_ACCESS_REMOTE_WRITE;
943
944 req->need_inval = true;
945
946 sg->addr = cpu_to_le64(req->mr->iova);
947 put_unaligned_le24(req->mr->length, sg->length);
948 put_unaligned_le32(req->mr->rkey, sg->key);
949 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
950 NVME_SGL_FMT_INVALIDATE;
951
952 return 0;
953 }
954
955 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
956 struct request *rq, unsigned int map_len,
957 struct nvme_command *c)
958 {
959 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
960 struct nvme_rdma_device *dev = queue->device;
961 struct ib_device *ibdev = dev->dev;
962 int nents, count;
963 int ret;
964
965 req->num_sge = 1;
966 req->inline_data = false;
967 req->need_inval = false;
968
969 c->common.flags |= NVME_CMD_SGL_METABUF;
970
971 if (!blk_rq_bytes(rq))
972 return nvme_rdma_set_sg_null(c);
973
974 req->sg_table.sgl = req->first_sgl;
975 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
976 req->sg_table.sgl);
977 if (ret)
978 return -ENOMEM;
979
980 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
981 BUG_ON(nents > rq->nr_phys_segments);
982 req->nents = nents;
983
984 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
985 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
986 if (unlikely(count <= 0)) {
987 sg_free_table_chained(&req->sg_table, true);
988 return -EIO;
989 }
990
991 if (count == 1) {
992 if (rq_data_dir(rq) == WRITE &&
993 map_len <= nvme_rdma_inline_data_size(queue) &&
994 nvme_rdma_queue_idx(queue))
995 return nvme_rdma_map_sg_inline(queue, req, c);
996
997 if (!register_always)
998 return nvme_rdma_map_sg_single(queue, req, c);
999 }
1000
1001 return nvme_rdma_map_sg_fr(queue, req, c, count);
1002 }
1003
1004 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1005 {
1006 if (unlikely(wc->status != IB_WC_SUCCESS))
1007 nvme_rdma_wr_error(cq, wc, "SEND");
1008 }
1009
1010 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1011 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1012 struct ib_send_wr *first, bool flush)
1013 {
1014 struct ib_send_wr wr, *bad_wr;
1015 int ret;
1016
1017 sge->addr = qe->dma;
1018 sge->length = sizeof(struct nvme_command),
1019 sge->lkey = queue->device->pd->local_dma_lkey;
1020
1021 qe->cqe.done = nvme_rdma_send_done;
1022
1023 wr.next = NULL;
1024 wr.wr_cqe = &qe->cqe;
1025 wr.sg_list = sge;
1026 wr.num_sge = num_sge;
1027 wr.opcode = IB_WR_SEND;
1028 wr.send_flags = 0;
1029
1030 /*
1031 * Unsignalled send completions are another giant desaster in the
1032 * IB Verbs spec: If we don't regularly post signalled sends
1033 * the send queue will fill up and only a QP reset will rescue us.
1034 * Would have been way to obvious to handle this in hardware or
1035 * at least the RDMA stack..
1036 *
1037 * This messy and racy code sniplet is copy and pasted from the iSER
1038 * initiator, and the magic '32' comes from there as well.
1039 *
1040 * Always signal the flushes. The magic request used for the flush
1041 * sequencer is not allocated in our driver's tagset and it's
1042 * triggered to be freed by blk_cleanup_queue(). So we need to
1043 * always mark it as signaled to ensure that the "wr_cqe", which is
1044 * embeded in request's payload, is not freed when __ib_process_cq()
1045 * calls wr_cqe->done().
1046 */
1047 if ((++queue->sig_count % 32) == 0 || flush)
1048 wr.send_flags |= IB_SEND_SIGNALED;
1049
1050 if (first)
1051 first->next = &wr;
1052 else
1053 first = &wr;
1054
1055 ret = ib_post_send(queue->qp, first, &bad_wr);
1056 if (ret) {
1057 dev_err(queue->ctrl->ctrl.device,
1058 "%s failed with error code %d\n", __func__, ret);
1059 }
1060 return ret;
1061 }
1062
1063 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1064 struct nvme_rdma_qe *qe)
1065 {
1066 struct ib_recv_wr wr, *bad_wr;
1067 struct ib_sge list;
1068 int ret;
1069
1070 list.addr = qe->dma;
1071 list.length = sizeof(struct nvme_completion);
1072 list.lkey = queue->device->pd->local_dma_lkey;
1073
1074 qe->cqe.done = nvme_rdma_recv_done;
1075
1076 wr.next = NULL;
1077 wr.wr_cqe = &qe->cqe;
1078 wr.sg_list = &list;
1079 wr.num_sge = 1;
1080
1081 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1082 if (ret) {
1083 dev_err(queue->ctrl->ctrl.device,
1084 "%s failed with error code %d\n", __func__, ret);
1085 }
1086 return ret;
1087 }
1088
1089 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1090 {
1091 u32 queue_idx = nvme_rdma_queue_idx(queue);
1092
1093 if (queue_idx == 0)
1094 return queue->ctrl->admin_tag_set.tags[queue_idx];
1095 return queue->ctrl->tag_set.tags[queue_idx - 1];
1096 }
1097
1098 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1099 {
1100 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1101 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1102 struct ib_device *dev = queue->device->dev;
1103 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1104 struct nvme_command *cmd = sqe->data;
1105 struct ib_sge sge;
1106 int ret;
1107
1108 if (WARN_ON_ONCE(aer_idx != 0))
1109 return;
1110
1111 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1112
1113 memset(cmd, 0, sizeof(*cmd));
1114 cmd->common.opcode = nvme_admin_async_event;
1115 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1116 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1117 nvme_rdma_set_sg_null(cmd);
1118
1119 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1120 DMA_TO_DEVICE);
1121
1122 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1123 WARN_ON_ONCE(ret);
1124 }
1125
1126 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1127 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1128 {
1129 u16 status = le16_to_cpu(cqe->status);
1130 struct request *rq;
1131 struct nvme_rdma_request *req;
1132 int ret = 0;
1133
1134 status >>= 1;
1135
1136 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1137 if (!rq) {
1138 dev_err(queue->ctrl->ctrl.device,
1139 "tag 0x%x on QP %#x not found\n",
1140 cqe->command_id, queue->qp->qp_num);
1141 nvme_rdma_error_recovery(queue->ctrl);
1142 return ret;
1143 }
1144 req = blk_mq_rq_to_pdu(rq);
1145
1146 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1147 memcpy(rq->special, cqe, sizeof(*cqe));
1148
1149 if (rq->tag == tag)
1150 ret = 1;
1151
1152 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1153 wc->ex.invalidate_rkey == req->mr->rkey)
1154 req->need_inval = false;
1155
1156 blk_mq_complete_request(rq, status);
1157
1158 return ret;
1159 }
1160
1161 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1162 {
1163 struct nvme_rdma_qe *qe =
1164 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1165 struct nvme_rdma_queue *queue = cq->cq_context;
1166 struct ib_device *ibdev = queue->device->dev;
1167 struct nvme_completion *cqe = qe->data;
1168 const size_t len = sizeof(struct nvme_completion);
1169 int ret = 0;
1170
1171 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1172 nvme_rdma_wr_error(cq, wc, "RECV");
1173 return 0;
1174 }
1175
1176 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1177 /*
1178 * AEN requests are special as they don't time out and can
1179 * survive any kind of queue freeze and often don't respond to
1180 * aborts. We don't even bother to allocate a struct request
1181 * for them but rather special case them here.
1182 */
1183 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1184 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1185 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1186 else
1187 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1188 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1189
1190 nvme_rdma_post_recv(queue, qe);
1191 return ret;
1192 }
1193
1194 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1195 {
1196 __nvme_rdma_recv_done(cq, wc, -1);
1197 }
1198
1199 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1200 {
1201 int ret, i;
1202
1203 for (i = 0; i < queue->queue_size; i++) {
1204 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1205 if (ret)
1206 goto out_destroy_queue_ib;
1207 }
1208
1209 return 0;
1210
1211 out_destroy_queue_ib:
1212 nvme_rdma_destroy_queue_ib(queue);
1213 return ret;
1214 }
1215
1216 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1217 struct rdma_cm_event *ev)
1218 {
1219 if (ev->param.conn.private_data_len) {
1220 struct nvme_rdma_cm_rej *rej =
1221 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1222
1223 dev_err(queue->ctrl->ctrl.device,
1224 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1225 /* XXX: Think of something clever to do here... */
1226 } else {
1227 dev_err(queue->ctrl->ctrl.device,
1228 "Connect rejected, no private data.\n");
1229 }
1230
1231 return -ECONNRESET;
1232 }
1233
1234 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1235 {
1236 struct nvme_rdma_device *dev;
1237 int ret;
1238
1239 dev = nvme_rdma_find_get_device(queue->cm_id);
1240 if (!dev) {
1241 dev_err(queue->cm_id->device->dma_device,
1242 "no client data found!\n");
1243 return -ECONNREFUSED;
1244 }
1245
1246 ret = nvme_rdma_create_queue_ib(queue, dev);
1247 if (ret) {
1248 nvme_rdma_dev_put(dev);
1249 goto out;
1250 }
1251
1252 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1253 if (ret) {
1254 dev_err(queue->ctrl->ctrl.device,
1255 "rdma_resolve_route failed (%d).\n",
1256 queue->cm_error);
1257 goto out_destroy_queue;
1258 }
1259
1260 return 0;
1261
1262 out_destroy_queue:
1263 nvme_rdma_destroy_queue_ib(queue);
1264 out:
1265 return ret;
1266 }
1267
1268 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1269 {
1270 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1271 struct rdma_conn_param param = { };
1272 struct nvme_rdma_cm_req priv;
1273 int ret;
1274
1275 param.qp_num = queue->qp->qp_num;
1276 param.flow_control = 1;
1277
1278 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1279 /* maximum retry count */
1280 param.retry_count = 7;
1281 param.rnr_retry_count = 7;
1282 param.private_data = &priv;
1283 param.private_data_len = sizeof(priv);
1284
1285 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1286 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1287 priv.hrqsize = cpu_to_le16(queue->queue_size);
1288 priv.hsqsize = cpu_to_le16(queue->queue_size);
1289
1290 ret = rdma_connect(queue->cm_id, &param);
1291 if (ret) {
1292 dev_err(ctrl->ctrl.device,
1293 "rdma_connect failed (%d).\n", ret);
1294 goto out_destroy_queue_ib;
1295 }
1296
1297 return 0;
1298
1299 out_destroy_queue_ib:
1300 nvme_rdma_destroy_queue_ib(queue);
1301 return ret;
1302 }
1303
1304 /**
1305 * nvme_rdma_device_unplug() - Handle RDMA device unplug
1306 * @queue: Queue that owns the cm_id that caught the event
1307 *
1308 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1309 * to unplug so we should take care of destroying our RDMA resources.
1310 * This event will be generated for each allocated cm_id.
1311 *
1312 * In our case, the RDMA resources are managed per controller and not
1313 * only per queue. So the way we handle this is we trigger an implicit
1314 * controller deletion upon the first DEVICE_REMOVAL event we see, and
1315 * hold the event inflight until the controller deletion is completed.
1316 *
1317 * One exception that we need to handle is the destruction of the cm_id
1318 * that caught the event. Since we hold the callout until the controller
1319 * deletion is completed, we'll deadlock if the controller deletion will
1320 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1321 * of destroying this queue before-hand, destroy the queue resources
1322 * after the controller deletion completed with the exception of destroying
1323 * the cm_id implicitely by returning a non-zero rc to the callout.
1324 */
1325 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1326 {
1327 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1328 int ret, ctrl_deleted = 0;
1329
1330 /* First disable the queue so ctrl delete won't free it */
1331 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
1332 goto out;
1333
1334 /* delete the controller */
1335 ret = __nvme_rdma_del_ctrl(ctrl);
1336 if (!ret) {
1337 dev_warn(ctrl->ctrl.device,
1338 "Got rdma device removal event, deleting ctrl\n");
1339 flush_work(&ctrl->delete_work);
1340
1341 /* Return non-zero so the cm_id will destroy implicitly */
1342 ctrl_deleted = 1;
1343
1344 /* Free this queue ourselves */
1345 rdma_disconnect(queue->cm_id);
1346 ib_drain_qp(queue->qp);
1347 nvme_rdma_destroy_queue_ib(queue);
1348 }
1349
1350 out:
1351 return ctrl_deleted;
1352 }
1353
1354 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1355 struct rdma_cm_event *ev)
1356 {
1357 struct nvme_rdma_queue *queue = cm_id->context;
1358 int cm_error = 0;
1359
1360 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1361 rdma_event_msg(ev->event), ev->event,
1362 ev->status, cm_id);
1363
1364 switch (ev->event) {
1365 case RDMA_CM_EVENT_ADDR_RESOLVED:
1366 cm_error = nvme_rdma_addr_resolved(queue);
1367 break;
1368 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1369 cm_error = nvme_rdma_route_resolved(queue);
1370 break;
1371 case RDMA_CM_EVENT_ESTABLISHED:
1372 queue->cm_error = nvme_rdma_conn_established(queue);
1373 /* complete cm_done regardless of success/failure */
1374 complete(&queue->cm_done);
1375 return 0;
1376 case RDMA_CM_EVENT_REJECTED:
1377 cm_error = nvme_rdma_conn_rejected(queue, ev);
1378 break;
1379 case RDMA_CM_EVENT_ADDR_ERROR:
1380 case RDMA_CM_EVENT_ROUTE_ERROR:
1381 case RDMA_CM_EVENT_CONNECT_ERROR:
1382 case RDMA_CM_EVENT_UNREACHABLE:
1383 dev_dbg(queue->ctrl->ctrl.device,
1384 "CM error event %d\n", ev->event);
1385 cm_error = -ECONNRESET;
1386 break;
1387 case RDMA_CM_EVENT_DISCONNECTED:
1388 case RDMA_CM_EVENT_ADDR_CHANGE:
1389 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1390 dev_dbg(queue->ctrl->ctrl.device,
1391 "disconnect received - connection closed\n");
1392 nvme_rdma_error_recovery(queue->ctrl);
1393 break;
1394 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1395 /* return 1 means impliciy CM ID destroy */
1396 return nvme_rdma_device_unplug(queue);
1397 default:
1398 dev_err(queue->ctrl->ctrl.device,
1399 "Unexpected RDMA CM event (%d)\n", ev->event);
1400 nvme_rdma_error_recovery(queue->ctrl);
1401 break;
1402 }
1403
1404 if (cm_error) {
1405 queue->cm_error = cm_error;
1406 complete(&queue->cm_done);
1407 }
1408
1409 return 0;
1410 }
1411
1412 static enum blk_eh_timer_return
1413 nvme_rdma_timeout(struct request *rq, bool reserved)
1414 {
1415 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1416
1417 /* queue error recovery */
1418 nvme_rdma_error_recovery(req->queue->ctrl);
1419
1420 /* fail with DNR on cmd timeout */
1421 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1422
1423 return BLK_EH_HANDLED;
1424 }
1425
1426 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1427 const struct blk_mq_queue_data *bd)
1428 {
1429 struct nvme_ns *ns = hctx->queue->queuedata;
1430 struct nvme_rdma_queue *queue = hctx->driver_data;
1431 struct request *rq = bd->rq;
1432 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1433 struct nvme_rdma_qe *sqe = &req->sqe;
1434 struct nvme_command *c = sqe->data;
1435 bool flush = false;
1436 struct ib_device *dev;
1437 unsigned int map_len;
1438 int ret;
1439
1440 WARN_ON_ONCE(rq->tag < 0);
1441
1442 dev = queue->device->dev;
1443 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1444 sizeof(struct nvme_command), DMA_TO_DEVICE);
1445
1446 ret = nvme_setup_cmd(ns, rq, c);
1447 if (ret)
1448 return ret;
1449
1450 c->common.command_id = rq->tag;
1451 blk_mq_start_request(rq);
1452
1453 map_len = nvme_map_len(rq);
1454 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1455 if (ret < 0) {
1456 dev_err(queue->ctrl->ctrl.device,
1457 "Failed to map data (%d)\n", ret);
1458 nvme_cleanup_cmd(rq);
1459 goto err;
1460 }
1461
1462 ib_dma_sync_single_for_device(dev, sqe->dma,
1463 sizeof(struct nvme_command), DMA_TO_DEVICE);
1464
1465 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1466 flush = true;
1467 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1468 req->need_inval ? &req->reg_wr.wr : NULL, flush);
1469 if (ret) {
1470 nvme_rdma_unmap_data(queue, rq);
1471 goto err;
1472 }
1473
1474 return BLK_MQ_RQ_QUEUE_OK;
1475 err:
1476 return (ret == -ENOMEM || ret == -EAGAIN) ?
1477 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1478 }
1479
1480 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1481 {
1482 struct nvme_rdma_queue *queue = hctx->driver_data;
1483 struct ib_cq *cq = queue->ib_cq;
1484 struct ib_wc wc;
1485 int found = 0;
1486
1487 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1488 while (ib_poll_cq(cq, 1, &wc) > 0) {
1489 struct ib_cqe *cqe = wc.wr_cqe;
1490
1491 if (cqe) {
1492 if (cqe->done == nvme_rdma_recv_done)
1493 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1494 else
1495 cqe->done(cq, &wc);
1496 }
1497 }
1498
1499 return found;
1500 }
1501
1502 static void nvme_rdma_complete_rq(struct request *rq)
1503 {
1504 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1505 struct nvme_rdma_queue *queue = req->queue;
1506 int error = 0;
1507
1508 nvme_rdma_unmap_data(queue, rq);
1509
1510 if (unlikely(rq->errors)) {
1511 if (nvme_req_needs_retry(rq, rq->errors)) {
1512 nvme_requeue_req(rq);
1513 return;
1514 }
1515
1516 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1517 error = rq->errors;
1518 else
1519 error = nvme_error_status(rq->errors);
1520 }
1521
1522 blk_mq_end_request(rq, error);
1523 }
1524
1525 static struct blk_mq_ops nvme_rdma_mq_ops = {
1526 .queue_rq = nvme_rdma_queue_rq,
1527 .complete = nvme_rdma_complete_rq,
1528 .map_queue = blk_mq_map_queue,
1529 .init_request = nvme_rdma_init_request,
1530 .exit_request = nvme_rdma_exit_request,
1531 .reinit_request = nvme_rdma_reinit_request,
1532 .init_hctx = nvme_rdma_init_hctx,
1533 .poll = nvme_rdma_poll,
1534 .timeout = nvme_rdma_timeout,
1535 };
1536
1537 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1538 .queue_rq = nvme_rdma_queue_rq,
1539 .complete = nvme_rdma_complete_rq,
1540 .map_queue = blk_mq_map_queue,
1541 .init_request = nvme_rdma_init_admin_request,
1542 .exit_request = nvme_rdma_exit_admin_request,
1543 .reinit_request = nvme_rdma_reinit_request,
1544 .init_hctx = nvme_rdma_init_admin_hctx,
1545 .timeout = nvme_rdma_timeout,
1546 };
1547
1548 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1549 {
1550 int error;
1551
1552 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1553 if (error)
1554 return error;
1555
1556 ctrl->device = ctrl->queues[0].device;
1557
1558 /*
1559 * We need a reference on the device as long as the tag_set is alive,
1560 * as the MRs in the request structures need a valid ib_device.
1561 */
1562 error = -EINVAL;
1563 if (!nvme_rdma_dev_get(ctrl->device))
1564 goto out_free_queue;
1565
1566 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1567 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1568
1569 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1570 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1571 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1572 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1573 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1574 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1575 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1576 ctrl->admin_tag_set.driver_data = ctrl;
1577 ctrl->admin_tag_set.nr_hw_queues = 1;
1578 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1579
1580 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1581 if (error)
1582 goto out_put_dev;
1583
1584 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1585 if (IS_ERR(ctrl->ctrl.admin_q)) {
1586 error = PTR_ERR(ctrl->ctrl.admin_q);
1587 goto out_free_tagset;
1588 }
1589
1590 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1591 if (error)
1592 goto out_cleanup_queue;
1593
1594 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1595 if (error) {
1596 dev_err(ctrl->ctrl.device,
1597 "prop_get NVME_REG_CAP failed\n");
1598 goto out_cleanup_queue;
1599 }
1600
1601 ctrl->ctrl.sqsize =
1602 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1603
1604 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1605 if (error)
1606 goto out_cleanup_queue;
1607
1608 ctrl->ctrl.max_hw_sectors =
1609 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1610
1611 error = nvme_init_identify(&ctrl->ctrl);
1612 if (error)
1613 goto out_cleanup_queue;
1614
1615 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1616 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1617 DMA_TO_DEVICE);
1618 if (error)
1619 goto out_cleanup_queue;
1620
1621 nvme_start_keep_alive(&ctrl->ctrl);
1622
1623 return 0;
1624
1625 out_cleanup_queue:
1626 blk_cleanup_queue(ctrl->ctrl.admin_q);
1627 out_free_tagset:
1628 /* disconnect and drain the queue before freeing the tagset */
1629 nvme_rdma_stop_queue(&ctrl->queues[0]);
1630 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1631 out_put_dev:
1632 nvme_rdma_dev_put(ctrl->device);
1633 out_free_queue:
1634 nvme_rdma_free_queue(&ctrl->queues[0]);
1635 return error;
1636 }
1637
1638 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1639 {
1640 nvme_stop_keep_alive(&ctrl->ctrl);
1641 cancel_work_sync(&ctrl->err_work);
1642 cancel_delayed_work_sync(&ctrl->reconnect_work);
1643
1644 if (ctrl->queue_count > 1) {
1645 nvme_stop_queues(&ctrl->ctrl);
1646 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1647 nvme_cancel_request, &ctrl->ctrl);
1648 nvme_rdma_free_io_queues(ctrl);
1649 }
1650
1651 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1652 nvme_shutdown_ctrl(&ctrl->ctrl);
1653
1654 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1655 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1656 nvme_cancel_request, &ctrl->ctrl);
1657 nvme_rdma_destroy_admin_queue(ctrl);
1658 }
1659
1660 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1661 {
1662 struct nvme_rdma_ctrl *ctrl = container_of(work,
1663 struct nvme_rdma_ctrl, delete_work);
1664
1665 nvme_remove_namespaces(&ctrl->ctrl);
1666 nvme_rdma_shutdown_ctrl(ctrl);
1667 nvme_uninit_ctrl(&ctrl->ctrl);
1668 nvme_put_ctrl(&ctrl->ctrl);
1669 }
1670
1671 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1672 {
1673 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1674 return -EBUSY;
1675
1676 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1677 return -EBUSY;
1678
1679 return 0;
1680 }
1681
1682 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1683 {
1684 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1685 int ret;
1686
1687 ret = __nvme_rdma_del_ctrl(ctrl);
1688 if (ret)
1689 return ret;
1690
1691 flush_work(&ctrl->delete_work);
1692
1693 return 0;
1694 }
1695
1696 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1697 {
1698 struct nvme_rdma_ctrl *ctrl = container_of(work,
1699 struct nvme_rdma_ctrl, delete_work);
1700
1701 nvme_remove_namespaces(&ctrl->ctrl);
1702 nvme_uninit_ctrl(&ctrl->ctrl);
1703 nvme_put_ctrl(&ctrl->ctrl);
1704 }
1705
1706 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1707 {
1708 struct nvme_rdma_ctrl *ctrl = container_of(work,
1709 struct nvme_rdma_ctrl, reset_work);
1710 int ret;
1711 bool changed;
1712
1713 nvme_rdma_shutdown_ctrl(ctrl);
1714
1715 ret = nvme_rdma_configure_admin_queue(ctrl);
1716 if (ret) {
1717 /* ctrl is already shutdown, just remove the ctrl */
1718 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1719 goto del_dead_ctrl;
1720 }
1721
1722 if (ctrl->queue_count > 1) {
1723 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1724 if (ret)
1725 goto del_dead_ctrl;
1726
1727 ret = nvme_rdma_init_io_queues(ctrl);
1728 if (ret)
1729 goto del_dead_ctrl;
1730
1731 ret = nvme_rdma_connect_io_queues(ctrl);
1732 if (ret)
1733 goto del_dead_ctrl;
1734 }
1735
1736 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1737 WARN_ON_ONCE(!changed);
1738
1739 if (ctrl->queue_count > 1) {
1740 nvme_start_queues(&ctrl->ctrl);
1741 nvme_queue_scan(&ctrl->ctrl);
1742 }
1743
1744 return;
1745
1746 del_dead_ctrl:
1747 /* Deleting this dead controller... */
1748 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1749 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1750 }
1751
1752 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1753 {
1754 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1755
1756 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1757 return -EBUSY;
1758
1759 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1760 return -EBUSY;
1761
1762 flush_work(&ctrl->reset_work);
1763
1764 return 0;
1765 }
1766
1767 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1768 .name = "rdma",
1769 .module = THIS_MODULE,
1770 .is_fabrics = true,
1771 .reg_read32 = nvmf_reg_read32,
1772 .reg_read64 = nvmf_reg_read64,
1773 .reg_write32 = nvmf_reg_write32,
1774 .reset_ctrl = nvme_rdma_reset_ctrl,
1775 .free_ctrl = nvme_rdma_free_ctrl,
1776 .submit_async_event = nvme_rdma_submit_async_event,
1777 .delete_ctrl = nvme_rdma_del_ctrl,
1778 .get_subsysnqn = nvmf_get_subsysnqn,
1779 .get_address = nvmf_get_address,
1780 };
1781
1782 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1783 {
1784 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1785 int ret;
1786
1787 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1788 if (ret)
1789 return ret;
1790
1791 ctrl->queue_count = opts->nr_io_queues + 1;
1792 if (ctrl->queue_count < 2)
1793 return 0;
1794
1795 dev_info(ctrl->ctrl.device,
1796 "creating %d I/O queues.\n", opts->nr_io_queues);
1797
1798 ret = nvme_rdma_init_io_queues(ctrl);
1799 if (ret)
1800 return ret;
1801
1802 /*
1803 * We need a reference on the device as long as the tag_set is alive,
1804 * as the MRs in the request structures need a valid ib_device.
1805 */
1806 ret = -EINVAL;
1807 if (!nvme_rdma_dev_get(ctrl->device))
1808 goto out_free_io_queues;
1809
1810 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1811 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1812 ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
1813 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1814 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1815 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1816 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1817 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1818 ctrl->tag_set.driver_data = ctrl;
1819 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1820 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1821
1822 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1823 if (ret)
1824 goto out_put_dev;
1825 ctrl->ctrl.tagset = &ctrl->tag_set;
1826
1827 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1828 if (IS_ERR(ctrl->ctrl.connect_q)) {
1829 ret = PTR_ERR(ctrl->ctrl.connect_q);
1830 goto out_free_tag_set;
1831 }
1832
1833 ret = nvme_rdma_connect_io_queues(ctrl);
1834 if (ret)
1835 goto out_cleanup_connect_q;
1836
1837 return 0;
1838
1839 out_cleanup_connect_q:
1840 blk_cleanup_queue(ctrl->ctrl.connect_q);
1841 out_free_tag_set:
1842 blk_mq_free_tag_set(&ctrl->tag_set);
1843 out_put_dev:
1844 nvme_rdma_dev_put(ctrl->device);
1845 out_free_io_queues:
1846 nvme_rdma_free_io_queues(ctrl);
1847 return ret;
1848 }
1849
1850 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1851 {
1852 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1853 size_t buflen = strlen(p);
1854
1855 /* XXX: handle IPv6 addresses */
1856
1857 if (buflen > INET_ADDRSTRLEN)
1858 return -EINVAL;
1859 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1860 return -EINVAL;
1861 in_addr->sin_family = AF_INET;
1862 return 0;
1863 }
1864
1865 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1866 struct nvmf_ctrl_options *opts)
1867 {
1868 struct nvme_rdma_ctrl *ctrl;
1869 int ret;
1870 bool changed;
1871
1872 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1873 if (!ctrl)
1874 return ERR_PTR(-ENOMEM);
1875 ctrl->ctrl.opts = opts;
1876 INIT_LIST_HEAD(&ctrl->list);
1877
1878 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1879 if (ret) {
1880 pr_err("malformed IP address passed: %s\n", opts->traddr);
1881 goto out_free_ctrl;
1882 }
1883
1884 if (opts->mask & NVMF_OPT_TRSVCID) {
1885 u16 port;
1886
1887 ret = kstrtou16(opts->trsvcid, 0, &port);
1888 if (ret)
1889 goto out_free_ctrl;
1890
1891 ctrl->addr_in.sin_port = cpu_to_be16(port);
1892 } else {
1893 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1894 }
1895
1896 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1897 0 /* no quirks, we're perfect! */);
1898 if (ret)
1899 goto out_free_ctrl;
1900
1901 ctrl->reconnect_delay = opts->reconnect_delay;
1902 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1903 nvme_rdma_reconnect_ctrl_work);
1904 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1905 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1906 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1907 spin_lock_init(&ctrl->lock);
1908
1909 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1910 ctrl->ctrl.sqsize = opts->queue_size;
1911 ctrl->ctrl.kato = opts->kato;
1912
1913 ret = -ENOMEM;
1914 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1915 GFP_KERNEL);
1916 if (!ctrl->queues)
1917 goto out_uninit_ctrl;
1918
1919 ret = nvme_rdma_configure_admin_queue(ctrl);
1920 if (ret)
1921 goto out_kfree_queues;
1922
1923 /* sanity check icdoff */
1924 if (ctrl->ctrl.icdoff) {
1925 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1926 goto out_remove_admin_queue;
1927 }
1928
1929 /* sanity check keyed sgls */
1930 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1931 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1932 goto out_remove_admin_queue;
1933 }
1934
1935 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1936 /* warn if maxcmd is lower than queue_size */
1937 dev_warn(ctrl->ctrl.device,
1938 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1939 opts->queue_size, ctrl->ctrl.maxcmd);
1940 opts->queue_size = ctrl->ctrl.maxcmd;
1941 }
1942
1943 if (opts->nr_io_queues) {
1944 ret = nvme_rdma_create_io_queues(ctrl);
1945 if (ret)
1946 goto out_remove_admin_queue;
1947 }
1948
1949 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1950 WARN_ON_ONCE(!changed);
1951
1952 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1953 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1954
1955 kref_get(&ctrl->ctrl.kref);
1956
1957 mutex_lock(&nvme_rdma_ctrl_mutex);
1958 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1959 mutex_unlock(&nvme_rdma_ctrl_mutex);
1960
1961 if (opts->nr_io_queues) {
1962 nvme_queue_scan(&ctrl->ctrl);
1963 nvme_queue_async_events(&ctrl->ctrl);
1964 }
1965
1966 return &ctrl->ctrl;
1967
1968 out_remove_admin_queue:
1969 nvme_stop_keep_alive(&ctrl->ctrl);
1970 nvme_rdma_destroy_admin_queue(ctrl);
1971 out_kfree_queues:
1972 kfree(ctrl->queues);
1973 out_uninit_ctrl:
1974 nvme_uninit_ctrl(&ctrl->ctrl);
1975 nvme_put_ctrl(&ctrl->ctrl);
1976 if (ret > 0)
1977 ret = -EIO;
1978 return ERR_PTR(ret);
1979 out_free_ctrl:
1980 kfree(ctrl);
1981 return ERR_PTR(ret);
1982 }
1983
1984 static struct nvmf_transport_ops nvme_rdma_transport = {
1985 .name = "rdma",
1986 .required_opts = NVMF_OPT_TRADDR,
1987 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1988 .create_ctrl = nvme_rdma_create_ctrl,
1989 };
1990
1991 static int __init nvme_rdma_init_module(void)
1992 {
1993 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
1994 if (!nvme_rdma_wq)
1995 return -ENOMEM;
1996
1997 nvmf_register_transport(&nvme_rdma_transport);
1998 return 0;
1999 }
2000
2001 static void __exit nvme_rdma_cleanup_module(void)
2002 {
2003 struct nvme_rdma_ctrl *ctrl;
2004
2005 nvmf_unregister_transport(&nvme_rdma_transport);
2006
2007 mutex_lock(&nvme_rdma_ctrl_mutex);
2008 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2009 __nvme_rdma_del_ctrl(ctrl);
2010 mutex_unlock(&nvme_rdma_ctrl_mutex);
2011
2012 destroy_workqueue(nvme_rdma_wq);
2013 }
2014
2015 module_init(nvme_rdma_init_module);
2016 module_exit(nvme_rdma_cleanup_module);
2017
2018 MODULE_LICENSE("GPL v2");