]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/rdma.c
mmc: sdhci-xenon: add set_power callback
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
38
39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
40
41 #define NVME_RDMA_MAX_SEGMENTS 256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
44
45 /*
46 * We handle AEN commands ourselves and don't even let the
47 * block layer know about them.
48 */
49 #define NVME_RDMA_NR_AEN_COMMANDS 1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
51 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52
53 struct nvme_rdma_device {
54 struct ib_device *dev;
55 struct ib_pd *pd;
56 struct kref ref;
57 struct list_head entry;
58 };
59
60 struct nvme_rdma_qe {
61 struct ib_cqe cqe;
62 void *data;
63 u64 dma;
64 };
65
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68 struct nvme_request req;
69 struct ib_mr *mr;
70 struct nvme_rdma_qe sqe;
71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72 u32 num_sge;
73 int nents;
74 bool inline_data;
75 struct ib_reg_wr reg_wr;
76 struct ib_cqe reg_cqe;
77 struct nvme_rdma_queue *queue;
78 struct sg_table sg_table;
79 struct scatterlist first_sgl[];
80 };
81
82 enum nvme_rdma_queue_flags {
83 NVME_RDMA_Q_LIVE = 0,
84 NVME_RDMA_Q_DELETING = 1,
85 };
86
87 struct nvme_rdma_queue {
88 struct nvme_rdma_qe *rsp_ring;
89 atomic_t sig_count;
90 int queue_size;
91 size_t cmnd_capsule_len;
92 struct nvme_rdma_ctrl *ctrl;
93 struct nvme_rdma_device *device;
94 struct ib_cq *ib_cq;
95 struct ib_qp *qp;
96
97 unsigned long flags;
98 struct rdma_cm_id *cm_id;
99 int cm_error;
100 struct completion cm_done;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct delete_work;
110 struct work_struct err_work;
111
112 struct nvme_rdma_qe async_event_sqe;
113
114 struct delayed_work reconnect_work;
115
116 struct list_head list;
117
118 struct blk_mq_tag_set admin_tag_set;
119 struct nvme_rdma_device *device;
120
121 u32 max_fr_pages;
122
123 struct sockaddr_storage addr;
124 struct sockaddr_storage src_addr;
125
126 struct nvme_ctrl ctrl;
127 };
128
129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
130 {
131 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
132 }
133
134 static LIST_HEAD(device_list);
135 static DEFINE_MUTEX(device_list_mutex);
136
137 static LIST_HEAD(nvme_rdma_ctrl_list);
138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
139
140 /*
141 * Disabling this option makes small I/O goes faster, but is fundamentally
142 * unsafe. With it turned off we will have to register a global rkey that
143 * allows read and write access to all physical memory.
144 */
145 static bool register_always = true;
146 module_param(register_always, bool, 0444);
147 MODULE_PARM_DESC(register_always,
148 "Use memory registration even for contiguous memory regions");
149
150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
151 struct rdma_cm_event *event);
152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
153
154 /* XXX: really should move to a generic header sooner or later.. */
155 static inline void put_unaligned_le24(u32 val, u8 *p)
156 {
157 *p++ = val;
158 *p++ = val >> 8;
159 *p++ = val >> 16;
160 }
161
162 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
163 {
164 return queue - queue->ctrl->queues;
165 }
166
167 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
168 {
169 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 }
171
172 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
173 size_t capsule_size, enum dma_data_direction dir)
174 {
175 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
176 kfree(qe->data);
177 }
178
179 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
180 size_t capsule_size, enum dma_data_direction dir)
181 {
182 qe->data = kzalloc(capsule_size, GFP_KERNEL);
183 if (!qe->data)
184 return -ENOMEM;
185
186 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
187 if (ib_dma_mapping_error(ibdev, qe->dma)) {
188 kfree(qe->data);
189 return -ENOMEM;
190 }
191
192 return 0;
193 }
194
195 static void nvme_rdma_free_ring(struct ib_device *ibdev,
196 struct nvme_rdma_qe *ring, size_t ib_queue_size,
197 size_t capsule_size, enum dma_data_direction dir)
198 {
199 int i;
200
201 for (i = 0; i < ib_queue_size; i++)
202 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
203 kfree(ring);
204 }
205
206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
207 size_t ib_queue_size, size_t capsule_size,
208 enum dma_data_direction dir)
209 {
210 struct nvme_rdma_qe *ring;
211 int i;
212
213 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
214 if (!ring)
215 return NULL;
216
217 for (i = 0; i < ib_queue_size; i++) {
218 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
219 goto out_free_ring;
220 }
221
222 return ring;
223
224 out_free_ring:
225 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
226 return NULL;
227 }
228
229 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
230 {
231 pr_debug("QP event %s (%d)\n",
232 ib_event_msg(event->event), event->event);
233
234 }
235
236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
237 {
238 wait_for_completion_interruptible_timeout(&queue->cm_done,
239 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
240 return queue->cm_error;
241 }
242
243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
244 {
245 struct nvme_rdma_device *dev = queue->device;
246 struct ib_qp_init_attr init_attr;
247 int ret;
248
249 memset(&init_attr, 0, sizeof(init_attr));
250 init_attr.event_handler = nvme_rdma_qp_event;
251 /* +1 for drain */
252 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
253 /* +1 for drain */
254 init_attr.cap.max_recv_wr = queue->queue_size + 1;
255 init_attr.cap.max_recv_sge = 1;
256 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
257 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
258 init_attr.qp_type = IB_QPT_RC;
259 init_attr.send_cq = queue->ib_cq;
260 init_attr.recv_cq = queue->ib_cq;
261
262 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
263
264 queue->qp = queue->cm_id->qp;
265 return ret;
266 }
267
268 static int nvme_rdma_reinit_request(void *data, struct request *rq)
269 {
270 struct nvme_rdma_ctrl *ctrl = data;
271 struct nvme_rdma_device *dev = ctrl->device;
272 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
273 int ret = 0;
274
275 ib_dereg_mr(req->mr);
276
277 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
278 ctrl->max_fr_pages);
279 if (IS_ERR(req->mr)) {
280 ret = PTR_ERR(req->mr);
281 req->mr = NULL;
282 goto out;
283 }
284
285 req->mr->need_inval = false;
286
287 out:
288 return ret;
289 }
290
291 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
292 struct request *rq, unsigned int hctx_idx)
293 {
294 struct nvme_rdma_ctrl *ctrl = set->driver_data;
295 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
296 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
297 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
298 struct nvme_rdma_device *dev = queue->device;
299
300 if (req->mr)
301 ib_dereg_mr(req->mr);
302
303 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
304 DMA_TO_DEVICE);
305 }
306
307 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
308 struct request *rq, unsigned int hctx_idx,
309 unsigned int numa_node)
310 {
311 struct nvme_rdma_ctrl *ctrl = set->driver_data;
312 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
313 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
314 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
315 struct nvme_rdma_device *dev = queue->device;
316 struct ib_device *ibdev = dev->dev;
317 int ret;
318
319 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
320 DMA_TO_DEVICE);
321 if (ret)
322 return ret;
323
324 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
325 ctrl->max_fr_pages);
326 if (IS_ERR(req->mr)) {
327 ret = PTR_ERR(req->mr);
328 goto out_free_qe;
329 }
330
331 req->queue = queue;
332
333 return 0;
334
335 out_free_qe:
336 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
337 DMA_TO_DEVICE);
338 return -ENOMEM;
339 }
340
341 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
342 unsigned int hctx_idx)
343 {
344 struct nvme_rdma_ctrl *ctrl = data;
345 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
346
347 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
348
349 hctx->driver_data = queue;
350 return 0;
351 }
352
353 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
354 unsigned int hctx_idx)
355 {
356 struct nvme_rdma_ctrl *ctrl = data;
357 struct nvme_rdma_queue *queue = &ctrl->queues[0];
358
359 BUG_ON(hctx_idx != 0);
360
361 hctx->driver_data = queue;
362 return 0;
363 }
364
365 static void nvme_rdma_free_dev(struct kref *ref)
366 {
367 struct nvme_rdma_device *ndev =
368 container_of(ref, struct nvme_rdma_device, ref);
369
370 mutex_lock(&device_list_mutex);
371 list_del(&ndev->entry);
372 mutex_unlock(&device_list_mutex);
373
374 ib_dealloc_pd(ndev->pd);
375 kfree(ndev);
376 }
377
378 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
379 {
380 kref_put(&dev->ref, nvme_rdma_free_dev);
381 }
382
383 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
384 {
385 return kref_get_unless_zero(&dev->ref);
386 }
387
388 static struct nvme_rdma_device *
389 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
390 {
391 struct nvme_rdma_device *ndev;
392
393 mutex_lock(&device_list_mutex);
394 list_for_each_entry(ndev, &device_list, entry) {
395 if (ndev->dev->node_guid == cm_id->device->node_guid &&
396 nvme_rdma_dev_get(ndev))
397 goto out_unlock;
398 }
399
400 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
401 if (!ndev)
402 goto out_err;
403
404 ndev->dev = cm_id->device;
405 kref_init(&ndev->ref);
406
407 ndev->pd = ib_alloc_pd(ndev->dev,
408 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
409 if (IS_ERR(ndev->pd))
410 goto out_free_dev;
411
412 if (!(ndev->dev->attrs.device_cap_flags &
413 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
414 dev_err(&ndev->dev->dev,
415 "Memory registrations not supported.\n");
416 goto out_free_pd;
417 }
418
419 list_add(&ndev->entry, &device_list);
420 out_unlock:
421 mutex_unlock(&device_list_mutex);
422 return ndev;
423
424 out_free_pd:
425 ib_dealloc_pd(ndev->pd);
426 out_free_dev:
427 kfree(ndev);
428 out_err:
429 mutex_unlock(&device_list_mutex);
430 return NULL;
431 }
432
433 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
434 {
435 struct nvme_rdma_device *dev;
436 struct ib_device *ibdev;
437
438 dev = queue->device;
439 ibdev = dev->dev;
440 rdma_destroy_qp(queue->cm_id);
441 ib_free_cq(queue->ib_cq);
442
443 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
444 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
445
446 nvme_rdma_dev_put(dev);
447 }
448
449 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
450 {
451 struct ib_device *ibdev;
452 const int send_wr_factor = 3; /* MR, SEND, INV */
453 const int cq_factor = send_wr_factor + 1; /* + RECV */
454 int comp_vector, idx = nvme_rdma_queue_idx(queue);
455 int ret;
456
457 queue->device = nvme_rdma_find_get_device(queue->cm_id);
458 if (!queue->device) {
459 dev_err(queue->cm_id->device->dev.parent,
460 "no client data found!\n");
461 return -ECONNREFUSED;
462 }
463 ibdev = queue->device->dev;
464
465 /*
466 * The admin queue is barely used once the controller is live, so don't
467 * bother to spread it out.
468 */
469 if (idx == 0)
470 comp_vector = 0;
471 else
472 comp_vector = idx % ibdev->num_comp_vectors;
473
474
475 /* +1 for ib_stop_cq */
476 queue->ib_cq = ib_alloc_cq(ibdev, queue,
477 cq_factor * queue->queue_size + 1,
478 comp_vector, IB_POLL_SOFTIRQ);
479 if (IS_ERR(queue->ib_cq)) {
480 ret = PTR_ERR(queue->ib_cq);
481 goto out_put_dev;
482 }
483
484 ret = nvme_rdma_create_qp(queue, send_wr_factor);
485 if (ret)
486 goto out_destroy_ib_cq;
487
488 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
489 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490 if (!queue->rsp_ring) {
491 ret = -ENOMEM;
492 goto out_destroy_qp;
493 }
494
495 return 0;
496
497 out_destroy_qp:
498 ib_destroy_qp(queue->qp);
499 out_destroy_ib_cq:
500 ib_free_cq(queue->ib_cq);
501 out_put_dev:
502 nvme_rdma_dev_put(queue->device);
503 return ret;
504 }
505
506 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
507 int idx, size_t queue_size)
508 {
509 struct nvme_rdma_queue *queue;
510 struct sockaddr *src_addr = NULL;
511 int ret;
512
513 queue = &ctrl->queues[idx];
514 queue->ctrl = ctrl;
515 init_completion(&queue->cm_done);
516
517 if (idx > 0)
518 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519 else
520 queue->cmnd_capsule_len = sizeof(struct nvme_command);
521
522 queue->queue_size = queue_size;
523 atomic_set(&queue->sig_count, 0);
524
525 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
526 RDMA_PS_TCP, IB_QPT_RC);
527 if (IS_ERR(queue->cm_id)) {
528 dev_info(ctrl->ctrl.device,
529 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
530 return PTR_ERR(queue->cm_id);
531 }
532
533 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
534 src_addr = (struct sockaddr *)&ctrl->src_addr;
535
536 queue->cm_error = -ETIMEDOUT;
537 ret = rdma_resolve_addr(queue->cm_id, src_addr,
538 (struct sockaddr *)&ctrl->addr,
539 NVME_RDMA_CONNECT_TIMEOUT_MS);
540 if (ret) {
541 dev_info(ctrl->ctrl.device,
542 "rdma_resolve_addr failed (%d).\n", ret);
543 goto out_destroy_cm_id;
544 }
545
546 ret = nvme_rdma_wait_for_cm(queue);
547 if (ret) {
548 dev_info(ctrl->ctrl.device,
549 "rdma_resolve_addr wait failed (%d).\n", ret);
550 goto out_destroy_cm_id;
551 }
552
553 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
554
555 return 0;
556
557 out_destroy_cm_id:
558 rdma_destroy_id(queue->cm_id);
559 return ret;
560 }
561
562 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
563 {
564 rdma_disconnect(queue->cm_id);
565 ib_drain_qp(queue->qp);
566 }
567
568 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
569 {
570 nvme_rdma_destroy_queue_ib(queue);
571 rdma_destroy_id(queue->cm_id);
572 }
573
574 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
575 {
576 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
577 return;
578 nvme_rdma_stop_queue(queue);
579 nvme_rdma_free_queue(queue);
580 }
581
582 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584 int i;
585
586 for (i = 1; i < ctrl->ctrl.queue_count; i++)
587 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
588 }
589
590 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
591 {
592 int i, ret = 0;
593
594 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
595 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
596 if (ret) {
597 dev_info(ctrl->ctrl.device,
598 "failed to connect i/o queue: %d\n", ret);
599 goto out_free_queues;
600 }
601 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
602 }
603
604 return 0;
605
606 out_free_queues:
607 nvme_rdma_free_io_queues(ctrl);
608 return ret;
609 }
610
611 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
612 {
613 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
614 unsigned int nr_io_queues;
615 int i, ret;
616
617 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
618 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
619 if (ret)
620 return ret;
621
622 ctrl->ctrl.queue_count = nr_io_queues + 1;
623 if (ctrl->ctrl.queue_count < 2)
624 return 0;
625
626 dev_info(ctrl->ctrl.device,
627 "creating %d I/O queues.\n", nr_io_queues);
628
629 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
630 ret = nvme_rdma_init_queue(ctrl, i,
631 ctrl->ctrl.opts->queue_size);
632 if (ret) {
633 dev_info(ctrl->ctrl.device,
634 "failed to initialize i/o queue: %d\n", ret);
635 goto out_free_queues;
636 }
637 }
638
639 return 0;
640
641 out_free_queues:
642 for (i--; i >= 1; i--)
643 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
644
645 return ret;
646 }
647
648 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
649 {
650 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
651 sizeof(struct nvme_command), DMA_TO_DEVICE);
652 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
653 blk_cleanup_queue(ctrl->ctrl.admin_q);
654 blk_mq_free_tag_set(&ctrl->admin_tag_set);
655 nvme_rdma_dev_put(ctrl->device);
656 }
657
658 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
659 {
660 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
661
662 if (list_empty(&ctrl->list))
663 goto free_ctrl;
664
665 mutex_lock(&nvme_rdma_ctrl_mutex);
666 list_del(&ctrl->list);
667 mutex_unlock(&nvme_rdma_ctrl_mutex);
668
669 kfree(ctrl->queues);
670 nvmf_free_options(nctrl->opts);
671 free_ctrl:
672 kfree(ctrl);
673 }
674
675 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
676 {
677 /* If we are resetting/deleting then do nothing */
678 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
679 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
680 ctrl->ctrl.state == NVME_CTRL_LIVE);
681 return;
682 }
683
684 if (nvmf_should_reconnect(&ctrl->ctrl)) {
685 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
686 ctrl->ctrl.opts->reconnect_delay);
687 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
688 ctrl->ctrl.opts->reconnect_delay * HZ);
689 } else {
690 dev_info(ctrl->ctrl.device, "Removing controller...\n");
691 queue_work(nvme_wq, &ctrl->delete_work);
692 }
693 }
694
695 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
696 {
697 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
698 struct nvme_rdma_ctrl, reconnect_work);
699 bool changed;
700 int ret;
701
702 ++ctrl->ctrl.nr_reconnects;
703
704 if (ctrl->ctrl.queue_count > 1) {
705 nvme_rdma_free_io_queues(ctrl);
706
707 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
708 if (ret)
709 goto requeue;
710 }
711
712 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
713
714 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
715 if (ret)
716 goto requeue;
717
718 ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
719 if (ret)
720 goto requeue;
721
722 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
723 if (ret)
724 goto requeue;
725
726 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
727
728 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
729 if (ret)
730 goto requeue;
731
732 if (ctrl->ctrl.queue_count > 1) {
733 ret = nvme_rdma_init_io_queues(ctrl);
734 if (ret)
735 goto requeue;
736
737 ret = nvme_rdma_connect_io_queues(ctrl);
738 if (ret)
739 goto requeue;
740
741 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
742 ctrl->ctrl.queue_count - 1);
743 }
744
745 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
746 WARN_ON_ONCE(!changed);
747 ctrl->ctrl.nr_reconnects = 0;
748
749 nvme_start_ctrl(&ctrl->ctrl);
750
751 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
752
753 return;
754
755 requeue:
756 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
757 ctrl->ctrl.nr_reconnects);
758 nvme_rdma_reconnect_or_remove(ctrl);
759 }
760
761 static void nvme_rdma_error_recovery_work(struct work_struct *work)
762 {
763 struct nvme_rdma_ctrl *ctrl = container_of(work,
764 struct nvme_rdma_ctrl, err_work);
765 int i;
766
767 nvme_stop_ctrl(&ctrl->ctrl);
768
769 for (i = 0; i < ctrl->ctrl.queue_count; i++)
770 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
771
772 if (ctrl->ctrl.queue_count > 1)
773 nvme_stop_queues(&ctrl->ctrl);
774 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
775
776 /* We must take care of fastfail/requeue all our inflight requests */
777 if (ctrl->ctrl.queue_count > 1)
778 blk_mq_tagset_busy_iter(&ctrl->tag_set,
779 nvme_cancel_request, &ctrl->ctrl);
780 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
781 nvme_cancel_request, &ctrl->ctrl);
782
783 /*
784 * queues are not a live anymore, so restart the queues to fail fast
785 * new IO
786 */
787 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
788 nvme_start_queues(&ctrl->ctrl);
789
790 nvme_rdma_reconnect_or_remove(ctrl);
791 }
792
793 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
794 {
795 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
796 return;
797
798 queue_work(nvme_wq, &ctrl->err_work);
799 }
800
801 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
802 const char *op)
803 {
804 struct nvme_rdma_queue *queue = cq->cq_context;
805 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
806
807 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
808 dev_info(ctrl->ctrl.device,
809 "%s for CQE 0x%p failed with status %s (%d)\n",
810 op, wc->wr_cqe,
811 ib_wc_status_msg(wc->status), wc->status);
812 nvme_rdma_error_recovery(ctrl);
813 }
814
815 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
816 {
817 if (unlikely(wc->status != IB_WC_SUCCESS))
818 nvme_rdma_wr_error(cq, wc, "MEMREG");
819 }
820
821 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
822 {
823 if (unlikely(wc->status != IB_WC_SUCCESS))
824 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
825 }
826
827 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
828 struct nvme_rdma_request *req)
829 {
830 struct ib_send_wr *bad_wr;
831 struct ib_send_wr wr = {
832 .opcode = IB_WR_LOCAL_INV,
833 .next = NULL,
834 .num_sge = 0,
835 .send_flags = 0,
836 .ex.invalidate_rkey = req->mr->rkey,
837 };
838
839 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
840 wr.wr_cqe = &req->reg_cqe;
841
842 return ib_post_send(queue->qp, &wr, &bad_wr);
843 }
844
845 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
846 struct request *rq)
847 {
848 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
849 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
850 struct nvme_rdma_device *dev = queue->device;
851 struct ib_device *ibdev = dev->dev;
852 int res;
853
854 if (!blk_rq_bytes(rq))
855 return;
856
857 if (req->mr->need_inval) {
858 res = nvme_rdma_inv_rkey(queue, req);
859 if (res < 0) {
860 dev_err(ctrl->ctrl.device,
861 "Queueing INV WR for rkey %#x failed (%d)\n",
862 req->mr->rkey, res);
863 nvme_rdma_error_recovery(queue->ctrl);
864 }
865 }
866
867 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
868 req->nents, rq_data_dir(rq) ==
869 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
870
871 nvme_cleanup_cmd(rq);
872 sg_free_table_chained(&req->sg_table, true);
873 }
874
875 static int nvme_rdma_set_sg_null(struct nvme_command *c)
876 {
877 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
878
879 sg->addr = 0;
880 put_unaligned_le24(0, sg->length);
881 put_unaligned_le32(0, sg->key);
882 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
883 return 0;
884 }
885
886 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
887 struct nvme_rdma_request *req, struct nvme_command *c)
888 {
889 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
890
891 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
892 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
893 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
894
895 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
896 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
897 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
898
899 req->inline_data = true;
900 req->num_sge++;
901 return 0;
902 }
903
904 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
905 struct nvme_rdma_request *req, struct nvme_command *c)
906 {
907 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
908
909 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
910 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
911 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
912 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
913 return 0;
914 }
915
916 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
917 struct nvme_rdma_request *req, struct nvme_command *c,
918 int count)
919 {
920 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
921 int nr;
922
923 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
924 if (nr < count) {
925 if (nr < 0)
926 return nr;
927 return -EINVAL;
928 }
929
930 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
931
932 req->reg_cqe.done = nvme_rdma_memreg_done;
933 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
934 req->reg_wr.wr.opcode = IB_WR_REG_MR;
935 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
936 req->reg_wr.wr.num_sge = 0;
937 req->reg_wr.mr = req->mr;
938 req->reg_wr.key = req->mr->rkey;
939 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
940 IB_ACCESS_REMOTE_READ |
941 IB_ACCESS_REMOTE_WRITE;
942
943 req->mr->need_inval = true;
944
945 sg->addr = cpu_to_le64(req->mr->iova);
946 put_unaligned_le24(req->mr->length, sg->length);
947 put_unaligned_le32(req->mr->rkey, sg->key);
948 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
949 NVME_SGL_FMT_INVALIDATE;
950
951 return 0;
952 }
953
954 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
955 struct request *rq, struct nvme_command *c)
956 {
957 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
958 struct nvme_rdma_device *dev = queue->device;
959 struct ib_device *ibdev = dev->dev;
960 int count, ret;
961
962 req->num_sge = 1;
963 req->inline_data = false;
964 req->mr->need_inval = false;
965
966 c->common.flags |= NVME_CMD_SGL_METABUF;
967
968 if (!blk_rq_bytes(rq))
969 return nvme_rdma_set_sg_null(c);
970
971 req->sg_table.sgl = req->first_sgl;
972 ret = sg_alloc_table_chained(&req->sg_table,
973 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
974 if (ret)
975 return -ENOMEM;
976
977 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
978
979 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
980 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
981 if (unlikely(count <= 0)) {
982 sg_free_table_chained(&req->sg_table, true);
983 return -EIO;
984 }
985
986 if (count == 1) {
987 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
988 blk_rq_payload_bytes(rq) <=
989 nvme_rdma_inline_data_size(queue))
990 return nvme_rdma_map_sg_inline(queue, req, c);
991
992 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
993 return nvme_rdma_map_sg_single(queue, req, c);
994 }
995
996 return nvme_rdma_map_sg_fr(queue, req, c, count);
997 }
998
999 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1000 {
1001 if (unlikely(wc->status != IB_WC_SUCCESS))
1002 nvme_rdma_wr_error(cq, wc, "SEND");
1003 }
1004
1005 /*
1006 * We want to signal completion at least every queue depth/2. This returns the
1007 * largest power of two that is not above half of (queue size + 1) to optimize
1008 * (avoid divisions).
1009 */
1010 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1011 {
1012 int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1013
1014 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1015 }
1016
1017 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1018 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1019 struct ib_send_wr *first, bool flush)
1020 {
1021 struct ib_send_wr wr, *bad_wr;
1022 int ret;
1023
1024 sge->addr = qe->dma;
1025 sge->length = sizeof(struct nvme_command),
1026 sge->lkey = queue->device->pd->local_dma_lkey;
1027
1028 qe->cqe.done = nvme_rdma_send_done;
1029
1030 wr.next = NULL;
1031 wr.wr_cqe = &qe->cqe;
1032 wr.sg_list = sge;
1033 wr.num_sge = num_sge;
1034 wr.opcode = IB_WR_SEND;
1035 wr.send_flags = 0;
1036
1037 /*
1038 * Unsignalled send completions are another giant desaster in the
1039 * IB Verbs spec: If we don't regularly post signalled sends
1040 * the send queue will fill up and only a QP reset will rescue us.
1041 * Would have been way to obvious to handle this in hardware or
1042 * at least the RDMA stack..
1043 *
1044 * Always signal the flushes. The magic request used for the flush
1045 * sequencer is not allocated in our driver's tagset and it's
1046 * triggered to be freed by blk_cleanup_queue(). So we need to
1047 * always mark it as signaled to ensure that the "wr_cqe", which is
1048 * embedded in request's payload, is not freed when __ib_process_cq()
1049 * calls wr_cqe->done().
1050 */
1051 if (nvme_rdma_queue_sig_limit(queue) || flush)
1052 wr.send_flags |= IB_SEND_SIGNALED;
1053
1054 if (first)
1055 first->next = &wr;
1056 else
1057 first = &wr;
1058
1059 ret = ib_post_send(queue->qp, first, &bad_wr);
1060 if (ret) {
1061 dev_err(queue->ctrl->ctrl.device,
1062 "%s failed with error code %d\n", __func__, ret);
1063 }
1064 return ret;
1065 }
1066
1067 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1068 struct nvme_rdma_qe *qe)
1069 {
1070 struct ib_recv_wr wr, *bad_wr;
1071 struct ib_sge list;
1072 int ret;
1073
1074 list.addr = qe->dma;
1075 list.length = sizeof(struct nvme_completion);
1076 list.lkey = queue->device->pd->local_dma_lkey;
1077
1078 qe->cqe.done = nvme_rdma_recv_done;
1079
1080 wr.next = NULL;
1081 wr.wr_cqe = &qe->cqe;
1082 wr.sg_list = &list;
1083 wr.num_sge = 1;
1084
1085 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1086 if (ret) {
1087 dev_err(queue->ctrl->ctrl.device,
1088 "%s failed with error code %d\n", __func__, ret);
1089 }
1090 return ret;
1091 }
1092
1093 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1094 {
1095 u32 queue_idx = nvme_rdma_queue_idx(queue);
1096
1097 if (queue_idx == 0)
1098 return queue->ctrl->admin_tag_set.tags[queue_idx];
1099 return queue->ctrl->tag_set.tags[queue_idx - 1];
1100 }
1101
1102 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1103 {
1104 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1105 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1106 struct ib_device *dev = queue->device->dev;
1107 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1108 struct nvme_command *cmd = sqe->data;
1109 struct ib_sge sge;
1110 int ret;
1111
1112 if (WARN_ON_ONCE(aer_idx != 0))
1113 return;
1114
1115 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1116
1117 memset(cmd, 0, sizeof(*cmd));
1118 cmd->common.opcode = nvme_admin_async_event;
1119 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1120 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1121 nvme_rdma_set_sg_null(cmd);
1122
1123 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1124 DMA_TO_DEVICE);
1125
1126 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1127 WARN_ON_ONCE(ret);
1128 }
1129
1130 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1131 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1132 {
1133 struct request *rq;
1134 struct nvme_rdma_request *req;
1135 int ret = 0;
1136
1137 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1138 if (!rq) {
1139 dev_err(queue->ctrl->ctrl.device,
1140 "tag 0x%x on QP %#x not found\n",
1141 cqe->command_id, queue->qp->qp_num);
1142 nvme_rdma_error_recovery(queue->ctrl);
1143 return ret;
1144 }
1145 req = blk_mq_rq_to_pdu(rq);
1146
1147 if (rq->tag == tag)
1148 ret = 1;
1149
1150 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1151 wc->ex.invalidate_rkey == req->mr->rkey)
1152 req->mr->need_inval = false;
1153
1154 nvme_end_request(rq, cqe->status, cqe->result);
1155 return ret;
1156 }
1157
1158 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1159 {
1160 struct nvme_rdma_qe *qe =
1161 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1162 struct nvme_rdma_queue *queue = cq->cq_context;
1163 struct ib_device *ibdev = queue->device->dev;
1164 struct nvme_completion *cqe = qe->data;
1165 const size_t len = sizeof(struct nvme_completion);
1166 int ret = 0;
1167
1168 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1169 nvme_rdma_wr_error(cq, wc, "RECV");
1170 return 0;
1171 }
1172
1173 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1174 /*
1175 * AEN requests are special as they don't time out and can
1176 * survive any kind of queue freeze and often don't respond to
1177 * aborts. We don't even bother to allocate a struct request
1178 * for them but rather special case them here.
1179 */
1180 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1181 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1182 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1183 &cqe->result);
1184 else
1185 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1186 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1187
1188 nvme_rdma_post_recv(queue, qe);
1189 return ret;
1190 }
1191
1192 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1193 {
1194 __nvme_rdma_recv_done(cq, wc, -1);
1195 }
1196
1197 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1198 {
1199 int ret, i;
1200
1201 for (i = 0; i < queue->queue_size; i++) {
1202 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1203 if (ret)
1204 goto out_destroy_queue_ib;
1205 }
1206
1207 return 0;
1208
1209 out_destroy_queue_ib:
1210 nvme_rdma_destroy_queue_ib(queue);
1211 return ret;
1212 }
1213
1214 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1215 struct rdma_cm_event *ev)
1216 {
1217 struct rdma_cm_id *cm_id = queue->cm_id;
1218 int status = ev->status;
1219 const char *rej_msg;
1220 const struct nvme_rdma_cm_rej *rej_data;
1221 u8 rej_data_len;
1222
1223 rej_msg = rdma_reject_msg(cm_id, status);
1224 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1225
1226 if (rej_data && rej_data_len >= sizeof(u16)) {
1227 u16 sts = le16_to_cpu(rej_data->sts);
1228
1229 dev_err(queue->ctrl->ctrl.device,
1230 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1231 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1232 } else {
1233 dev_err(queue->ctrl->ctrl.device,
1234 "Connect rejected: status %d (%s).\n", status, rej_msg);
1235 }
1236
1237 return -ECONNRESET;
1238 }
1239
1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1241 {
1242 int ret;
1243
1244 ret = nvme_rdma_create_queue_ib(queue);
1245 if (ret)
1246 return ret;
1247
1248 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1249 if (ret) {
1250 dev_err(queue->ctrl->ctrl.device,
1251 "rdma_resolve_route failed (%d).\n",
1252 queue->cm_error);
1253 goto out_destroy_queue;
1254 }
1255
1256 return 0;
1257
1258 out_destroy_queue:
1259 nvme_rdma_destroy_queue_ib(queue);
1260 return ret;
1261 }
1262
1263 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1264 {
1265 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1266 struct rdma_conn_param param = { };
1267 struct nvme_rdma_cm_req priv = { };
1268 int ret;
1269
1270 param.qp_num = queue->qp->qp_num;
1271 param.flow_control = 1;
1272
1273 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1274 /* maximum retry count */
1275 param.retry_count = 7;
1276 param.rnr_retry_count = 7;
1277 param.private_data = &priv;
1278 param.private_data_len = sizeof(priv);
1279
1280 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1281 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1282 /*
1283 * set the admin queue depth to the minimum size
1284 * specified by the Fabrics standard.
1285 */
1286 if (priv.qid == 0) {
1287 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1288 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1289 } else {
1290 /*
1291 * current interpretation of the fabrics spec
1292 * is at minimum you make hrqsize sqsize+1, or a
1293 * 1's based representation of sqsize.
1294 */
1295 priv.hrqsize = cpu_to_le16(queue->queue_size);
1296 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1297 }
1298
1299 ret = rdma_connect(queue->cm_id, &param);
1300 if (ret) {
1301 dev_err(ctrl->ctrl.device,
1302 "rdma_connect failed (%d).\n", ret);
1303 goto out_destroy_queue_ib;
1304 }
1305
1306 return 0;
1307
1308 out_destroy_queue_ib:
1309 nvme_rdma_destroy_queue_ib(queue);
1310 return ret;
1311 }
1312
1313 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1314 struct rdma_cm_event *ev)
1315 {
1316 struct nvme_rdma_queue *queue = cm_id->context;
1317 int cm_error = 0;
1318
1319 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1320 rdma_event_msg(ev->event), ev->event,
1321 ev->status, cm_id);
1322
1323 switch (ev->event) {
1324 case RDMA_CM_EVENT_ADDR_RESOLVED:
1325 cm_error = nvme_rdma_addr_resolved(queue);
1326 break;
1327 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1328 cm_error = nvme_rdma_route_resolved(queue);
1329 break;
1330 case RDMA_CM_EVENT_ESTABLISHED:
1331 queue->cm_error = nvme_rdma_conn_established(queue);
1332 /* complete cm_done regardless of success/failure */
1333 complete(&queue->cm_done);
1334 return 0;
1335 case RDMA_CM_EVENT_REJECTED:
1336 nvme_rdma_destroy_queue_ib(queue);
1337 cm_error = nvme_rdma_conn_rejected(queue, ev);
1338 break;
1339 case RDMA_CM_EVENT_ROUTE_ERROR:
1340 case RDMA_CM_EVENT_CONNECT_ERROR:
1341 case RDMA_CM_EVENT_UNREACHABLE:
1342 nvme_rdma_destroy_queue_ib(queue);
1343 case RDMA_CM_EVENT_ADDR_ERROR:
1344 dev_dbg(queue->ctrl->ctrl.device,
1345 "CM error event %d\n", ev->event);
1346 cm_error = -ECONNRESET;
1347 break;
1348 case RDMA_CM_EVENT_DISCONNECTED:
1349 case RDMA_CM_EVENT_ADDR_CHANGE:
1350 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1351 dev_dbg(queue->ctrl->ctrl.device,
1352 "disconnect received - connection closed\n");
1353 nvme_rdma_error_recovery(queue->ctrl);
1354 break;
1355 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1356 /* device removal is handled via the ib_client API */
1357 break;
1358 default:
1359 dev_err(queue->ctrl->ctrl.device,
1360 "Unexpected RDMA CM event (%d)\n", ev->event);
1361 nvme_rdma_error_recovery(queue->ctrl);
1362 break;
1363 }
1364
1365 if (cm_error) {
1366 queue->cm_error = cm_error;
1367 complete(&queue->cm_done);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static enum blk_eh_timer_return
1374 nvme_rdma_timeout(struct request *rq, bool reserved)
1375 {
1376 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1377
1378 /* queue error recovery */
1379 nvme_rdma_error_recovery(req->queue->ctrl);
1380
1381 /* fail with DNR on cmd timeout */
1382 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1383
1384 return BLK_EH_HANDLED;
1385 }
1386
1387 /*
1388 * We cannot accept any other command until the Connect command has completed.
1389 */
1390 static inline blk_status_t
1391 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1392 {
1393 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1394 struct nvme_command *cmd = nvme_req(rq)->cmd;
1395
1396 if (!blk_rq_is_passthrough(rq) ||
1397 cmd->common.opcode != nvme_fabrics_command ||
1398 cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1399 /*
1400 * reconnecting state means transport disruption, which
1401 * can take a long time and even might fail permanently,
1402 * so we can't let incoming I/O be requeued forever.
1403 * fail it fast to allow upper layers a chance to
1404 * failover.
1405 */
1406 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1407 return BLK_STS_IOERR;
1408 return BLK_STS_RESOURCE; /* try again later */
1409 }
1410 }
1411
1412 return 0;
1413 }
1414
1415 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1416 const struct blk_mq_queue_data *bd)
1417 {
1418 struct nvme_ns *ns = hctx->queue->queuedata;
1419 struct nvme_rdma_queue *queue = hctx->driver_data;
1420 struct request *rq = bd->rq;
1421 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1422 struct nvme_rdma_qe *sqe = &req->sqe;
1423 struct nvme_command *c = sqe->data;
1424 bool flush = false;
1425 struct ib_device *dev;
1426 blk_status_t ret;
1427 int err;
1428
1429 WARN_ON_ONCE(rq->tag < 0);
1430
1431 ret = nvme_rdma_queue_is_ready(queue, rq);
1432 if (unlikely(ret))
1433 return ret;
1434
1435 dev = queue->device->dev;
1436 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1437 sizeof(struct nvme_command), DMA_TO_DEVICE);
1438
1439 ret = nvme_setup_cmd(ns, rq, c);
1440 if (ret)
1441 return ret;
1442
1443 blk_mq_start_request(rq);
1444
1445 err = nvme_rdma_map_data(queue, rq, c);
1446 if (err < 0) {
1447 dev_err(queue->ctrl->ctrl.device,
1448 "Failed to map data (%d)\n", err);
1449 nvme_cleanup_cmd(rq);
1450 goto err;
1451 }
1452
1453 ib_dma_sync_single_for_device(dev, sqe->dma,
1454 sizeof(struct nvme_command), DMA_TO_DEVICE);
1455
1456 if (req_op(rq) == REQ_OP_FLUSH)
1457 flush = true;
1458 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1459 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1460 if (err) {
1461 nvme_rdma_unmap_data(queue, rq);
1462 goto err;
1463 }
1464
1465 return BLK_STS_OK;
1466 err:
1467 if (err == -ENOMEM || err == -EAGAIN)
1468 return BLK_STS_RESOURCE;
1469 return BLK_STS_IOERR;
1470 }
1471
1472 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1473 {
1474 struct nvme_rdma_queue *queue = hctx->driver_data;
1475 struct ib_cq *cq = queue->ib_cq;
1476 struct ib_wc wc;
1477 int found = 0;
1478
1479 while (ib_poll_cq(cq, 1, &wc) > 0) {
1480 struct ib_cqe *cqe = wc.wr_cqe;
1481
1482 if (cqe) {
1483 if (cqe->done == nvme_rdma_recv_done)
1484 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1485 else
1486 cqe->done(cq, &wc);
1487 }
1488 }
1489
1490 return found;
1491 }
1492
1493 static void nvme_rdma_complete_rq(struct request *rq)
1494 {
1495 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1496
1497 nvme_rdma_unmap_data(req->queue, rq);
1498 nvme_complete_rq(rq);
1499 }
1500
1501 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1502 .queue_rq = nvme_rdma_queue_rq,
1503 .complete = nvme_rdma_complete_rq,
1504 .init_request = nvme_rdma_init_request,
1505 .exit_request = nvme_rdma_exit_request,
1506 .reinit_request = nvme_rdma_reinit_request,
1507 .init_hctx = nvme_rdma_init_hctx,
1508 .poll = nvme_rdma_poll,
1509 .timeout = nvme_rdma_timeout,
1510 };
1511
1512 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1513 .queue_rq = nvme_rdma_queue_rq,
1514 .complete = nvme_rdma_complete_rq,
1515 .init_request = nvme_rdma_init_request,
1516 .exit_request = nvme_rdma_exit_request,
1517 .reinit_request = nvme_rdma_reinit_request,
1518 .init_hctx = nvme_rdma_init_admin_hctx,
1519 .timeout = nvme_rdma_timeout,
1520 };
1521
1522 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1523 {
1524 int error;
1525
1526 error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
1527 if (error)
1528 return error;
1529
1530 ctrl->device = ctrl->queues[0].device;
1531
1532 /*
1533 * We need a reference on the device as long as the tag_set is alive,
1534 * as the MRs in the request structures need a valid ib_device.
1535 */
1536 error = -EINVAL;
1537 if (!nvme_rdma_dev_get(ctrl->device))
1538 goto out_free_queue;
1539
1540 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1541 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1542
1543 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1544 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1545 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1546 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1547 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1548 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1549 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1550 ctrl->admin_tag_set.driver_data = ctrl;
1551 ctrl->admin_tag_set.nr_hw_queues = 1;
1552 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1553
1554 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1555 if (error)
1556 goto out_put_dev;
1557
1558 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1559 if (IS_ERR(ctrl->ctrl.admin_q)) {
1560 error = PTR_ERR(ctrl->ctrl.admin_q);
1561 goto out_free_tagset;
1562 }
1563
1564 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1565 if (error)
1566 goto out_cleanup_queue;
1567
1568 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1569
1570 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP,
1571 &ctrl->ctrl.cap);
1572 if (error) {
1573 dev_err(ctrl->ctrl.device,
1574 "prop_get NVME_REG_CAP failed\n");
1575 goto out_cleanup_queue;
1576 }
1577
1578 ctrl->ctrl.sqsize =
1579 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
1580
1581 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1582 if (error)
1583 goto out_cleanup_queue;
1584
1585 ctrl->ctrl.max_hw_sectors =
1586 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1587
1588 error = nvme_init_identify(&ctrl->ctrl);
1589 if (error)
1590 goto out_cleanup_queue;
1591
1592 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1593 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1594 DMA_TO_DEVICE);
1595 if (error)
1596 goto out_cleanup_queue;
1597
1598 return 0;
1599
1600 out_cleanup_queue:
1601 blk_cleanup_queue(ctrl->ctrl.admin_q);
1602 out_free_tagset:
1603 /* disconnect and drain the queue before freeing the tagset */
1604 nvme_rdma_stop_queue(&ctrl->queues[0]);
1605 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1606 out_put_dev:
1607 nvme_rdma_dev_put(ctrl->device);
1608 out_free_queue:
1609 nvme_rdma_free_queue(&ctrl->queues[0]);
1610 return error;
1611 }
1612
1613 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1614 {
1615 cancel_work_sync(&ctrl->err_work);
1616 cancel_delayed_work_sync(&ctrl->reconnect_work);
1617
1618 if (ctrl->ctrl.queue_count > 1) {
1619 nvme_stop_queues(&ctrl->ctrl);
1620 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1621 nvme_cancel_request, &ctrl->ctrl);
1622 nvme_rdma_free_io_queues(ctrl);
1623 }
1624
1625 if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags))
1626 nvme_shutdown_ctrl(&ctrl->ctrl);
1627
1628 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1629 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1630 nvme_cancel_request, &ctrl->ctrl);
1631 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1632 nvme_rdma_destroy_admin_queue(ctrl);
1633 }
1634
1635 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1636 {
1637 nvme_stop_ctrl(&ctrl->ctrl);
1638 nvme_remove_namespaces(&ctrl->ctrl);
1639 if (shutdown)
1640 nvme_rdma_shutdown_ctrl(ctrl);
1641
1642 nvme_uninit_ctrl(&ctrl->ctrl);
1643 if (ctrl->ctrl.tagset) {
1644 blk_cleanup_queue(ctrl->ctrl.connect_q);
1645 blk_mq_free_tag_set(&ctrl->tag_set);
1646 nvme_rdma_dev_put(ctrl->device);
1647 }
1648
1649 nvme_put_ctrl(&ctrl->ctrl);
1650 }
1651
1652 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1653 {
1654 struct nvme_rdma_ctrl *ctrl = container_of(work,
1655 struct nvme_rdma_ctrl, delete_work);
1656
1657 __nvme_rdma_remove_ctrl(ctrl, true);
1658 }
1659
1660 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1661 {
1662 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1663 return -EBUSY;
1664
1665 if (!queue_work(nvme_wq, &ctrl->delete_work))
1666 return -EBUSY;
1667
1668 return 0;
1669 }
1670
1671 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1672 {
1673 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1674 int ret = 0;
1675
1676 /*
1677 * Keep a reference until all work is flushed since
1678 * __nvme_rdma_del_ctrl can free the ctrl mem
1679 */
1680 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1681 return -EBUSY;
1682 ret = __nvme_rdma_del_ctrl(ctrl);
1683 if (!ret)
1684 flush_work(&ctrl->delete_work);
1685 nvme_put_ctrl(&ctrl->ctrl);
1686 return ret;
1687 }
1688
1689 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1690 {
1691 struct nvme_rdma_ctrl *ctrl = container_of(work,
1692 struct nvme_rdma_ctrl, delete_work);
1693
1694 __nvme_rdma_remove_ctrl(ctrl, false);
1695 }
1696
1697 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1698 {
1699 struct nvme_rdma_ctrl *ctrl =
1700 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1701 int ret;
1702 bool changed;
1703
1704 nvme_stop_ctrl(&ctrl->ctrl);
1705 nvme_rdma_shutdown_ctrl(ctrl);
1706
1707 ret = nvme_rdma_configure_admin_queue(ctrl);
1708 if (ret) {
1709 /* ctrl is already shutdown, just remove the ctrl */
1710 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1711 goto del_dead_ctrl;
1712 }
1713
1714 if (ctrl->ctrl.queue_count > 1) {
1715 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1716 if (ret)
1717 goto del_dead_ctrl;
1718
1719 ret = nvme_rdma_init_io_queues(ctrl);
1720 if (ret)
1721 goto del_dead_ctrl;
1722
1723 ret = nvme_rdma_connect_io_queues(ctrl);
1724 if (ret)
1725 goto del_dead_ctrl;
1726
1727 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
1728 ctrl->ctrl.queue_count - 1);
1729 }
1730
1731 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1732 WARN_ON_ONCE(!changed);
1733
1734 nvme_start_ctrl(&ctrl->ctrl);
1735
1736 return;
1737
1738 del_dead_ctrl:
1739 /* Deleting this dead controller... */
1740 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1741 WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1742 }
1743
1744 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1745 .name = "rdma",
1746 .module = THIS_MODULE,
1747 .flags = NVME_F_FABRICS,
1748 .reg_read32 = nvmf_reg_read32,
1749 .reg_read64 = nvmf_reg_read64,
1750 .reg_write32 = nvmf_reg_write32,
1751 .free_ctrl = nvme_rdma_free_ctrl,
1752 .submit_async_event = nvme_rdma_submit_async_event,
1753 .delete_ctrl = nvme_rdma_del_ctrl,
1754 .get_address = nvmf_get_address,
1755 };
1756
1757 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1758 {
1759 int ret;
1760
1761 ret = nvme_rdma_init_io_queues(ctrl);
1762 if (ret)
1763 return ret;
1764
1765 /*
1766 * We need a reference on the device as long as the tag_set is alive,
1767 * as the MRs in the request structures need a valid ib_device.
1768 */
1769 ret = -EINVAL;
1770 if (!nvme_rdma_dev_get(ctrl->device))
1771 goto out_free_io_queues;
1772
1773 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1774 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1775 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1776 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1777 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1778 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1779 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1780 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1781 ctrl->tag_set.driver_data = ctrl;
1782 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
1783 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1784
1785 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1786 if (ret)
1787 goto out_put_dev;
1788 ctrl->ctrl.tagset = &ctrl->tag_set;
1789
1790 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1791 if (IS_ERR(ctrl->ctrl.connect_q)) {
1792 ret = PTR_ERR(ctrl->ctrl.connect_q);
1793 goto out_free_tag_set;
1794 }
1795
1796 ret = nvme_rdma_connect_io_queues(ctrl);
1797 if (ret)
1798 goto out_cleanup_connect_q;
1799
1800 return 0;
1801
1802 out_cleanup_connect_q:
1803 blk_cleanup_queue(ctrl->ctrl.connect_q);
1804 out_free_tag_set:
1805 blk_mq_free_tag_set(&ctrl->tag_set);
1806 out_put_dev:
1807 nvme_rdma_dev_put(ctrl->device);
1808 out_free_io_queues:
1809 nvme_rdma_free_io_queues(ctrl);
1810 return ret;
1811 }
1812
1813 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1814 struct nvmf_ctrl_options *opts)
1815 {
1816 struct nvme_rdma_ctrl *ctrl;
1817 int ret;
1818 bool changed;
1819 char *port;
1820
1821 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1822 if (!ctrl)
1823 return ERR_PTR(-ENOMEM);
1824 ctrl->ctrl.opts = opts;
1825 INIT_LIST_HEAD(&ctrl->list);
1826
1827 if (opts->mask & NVMF_OPT_TRSVCID)
1828 port = opts->trsvcid;
1829 else
1830 port = __stringify(NVME_RDMA_IP_PORT);
1831
1832 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1833 opts->traddr, port, &ctrl->addr);
1834 if (ret) {
1835 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1836 goto out_free_ctrl;
1837 }
1838
1839 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1840 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1841 opts->host_traddr, NULL, &ctrl->src_addr);
1842 if (ret) {
1843 pr_err("malformed src address passed: %s\n",
1844 opts->host_traddr);
1845 goto out_free_ctrl;
1846 }
1847 }
1848
1849 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1850 0 /* no quirks, we're perfect! */);
1851 if (ret)
1852 goto out_free_ctrl;
1853
1854 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1855 nvme_rdma_reconnect_ctrl_work);
1856 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1857 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1858 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1859
1860 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1861 ctrl->ctrl.sqsize = opts->queue_size - 1;
1862 ctrl->ctrl.kato = opts->kato;
1863
1864 ret = -ENOMEM;
1865 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1866 GFP_KERNEL);
1867 if (!ctrl->queues)
1868 goto out_uninit_ctrl;
1869
1870 ret = nvme_rdma_configure_admin_queue(ctrl);
1871 if (ret)
1872 goto out_kfree_queues;
1873
1874 /* sanity check icdoff */
1875 if (ctrl->ctrl.icdoff) {
1876 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1877 ret = -EINVAL;
1878 goto out_remove_admin_queue;
1879 }
1880
1881 /* sanity check keyed sgls */
1882 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1883 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1884 ret = -EINVAL;
1885 goto out_remove_admin_queue;
1886 }
1887
1888 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1889 /* warn if maxcmd is lower than queue_size */
1890 dev_warn(ctrl->ctrl.device,
1891 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1892 opts->queue_size, ctrl->ctrl.maxcmd);
1893 opts->queue_size = ctrl->ctrl.maxcmd;
1894 }
1895
1896 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1897 /* warn if sqsize is lower than queue_size */
1898 dev_warn(ctrl->ctrl.device,
1899 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1900 opts->queue_size, ctrl->ctrl.sqsize + 1);
1901 opts->queue_size = ctrl->ctrl.sqsize + 1;
1902 }
1903
1904 if (opts->nr_io_queues) {
1905 ret = nvme_rdma_create_io_queues(ctrl);
1906 if (ret)
1907 goto out_remove_admin_queue;
1908 }
1909
1910 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1911 WARN_ON_ONCE(!changed);
1912
1913 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1914 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1915
1916 kref_get(&ctrl->ctrl.kref);
1917
1918 mutex_lock(&nvme_rdma_ctrl_mutex);
1919 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1920 mutex_unlock(&nvme_rdma_ctrl_mutex);
1921
1922 nvme_start_ctrl(&ctrl->ctrl);
1923
1924 return &ctrl->ctrl;
1925
1926 out_remove_admin_queue:
1927 nvme_rdma_destroy_admin_queue(ctrl);
1928 out_kfree_queues:
1929 kfree(ctrl->queues);
1930 out_uninit_ctrl:
1931 nvme_uninit_ctrl(&ctrl->ctrl);
1932 nvme_put_ctrl(&ctrl->ctrl);
1933 if (ret > 0)
1934 ret = -EIO;
1935 return ERR_PTR(ret);
1936 out_free_ctrl:
1937 kfree(ctrl);
1938 return ERR_PTR(ret);
1939 }
1940
1941 static struct nvmf_transport_ops nvme_rdma_transport = {
1942 .name = "rdma",
1943 .required_opts = NVMF_OPT_TRADDR,
1944 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1945 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1946 .create_ctrl = nvme_rdma_create_ctrl,
1947 };
1948
1949 static void nvme_rdma_add_one(struct ib_device *ib_device)
1950 {
1951 }
1952
1953 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1954 {
1955 struct nvme_rdma_ctrl *ctrl;
1956
1957 /* Delete all controllers using this device */
1958 mutex_lock(&nvme_rdma_ctrl_mutex);
1959 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1960 if (ctrl->device->dev != ib_device)
1961 continue;
1962 dev_info(ctrl->ctrl.device,
1963 "Removing ctrl: NQN \"%s\", addr %pISp\n",
1964 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1965 __nvme_rdma_del_ctrl(ctrl);
1966 }
1967 mutex_unlock(&nvme_rdma_ctrl_mutex);
1968
1969 flush_workqueue(nvme_wq);
1970 }
1971
1972 static struct ib_client nvme_rdma_ib_client = {
1973 .name = "nvme_rdma",
1974 .add = nvme_rdma_add_one,
1975 .remove = nvme_rdma_remove_one
1976 };
1977
1978 static int __init nvme_rdma_init_module(void)
1979 {
1980 int ret;
1981
1982 ret = ib_register_client(&nvme_rdma_ib_client);
1983 if (ret)
1984 return ret;
1985
1986 ret = nvmf_register_transport(&nvme_rdma_transport);
1987 if (ret)
1988 goto err_unreg_client;
1989
1990 return 0;
1991
1992 err_unreg_client:
1993 ib_unregister_client(&nvme_rdma_ib_client);
1994 return ret;
1995 }
1996
1997 static void __exit nvme_rdma_cleanup_module(void)
1998 {
1999 nvmf_unregister_transport(&nvme_rdma_transport);
2000 ib_unregister_client(&nvme_rdma_ib_client);
2001 }
2002
2003 module_init(nvme_rdma_init_module);
2004 module_exit(nvme_rdma_cleanup_module);
2005
2006 MODULE_LICENSE("GPL v2");