]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/nvme/host/rdma.c
powerpc/cacheinfo: Remove double free
[mirror_ubuntu-hirsute-kernel.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 struct nvme_rdma_device {
38 struct ib_device *dev;
39 struct ib_pd *pd;
40 struct kref ref;
41 struct list_head entry;
42 unsigned int num_inline_segments;
43 };
44
45 struct nvme_rdma_qe {
46 struct ib_cqe cqe;
47 void *data;
48 u64 dma;
49 };
50
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 struct nvme_request req;
54 struct ib_mr *mr;
55 struct nvme_rdma_qe sqe;
56 union nvme_result result;
57 __le16 status;
58 refcount_t ref;
59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 u32 num_sge;
61 int nents;
62 struct ib_reg_wr reg_wr;
63 struct ib_cqe reg_cqe;
64 struct nvme_rdma_queue *queue;
65 struct sg_table sg_table;
66 struct scatterlist first_sgl[];
67 };
68
69 enum nvme_rdma_queue_flags {
70 NVME_RDMA_Q_ALLOCATED = 0,
71 NVME_RDMA_Q_LIVE = 1,
72 NVME_RDMA_Q_TR_READY = 2,
73 };
74
75 struct nvme_rdma_queue {
76 struct nvme_rdma_qe *rsp_ring;
77 int queue_size;
78 size_t cmnd_capsule_len;
79 struct nvme_rdma_ctrl *ctrl;
80 struct nvme_rdma_device *device;
81 struct ib_cq *ib_cq;
82 struct ib_qp *qp;
83
84 unsigned long flags;
85 struct rdma_cm_id *cm_id;
86 int cm_error;
87 struct completion cm_done;
88 };
89
90 struct nvme_rdma_ctrl {
91 /* read only in the hot path */
92 struct nvme_rdma_queue *queues;
93
94 /* other member variables */
95 struct blk_mq_tag_set tag_set;
96 struct work_struct err_work;
97
98 struct nvme_rdma_qe async_event_sqe;
99
100 struct delayed_work reconnect_work;
101
102 struct list_head list;
103
104 struct blk_mq_tag_set admin_tag_set;
105 struct nvme_rdma_device *device;
106
107 u32 max_fr_pages;
108
109 struct sockaddr_storage addr;
110 struct sockaddr_storage src_addr;
111
112 struct nvme_ctrl ctrl;
113 bool use_inline_data;
114 u32 io_queues[HCTX_MAX_TYPES];
115 };
116
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127
128 /*
129 * Disabling this option makes small I/O goes faster, but is fundamentally
130 * unsafe. With it turned off we will have to register a global rkey that
131 * allows read and write access to all physical memory.
132 */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 "Use memory registration even for contiguous memory regions");
137
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148 *p++ = val;
149 *p++ = val >> 8;
150 *p++ = val >> 16;
151 }
152
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155 return queue - queue->ctrl->queues;
156 }
157
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160 return nvme_rdma_queue_idx(queue) >
161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
172 {
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
179 {
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 if (!qe->data)
182 return -ENOMEM;
183
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 kfree(qe->data);
187 qe->data = NULL;
188 return -ENOMEM;
189 }
190
191 return 0;
192 }
193
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 size_t capsule_size, enum dma_data_direction dir)
197 {
198 int i;
199
200 for (i = 0; i < ib_queue_size; i++)
201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 kfree(ring);
203 }
204
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 size_t ib_queue_size, size_t capsule_size,
207 enum dma_data_direction dir)
208 {
209 struct nvme_rdma_qe *ring;
210 int i;
211
212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 if (!ring)
214 return NULL;
215
216 for (i = 0; i < ib_queue_size; i++) {
217 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218 goto out_free_ring;
219 }
220
221 return ring;
222
223 out_free_ring:
224 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225 return NULL;
226 }
227
228 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229 {
230 pr_debug("QP event %s (%d)\n",
231 ib_event_msg(event->event), event->event);
232
233 }
234
235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236 {
237 int ret;
238
239 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
240 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241 if (ret < 0)
242 return ret;
243 if (ret == 0)
244 return -ETIMEDOUT;
245 WARN_ON_ONCE(queue->cm_error > 0);
246 return queue->cm_error;
247 }
248
249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
250 {
251 struct nvme_rdma_device *dev = queue->device;
252 struct ib_qp_init_attr init_attr;
253 int ret;
254
255 memset(&init_attr, 0, sizeof(init_attr));
256 init_attr.event_handler = nvme_rdma_qp_event;
257 /* +1 for drain */
258 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
259 /* +1 for drain */
260 init_attr.cap.max_recv_wr = queue->queue_size + 1;
261 init_attr.cap.max_recv_sge = 1;
262 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
263 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
264 init_attr.qp_type = IB_QPT_RC;
265 init_attr.send_cq = queue->ib_cq;
266 init_attr.recv_cq = queue->ib_cq;
267
268 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
269
270 queue->qp = queue->cm_id->qp;
271 return ret;
272 }
273
274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
275 struct request *rq, unsigned int hctx_idx)
276 {
277 struct nvme_rdma_ctrl *ctrl = set->driver_data;
278 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
279 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
280 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
281 struct nvme_rdma_device *dev = queue->device;
282
283 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
284 DMA_TO_DEVICE);
285 }
286
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 struct request *rq, unsigned int hctx_idx,
289 unsigned int numa_node)
290 {
291 struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295 struct nvme_rdma_device *dev = queue->device;
296 struct ib_device *ibdev = dev->dev;
297 int ret;
298
299 nvme_req(rq)->ctrl = &ctrl->ctrl;
300 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
301 DMA_TO_DEVICE);
302 if (ret)
303 return ret;
304
305 req->queue = queue;
306
307 return 0;
308 }
309
310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311 unsigned int hctx_idx)
312 {
313 struct nvme_rdma_ctrl *ctrl = data;
314 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
315
316 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
317
318 hctx->driver_data = queue;
319 return 0;
320 }
321
322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 unsigned int hctx_idx)
324 {
325 struct nvme_rdma_ctrl *ctrl = data;
326 struct nvme_rdma_queue *queue = &ctrl->queues[0];
327
328 BUG_ON(hctx_idx != 0);
329
330 hctx->driver_data = queue;
331 return 0;
332 }
333
334 static void nvme_rdma_free_dev(struct kref *ref)
335 {
336 struct nvme_rdma_device *ndev =
337 container_of(ref, struct nvme_rdma_device, ref);
338
339 mutex_lock(&device_list_mutex);
340 list_del(&ndev->entry);
341 mutex_unlock(&device_list_mutex);
342
343 ib_dealloc_pd(ndev->pd);
344 kfree(ndev);
345 }
346
347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
348 {
349 kref_put(&dev->ref, nvme_rdma_free_dev);
350 }
351
352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
353 {
354 return kref_get_unless_zero(&dev->ref);
355 }
356
357 static struct nvme_rdma_device *
358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
359 {
360 struct nvme_rdma_device *ndev;
361
362 mutex_lock(&device_list_mutex);
363 list_for_each_entry(ndev, &device_list, entry) {
364 if (ndev->dev->node_guid == cm_id->device->node_guid &&
365 nvme_rdma_dev_get(ndev))
366 goto out_unlock;
367 }
368
369 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
370 if (!ndev)
371 goto out_err;
372
373 ndev->dev = cm_id->device;
374 kref_init(&ndev->ref);
375
376 ndev->pd = ib_alloc_pd(ndev->dev,
377 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
378 if (IS_ERR(ndev->pd))
379 goto out_free_dev;
380
381 if (!(ndev->dev->attrs.device_cap_flags &
382 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
383 dev_err(&ndev->dev->dev,
384 "Memory registrations not supported.\n");
385 goto out_free_pd;
386 }
387
388 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
389 ndev->dev->attrs.max_send_sge - 1);
390 list_add(&ndev->entry, &device_list);
391 out_unlock:
392 mutex_unlock(&device_list_mutex);
393 return ndev;
394
395 out_free_pd:
396 ib_dealloc_pd(ndev->pd);
397 out_free_dev:
398 kfree(ndev);
399 out_err:
400 mutex_unlock(&device_list_mutex);
401 return NULL;
402 }
403
404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
405 {
406 struct nvme_rdma_device *dev;
407 struct ib_device *ibdev;
408
409 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
410 return;
411
412 dev = queue->device;
413 ibdev = dev->dev;
414
415 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
416
417 /*
418 * The cm_id object might have been destroyed during RDMA connection
419 * establishment error flow to avoid getting other cma events, thus
420 * the destruction of the QP shouldn't use rdma_cm API.
421 */
422 ib_destroy_qp(queue->qp);
423 ib_free_cq(queue->ib_cq);
424
425 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
426 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
427
428 nvme_rdma_dev_put(dev);
429 }
430
431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
432 {
433 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
434 ibdev->attrs.max_fast_reg_page_list_len);
435 }
436
437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
438 {
439 struct ib_device *ibdev;
440 const int send_wr_factor = 3; /* MR, SEND, INV */
441 const int cq_factor = send_wr_factor + 1; /* + RECV */
442 int comp_vector, idx = nvme_rdma_queue_idx(queue);
443 enum ib_poll_context poll_ctx;
444 int ret;
445
446 queue->device = nvme_rdma_find_get_device(queue->cm_id);
447 if (!queue->device) {
448 dev_err(queue->cm_id->device->dev.parent,
449 "no client data found!\n");
450 return -ECONNREFUSED;
451 }
452 ibdev = queue->device->dev;
453
454 /*
455 * Spread I/O queues completion vectors according their queue index.
456 * Admin queues can always go on completion vector 0.
457 */
458 comp_vector = idx == 0 ? idx : idx - 1;
459
460 /* Polling queues need direct cq polling context */
461 if (nvme_rdma_poll_queue(queue))
462 poll_ctx = IB_POLL_DIRECT;
463 else
464 poll_ctx = IB_POLL_SOFTIRQ;
465
466 /* +1 for ib_stop_cq */
467 queue->ib_cq = ib_alloc_cq(ibdev, queue,
468 cq_factor * queue->queue_size + 1,
469 comp_vector, poll_ctx);
470 if (IS_ERR(queue->ib_cq)) {
471 ret = PTR_ERR(queue->ib_cq);
472 goto out_put_dev;
473 }
474
475 ret = nvme_rdma_create_qp(queue, send_wr_factor);
476 if (ret)
477 goto out_destroy_ib_cq;
478
479 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
480 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
481 if (!queue->rsp_ring) {
482 ret = -ENOMEM;
483 goto out_destroy_qp;
484 }
485
486 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
487 queue->queue_size,
488 IB_MR_TYPE_MEM_REG,
489 nvme_rdma_get_max_fr_pages(ibdev));
490 if (ret) {
491 dev_err(queue->ctrl->ctrl.device,
492 "failed to initialize MR pool sized %d for QID %d\n",
493 queue->queue_size, idx);
494 goto out_destroy_ring;
495 }
496
497 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
498
499 return 0;
500
501 out_destroy_ring:
502 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
503 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
504 out_destroy_qp:
505 rdma_destroy_qp(queue->cm_id);
506 out_destroy_ib_cq:
507 ib_free_cq(queue->ib_cq);
508 out_put_dev:
509 nvme_rdma_dev_put(queue->device);
510 return ret;
511 }
512
513 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
514 int idx, size_t queue_size)
515 {
516 struct nvme_rdma_queue *queue;
517 struct sockaddr *src_addr = NULL;
518 int ret;
519
520 queue = &ctrl->queues[idx];
521 queue->ctrl = ctrl;
522 init_completion(&queue->cm_done);
523
524 if (idx > 0)
525 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
526 else
527 queue->cmnd_capsule_len = sizeof(struct nvme_command);
528
529 queue->queue_size = queue_size;
530
531 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
532 RDMA_PS_TCP, IB_QPT_RC);
533 if (IS_ERR(queue->cm_id)) {
534 dev_info(ctrl->ctrl.device,
535 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
536 return PTR_ERR(queue->cm_id);
537 }
538
539 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
540 src_addr = (struct sockaddr *)&ctrl->src_addr;
541
542 queue->cm_error = -ETIMEDOUT;
543 ret = rdma_resolve_addr(queue->cm_id, src_addr,
544 (struct sockaddr *)&ctrl->addr,
545 NVME_RDMA_CONNECT_TIMEOUT_MS);
546 if (ret) {
547 dev_info(ctrl->ctrl.device,
548 "rdma_resolve_addr failed (%d).\n", ret);
549 goto out_destroy_cm_id;
550 }
551
552 ret = nvme_rdma_wait_for_cm(queue);
553 if (ret) {
554 dev_info(ctrl->ctrl.device,
555 "rdma connection establishment failed (%d)\n", ret);
556 goto out_destroy_cm_id;
557 }
558
559 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
560
561 return 0;
562
563 out_destroy_cm_id:
564 rdma_destroy_id(queue->cm_id);
565 nvme_rdma_destroy_queue_ib(queue);
566 return ret;
567 }
568
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
570 {
571 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
572 return;
573
574 rdma_disconnect(queue->cm_id);
575 ib_drain_qp(queue->qp);
576 }
577
578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
579 {
580 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
581 return;
582
583 nvme_rdma_destroy_queue_ib(queue);
584 rdma_destroy_id(queue->cm_id);
585 }
586
587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
588 {
589 int i;
590
591 for (i = 1; i < ctrl->ctrl.queue_count; i++)
592 nvme_rdma_free_queue(&ctrl->queues[i]);
593 }
594
595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
596 {
597 int i;
598
599 for (i = 1; i < ctrl->ctrl.queue_count; i++)
600 nvme_rdma_stop_queue(&ctrl->queues[i]);
601 }
602
603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
604 {
605 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
606 bool poll = nvme_rdma_poll_queue(queue);
607 int ret;
608
609 if (idx)
610 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
611 else
612 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
613
614 if (!ret)
615 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
616 else
617 dev_info(ctrl->ctrl.device,
618 "failed to connect queue: %d ret=%d\n", idx, ret);
619 return ret;
620 }
621
622 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624 int i, ret = 0;
625
626 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
627 ret = nvme_rdma_start_queue(ctrl, i);
628 if (ret)
629 goto out_stop_queues;
630 }
631
632 return 0;
633
634 out_stop_queues:
635 for (i--; i >= 1; i--)
636 nvme_rdma_stop_queue(&ctrl->queues[i]);
637 return ret;
638 }
639
640 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
641 {
642 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
643 struct ib_device *ibdev = ctrl->device->dev;
644 unsigned int nr_io_queues;
645 int i, ret;
646
647 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
648
649 /*
650 * we map queues according to the device irq vectors for
651 * optimal locality so we don't need more queues than
652 * completion vectors.
653 */
654 nr_io_queues = min_t(unsigned int, nr_io_queues,
655 ibdev->num_comp_vectors);
656
657 if (opts->nr_write_queues) {
658 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
659 min(opts->nr_write_queues, nr_io_queues);
660 nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT];
661 } else {
662 ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues;
663 }
664
665 ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues;
666
667 if (opts->nr_poll_queues) {
668 ctrl->io_queues[HCTX_TYPE_POLL] =
669 min(opts->nr_poll_queues, num_online_cpus());
670 nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL];
671 }
672
673 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
674 if (ret)
675 return ret;
676
677 ctrl->ctrl.queue_count = nr_io_queues + 1;
678 if (ctrl->ctrl.queue_count < 2)
679 return 0;
680
681 dev_info(ctrl->ctrl.device,
682 "creating %d I/O queues.\n", nr_io_queues);
683
684 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
685 ret = nvme_rdma_alloc_queue(ctrl, i,
686 ctrl->ctrl.sqsize + 1);
687 if (ret)
688 goto out_free_queues;
689 }
690
691 return 0;
692
693 out_free_queues:
694 for (i--; i >= 1; i--)
695 nvme_rdma_free_queue(&ctrl->queues[i]);
696
697 return ret;
698 }
699
700 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
701 struct blk_mq_tag_set *set)
702 {
703 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
704
705 blk_mq_free_tag_set(set);
706 nvme_rdma_dev_put(ctrl->device);
707 }
708
709 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
710 bool admin)
711 {
712 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
713 struct blk_mq_tag_set *set;
714 int ret;
715
716 if (admin) {
717 set = &ctrl->admin_tag_set;
718 memset(set, 0, sizeof(*set));
719 set->ops = &nvme_rdma_admin_mq_ops;
720 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
721 set->reserved_tags = 2; /* connect + keep-alive */
722 set->numa_node = nctrl->numa_node;
723 set->cmd_size = sizeof(struct nvme_rdma_request) +
724 SG_CHUNK_SIZE * sizeof(struct scatterlist);
725 set->driver_data = ctrl;
726 set->nr_hw_queues = 1;
727 set->timeout = ADMIN_TIMEOUT;
728 set->flags = BLK_MQ_F_NO_SCHED;
729 } else {
730 set = &ctrl->tag_set;
731 memset(set, 0, sizeof(*set));
732 set->ops = &nvme_rdma_mq_ops;
733 set->queue_depth = nctrl->sqsize + 1;
734 set->reserved_tags = 1; /* fabric connect */
735 set->numa_node = nctrl->numa_node;
736 set->flags = BLK_MQ_F_SHOULD_MERGE;
737 set->cmd_size = sizeof(struct nvme_rdma_request) +
738 SG_CHUNK_SIZE * sizeof(struct scatterlist);
739 set->driver_data = ctrl;
740 set->nr_hw_queues = nctrl->queue_count - 1;
741 set->timeout = NVME_IO_TIMEOUT;
742 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
743 }
744
745 ret = blk_mq_alloc_tag_set(set);
746 if (ret)
747 goto out;
748
749 /*
750 * We need a reference on the device as long as the tag_set is alive,
751 * as the MRs in the request structures need a valid ib_device.
752 */
753 ret = nvme_rdma_dev_get(ctrl->device);
754 if (!ret) {
755 ret = -EINVAL;
756 goto out_free_tagset;
757 }
758
759 return set;
760
761 out_free_tagset:
762 blk_mq_free_tag_set(set);
763 out:
764 return ERR_PTR(ret);
765 }
766
767 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
768 bool remove)
769 {
770 if (remove) {
771 blk_cleanup_queue(ctrl->ctrl.admin_q);
772 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
773 }
774 if (ctrl->async_event_sqe.data) {
775 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
776 sizeof(struct nvme_command), DMA_TO_DEVICE);
777 ctrl->async_event_sqe.data = NULL;
778 }
779 nvme_rdma_free_queue(&ctrl->queues[0]);
780 }
781
782 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
783 bool new)
784 {
785 int error;
786
787 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
788 if (error)
789 return error;
790
791 ctrl->device = ctrl->queues[0].device;
792 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
793
794 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
795
796 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
797 sizeof(struct nvme_command), DMA_TO_DEVICE);
798 if (error)
799 goto out_free_queue;
800
801 if (new) {
802 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
803 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
804 error = PTR_ERR(ctrl->ctrl.admin_tagset);
805 goto out_free_async_qe;
806 }
807
808 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
809 if (IS_ERR(ctrl->ctrl.admin_q)) {
810 error = PTR_ERR(ctrl->ctrl.admin_q);
811 goto out_free_tagset;
812 }
813 }
814
815 error = nvme_rdma_start_queue(ctrl, 0);
816 if (error)
817 goto out_cleanup_queue;
818
819 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
820 &ctrl->ctrl.cap);
821 if (error) {
822 dev_err(ctrl->ctrl.device,
823 "prop_get NVME_REG_CAP failed\n");
824 goto out_stop_queue;
825 }
826
827 ctrl->ctrl.sqsize =
828 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
829
830 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
831 if (error)
832 goto out_stop_queue;
833
834 ctrl->ctrl.max_hw_sectors =
835 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
836
837 error = nvme_init_identify(&ctrl->ctrl);
838 if (error)
839 goto out_stop_queue;
840
841 return 0;
842
843 out_stop_queue:
844 nvme_rdma_stop_queue(&ctrl->queues[0]);
845 out_cleanup_queue:
846 if (new)
847 blk_cleanup_queue(ctrl->ctrl.admin_q);
848 out_free_tagset:
849 if (new)
850 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
851 out_free_async_qe:
852 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
853 sizeof(struct nvme_command), DMA_TO_DEVICE);
854 ctrl->async_event_sqe.data = NULL;
855 out_free_queue:
856 nvme_rdma_free_queue(&ctrl->queues[0]);
857 return error;
858 }
859
860 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
861 bool remove)
862 {
863 if (remove) {
864 blk_cleanup_queue(ctrl->ctrl.connect_q);
865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 }
867 nvme_rdma_free_io_queues(ctrl);
868 }
869
870 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
871 {
872 int ret;
873
874 ret = nvme_rdma_alloc_io_queues(ctrl);
875 if (ret)
876 return ret;
877
878 if (new) {
879 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
880 if (IS_ERR(ctrl->ctrl.tagset)) {
881 ret = PTR_ERR(ctrl->ctrl.tagset);
882 goto out_free_io_queues;
883 }
884
885 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
886 if (IS_ERR(ctrl->ctrl.connect_q)) {
887 ret = PTR_ERR(ctrl->ctrl.connect_q);
888 goto out_free_tag_set;
889 }
890 } else {
891 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
892 ctrl->ctrl.queue_count - 1);
893 }
894
895 ret = nvme_rdma_start_io_queues(ctrl);
896 if (ret)
897 goto out_cleanup_connect_q;
898
899 return 0;
900
901 out_cleanup_connect_q:
902 if (new)
903 blk_cleanup_queue(ctrl->ctrl.connect_q);
904 out_free_tag_set:
905 if (new)
906 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
907 out_free_io_queues:
908 nvme_rdma_free_io_queues(ctrl);
909 return ret;
910 }
911
912 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
913 bool remove)
914 {
915 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
916 nvme_rdma_stop_queue(&ctrl->queues[0]);
917 if (ctrl->ctrl.admin_tagset)
918 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
919 nvme_cancel_request, &ctrl->ctrl);
920 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
921 nvme_rdma_destroy_admin_queue(ctrl, remove);
922 }
923
924 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
925 bool remove)
926 {
927 if (ctrl->ctrl.queue_count > 1) {
928 nvme_stop_queues(&ctrl->ctrl);
929 nvme_rdma_stop_io_queues(ctrl);
930 if (ctrl->ctrl.tagset)
931 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
932 nvme_cancel_request, &ctrl->ctrl);
933 if (remove)
934 nvme_start_queues(&ctrl->ctrl);
935 nvme_rdma_destroy_io_queues(ctrl, remove);
936 }
937 }
938
939 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
940 {
941 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
942
943 if (list_empty(&ctrl->list))
944 goto free_ctrl;
945
946 mutex_lock(&nvme_rdma_ctrl_mutex);
947 list_del(&ctrl->list);
948 mutex_unlock(&nvme_rdma_ctrl_mutex);
949
950 nvmf_free_options(nctrl->opts);
951 free_ctrl:
952 kfree(ctrl->queues);
953 kfree(ctrl);
954 }
955
956 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
957 {
958 /* If we are resetting/deleting then do nothing */
959 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
960 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
961 ctrl->ctrl.state == NVME_CTRL_LIVE);
962 return;
963 }
964
965 if (nvmf_should_reconnect(&ctrl->ctrl)) {
966 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
967 ctrl->ctrl.opts->reconnect_delay);
968 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
969 ctrl->ctrl.opts->reconnect_delay * HZ);
970 } else {
971 nvme_delete_ctrl(&ctrl->ctrl);
972 }
973 }
974
975 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
976 {
977 int ret = -EINVAL;
978 bool changed;
979
980 ret = nvme_rdma_configure_admin_queue(ctrl, new);
981 if (ret)
982 return ret;
983
984 if (ctrl->ctrl.icdoff) {
985 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
986 goto destroy_admin;
987 }
988
989 if (!(ctrl->ctrl.sgls & (1 << 2))) {
990 dev_err(ctrl->ctrl.device,
991 "Mandatory keyed sgls are not supported!\n");
992 goto destroy_admin;
993 }
994
995 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
996 dev_warn(ctrl->ctrl.device,
997 "queue_size %zu > ctrl sqsize %u, clamping down\n",
998 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
999 }
1000
1001 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1002 dev_warn(ctrl->ctrl.device,
1003 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1004 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1005 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1006 }
1007
1008 if (ctrl->ctrl.sgls & (1 << 20))
1009 ctrl->use_inline_data = true;
1010
1011 if (ctrl->ctrl.queue_count > 1) {
1012 ret = nvme_rdma_configure_io_queues(ctrl, new);
1013 if (ret)
1014 goto destroy_admin;
1015 }
1016
1017 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1018 if (!changed) {
1019 /* state change failure is ok if we're in DELETING state */
1020 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1021 ret = -EINVAL;
1022 goto destroy_io;
1023 }
1024
1025 nvme_start_ctrl(&ctrl->ctrl);
1026 return 0;
1027
1028 destroy_io:
1029 if (ctrl->ctrl.queue_count > 1)
1030 nvme_rdma_destroy_io_queues(ctrl, new);
1031 destroy_admin:
1032 nvme_rdma_stop_queue(&ctrl->queues[0]);
1033 nvme_rdma_destroy_admin_queue(ctrl, new);
1034 return ret;
1035 }
1036
1037 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1038 {
1039 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1040 struct nvme_rdma_ctrl, reconnect_work);
1041
1042 ++ctrl->ctrl.nr_reconnects;
1043
1044 if (nvme_rdma_setup_ctrl(ctrl, false))
1045 goto requeue;
1046
1047 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1048 ctrl->ctrl.nr_reconnects);
1049
1050 ctrl->ctrl.nr_reconnects = 0;
1051
1052 return;
1053
1054 requeue:
1055 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1056 ctrl->ctrl.nr_reconnects);
1057 nvme_rdma_reconnect_or_remove(ctrl);
1058 }
1059
1060 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1061 {
1062 struct nvme_rdma_ctrl *ctrl = container_of(work,
1063 struct nvme_rdma_ctrl, err_work);
1064
1065 nvme_stop_keep_alive(&ctrl->ctrl);
1066 nvme_rdma_teardown_io_queues(ctrl, false);
1067 nvme_start_queues(&ctrl->ctrl);
1068 nvme_rdma_teardown_admin_queue(ctrl, false);
1069
1070 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1071 /* state change failure is ok if we're in DELETING state */
1072 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1073 return;
1074 }
1075
1076 nvme_rdma_reconnect_or_remove(ctrl);
1077 }
1078
1079 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1080 {
1081 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1082 return;
1083
1084 queue_work(nvme_wq, &ctrl->err_work);
1085 }
1086
1087 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1088 const char *op)
1089 {
1090 struct nvme_rdma_queue *queue = cq->cq_context;
1091 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1092
1093 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1094 dev_info(ctrl->ctrl.device,
1095 "%s for CQE 0x%p failed with status %s (%d)\n",
1096 op, wc->wr_cqe,
1097 ib_wc_status_msg(wc->status), wc->status);
1098 nvme_rdma_error_recovery(ctrl);
1099 }
1100
1101 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1102 {
1103 if (unlikely(wc->status != IB_WC_SUCCESS))
1104 nvme_rdma_wr_error(cq, wc, "MEMREG");
1105 }
1106
1107 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1108 {
1109 struct nvme_rdma_request *req =
1110 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1111 struct request *rq = blk_mq_rq_from_pdu(req);
1112
1113 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1114 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1115 return;
1116 }
1117
1118 if (refcount_dec_and_test(&req->ref))
1119 nvme_end_request(rq, req->status, req->result);
1120
1121 }
1122
1123 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1124 struct nvme_rdma_request *req)
1125 {
1126 struct ib_send_wr wr = {
1127 .opcode = IB_WR_LOCAL_INV,
1128 .next = NULL,
1129 .num_sge = 0,
1130 .send_flags = IB_SEND_SIGNALED,
1131 .ex.invalidate_rkey = req->mr->rkey,
1132 };
1133
1134 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1135 wr.wr_cqe = &req->reg_cqe;
1136
1137 return ib_post_send(queue->qp, &wr, NULL);
1138 }
1139
1140 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1141 struct request *rq)
1142 {
1143 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1144 struct nvme_rdma_device *dev = queue->device;
1145 struct ib_device *ibdev = dev->dev;
1146
1147 if (!blk_rq_nr_phys_segments(rq))
1148 return;
1149
1150 if (req->mr) {
1151 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1152 req->mr = NULL;
1153 }
1154
1155 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1156 req->nents, rq_data_dir(rq) ==
1157 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1158
1159 nvme_cleanup_cmd(rq);
1160 sg_free_table_chained(&req->sg_table, true);
1161 }
1162
1163 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1164 {
1165 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1166
1167 sg->addr = 0;
1168 put_unaligned_le24(0, sg->length);
1169 put_unaligned_le32(0, sg->key);
1170 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1171 return 0;
1172 }
1173
1174 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1175 struct nvme_rdma_request *req, struct nvme_command *c,
1176 int count)
1177 {
1178 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1179 struct scatterlist *sgl = req->sg_table.sgl;
1180 struct ib_sge *sge = &req->sge[1];
1181 u32 len = 0;
1182 int i;
1183
1184 for (i = 0; i < count; i++, sgl++, sge++) {
1185 sge->addr = sg_dma_address(sgl);
1186 sge->length = sg_dma_len(sgl);
1187 sge->lkey = queue->device->pd->local_dma_lkey;
1188 len += sge->length;
1189 }
1190
1191 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1192 sg->length = cpu_to_le32(len);
1193 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1194
1195 req->num_sge += count;
1196 return 0;
1197 }
1198
1199 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1200 struct nvme_rdma_request *req, struct nvme_command *c)
1201 {
1202 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1203
1204 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1205 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1206 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1207 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1208 return 0;
1209 }
1210
1211 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1212 struct nvme_rdma_request *req, struct nvme_command *c,
1213 int count)
1214 {
1215 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1216 int nr;
1217
1218 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1219 if (WARN_ON_ONCE(!req->mr))
1220 return -EAGAIN;
1221
1222 /*
1223 * Align the MR to a 4K page size to match the ctrl page size and
1224 * the block virtual boundary.
1225 */
1226 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1227 if (unlikely(nr < count)) {
1228 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1229 req->mr = NULL;
1230 if (nr < 0)
1231 return nr;
1232 return -EINVAL;
1233 }
1234
1235 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1236
1237 req->reg_cqe.done = nvme_rdma_memreg_done;
1238 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1239 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1240 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1241 req->reg_wr.wr.num_sge = 0;
1242 req->reg_wr.mr = req->mr;
1243 req->reg_wr.key = req->mr->rkey;
1244 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1245 IB_ACCESS_REMOTE_READ |
1246 IB_ACCESS_REMOTE_WRITE;
1247
1248 sg->addr = cpu_to_le64(req->mr->iova);
1249 put_unaligned_le24(req->mr->length, sg->length);
1250 put_unaligned_le32(req->mr->rkey, sg->key);
1251 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1252 NVME_SGL_FMT_INVALIDATE;
1253
1254 return 0;
1255 }
1256
1257 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1258 struct request *rq, struct nvme_command *c)
1259 {
1260 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1261 struct nvme_rdma_device *dev = queue->device;
1262 struct ib_device *ibdev = dev->dev;
1263 int count, ret;
1264
1265 req->num_sge = 1;
1266 refcount_set(&req->ref, 2); /* send and recv completions */
1267
1268 c->common.flags |= NVME_CMD_SGL_METABUF;
1269
1270 if (!blk_rq_nr_phys_segments(rq))
1271 return nvme_rdma_set_sg_null(c);
1272
1273 req->sg_table.sgl = req->first_sgl;
1274 ret = sg_alloc_table_chained(&req->sg_table,
1275 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1276 if (ret)
1277 return -ENOMEM;
1278
1279 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1280
1281 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1282 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1283 if (unlikely(count <= 0)) {
1284 ret = -EIO;
1285 goto out_free_table;
1286 }
1287
1288 if (count <= dev->num_inline_segments) {
1289 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1290 queue->ctrl->use_inline_data &&
1291 blk_rq_payload_bytes(rq) <=
1292 nvme_rdma_inline_data_size(queue)) {
1293 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1294 goto out;
1295 }
1296
1297 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1298 ret = nvme_rdma_map_sg_single(queue, req, c);
1299 goto out;
1300 }
1301 }
1302
1303 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1304 out:
1305 if (unlikely(ret))
1306 goto out_unmap_sg;
1307
1308 return 0;
1309
1310 out_unmap_sg:
1311 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1312 req->nents, rq_data_dir(rq) ==
1313 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1314 out_free_table:
1315 sg_free_table_chained(&req->sg_table, true);
1316 return ret;
1317 }
1318
1319 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1320 {
1321 struct nvme_rdma_qe *qe =
1322 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1323 struct nvme_rdma_request *req =
1324 container_of(qe, struct nvme_rdma_request, sqe);
1325 struct request *rq = blk_mq_rq_from_pdu(req);
1326
1327 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1328 nvme_rdma_wr_error(cq, wc, "SEND");
1329 return;
1330 }
1331
1332 if (refcount_dec_and_test(&req->ref))
1333 nvme_end_request(rq, req->status, req->result);
1334 }
1335
1336 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1337 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1338 struct ib_send_wr *first)
1339 {
1340 struct ib_send_wr wr;
1341 int ret;
1342
1343 sge->addr = qe->dma;
1344 sge->length = sizeof(struct nvme_command),
1345 sge->lkey = queue->device->pd->local_dma_lkey;
1346
1347 wr.next = NULL;
1348 wr.wr_cqe = &qe->cqe;
1349 wr.sg_list = sge;
1350 wr.num_sge = num_sge;
1351 wr.opcode = IB_WR_SEND;
1352 wr.send_flags = IB_SEND_SIGNALED;
1353
1354 if (first)
1355 first->next = &wr;
1356 else
1357 first = &wr;
1358
1359 ret = ib_post_send(queue->qp, first, NULL);
1360 if (unlikely(ret)) {
1361 dev_err(queue->ctrl->ctrl.device,
1362 "%s failed with error code %d\n", __func__, ret);
1363 }
1364 return ret;
1365 }
1366
1367 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1368 struct nvme_rdma_qe *qe)
1369 {
1370 struct ib_recv_wr wr;
1371 struct ib_sge list;
1372 int ret;
1373
1374 list.addr = qe->dma;
1375 list.length = sizeof(struct nvme_completion);
1376 list.lkey = queue->device->pd->local_dma_lkey;
1377
1378 qe->cqe.done = nvme_rdma_recv_done;
1379
1380 wr.next = NULL;
1381 wr.wr_cqe = &qe->cqe;
1382 wr.sg_list = &list;
1383 wr.num_sge = 1;
1384
1385 ret = ib_post_recv(queue->qp, &wr, NULL);
1386 if (unlikely(ret)) {
1387 dev_err(queue->ctrl->ctrl.device,
1388 "%s failed with error code %d\n", __func__, ret);
1389 }
1390 return ret;
1391 }
1392
1393 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1394 {
1395 u32 queue_idx = nvme_rdma_queue_idx(queue);
1396
1397 if (queue_idx == 0)
1398 return queue->ctrl->admin_tag_set.tags[queue_idx];
1399 return queue->ctrl->tag_set.tags[queue_idx - 1];
1400 }
1401
1402 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1403 {
1404 if (unlikely(wc->status != IB_WC_SUCCESS))
1405 nvme_rdma_wr_error(cq, wc, "ASYNC");
1406 }
1407
1408 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1409 {
1410 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1411 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1412 struct ib_device *dev = queue->device->dev;
1413 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1414 struct nvme_command *cmd = sqe->data;
1415 struct ib_sge sge;
1416 int ret;
1417
1418 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1419
1420 memset(cmd, 0, sizeof(*cmd));
1421 cmd->common.opcode = nvme_admin_async_event;
1422 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1423 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1424 nvme_rdma_set_sg_null(cmd);
1425
1426 sqe->cqe.done = nvme_rdma_async_done;
1427
1428 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1429 DMA_TO_DEVICE);
1430
1431 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1432 WARN_ON_ONCE(ret);
1433 }
1434
1435 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1436 struct nvme_completion *cqe, struct ib_wc *wc)
1437 {
1438 struct request *rq;
1439 struct nvme_rdma_request *req;
1440
1441 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1442 if (!rq) {
1443 dev_err(queue->ctrl->ctrl.device,
1444 "tag 0x%x on QP %#x not found\n",
1445 cqe->command_id, queue->qp->qp_num);
1446 nvme_rdma_error_recovery(queue->ctrl);
1447 return;
1448 }
1449 req = blk_mq_rq_to_pdu(rq);
1450
1451 req->status = cqe->status;
1452 req->result = cqe->result;
1453
1454 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1455 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1456 dev_err(queue->ctrl->ctrl.device,
1457 "Bogus remote invalidation for rkey %#x\n",
1458 req->mr->rkey);
1459 nvme_rdma_error_recovery(queue->ctrl);
1460 }
1461 } else if (req->mr) {
1462 int ret;
1463
1464 ret = nvme_rdma_inv_rkey(queue, req);
1465 if (unlikely(ret < 0)) {
1466 dev_err(queue->ctrl->ctrl.device,
1467 "Queueing INV WR for rkey %#x failed (%d)\n",
1468 req->mr->rkey, ret);
1469 nvme_rdma_error_recovery(queue->ctrl);
1470 }
1471 /* the local invalidation completion will end the request */
1472 return;
1473 }
1474
1475 if (refcount_dec_and_test(&req->ref))
1476 nvme_end_request(rq, req->status, req->result);
1477 }
1478
1479 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1480 {
1481 struct nvme_rdma_qe *qe =
1482 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1483 struct nvme_rdma_queue *queue = cq->cq_context;
1484 struct ib_device *ibdev = queue->device->dev;
1485 struct nvme_completion *cqe = qe->data;
1486 const size_t len = sizeof(struct nvme_completion);
1487
1488 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1489 nvme_rdma_wr_error(cq, wc, "RECV");
1490 return;
1491 }
1492
1493 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1494 /*
1495 * AEN requests are special as they don't time out and can
1496 * survive any kind of queue freeze and often don't respond to
1497 * aborts. We don't even bother to allocate a struct request
1498 * for them but rather special case them here.
1499 */
1500 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1501 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1502 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1503 &cqe->result);
1504 else
1505 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1506 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1507
1508 nvme_rdma_post_recv(queue, qe);
1509 }
1510
1511 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1512 {
1513 int ret, i;
1514
1515 for (i = 0; i < queue->queue_size; i++) {
1516 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1517 if (ret)
1518 goto out_destroy_queue_ib;
1519 }
1520
1521 return 0;
1522
1523 out_destroy_queue_ib:
1524 nvme_rdma_destroy_queue_ib(queue);
1525 return ret;
1526 }
1527
1528 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1529 struct rdma_cm_event *ev)
1530 {
1531 struct rdma_cm_id *cm_id = queue->cm_id;
1532 int status = ev->status;
1533 const char *rej_msg;
1534 const struct nvme_rdma_cm_rej *rej_data;
1535 u8 rej_data_len;
1536
1537 rej_msg = rdma_reject_msg(cm_id, status);
1538 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1539
1540 if (rej_data && rej_data_len >= sizeof(u16)) {
1541 u16 sts = le16_to_cpu(rej_data->sts);
1542
1543 dev_err(queue->ctrl->ctrl.device,
1544 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1545 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1546 } else {
1547 dev_err(queue->ctrl->ctrl.device,
1548 "Connect rejected: status %d (%s).\n", status, rej_msg);
1549 }
1550
1551 return -ECONNRESET;
1552 }
1553
1554 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1555 {
1556 int ret;
1557
1558 ret = nvme_rdma_create_queue_ib(queue);
1559 if (ret)
1560 return ret;
1561
1562 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1563 if (ret) {
1564 dev_err(queue->ctrl->ctrl.device,
1565 "rdma_resolve_route failed (%d).\n",
1566 queue->cm_error);
1567 goto out_destroy_queue;
1568 }
1569
1570 return 0;
1571
1572 out_destroy_queue:
1573 nvme_rdma_destroy_queue_ib(queue);
1574 return ret;
1575 }
1576
1577 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1578 {
1579 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1580 struct rdma_conn_param param = { };
1581 struct nvme_rdma_cm_req priv = { };
1582 int ret;
1583
1584 param.qp_num = queue->qp->qp_num;
1585 param.flow_control = 1;
1586
1587 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1588 /* maximum retry count */
1589 param.retry_count = 7;
1590 param.rnr_retry_count = 7;
1591 param.private_data = &priv;
1592 param.private_data_len = sizeof(priv);
1593
1594 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1595 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1596 /*
1597 * set the admin queue depth to the minimum size
1598 * specified by the Fabrics standard.
1599 */
1600 if (priv.qid == 0) {
1601 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1602 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1603 } else {
1604 /*
1605 * current interpretation of the fabrics spec
1606 * is at minimum you make hrqsize sqsize+1, or a
1607 * 1's based representation of sqsize.
1608 */
1609 priv.hrqsize = cpu_to_le16(queue->queue_size);
1610 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1611 }
1612
1613 ret = rdma_connect(queue->cm_id, &param);
1614 if (ret) {
1615 dev_err(ctrl->ctrl.device,
1616 "rdma_connect failed (%d).\n", ret);
1617 goto out_destroy_queue_ib;
1618 }
1619
1620 return 0;
1621
1622 out_destroy_queue_ib:
1623 nvme_rdma_destroy_queue_ib(queue);
1624 return ret;
1625 }
1626
1627 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1628 struct rdma_cm_event *ev)
1629 {
1630 struct nvme_rdma_queue *queue = cm_id->context;
1631 int cm_error = 0;
1632
1633 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1634 rdma_event_msg(ev->event), ev->event,
1635 ev->status, cm_id);
1636
1637 switch (ev->event) {
1638 case RDMA_CM_EVENT_ADDR_RESOLVED:
1639 cm_error = nvme_rdma_addr_resolved(queue);
1640 break;
1641 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1642 cm_error = nvme_rdma_route_resolved(queue);
1643 break;
1644 case RDMA_CM_EVENT_ESTABLISHED:
1645 queue->cm_error = nvme_rdma_conn_established(queue);
1646 /* complete cm_done regardless of success/failure */
1647 complete(&queue->cm_done);
1648 return 0;
1649 case RDMA_CM_EVENT_REJECTED:
1650 nvme_rdma_destroy_queue_ib(queue);
1651 cm_error = nvme_rdma_conn_rejected(queue, ev);
1652 break;
1653 case RDMA_CM_EVENT_ROUTE_ERROR:
1654 case RDMA_CM_EVENT_CONNECT_ERROR:
1655 case RDMA_CM_EVENT_UNREACHABLE:
1656 nvme_rdma_destroy_queue_ib(queue);
1657 /* fall through */
1658 case RDMA_CM_EVENT_ADDR_ERROR:
1659 dev_dbg(queue->ctrl->ctrl.device,
1660 "CM error event %d\n", ev->event);
1661 cm_error = -ECONNRESET;
1662 break;
1663 case RDMA_CM_EVENT_DISCONNECTED:
1664 case RDMA_CM_EVENT_ADDR_CHANGE:
1665 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1666 dev_dbg(queue->ctrl->ctrl.device,
1667 "disconnect received - connection closed\n");
1668 nvme_rdma_error_recovery(queue->ctrl);
1669 break;
1670 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1671 /* device removal is handled via the ib_client API */
1672 break;
1673 default:
1674 dev_err(queue->ctrl->ctrl.device,
1675 "Unexpected RDMA CM event (%d)\n", ev->event);
1676 nvme_rdma_error_recovery(queue->ctrl);
1677 break;
1678 }
1679
1680 if (cm_error) {
1681 queue->cm_error = cm_error;
1682 complete(&queue->cm_done);
1683 }
1684
1685 return 0;
1686 }
1687
1688 static enum blk_eh_timer_return
1689 nvme_rdma_timeout(struct request *rq, bool reserved)
1690 {
1691 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1692 struct nvme_rdma_queue *queue = req->queue;
1693 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1694
1695 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1696 rq->tag, nvme_rdma_queue_idx(queue));
1697
1698 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1699 /*
1700 * Teardown immediately if controller times out while starting
1701 * or we are already started error recovery. all outstanding
1702 * requests are completed on shutdown, so we return BLK_EH_DONE.
1703 */
1704 flush_work(&ctrl->err_work);
1705 nvme_rdma_teardown_io_queues(ctrl, false);
1706 nvme_rdma_teardown_admin_queue(ctrl, false);
1707 return BLK_EH_DONE;
1708 }
1709
1710 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1711 nvme_rdma_error_recovery(ctrl);
1712
1713 return BLK_EH_RESET_TIMER;
1714 }
1715
1716 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1717 const struct blk_mq_queue_data *bd)
1718 {
1719 struct nvme_ns *ns = hctx->queue->queuedata;
1720 struct nvme_rdma_queue *queue = hctx->driver_data;
1721 struct request *rq = bd->rq;
1722 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1723 struct nvme_rdma_qe *sqe = &req->sqe;
1724 struct nvme_command *c = sqe->data;
1725 struct ib_device *dev;
1726 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1727 blk_status_t ret;
1728 int err;
1729
1730 WARN_ON_ONCE(rq->tag < 0);
1731
1732 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1733 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1734
1735 dev = queue->device->dev;
1736 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1737 sizeof(struct nvme_command), DMA_TO_DEVICE);
1738
1739 ret = nvme_setup_cmd(ns, rq, c);
1740 if (ret)
1741 return ret;
1742
1743 blk_mq_start_request(rq);
1744
1745 err = nvme_rdma_map_data(queue, rq, c);
1746 if (unlikely(err < 0)) {
1747 dev_err(queue->ctrl->ctrl.device,
1748 "Failed to map data (%d)\n", err);
1749 nvme_cleanup_cmd(rq);
1750 goto err;
1751 }
1752
1753 sqe->cqe.done = nvme_rdma_send_done;
1754
1755 ib_dma_sync_single_for_device(dev, sqe->dma,
1756 sizeof(struct nvme_command), DMA_TO_DEVICE);
1757
1758 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1759 req->mr ? &req->reg_wr.wr : NULL);
1760 if (unlikely(err)) {
1761 nvme_rdma_unmap_data(queue, rq);
1762 goto err;
1763 }
1764
1765 return BLK_STS_OK;
1766 err:
1767 if (err == -ENOMEM || err == -EAGAIN)
1768 return BLK_STS_RESOURCE;
1769 return BLK_STS_IOERR;
1770 }
1771
1772 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1773 {
1774 struct nvme_rdma_queue *queue = hctx->driver_data;
1775
1776 return ib_process_cq_direct(queue->ib_cq, -1);
1777 }
1778
1779 static void nvme_rdma_complete_rq(struct request *rq)
1780 {
1781 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1782
1783 nvme_rdma_unmap_data(req->queue, rq);
1784 nvme_complete_rq(rq);
1785 }
1786
1787 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1788 {
1789 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1790
1791 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1792 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1793 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1794 set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ];
1795 if (ctrl->ctrl.opts->nr_write_queues) {
1796 /* separate read/write queues */
1797 set->map[HCTX_TYPE_READ].queue_offset =
1798 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1799 } else {
1800 /* mixed read/write queues */
1801 set->map[HCTX_TYPE_READ].queue_offset = 0;
1802 }
1803 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1804 ctrl->device->dev, 0);
1805 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1806 ctrl->device->dev, 0);
1807
1808 if (ctrl->ctrl.opts->nr_poll_queues) {
1809 set->map[HCTX_TYPE_POLL].nr_queues =
1810 ctrl->io_queues[HCTX_TYPE_POLL];
1811 set->map[HCTX_TYPE_POLL].queue_offset =
1812 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1813 if (ctrl->ctrl.opts->nr_write_queues)
1814 set->map[HCTX_TYPE_POLL].queue_offset +=
1815 ctrl->io_queues[HCTX_TYPE_READ];
1816 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1817 }
1818 return 0;
1819 }
1820
1821 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1822 .queue_rq = nvme_rdma_queue_rq,
1823 .complete = nvme_rdma_complete_rq,
1824 .init_request = nvme_rdma_init_request,
1825 .exit_request = nvme_rdma_exit_request,
1826 .init_hctx = nvme_rdma_init_hctx,
1827 .timeout = nvme_rdma_timeout,
1828 .map_queues = nvme_rdma_map_queues,
1829 .poll = nvme_rdma_poll,
1830 };
1831
1832 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1833 .queue_rq = nvme_rdma_queue_rq,
1834 .complete = nvme_rdma_complete_rq,
1835 .init_request = nvme_rdma_init_request,
1836 .exit_request = nvme_rdma_exit_request,
1837 .init_hctx = nvme_rdma_init_admin_hctx,
1838 .timeout = nvme_rdma_timeout,
1839 };
1840
1841 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1842 {
1843 cancel_work_sync(&ctrl->err_work);
1844 cancel_delayed_work_sync(&ctrl->reconnect_work);
1845
1846 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1847 if (shutdown)
1848 nvme_shutdown_ctrl(&ctrl->ctrl);
1849 else
1850 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1851 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1852 }
1853
1854 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1855 {
1856 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1857 }
1858
1859 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1860 {
1861 struct nvme_rdma_ctrl *ctrl =
1862 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1863
1864 nvme_stop_ctrl(&ctrl->ctrl);
1865 nvme_rdma_shutdown_ctrl(ctrl, false);
1866
1867 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1868 /* state change failure should never happen */
1869 WARN_ON_ONCE(1);
1870 return;
1871 }
1872
1873 if (nvme_rdma_setup_ctrl(ctrl, false))
1874 goto out_fail;
1875
1876 return;
1877
1878 out_fail:
1879 ++ctrl->ctrl.nr_reconnects;
1880 nvme_rdma_reconnect_or_remove(ctrl);
1881 }
1882
1883 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1884 .name = "rdma",
1885 .module = THIS_MODULE,
1886 .flags = NVME_F_FABRICS,
1887 .reg_read32 = nvmf_reg_read32,
1888 .reg_read64 = nvmf_reg_read64,
1889 .reg_write32 = nvmf_reg_write32,
1890 .free_ctrl = nvme_rdma_free_ctrl,
1891 .submit_async_event = nvme_rdma_submit_async_event,
1892 .delete_ctrl = nvme_rdma_delete_ctrl,
1893 .get_address = nvmf_get_address,
1894 };
1895
1896 /*
1897 * Fails a connection request if it matches an existing controller
1898 * (association) with the same tuple:
1899 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1900 *
1901 * if local address is not specified in the request, it will match an
1902 * existing controller with all the other parameters the same and no
1903 * local port address specified as well.
1904 *
1905 * The ports don't need to be compared as they are intrinsically
1906 * already matched by the port pointers supplied.
1907 */
1908 static bool
1909 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1910 {
1911 struct nvme_rdma_ctrl *ctrl;
1912 bool found = false;
1913
1914 mutex_lock(&nvme_rdma_ctrl_mutex);
1915 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1916 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1917 if (found)
1918 break;
1919 }
1920 mutex_unlock(&nvme_rdma_ctrl_mutex);
1921
1922 return found;
1923 }
1924
1925 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1926 struct nvmf_ctrl_options *opts)
1927 {
1928 struct nvme_rdma_ctrl *ctrl;
1929 int ret;
1930 bool changed;
1931
1932 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1933 if (!ctrl)
1934 return ERR_PTR(-ENOMEM);
1935 ctrl->ctrl.opts = opts;
1936 INIT_LIST_HEAD(&ctrl->list);
1937
1938 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1939 opts->trsvcid =
1940 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1941 if (!opts->trsvcid) {
1942 ret = -ENOMEM;
1943 goto out_free_ctrl;
1944 }
1945 opts->mask |= NVMF_OPT_TRSVCID;
1946 }
1947
1948 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1949 opts->traddr, opts->trsvcid, &ctrl->addr);
1950 if (ret) {
1951 pr_err("malformed address passed: %s:%s\n",
1952 opts->traddr, opts->trsvcid);
1953 goto out_free_ctrl;
1954 }
1955
1956 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1957 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1958 opts->host_traddr, NULL, &ctrl->src_addr);
1959 if (ret) {
1960 pr_err("malformed src address passed: %s\n",
1961 opts->host_traddr);
1962 goto out_free_ctrl;
1963 }
1964 }
1965
1966 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1967 ret = -EALREADY;
1968 goto out_free_ctrl;
1969 }
1970
1971 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1972 nvme_rdma_reconnect_ctrl_work);
1973 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1974 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1975
1976 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1977 opts->nr_poll_queues + 1;
1978 ctrl->ctrl.sqsize = opts->queue_size - 1;
1979 ctrl->ctrl.kato = opts->kato;
1980
1981 ret = -ENOMEM;
1982 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1983 GFP_KERNEL);
1984 if (!ctrl->queues)
1985 goto out_free_ctrl;
1986
1987 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1988 0 /* no quirks, we're perfect! */);
1989 if (ret)
1990 goto out_kfree_queues;
1991
1992 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1993 WARN_ON_ONCE(!changed);
1994
1995 ret = nvme_rdma_setup_ctrl(ctrl, true);
1996 if (ret)
1997 goto out_uninit_ctrl;
1998
1999 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2000 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2001
2002 nvme_get_ctrl(&ctrl->ctrl);
2003
2004 mutex_lock(&nvme_rdma_ctrl_mutex);
2005 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2006 mutex_unlock(&nvme_rdma_ctrl_mutex);
2007
2008 return &ctrl->ctrl;
2009
2010 out_uninit_ctrl:
2011 nvme_uninit_ctrl(&ctrl->ctrl);
2012 nvme_put_ctrl(&ctrl->ctrl);
2013 if (ret > 0)
2014 ret = -EIO;
2015 return ERR_PTR(ret);
2016 out_kfree_queues:
2017 kfree(ctrl->queues);
2018 out_free_ctrl:
2019 kfree(ctrl);
2020 return ERR_PTR(ret);
2021 }
2022
2023 static struct nvmf_transport_ops nvme_rdma_transport = {
2024 .name = "rdma",
2025 .module = THIS_MODULE,
2026 .required_opts = NVMF_OPT_TRADDR,
2027 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2028 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2029 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2030 .create_ctrl = nvme_rdma_create_ctrl,
2031 };
2032
2033 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2034 {
2035 struct nvme_rdma_ctrl *ctrl;
2036 struct nvme_rdma_device *ndev;
2037 bool found = false;
2038
2039 mutex_lock(&device_list_mutex);
2040 list_for_each_entry(ndev, &device_list, entry) {
2041 if (ndev->dev == ib_device) {
2042 found = true;
2043 break;
2044 }
2045 }
2046 mutex_unlock(&device_list_mutex);
2047
2048 if (!found)
2049 return;
2050
2051 /* Delete all controllers using this device */
2052 mutex_lock(&nvme_rdma_ctrl_mutex);
2053 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2054 if (ctrl->device->dev != ib_device)
2055 continue;
2056 nvme_delete_ctrl(&ctrl->ctrl);
2057 }
2058 mutex_unlock(&nvme_rdma_ctrl_mutex);
2059
2060 flush_workqueue(nvme_delete_wq);
2061 }
2062
2063 static struct ib_client nvme_rdma_ib_client = {
2064 .name = "nvme_rdma",
2065 .remove = nvme_rdma_remove_one
2066 };
2067
2068 static int __init nvme_rdma_init_module(void)
2069 {
2070 int ret;
2071
2072 ret = ib_register_client(&nvme_rdma_ib_client);
2073 if (ret)
2074 return ret;
2075
2076 ret = nvmf_register_transport(&nvme_rdma_transport);
2077 if (ret)
2078 goto err_unreg_client;
2079
2080 return 0;
2081
2082 err_unreg_client:
2083 ib_unregister_client(&nvme_rdma_ib_client);
2084 return ret;
2085 }
2086
2087 static void __exit nvme_rdma_cleanup_module(void)
2088 {
2089 nvmf_unregister_transport(&nvme_rdma_transport);
2090 ib_unregister_client(&nvme_rdma_ib_client);
2091 }
2092
2093 module_init(nvme_rdma_init_module);
2094 module_exit(nvme_rdma_cleanup_module);
2095
2096 MODULE_LICENSE("GPL v2");