]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/rdma.c
Merge tag 'irqchip-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm...
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS 256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
44
45 struct nvme_rdma_device {
46 struct ib_device *dev;
47 struct ib_pd *pd;
48 struct kref ref;
49 struct list_head entry;
50 unsigned int num_inline_segments;
51 };
52
53 struct nvme_rdma_qe {
54 struct ib_cqe cqe;
55 void *data;
56 u64 dma;
57 };
58
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61 struct nvme_request req;
62 struct ib_mr *mr;
63 struct nvme_rdma_qe sqe;
64 union nvme_result result;
65 __le16 status;
66 refcount_t ref;
67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 u32 num_sge;
69 int nents;
70 struct ib_reg_wr reg_wr;
71 struct ib_cqe reg_cqe;
72 struct nvme_rdma_queue *queue;
73 struct sg_table sg_table;
74 struct scatterlist first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78 NVME_RDMA_Q_ALLOCATED = 0,
79 NVME_RDMA_Q_LIVE = 1,
80 NVME_RDMA_Q_TR_READY = 2,
81 };
82
83 struct nvme_rdma_queue {
84 struct nvme_rdma_qe *rsp_ring;
85 int queue_size;
86 size_t cmnd_capsule_len;
87 struct nvme_rdma_ctrl *ctrl;
88 struct nvme_rdma_device *device;
89 struct ib_cq *ib_cq;
90 struct ib_qp *qp;
91
92 unsigned long flags;
93 struct rdma_cm_id *cm_id;
94 int cm_error;
95 struct completion cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99 /* read only in the hot path */
100 struct nvme_rdma_queue *queues;
101
102 /* other member variables */
103 struct blk_mq_tag_set tag_set;
104 struct work_struct err_work;
105
106 struct nvme_rdma_qe async_event_sqe;
107
108 struct delayed_work reconnect_work;
109
110 struct list_head list;
111
112 struct blk_mq_tag_set admin_tag_set;
113 struct nvme_rdma_device *device;
114
115 u32 max_fr_pages;
116
117 struct sockaddr_storage addr;
118 struct sockaddr_storage src_addr;
119
120 struct nvme_ctrl ctrl;
121 bool use_inline_data;
122 };
123
124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125 {
126 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127 }
128
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131
132 static LIST_HEAD(nvme_rdma_ctrl_list);
133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134
135 /*
136 * Disabling this option makes small I/O goes faster, but is fundamentally
137 * unsafe. With it turned off we will have to register a global rkey that
138 * allows read and write access to all physical memory.
139 */
140 static bool register_always = true;
141 module_param(register_always, bool, 0444);
142 MODULE_PARM_DESC(register_always,
143 "Use memory registration even for contiguous memory regions");
144
145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146 struct rdma_cm_event *event);
147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148
149 static const struct blk_mq_ops nvme_rdma_mq_ops;
150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151
152 /* XXX: really should move to a generic header sooner or later.. */
153 static inline void put_unaligned_le24(u32 val, u8 *p)
154 {
155 *p++ = val;
156 *p++ = val >> 8;
157 *p++ = val >> 16;
158 }
159
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 return queue - queue->ctrl->queues;
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
172 {
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
179 {
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 if (!qe->data)
182 return -ENOMEM;
183
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 kfree(qe->data);
187 return -ENOMEM;
188 }
189
190 return 0;
191 }
192
193 static void nvme_rdma_free_ring(struct ib_device *ibdev,
194 struct nvme_rdma_qe *ring, size_t ib_queue_size,
195 size_t capsule_size, enum dma_data_direction dir)
196 {
197 int i;
198
199 for (i = 0; i < ib_queue_size; i++)
200 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
201 kfree(ring);
202 }
203
204 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
205 size_t ib_queue_size, size_t capsule_size,
206 enum dma_data_direction dir)
207 {
208 struct nvme_rdma_qe *ring;
209 int i;
210
211 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
212 if (!ring)
213 return NULL;
214
215 for (i = 0; i < ib_queue_size; i++) {
216 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
217 goto out_free_ring;
218 }
219
220 return ring;
221
222 out_free_ring:
223 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
224 return NULL;
225 }
226
227 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
228 {
229 pr_debug("QP event %s (%d)\n",
230 ib_event_msg(event->event), event->event);
231
232 }
233
234 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
235 {
236 wait_for_completion_interruptible_timeout(&queue->cm_done,
237 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
238 return queue->cm_error;
239 }
240
241 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
242 {
243 struct nvme_rdma_device *dev = queue->device;
244 struct ib_qp_init_attr init_attr;
245 int ret;
246
247 memset(&init_attr, 0, sizeof(init_attr));
248 init_attr.event_handler = nvme_rdma_qp_event;
249 /* +1 for drain */
250 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
251 /* +1 for drain */
252 init_attr.cap.max_recv_wr = queue->queue_size + 1;
253 init_attr.cap.max_recv_sge = 1;
254 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
255 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
256 init_attr.qp_type = IB_QPT_RC;
257 init_attr.send_cq = queue->ib_cq;
258 init_attr.recv_cq = queue->ib_cq;
259
260 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
261
262 queue->qp = queue->cm_id->qp;
263 return ret;
264 }
265
266 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
267 struct request *rq, unsigned int hctx_idx)
268 {
269 struct nvme_rdma_ctrl *ctrl = set->driver_data;
270 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
271 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
272 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
273 struct nvme_rdma_device *dev = queue->device;
274
275 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
276 DMA_TO_DEVICE);
277 }
278
279 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
280 struct request *rq, unsigned int hctx_idx,
281 unsigned int numa_node)
282 {
283 struct nvme_rdma_ctrl *ctrl = set->driver_data;
284 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
285 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
286 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
287 struct nvme_rdma_device *dev = queue->device;
288 struct ib_device *ibdev = dev->dev;
289 int ret;
290
291 nvme_req(rq)->ctrl = &ctrl->ctrl;
292 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
293 DMA_TO_DEVICE);
294 if (ret)
295 return ret;
296
297 req->queue = queue;
298
299 return 0;
300 }
301
302 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
303 unsigned int hctx_idx)
304 {
305 struct nvme_rdma_ctrl *ctrl = data;
306 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
307
308 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
309
310 hctx->driver_data = queue;
311 return 0;
312 }
313
314 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
315 unsigned int hctx_idx)
316 {
317 struct nvme_rdma_ctrl *ctrl = data;
318 struct nvme_rdma_queue *queue = &ctrl->queues[0];
319
320 BUG_ON(hctx_idx != 0);
321
322 hctx->driver_data = queue;
323 return 0;
324 }
325
326 static void nvme_rdma_free_dev(struct kref *ref)
327 {
328 struct nvme_rdma_device *ndev =
329 container_of(ref, struct nvme_rdma_device, ref);
330
331 mutex_lock(&device_list_mutex);
332 list_del(&ndev->entry);
333 mutex_unlock(&device_list_mutex);
334
335 ib_dealloc_pd(ndev->pd);
336 kfree(ndev);
337 }
338
339 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
340 {
341 kref_put(&dev->ref, nvme_rdma_free_dev);
342 }
343
344 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
345 {
346 return kref_get_unless_zero(&dev->ref);
347 }
348
349 static struct nvme_rdma_device *
350 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
351 {
352 struct nvme_rdma_device *ndev;
353
354 mutex_lock(&device_list_mutex);
355 list_for_each_entry(ndev, &device_list, entry) {
356 if (ndev->dev->node_guid == cm_id->device->node_guid &&
357 nvme_rdma_dev_get(ndev))
358 goto out_unlock;
359 }
360
361 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
362 if (!ndev)
363 goto out_err;
364
365 ndev->dev = cm_id->device;
366 kref_init(&ndev->ref);
367
368 ndev->pd = ib_alloc_pd(ndev->dev,
369 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
370 if (IS_ERR(ndev->pd))
371 goto out_free_dev;
372
373 if (!(ndev->dev->attrs.device_cap_flags &
374 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
375 dev_err(&ndev->dev->dev,
376 "Memory registrations not supported.\n");
377 goto out_free_pd;
378 }
379
380 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
381 ndev->dev->attrs.max_sge - 1);
382 list_add(&ndev->entry, &device_list);
383 out_unlock:
384 mutex_unlock(&device_list_mutex);
385 return ndev;
386
387 out_free_pd:
388 ib_dealloc_pd(ndev->pd);
389 out_free_dev:
390 kfree(ndev);
391 out_err:
392 mutex_unlock(&device_list_mutex);
393 return NULL;
394 }
395
396 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
397 {
398 struct nvme_rdma_device *dev;
399 struct ib_device *ibdev;
400
401 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
402 return;
403
404 dev = queue->device;
405 ibdev = dev->dev;
406
407 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
408
409 /*
410 * The cm_id object might have been destroyed during RDMA connection
411 * establishment error flow to avoid getting other cma events, thus
412 * the destruction of the QP shouldn't use rdma_cm API.
413 */
414 ib_destroy_qp(queue->qp);
415 ib_free_cq(queue->ib_cq);
416
417 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
418 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
419
420 nvme_rdma_dev_put(dev);
421 }
422
423 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
424 {
425 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
426 ibdev->attrs.max_fast_reg_page_list_len);
427 }
428
429 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
430 {
431 struct ib_device *ibdev;
432 const int send_wr_factor = 3; /* MR, SEND, INV */
433 const int cq_factor = send_wr_factor + 1; /* + RECV */
434 int comp_vector, idx = nvme_rdma_queue_idx(queue);
435 int ret;
436
437 queue->device = nvme_rdma_find_get_device(queue->cm_id);
438 if (!queue->device) {
439 dev_err(queue->cm_id->device->dev.parent,
440 "no client data found!\n");
441 return -ECONNREFUSED;
442 }
443 ibdev = queue->device->dev;
444
445 /*
446 * Spread I/O queues completion vectors according their queue index.
447 * Admin queues can always go on completion vector 0.
448 */
449 comp_vector = idx == 0 ? idx : idx - 1;
450
451 /* +1 for ib_stop_cq */
452 queue->ib_cq = ib_alloc_cq(ibdev, queue,
453 cq_factor * queue->queue_size + 1,
454 comp_vector, IB_POLL_SOFTIRQ);
455 if (IS_ERR(queue->ib_cq)) {
456 ret = PTR_ERR(queue->ib_cq);
457 goto out_put_dev;
458 }
459
460 ret = nvme_rdma_create_qp(queue, send_wr_factor);
461 if (ret)
462 goto out_destroy_ib_cq;
463
464 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
465 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
466 if (!queue->rsp_ring) {
467 ret = -ENOMEM;
468 goto out_destroy_qp;
469 }
470
471 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
472 queue->queue_size,
473 IB_MR_TYPE_MEM_REG,
474 nvme_rdma_get_max_fr_pages(ibdev));
475 if (ret) {
476 dev_err(queue->ctrl->ctrl.device,
477 "failed to initialize MR pool sized %d for QID %d\n",
478 queue->queue_size, idx);
479 goto out_destroy_ring;
480 }
481
482 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
483
484 return 0;
485
486 out_destroy_ring:
487 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
488 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
489 out_destroy_qp:
490 rdma_destroy_qp(queue->cm_id);
491 out_destroy_ib_cq:
492 ib_free_cq(queue->ib_cq);
493 out_put_dev:
494 nvme_rdma_dev_put(queue->device);
495 return ret;
496 }
497
498 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
499 int idx, size_t queue_size)
500 {
501 struct nvme_rdma_queue *queue;
502 struct sockaddr *src_addr = NULL;
503 int ret;
504
505 queue = &ctrl->queues[idx];
506 queue->ctrl = ctrl;
507 init_completion(&queue->cm_done);
508
509 if (idx > 0)
510 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
511 else
512 queue->cmnd_capsule_len = sizeof(struct nvme_command);
513
514 queue->queue_size = queue_size;
515
516 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
517 RDMA_PS_TCP, IB_QPT_RC);
518 if (IS_ERR(queue->cm_id)) {
519 dev_info(ctrl->ctrl.device,
520 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
521 return PTR_ERR(queue->cm_id);
522 }
523
524 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
525 src_addr = (struct sockaddr *)&ctrl->src_addr;
526
527 queue->cm_error = -ETIMEDOUT;
528 ret = rdma_resolve_addr(queue->cm_id, src_addr,
529 (struct sockaddr *)&ctrl->addr,
530 NVME_RDMA_CONNECT_TIMEOUT_MS);
531 if (ret) {
532 dev_info(ctrl->ctrl.device,
533 "rdma_resolve_addr failed (%d).\n", ret);
534 goto out_destroy_cm_id;
535 }
536
537 ret = nvme_rdma_wait_for_cm(queue);
538 if (ret) {
539 dev_info(ctrl->ctrl.device,
540 "rdma connection establishment failed (%d)\n", ret);
541 goto out_destroy_cm_id;
542 }
543
544 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
545
546 return 0;
547
548 out_destroy_cm_id:
549 rdma_destroy_id(queue->cm_id);
550 nvme_rdma_destroy_queue_ib(queue);
551 return ret;
552 }
553
554 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
555 {
556 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
557 return;
558
559 rdma_disconnect(queue->cm_id);
560 ib_drain_qp(queue->qp);
561 }
562
563 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
564 {
565 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
566 return;
567
568 nvme_rdma_destroy_queue_ib(queue);
569 rdma_destroy_id(queue->cm_id);
570 }
571
572 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
573 {
574 int i;
575
576 for (i = 1; i < ctrl->ctrl.queue_count; i++)
577 nvme_rdma_free_queue(&ctrl->queues[i]);
578 }
579
580 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
581 {
582 int i;
583
584 for (i = 1; i < ctrl->ctrl.queue_count; i++)
585 nvme_rdma_stop_queue(&ctrl->queues[i]);
586 }
587
588 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
589 {
590 int ret;
591
592 if (idx)
593 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
594 else
595 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
596
597 if (!ret)
598 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
599 else
600 dev_info(ctrl->ctrl.device,
601 "failed to connect queue: %d ret=%d\n", idx, ret);
602 return ret;
603 }
604
605 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
606 {
607 int i, ret = 0;
608
609 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
610 ret = nvme_rdma_start_queue(ctrl, i);
611 if (ret)
612 goto out_stop_queues;
613 }
614
615 return 0;
616
617 out_stop_queues:
618 for (i--; i >= 1; i--)
619 nvme_rdma_stop_queue(&ctrl->queues[i]);
620 return ret;
621 }
622
623 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
624 {
625 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
626 struct ib_device *ibdev = ctrl->device->dev;
627 unsigned int nr_io_queues;
628 int i, ret;
629
630 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
631
632 /*
633 * we map queues according to the device irq vectors for
634 * optimal locality so we don't need more queues than
635 * completion vectors.
636 */
637 nr_io_queues = min_t(unsigned int, nr_io_queues,
638 ibdev->num_comp_vectors);
639
640 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
641 if (ret)
642 return ret;
643
644 ctrl->ctrl.queue_count = nr_io_queues + 1;
645 if (ctrl->ctrl.queue_count < 2)
646 return 0;
647
648 dev_info(ctrl->ctrl.device,
649 "creating %d I/O queues.\n", nr_io_queues);
650
651 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
652 ret = nvme_rdma_alloc_queue(ctrl, i,
653 ctrl->ctrl.sqsize + 1);
654 if (ret)
655 goto out_free_queues;
656 }
657
658 return 0;
659
660 out_free_queues:
661 for (i--; i >= 1; i--)
662 nvme_rdma_free_queue(&ctrl->queues[i]);
663
664 return ret;
665 }
666
667 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
668 struct blk_mq_tag_set *set)
669 {
670 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
671
672 blk_mq_free_tag_set(set);
673 nvme_rdma_dev_put(ctrl->device);
674 }
675
676 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
677 bool admin)
678 {
679 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
680 struct blk_mq_tag_set *set;
681 int ret;
682
683 if (admin) {
684 set = &ctrl->admin_tag_set;
685 memset(set, 0, sizeof(*set));
686 set->ops = &nvme_rdma_admin_mq_ops;
687 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
688 set->reserved_tags = 2; /* connect + keep-alive */
689 set->numa_node = NUMA_NO_NODE;
690 set->cmd_size = sizeof(struct nvme_rdma_request) +
691 SG_CHUNK_SIZE * sizeof(struct scatterlist);
692 set->driver_data = ctrl;
693 set->nr_hw_queues = 1;
694 set->timeout = ADMIN_TIMEOUT;
695 set->flags = BLK_MQ_F_NO_SCHED;
696 } else {
697 set = &ctrl->tag_set;
698 memset(set, 0, sizeof(*set));
699 set->ops = &nvme_rdma_mq_ops;
700 set->queue_depth = nctrl->sqsize + 1;
701 set->reserved_tags = 1; /* fabric connect */
702 set->numa_node = NUMA_NO_NODE;
703 set->flags = BLK_MQ_F_SHOULD_MERGE;
704 set->cmd_size = sizeof(struct nvme_rdma_request) +
705 SG_CHUNK_SIZE * sizeof(struct scatterlist);
706 set->driver_data = ctrl;
707 set->nr_hw_queues = nctrl->queue_count - 1;
708 set->timeout = NVME_IO_TIMEOUT;
709 }
710
711 ret = blk_mq_alloc_tag_set(set);
712 if (ret)
713 goto out;
714
715 /*
716 * We need a reference on the device as long as the tag_set is alive,
717 * as the MRs in the request structures need a valid ib_device.
718 */
719 ret = nvme_rdma_dev_get(ctrl->device);
720 if (!ret) {
721 ret = -EINVAL;
722 goto out_free_tagset;
723 }
724
725 return set;
726
727 out_free_tagset:
728 blk_mq_free_tag_set(set);
729 out:
730 return ERR_PTR(ret);
731 }
732
733 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
734 bool remove)
735 {
736 if (remove) {
737 blk_cleanup_queue(ctrl->ctrl.admin_q);
738 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
739 }
740 if (ctrl->async_event_sqe.data) {
741 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
742 sizeof(struct nvme_command), DMA_TO_DEVICE);
743 ctrl->async_event_sqe.data = NULL;
744 }
745 nvme_rdma_free_queue(&ctrl->queues[0]);
746 }
747
748 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
749 bool new)
750 {
751 int error;
752
753 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
754 if (error)
755 return error;
756
757 ctrl->device = ctrl->queues[0].device;
758
759 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
760
761 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
762 sizeof(struct nvme_command), DMA_TO_DEVICE);
763 if (error)
764 goto out_free_queue;
765
766 if (new) {
767 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
768 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
769 error = PTR_ERR(ctrl->ctrl.admin_tagset);
770 goto out_free_async_qe;
771 }
772
773 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
774 if (IS_ERR(ctrl->ctrl.admin_q)) {
775 error = PTR_ERR(ctrl->ctrl.admin_q);
776 goto out_free_tagset;
777 }
778 }
779
780 error = nvme_rdma_start_queue(ctrl, 0);
781 if (error)
782 goto out_cleanup_queue;
783
784 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
785 &ctrl->ctrl.cap);
786 if (error) {
787 dev_err(ctrl->ctrl.device,
788 "prop_get NVME_REG_CAP failed\n");
789 goto out_stop_queue;
790 }
791
792 ctrl->ctrl.sqsize =
793 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
794
795 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
796 if (error)
797 goto out_stop_queue;
798
799 ctrl->ctrl.max_hw_sectors =
800 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
801
802 error = nvme_init_identify(&ctrl->ctrl);
803 if (error)
804 goto out_stop_queue;
805
806 return 0;
807
808 out_stop_queue:
809 nvme_rdma_stop_queue(&ctrl->queues[0]);
810 out_cleanup_queue:
811 if (new)
812 blk_cleanup_queue(ctrl->ctrl.admin_q);
813 out_free_tagset:
814 if (new)
815 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
816 out_free_async_qe:
817 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
818 sizeof(struct nvme_command), DMA_TO_DEVICE);
819 out_free_queue:
820 nvme_rdma_free_queue(&ctrl->queues[0]);
821 return error;
822 }
823
824 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
825 bool remove)
826 {
827 if (remove) {
828 blk_cleanup_queue(ctrl->ctrl.connect_q);
829 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
830 }
831 nvme_rdma_free_io_queues(ctrl);
832 }
833
834 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
835 {
836 int ret;
837
838 ret = nvme_rdma_alloc_io_queues(ctrl);
839 if (ret)
840 return ret;
841
842 if (new) {
843 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
844 if (IS_ERR(ctrl->ctrl.tagset)) {
845 ret = PTR_ERR(ctrl->ctrl.tagset);
846 goto out_free_io_queues;
847 }
848
849 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
850 if (IS_ERR(ctrl->ctrl.connect_q)) {
851 ret = PTR_ERR(ctrl->ctrl.connect_q);
852 goto out_free_tag_set;
853 }
854 } else {
855 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
856 ctrl->ctrl.queue_count - 1);
857 }
858
859 ret = nvme_rdma_start_io_queues(ctrl);
860 if (ret)
861 goto out_cleanup_connect_q;
862
863 return 0;
864
865 out_cleanup_connect_q:
866 if (new)
867 blk_cleanup_queue(ctrl->ctrl.connect_q);
868 out_free_tag_set:
869 if (new)
870 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
871 out_free_io_queues:
872 nvme_rdma_free_io_queues(ctrl);
873 return ret;
874 }
875
876 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
877 bool remove)
878 {
879 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
880 nvme_rdma_stop_queue(&ctrl->queues[0]);
881 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
882 &ctrl->ctrl);
883 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
884 nvme_rdma_destroy_admin_queue(ctrl, remove);
885 }
886
887 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
888 bool remove)
889 {
890 if (ctrl->ctrl.queue_count > 1) {
891 nvme_stop_queues(&ctrl->ctrl);
892 nvme_rdma_stop_io_queues(ctrl);
893 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
894 &ctrl->ctrl);
895 if (remove)
896 nvme_start_queues(&ctrl->ctrl);
897 nvme_rdma_destroy_io_queues(ctrl, remove);
898 }
899 }
900
901 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
902 {
903 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
904
905 cancel_work_sync(&ctrl->err_work);
906 cancel_delayed_work_sync(&ctrl->reconnect_work);
907 }
908
909 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
910 {
911 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
912
913 if (list_empty(&ctrl->list))
914 goto free_ctrl;
915
916 mutex_lock(&nvme_rdma_ctrl_mutex);
917 list_del(&ctrl->list);
918 mutex_unlock(&nvme_rdma_ctrl_mutex);
919
920 nvmf_free_options(nctrl->opts);
921 free_ctrl:
922 kfree(ctrl->queues);
923 kfree(ctrl);
924 }
925
926 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
927 {
928 /* If we are resetting/deleting then do nothing */
929 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
930 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
931 ctrl->ctrl.state == NVME_CTRL_LIVE);
932 return;
933 }
934
935 if (nvmf_should_reconnect(&ctrl->ctrl)) {
936 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
937 ctrl->ctrl.opts->reconnect_delay);
938 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
939 ctrl->ctrl.opts->reconnect_delay * HZ);
940 } else {
941 nvme_delete_ctrl(&ctrl->ctrl);
942 }
943 }
944
945 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
946 {
947 int ret = -EINVAL;
948 bool changed;
949
950 ret = nvme_rdma_configure_admin_queue(ctrl, new);
951 if (ret)
952 return ret;
953
954 if (ctrl->ctrl.icdoff) {
955 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
956 goto destroy_admin;
957 }
958
959 if (!(ctrl->ctrl.sgls & (1 << 2))) {
960 dev_err(ctrl->ctrl.device,
961 "Mandatory keyed sgls are not supported!\n");
962 goto destroy_admin;
963 }
964
965 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
966 dev_warn(ctrl->ctrl.device,
967 "queue_size %zu > ctrl sqsize %u, clamping down\n",
968 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
969 }
970
971 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
972 dev_warn(ctrl->ctrl.device,
973 "sqsize %u > ctrl maxcmd %u, clamping down\n",
974 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
975 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
976 }
977
978 if (ctrl->ctrl.sgls & (1 << 20))
979 ctrl->use_inline_data = true;
980
981 if (ctrl->ctrl.queue_count > 1) {
982 ret = nvme_rdma_configure_io_queues(ctrl, new);
983 if (ret)
984 goto destroy_admin;
985 }
986
987 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
988 if (!changed) {
989 /* state change failure is ok if we're in DELETING state */
990 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
991 ret = -EINVAL;
992 goto destroy_io;
993 }
994
995 nvme_start_ctrl(&ctrl->ctrl);
996 return 0;
997
998 destroy_io:
999 if (ctrl->ctrl.queue_count > 1)
1000 nvme_rdma_destroy_io_queues(ctrl, new);
1001 destroy_admin:
1002 nvme_rdma_stop_queue(&ctrl->queues[0]);
1003 nvme_rdma_destroy_admin_queue(ctrl, new);
1004 return ret;
1005 }
1006
1007 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1008 {
1009 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1010 struct nvme_rdma_ctrl, reconnect_work);
1011
1012 ++ctrl->ctrl.nr_reconnects;
1013
1014 if (nvme_rdma_setup_ctrl(ctrl, false))
1015 goto requeue;
1016
1017 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1018 ctrl->ctrl.nr_reconnects);
1019
1020 ctrl->ctrl.nr_reconnects = 0;
1021
1022 return;
1023
1024 requeue:
1025 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1026 ctrl->ctrl.nr_reconnects);
1027 nvme_rdma_reconnect_or_remove(ctrl);
1028 }
1029
1030 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1031 {
1032 struct nvme_rdma_ctrl *ctrl = container_of(work,
1033 struct nvme_rdma_ctrl, err_work);
1034
1035 nvme_stop_keep_alive(&ctrl->ctrl);
1036 nvme_rdma_teardown_io_queues(ctrl, false);
1037 nvme_start_queues(&ctrl->ctrl);
1038 nvme_rdma_teardown_admin_queue(ctrl, false);
1039
1040 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1041 /* state change failure is ok if we're in DELETING state */
1042 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1043 return;
1044 }
1045
1046 nvme_rdma_reconnect_or_remove(ctrl);
1047 }
1048
1049 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1050 {
1051 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1052 return;
1053
1054 queue_work(nvme_wq, &ctrl->err_work);
1055 }
1056
1057 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1058 const char *op)
1059 {
1060 struct nvme_rdma_queue *queue = cq->cq_context;
1061 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1062
1063 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1064 dev_info(ctrl->ctrl.device,
1065 "%s for CQE 0x%p failed with status %s (%d)\n",
1066 op, wc->wr_cqe,
1067 ib_wc_status_msg(wc->status), wc->status);
1068 nvme_rdma_error_recovery(ctrl);
1069 }
1070
1071 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1072 {
1073 if (unlikely(wc->status != IB_WC_SUCCESS))
1074 nvme_rdma_wr_error(cq, wc, "MEMREG");
1075 }
1076
1077 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1078 {
1079 struct nvme_rdma_request *req =
1080 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1081 struct request *rq = blk_mq_rq_from_pdu(req);
1082
1083 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1084 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1085 return;
1086 }
1087
1088 if (refcount_dec_and_test(&req->ref))
1089 nvme_end_request(rq, req->status, req->result);
1090
1091 }
1092
1093 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1094 struct nvme_rdma_request *req)
1095 {
1096 struct ib_send_wr *bad_wr;
1097 struct ib_send_wr wr = {
1098 .opcode = IB_WR_LOCAL_INV,
1099 .next = NULL,
1100 .num_sge = 0,
1101 .send_flags = IB_SEND_SIGNALED,
1102 .ex.invalidate_rkey = req->mr->rkey,
1103 };
1104
1105 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1106 wr.wr_cqe = &req->reg_cqe;
1107
1108 return ib_post_send(queue->qp, &wr, &bad_wr);
1109 }
1110
1111 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1112 struct request *rq)
1113 {
1114 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1115 struct nvme_rdma_device *dev = queue->device;
1116 struct ib_device *ibdev = dev->dev;
1117
1118 if (!blk_rq_payload_bytes(rq))
1119 return;
1120
1121 if (req->mr) {
1122 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1123 req->mr = NULL;
1124 }
1125
1126 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1127 req->nents, rq_data_dir(rq) ==
1128 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1129
1130 nvme_cleanup_cmd(rq);
1131 sg_free_table_chained(&req->sg_table, true);
1132 }
1133
1134 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1135 {
1136 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1137
1138 sg->addr = 0;
1139 put_unaligned_le24(0, sg->length);
1140 put_unaligned_le32(0, sg->key);
1141 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1142 return 0;
1143 }
1144
1145 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1146 struct nvme_rdma_request *req, struct nvme_command *c,
1147 int count)
1148 {
1149 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1150 struct scatterlist *sgl = req->sg_table.sgl;
1151 struct ib_sge *sge = &req->sge[1];
1152 u32 len = 0;
1153 int i;
1154
1155 for (i = 0; i < count; i++, sgl++, sge++) {
1156 sge->addr = sg_dma_address(sgl);
1157 sge->length = sg_dma_len(sgl);
1158 sge->lkey = queue->device->pd->local_dma_lkey;
1159 len += sge->length;
1160 }
1161
1162 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1163 sg->length = cpu_to_le32(len);
1164 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1165
1166 req->num_sge += count;
1167 return 0;
1168 }
1169
1170 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1171 struct nvme_rdma_request *req, struct nvme_command *c)
1172 {
1173 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1174
1175 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1176 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1177 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1178 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1179 return 0;
1180 }
1181
1182 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1183 struct nvme_rdma_request *req, struct nvme_command *c,
1184 int count)
1185 {
1186 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1187 int nr;
1188
1189 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1190 if (WARN_ON_ONCE(!req->mr))
1191 return -EAGAIN;
1192
1193 /*
1194 * Align the MR to a 4K page size to match the ctrl page size and
1195 * the block virtual boundary.
1196 */
1197 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1198 if (unlikely(nr < count)) {
1199 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1200 req->mr = NULL;
1201 if (nr < 0)
1202 return nr;
1203 return -EINVAL;
1204 }
1205
1206 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1207
1208 req->reg_cqe.done = nvme_rdma_memreg_done;
1209 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1210 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1211 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1212 req->reg_wr.wr.num_sge = 0;
1213 req->reg_wr.mr = req->mr;
1214 req->reg_wr.key = req->mr->rkey;
1215 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1216 IB_ACCESS_REMOTE_READ |
1217 IB_ACCESS_REMOTE_WRITE;
1218
1219 sg->addr = cpu_to_le64(req->mr->iova);
1220 put_unaligned_le24(req->mr->length, sg->length);
1221 put_unaligned_le32(req->mr->rkey, sg->key);
1222 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1223 NVME_SGL_FMT_INVALIDATE;
1224
1225 return 0;
1226 }
1227
1228 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1229 struct request *rq, struct nvme_command *c)
1230 {
1231 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1232 struct nvme_rdma_device *dev = queue->device;
1233 struct ib_device *ibdev = dev->dev;
1234 int count, ret;
1235
1236 req->num_sge = 1;
1237 refcount_set(&req->ref, 2); /* send and recv completions */
1238
1239 c->common.flags |= NVME_CMD_SGL_METABUF;
1240
1241 if (!blk_rq_payload_bytes(rq))
1242 return nvme_rdma_set_sg_null(c);
1243
1244 req->sg_table.sgl = req->first_sgl;
1245 ret = sg_alloc_table_chained(&req->sg_table,
1246 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1247 if (ret)
1248 return -ENOMEM;
1249
1250 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1251
1252 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1253 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1254 if (unlikely(count <= 0)) {
1255 ret = -EIO;
1256 goto out_free_table;
1257 }
1258
1259 if (count <= dev->num_inline_segments) {
1260 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1261 queue->ctrl->use_inline_data &&
1262 blk_rq_payload_bytes(rq) <=
1263 nvme_rdma_inline_data_size(queue)) {
1264 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1265 goto out;
1266 }
1267
1268 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1269 ret = nvme_rdma_map_sg_single(queue, req, c);
1270 goto out;
1271 }
1272 }
1273
1274 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1275 out:
1276 if (unlikely(ret))
1277 goto out_unmap_sg;
1278
1279 return 0;
1280
1281 out_unmap_sg:
1282 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1283 req->nents, rq_data_dir(rq) ==
1284 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1285 out_free_table:
1286 sg_free_table_chained(&req->sg_table, true);
1287 return ret;
1288 }
1289
1290 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1291 {
1292 struct nvme_rdma_qe *qe =
1293 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1294 struct nvme_rdma_request *req =
1295 container_of(qe, struct nvme_rdma_request, sqe);
1296 struct request *rq = blk_mq_rq_from_pdu(req);
1297
1298 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1299 nvme_rdma_wr_error(cq, wc, "SEND");
1300 return;
1301 }
1302
1303 if (refcount_dec_and_test(&req->ref))
1304 nvme_end_request(rq, req->status, req->result);
1305 }
1306
1307 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1308 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1309 struct ib_send_wr *first)
1310 {
1311 struct ib_send_wr wr, *bad_wr;
1312 int ret;
1313
1314 sge->addr = qe->dma;
1315 sge->length = sizeof(struct nvme_command),
1316 sge->lkey = queue->device->pd->local_dma_lkey;
1317
1318 wr.next = NULL;
1319 wr.wr_cqe = &qe->cqe;
1320 wr.sg_list = sge;
1321 wr.num_sge = num_sge;
1322 wr.opcode = IB_WR_SEND;
1323 wr.send_flags = IB_SEND_SIGNALED;
1324
1325 if (first)
1326 first->next = &wr;
1327 else
1328 first = &wr;
1329
1330 ret = ib_post_send(queue->qp, first, &bad_wr);
1331 if (unlikely(ret)) {
1332 dev_err(queue->ctrl->ctrl.device,
1333 "%s failed with error code %d\n", __func__, ret);
1334 }
1335 return ret;
1336 }
1337
1338 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1339 struct nvme_rdma_qe *qe)
1340 {
1341 struct ib_recv_wr wr, *bad_wr;
1342 struct ib_sge list;
1343 int ret;
1344
1345 list.addr = qe->dma;
1346 list.length = sizeof(struct nvme_completion);
1347 list.lkey = queue->device->pd->local_dma_lkey;
1348
1349 qe->cqe.done = nvme_rdma_recv_done;
1350
1351 wr.next = NULL;
1352 wr.wr_cqe = &qe->cqe;
1353 wr.sg_list = &list;
1354 wr.num_sge = 1;
1355
1356 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1357 if (unlikely(ret)) {
1358 dev_err(queue->ctrl->ctrl.device,
1359 "%s failed with error code %d\n", __func__, ret);
1360 }
1361 return ret;
1362 }
1363
1364 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1365 {
1366 u32 queue_idx = nvme_rdma_queue_idx(queue);
1367
1368 if (queue_idx == 0)
1369 return queue->ctrl->admin_tag_set.tags[queue_idx];
1370 return queue->ctrl->tag_set.tags[queue_idx - 1];
1371 }
1372
1373 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1374 {
1375 if (unlikely(wc->status != IB_WC_SUCCESS))
1376 nvme_rdma_wr_error(cq, wc, "ASYNC");
1377 }
1378
1379 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1380 {
1381 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1382 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1383 struct ib_device *dev = queue->device->dev;
1384 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1385 struct nvme_command *cmd = sqe->data;
1386 struct ib_sge sge;
1387 int ret;
1388
1389 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1390
1391 memset(cmd, 0, sizeof(*cmd));
1392 cmd->common.opcode = nvme_admin_async_event;
1393 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1394 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1395 nvme_rdma_set_sg_null(cmd);
1396
1397 sqe->cqe.done = nvme_rdma_async_done;
1398
1399 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1400 DMA_TO_DEVICE);
1401
1402 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1403 WARN_ON_ONCE(ret);
1404 }
1405
1406 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1407 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1408 {
1409 struct request *rq;
1410 struct nvme_rdma_request *req;
1411 int ret = 0;
1412
1413 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1414 if (!rq) {
1415 dev_err(queue->ctrl->ctrl.device,
1416 "tag 0x%x on QP %#x not found\n",
1417 cqe->command_id, queue->qp->qp_num);
1418 nvme_rdma_error_recovery(queue->ctrl);
1419 return ret;
1420 }
1421 req = blk_mq_rq_to_pdu(rq);
1422
1423 req->status = cqe->status;
1424 req->result = cqe->result;
1425
1426 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1427 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1428 dev_err(queue->ctrl->ctrl.device,
1429 "Bogus remote invalidation for rkey %#x\n",
1430 req->mr->rkey);
1431 nvme_rdma_error_recovery(queue->ctrl);
1432 }
1433 } else if (req->mr) {
1434 ret = nvme_rdma_inv_rkey(queue, req);
1435 if (unlikely(ret < 0)) {
1436 dev_err(queue->ctrl->ctrl.device,
1437 "Queueing INV WR for rkey %#x failed (%d)\n",
1438 req->mr->rkey, ret);
1439 nvme_rdma_error_recovery(queue->ctrl);
1440 }
1441 /* the local invalidation completion will end the request */
1442 return 0;
1443 }
1444
1445 if (refcount_dec_and_test(&req->ref)) {
1446 if (rq->tag == tag)
1447 ret = 1;
1448 nvme_end_request(rq, req->status, req->result);
1449 }
1450
1451 return ret;
1452 }
1453
1454 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1455 {
1456 struct nvme_rdma_qe *qe =
1457 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1458 struct nvme_rdma_queue *queue = cq->cq_context;
1459 struct ib_device *ibdev = queue->device->dev;
1460 struct nvme_completion *cqe = qe->data;
1461 const size_t len = sizeof(struct nvme_completion);
1462 int ret = 0;
1463
1464 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1465 nvme_rdma_wr_error(cq, wc, "RECV");
1466 return 0;
1467 }
1468
1469 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1470 /*
1471 * AEN requests are special as they don't time out and can
1472 * survive any kind of queue freeze and often don't respond to
1473 * aborts. We don't even bother to allocate a struct request
1474 * for them but rather special case them here.
1475 */
1476 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1477 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1478 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1479 &cqe->result);
1480 else
1481 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1482 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1483
1484 nvme_rdma_post_recv(queue, qe);
1485 return ret;
1486 }
1487
1488 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1489 {
1490 __nvme_rdma_recv_done(cq, wc, -1);
1491 }
1492
1493 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1494 {
1495 int ret, i;
1496
1497 for (i = 0; i < queue->queue_size; i++) {
1498 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1499 if (ret)
1500 goto out_destroy_queue_ib;
1501 }
1502
1503 return 0;
1504
1505 out_destroy_queue_ib:
1506 nvme_rdma_destroy_queue_ib(queue);
1507 return ret;
1508 }
1509
1510 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1511 struct rdma_cm_event *ev)
1512 {
1513 struct rdma_cm_id *cm_id = queue->cm_id;
1514 int status = ev->status;
1515 const char *rej_msg;
1516 const struct nvme_rdma_cm_rej *rej_data;
1517 u8 rej_data_len;
1518
1519 rej_msg = rdma_reject_msg(cm_id, status);
1520 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1521
1522 if (rej_data && rej_data_len >= sizeof(u16)) {
1523 u16 sts = le16_to_cpu(rej_data->sts);
1524
1525 dev_err(queue->ctrl->ctrl.device,
1526 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1527 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1528 } else {
1529 dev_err(queue->ctrl->ctrl.device,
1530 "Connect rejected: status %d (%s).\n", status, rej_msg);
1531 }
1532
1533 return -ECONNRESET;
1534 }
1535
1536 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1537 {
1538 int ret;
1539
1540 ret = nvme_rdma_create_queue_ib(queue);
1541 if (ret)
1542 return ret;
1543
1544 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1545 if (ret) {
1546 dev_err(queue->ctrl->ctrl.device,
1547 "rdma_resolve_route failed (%d).\n",
1548 queue->cm_error);
1549 goto out_destroy_queue;
1550 }
1551
1552 return 0;
1553
1554 out_destroy_queue:
1555 nvme_rdma_destroy_queue_ib(queue);
1556 return ret;
1557 }
1558
1559 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1560 {
1561 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1562 struct rdma_conn_param param = { };
1563 struct nvme_rdma_cm_req priv = { };
1564 int ret;
1565
1566 param.qp_num = queue->qp->qp_num;
1567 param.flow_control = 1;
1568
1569 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1570 /* maximum retry count */
1571 param.retry_count = 7;
1572 param.rnr_retry_count = 7;
1573 param.private_data = &priv;
1574 param.private_data_len = sizeof(priv);
1575
1576 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1577 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1578 /*
1579 * set the admin queue depth to the minimum size
1580 * specified by the Fabrics standard.
1581 */
1582 if (priv.qid == 0) {
1583 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1584 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1585 } else {
1586 /*
1587 * current interpretation of the fabrics spec
1588 * is at minimum you make hrqsize sqsize+1, or a
1589 * 1's based representation of sqsize.
1590 */
1591 priv.hrqsize = cpu_to_le16(queue->queue_size);
1592 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1593 }
1594
1595 ret = rdma_connect(queue->cm_id, &param);
1596 if (ret) {
1597 dev_err(ctrl->ctrl.device,
1598 "rdma_connect failed (%d).\n", ret);
1599 goto out_destroy_queue_ib;
1600 }
1601
1602 return 0;
1603
1604 out_destroy_queue_ib:
1605 nvme_rdma_destroy_queue_ib(queue);
1606 return ret;
1607 }
1608
1609 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1610 struct rdma_cm_event *ev)
1611 {
1612 struct nvme_rdma_queue *queue = cm_id->context;
1613 int cm_error = 0;
1614
1615 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1616 rdma_event_msg(ev->event), ev->event,
1617 ev->status, cm_id);
1618
1619 switch (ev->event) {
1620 case RDMA_CM_EVENT_ADDR_RESOLVED:
1621 cm_error = nvme_rdma_addr_resolved(queue);
1622 break;
1623 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1624 cm_error = nvme_rdma_route_resolved(queue);
1625 break;
1626 case RDMA_CM_EVENT_ESTABLISHED:
1627 queue->cm_error = nvme_rdma_conn_established(queue);
1628 /* complete cm_done regardless of success/failure */
1629 complete(&queue->cm_done);
1630 return 0;
1631 case RDMA_CM_EVENT_REJECTED:
1632 nvme_rdma_destroy_queue_ib(queue);
1633 cm_error = nvme_rdma_conn_rejected(queue, ev);
1634 break;
1635 case RDMA_CM_EVENT_ROUTE_ERROR:
1636 case RDMA_CM_EVENT_CONNECT_ERROR:
1637 case RDMA_CM_EVENT_UNREACHABLE:
1638 nvme_rdma_destroy_queue_ib(queue);
1639 /* fall through */
1640 case RDMA_CM_EVENT_ADDR_ERROR:
1641 dev_dbg(queue->ctrl->ctrl.device,
1642 "CM error event %d\n", ev->event);
1643 cm_error = -ECONNRESET;
1644 break;
1645 case RDMA_CM_EVENT_DISCONNECTED:
1646 case RDMA_CM_EVENT_ADDR_CHANGE:
1647 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1648 dev_dbg(queue->ctrl->ctrl.device,
1649 "disconnect received - connection closed\n");
1650 nvme_rdma_error_recovery(queue->ctrl);
1651 break;
1652 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1653 /* device removal is handled via the ib_client API */
1654 break;
1655 default:
1656 dev_err(queue->ctrl->ctrl.device,
1657 "Unexpected RDMA CM event (%d)\n", ev->event);
1658 nvme_rdma_error_recovery(queue->ctrl);
1659 break;
1660 }
1661
1662 if (cm_error) {
1663 queue->cm_error = cm_error;
1664 complete(&queue->cm_done);
1665 }
1666
1667 return 0;
1668 }
1669
1670 static enum blk_eh_timer_return
1671 nvme_rdma_timeout(struct request *rq, bool reserved)
1672 {
1673 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1674
1675 dev_warn(req->queue->ctrl->ctrl.device,
1676 "I/O %d QID %d timeout, reset controller\n",
1677 rq->tag, nvme_rdma_queue_idx(req->queue));
1678
1679 /* queue error recovery */
1680 nvme_rdma_error_recovery(req->queue->ctrl);
1681
1682 /* fail with DNR on cmd timeout */
1683 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1684
1685 return BLK_EH_DONE;
1686 }
1687
1688 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1689 const struct blk_mq_queue_data *bd)
1690 {
1691 struct nvme_ns *ns = hctx->queue->queuedata;
1692 struct nvme_rdma_queue *queue = hctx->driver_data;
1693 struct request *rq = bd->rq;
1694 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1695 struct nvme_rdma_qe *sqe = &req->sqe;
1696 struct nvme_command *c = sqe->data;
1697 struct ib_device *dev;
1698 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1699 blk_status_t ret;
1700 int err;
1701
1702 WARN_ON_ONCE(rq->tag < 0);
1703
1704 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1705 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1706
1707 dev = queue->device->dev;
1708 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1709 sizeof(struct nvme_command), DMA_TO_DEVICE);
1710
1711 ret = nvme_setup_cmd(ns, rq, c);
1712 if (ret)
1713 return ret;
1714
1715 blk_mq_start_request(rq);
1716
1717 err = nvme_rdma_map_data(queue, rq, c);
1718 if (unlikely(err < 0)) {
1719 dev_err(queue->ctrl->ctrl.device,
1720 "Failed to map data (%d)\n", err);
1721 nvme_cleanup_cmd(rq);
1722 goto err;
1723 }
1724
1725 sqe->cqe.done = nvme_rdma_send_done;
1726
1727 ib_dma_sync_single_for_device(dev, sqe->dma,
1728 sizeof(struct nvme_command), DMA_TO_DEVICE);
1729
1730 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1731 req->mr ? &req->reg_wr.wr : NULL);
1732 if (unlikely(err)) {
1733 nvme_rdma_unmap_data(queue, rq);
1734 goto err;
1735 }
1736
1737 return BLK_STS_OK;
1738 err:
1739 if (err == -ENOMEM || err == -EAGAIN)
1740 return BLK_STS_RESOURCE;
1741 return BLK_STS_IOERR;
1742 }
1743
1744 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1745 {
1746 struct nvme_rdma_queue *queue = hctx->driver_data;
1747 struct ib_cq *cq = queue->ib_cq;
1748 struct ib_wc wc;
1749 int found = 0;
1750
1751 while (ib_poll_cq(cq, 1, &wc) > 0) {
1752 struct ib_cqe *cqe = wc.wr_cqe;
1753
1754 if (cqe) {
1755 if (cqe->done == nvme_rdma_recv_done)
1756 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1757 else
1758 cqe->done(cq, &wc);
1759 }
1760 }
1761
1762 return found;
1763 }
1764
1765 static void nvme_rdma_complete_rq(struct request *rq)
1766 {
1767 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1768
1769 nvme_rdma_unmap_data(req->queue, rq);
1770 nvme_complete_rq(rq);
1771 }
1772
1773 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1774 {
1775 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1776
1777 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1778 }
1779
1780 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1781 .queue_rq = nvme_rdma_queue_rq,
1782 .complete = nvme_rdma_complete_rq,
1783 .init_request = nvme_rdma_init_request,
1784 .exit_request = nvme_rdma_exit_request,
1785 .init_hctx = nvme_rdma_init_hctx,
1786 .poll = nvme_rdma_poll,
1787 .timeout = nvme_rdma_timeout,
1788 .map_queues = nvme_rdma_map_queues,
1789 };
1790
1791 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1792 .queue_rq = nvme_rdma_queue_rq,
1793 .complete = nvme_rdma_complete_rq,
1794 .init_request = nvme_rdma_init_request,
1795 .exit_request = nvme_rdma_exit_request,
1796 .init_hctx = nvme_rdma_init_admin_hctx,
1797 .timeout = nvme_rdma_timeout,
1798 };
1799
1800 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1801 {
1802 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1803 if (shutdown)
1804 nvme_shutdown_ctrl(&ctrl->ctrl);
1805 else
1806 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1807 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1808 }
1809
1810 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1811 {
1812 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1813 }
1814
1815 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1816 {
1817 struct nvme_rdma_ctrl *ctrl =
1818 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1819
1820 nvme_stop_ctrl(&ctrl->ctrl);
1821 nvme_rdma_shutdown_ctrl(ctrl, false);
1822
1823 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1824 /* state change failure should never happen */
1825 WARN_ON_ONCE(1);
1826 return;
1827 }
1828
1829 if (nvme_rdma_setup_ctrl(ctrl, false))
1830 goto out_fail;
1831
1832 return;
1833
1834 out_fail:
1835 ++ctrl->ctrl.nr_reconnects;
1836 nvme_rdma_reconnect_or_remove(ctrl);
1837 }
1838
1839 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1840 .name = "rdma",
1841 .module = THIS_MODULE,
1842 .flags = NVME_F_FABRICS,
1843 .reg_read32 = nvmf_reg_read32,
1844 .reg_read64 = nvmf_reg_read64,
1845 .reg_write32 = nvmf_reg_write32,
1846 .free_ctrl = nvme_rdma_free_ctrl,
1847 .submit_async_event = nvme_rdma_submit_async_event,
1848 .delete_ctrl = nvme_rdma_delete_ctrl,
1849 .get_address = nvmf_get_address,
1850 .stop_ctrl = nvme_rdma_stop_ctrl,
1851 };
1852
1853 static inline bool
1854 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1855 struct nvmf_ctrl_options *opts)
1856 {
1857 char *stdport = __stringify(NVME_RDMA_IP_PORT);
1858
1859
1860 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1861 strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1862 return false;
1863
1864 if (opts->mask & NVMF_OPT_TRSVCID &&
1865 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1866 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1867 return false;
1868 } else if (opts->mask & NVMF_OPT_TRSVCID) {
1869 if (strcmp(opts->trsvcid, stdport))
1870 return false;
1871 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1872 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1873 return false;
1874 }
1875 /* else, it's a match as both have stdport. Fall to next checks */
1876
1877 /*
1878 * checking the local address is rough. In most cases, one
1879 * is not specified and the host port is selected by the stack.
1880 *
1881 * Assume no match if:
1882 * local address is specified and address is not the same
1883 * local address is not specified but remote is, or vice versa
1884 * (admin using specific host_traddr when it matters).
1885 */
1886 if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1887 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1888 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1889 return false;
1890 } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1891 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1892 return false;
1893 /*
1894 * if neither controller had an host port specified, assume it's
1895 * a match as everything else matched.
1896 */
1897
1898 return true;
1899 }
1900
1901 /*
1902 * Fails a connection request if it matches an existing controller
1903 * (association) with the same tuple:
1904 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1905 *
1906 * if local address is not specified in the request, it will match an
1907 * existing controller with all the other parameters the same and no
1908 * local port address specified as well.
1909 *
1910 * The ports don't need to be compared as they are intrinsically
1911 * already matched by the port pointers supplied.
1912 */
1913 static bool
1914 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1915 {
1916 struct nvme_rdma_ctrl *ctrl;
1917 bool found = false;
1918
1919 mutex_lock(&nvme_rdma_ctrl_mutex);
1920 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1921 found = __nvme_rdma_options_match(ctrl, opts);
1922 if (found)
1923 break;
1924 }
1925 mutex_unlock(&nvme_rdma_ctrl_mutex);
1926
1927 return found;
1928 }
1929
1930 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1931 struct nvmf_ctrl_options *opts)
1932 {
1933 struct nvme_rdma_ctrl *ctrl;
1934 int ret;
1935 bool changed;
1936 char *port;
1937
1938 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1939 if (!ctrl)
1940 return ERR_PTR(-ENOMEM);
1941 ctrl->ctrl.opts = opts;
1942 INIT_LIST_HEAD(&ctrl->list);
1943
1944 if (opts->mask & NVMF_OPT_TRSVCID)
1945 port = opts->trsvcid;
1946 else
1947 port = __stringify(NVME_RDMA_IP_PORT);
1948
1949 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1950 opts->traddr, port, &ctrl->addr);
1951 if (ret) {
1952 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1953 goto out_free_ctrl;
1954 }
1955
1956 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1957 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1958 opts->host_traddr, NULL, &ctrl->src_addr);
1959 if (ret) {
1960 pr_err("malformed src address passed: %s\n",
1961 opts->host_traddr);
1962 goto out_free_ctrl;
1963 }
1964 }
1965
1966 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1967 ret = -EALREADY;
1968 goto out_free_ctrl;
1969 }
1970
1971 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1972 nvme_rdma_reconnect_ctrl_work);
1973 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1974 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1975
1976 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1977 ctrl->ctrl.sqsize = opts->queue_size - 1;
1978 ctrl->ctrl.kato = opts->kato;
1979
1980 ret = -ENOMEM;
1981 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1982 GFP_KERNEL);
1983 if (!ctrl->queues)
1984 goto out_free_ctrl;
1985
1986 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1987 0 /* no quirks, we're perfect! */);
1988 if (ret)
1989 goto out_kfree_queues;
1990
1991 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1992 WARN_ON_ONCE(!changed);
1993
1994 ret = nvme_rdma_setup_ctrl(ctrl, true);
1995 if (ret)
1996 goto out_uninit_ctrl;
1997
1998 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1999 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2000
2001 nvme_get_ctrl(&ctrl->ctrl);
2002
2003 mutex_lock(&nvme_rdma_ctrl_mutex);
2004 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2005 mutex_unlock(&nvme_rdma_ctrl_mutex);
2006
2007 return &ctrl->ctrl;
2008
2009 out_uninit_ctrl:
2010 nvme_uninit_ctrl(&ctrl->ctrl);
2011 nvme_put_ctrl(&ctrl->ctrl);
2012 if (ret > 0)
2013 ret = -EIO;
2014 return ERR_PTR(ret);
2015 out_kfree_queues:
2016 kfree(ctrl->queues);
2017 out_free_ctrl:
2018 kfree(ctrl);
2019 return ERR_PTR(ret);
2020 }
2021
2022 static struct nvmf_transport_ops nvme_rdma_transport = {
2023 .name = "rdma",
2024 .module = THIS_MODULE,
2025 .required_opts = NVMF_OPT_TRADDR,
2026 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2027 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2028 .create_ctrl = nvme_rdma_create_ctrl,
2029 };
2030
2031 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2032 {
2033 struct nvme_rdma_ctrl *ctrl;
2034 struct nvme_rdma_device *ndev;
2035 bool found = false;
2036
2037 mutex_lock(&device_list_mutex);
2038 list_for_each_entry(ndev, &device_list, entry) {
2039 if (ndev->dev == ib_device) {
2040 found = true;
2041 break;
2042 }
2043 }
2044 mutex_unlock(&device_list_mutex);
2045
2046 if (!found)
2047 return;
2048
2049 /* Delete all controllers using this device */
2050 mutex_lock(&nvme_rdma_ctrl_mutex);
2051 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2052 if (ctrl->device->dev != ib_device)
2053 continue;
2054 nvme_delete_ctrl(&ctrl->ctrl);
2055 }
2056 mutex_unlock(&nvme_rdma_ctrl_mutex);
2057
2058 flush_workqueue(nvme_delete_wq);
2059 }
2060
2061 static struct ib_client nvme_rdma_ib_client = {
2062 .name = "nvme_rdma",
2063 .remove = nvme_rdma_remove_one
2064 };
2065
2066 static int __init nvme_rdma_init_module(void)
2067 {
2068 int ret;
2069
2070 ret = ib_register_client(&nvme_rdma_ib_client);
2071 if (ret)
2072 return ret;
2073
2074 ret = nvmf_register_transport(&nvme_rdma_transport);
2075 if (ret)
2076 goto err_unreg_client;
2077
2078 return 0;
2079
2080 err_unreg_client:
2081 ib_unregister_client(&nvme_rdma_ib_client);
2082 return ret;
2083 }
2084
2085 static void __exit nvme_rdma_cleanup_module(void)
2086 {
2087 nvmf_unregister_transport(&nvme_rdma_transport);
2088 ib_unregister_client(&nvme_rdma_ib_client);
2089 }
2090
2091 module_init(nvme_rdma_init_module);
2092 module_exit(nvme_rdma_cleanup_module);
2093
2094 MODULE_LICENSE("GPL v2");