]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/rdma.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS 256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
44
45 struct nvme_rdma_device {
46 struct ib_device *dev;
47 struct ib_pd *pd;
48 struct kref ref;
49 struct list_head entry;
50 unsigned int num_inline_segments;
51 };
52
53 struct nvme_rdma_qe {
54 struct ib_cqe cqe;
55 void *data;
56 u64 dma;
57 };
58
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61 struct nvme_request req;
62 struct ib_mr *mr;
63 struct nvme_rdma_qe sqe;
64 union nvme_result result;
65 __le16 status;
66 refcount_t ref;
67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 u32 num_sge;
69 int nents;
70 struct ib_reg_wr reg_wr;
71 struct ib_cqe reg_cqe;
72 struct nvme_rdma_queue *queue;
73 struct sg_table sg_table;
74 struct scatterlist first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78 NVME_RDMA_Q_ALLOCATED = 0,
79 NVME_RDMA_Q_LIVE = 1,
80 NVME_RDMA_Q_TR_READY = 2,
81 };
82
83 struct nvme_rdma_queue {
84 struct nvme_rdma_qe *rsp_ring;
85 int queue_size;
86 size_t cmnd_capsule_len;
87 struct nvme_rdma_ctrl *ctrl;
88 struct nvme_rdma_device *device;
89 struct ib_cq *ib_cq;
90 struct ib_qp *qp;
91
92 unsigned long flags;
93 struct rdma_cm_id *cm_id;
94 int cm_error;
95 struct completion cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99 /* read only in the hot path */
100 struct nvme_rdma_queue *queues;
101
102 /* other member variables */
103 struct blk_mq_tag_set tag_set;
104 struct work_struct err_work;
105
106 struct nvme_rdma_qe async_event_sqe;
107
108 struct delayed_work reconnect_work;
109
110 struct list_head list;
111
112 struct blk_mq_tag_set admin_tag_set;
113 struct nvme_rdma_device *device;
114
115 u32 max_fr_pages;
116
117 struct sockaddr_storage addr;
118 struct sockaddr_storage src_addr;
119
120 struct nvme_ctrl ctrl;
121 bool use_inline_data;
122 };
123
124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125 {
126 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127 }
128
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131
132 static LIST_HEAD(nvme_rdma_ctrl_list);
133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134
135 /*
136 * Disabling this option makes small I/O goes faster, but is fundamentally
137 * unsafe. With it turned off we will have to register a global rkey that
138 * allows read and write access to all physical memory.
139 */
140 static bool register_always = true;
141 module_param(register_always, bool, 0444);
142 MODULE_PARM_DESC(register_always,
143 "Use memory registration even for contiguous memory regions");
144
145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146 struct rdma_cm_event *event);
147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148
149 static const struct blk_mq_ops nvme_rdma_mq_ops;
150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151
152 /* XXX: really should move to a generic header sooner or later.. */
153 static inline void put_unaligned_le24(u32 val, u8 *p)
154 {
155 *p++ = val;
156 *p++ = val >> 8;
157 *p++ = val >> 16;
158 }
159
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 return queue - queue->ctrl->queues;
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
172 {
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
179 {
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 if (!qe->data)
182 return -ENOMEM;
183
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 kfree(qe->data);
187 return -ENOMEM;
188 }
189
190 return 0;
191 }
192
193 static void nvme_rdma_free_ring(struct ib_device *ibdev,
194 struct nvme_rdma_qe *ring, size_t ib_queue_size,
195 size_t capsule_size, enum dma_data_direction dir)
196 {
197 int i;
198
199 for (i = 0; i < ib_queue_size; i++)
200 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
201 kfree(ring);
202 }
203
204 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
205 size_t ib_queue_size, size_t capsule_size,
206 enum dma_data_direction dir)
207 {
208 struct nvme_rdma_qe *ring;
209 int i;
210
211 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
212 if (!ring)
213 return NULL;
214
215 for (i = 0; i < ib_queue_size; i++) {
216 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
217 goto out_free_ring;
218 }
219
220 return ring;
221
222 out_free_ring:
223 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
224 return NULL;
225 }
226
227 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
228 {
229 pr_debug("QP event %s (%d)\n",
230 ib_event_msg(event->event), event->event);
231
232 }
233
234 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
235 {
236 wait_for_completion_interruptible_timeout(&queue->cm_done,
237 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
238 return queue->cm_error;
239 }
240
241 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
242 {
243 struct nvme_rdma_device *dev = queue->device;
244 struct ib_qp_init_attr init_attr;
245 int ret;
246
247 memset(&init_attr, 0, sizeof(init_attr));
248 init_attr.event_handler = nvme_rdma_qp_event;
249 /* +1 for drain */
250 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
251 /* +1 for drain */
252 init_attr.cap.max_recv_wr = queue->queue_size + 1;
253 init_attr.cap.max_recv_sge = 1;
254 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
255 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
256 init_attr.qp_type = IB_QPT_RC;
257 init_attr.send_cq = queue->ib_cq;
258 init_attr.recv_cq = queue->ib_cq;
259
260 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
261
262 queue->qp = queue->cm_id->qp;
263 return ret;
264 }
265
266 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
267 struct request *rq, unsigned int hctx_idx)
268 {
269 struct nvme_rdma_ctrl *ctrl = set->driver_data;
270 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
271 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
272 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
273 struct nvme_rdma_device *dev = queue->device;
274
275 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
276 DMA_TO_DEVICE);
277 }
278
279 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
280 struct request *rq, unsigned int hctx_idx,
281 unsigned int numa_node)
282 {
283 struct nvme_rdma_ctrl *ctrl = set->driver_data;
284 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
285 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
286 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
287 struct nvme_rdma_device *dev = queue->device;
288 struct ib_device *ibdev = dev->dev;
289 int ret;
290
291 nvme_req(rq)->ctrl = &ctrl->ctrl;
292 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
293 DMA_TO_DEVICE);
294 if (ret)
295 return ret;
296
297 req->queue = queue;
298
299 return 0;
300 }
301
302 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
303 unsigned int hctx_idx)
304 {
305 struct nvme_rdma_ctrl *ctrl = data;
306 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
307
308 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
309
310 hctx->driver_data = queue;
311 return 0;
312 }
313
314 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
315 unsigned int hctx_idx)
316 {
317 struct nvme_rdma_ctrl *ctrl = data;
318 struct nvme_rdma_queue *queue = &ctrl->queues[0];
319
320 BUG_ON(hctx_idx != 0);
321
322 hctx->driver_data = queue;
323 return 0;
324 }
325
326 static void nvme_rdma_free_dev(struct kref *ref)
327 {
328 struct nvme_rdma_device *ndev =
329 container_of(ref, struct nvme_rdma_device, ref);
330
331 mutex_lock(&device_list_mutex);
332 list_del(&ndev->entry);
333 mutex_unlock(&device_list_mutex);
334
335 ib_dealloc_pd(ndev->pd);
336 kfree(ndev);
337 }
338
339 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
340 {
341 kref_put(&dev->ref, nvme_rdma_free_dev);
342 }
343
344 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
345 {
346 return kref_get_unless_zero(&dev->ref);
347 }
348
349 static struct nvme_rdma_device *
350 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
351 {
352 struct nvme_rdma_device *ndev;
353
354 mutex_lock(&device_list_mutex);
355 list_for_each_entry(ndev, &device_list, entry) {
356 if (ndev->dev->node_guid == cm_id->device->node_guid &&
357 nvme_rdma_dev_get(ndev))
358 goto out_unlock;
359 }
360
361 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
362 if (!ndev)
363 goto out_err;
364
365 ndev->dev = cm_id->device;
366 kref_init(&ndev->ref);
367
368 ndev->pd = ib_alloc_pd(ndev->dev,
369 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
370 if (IS_ERR(ndev->pd))
371 goto out_free_dev;
372
373 if (!(ndev->dev->attrs.device_cap_flags &
374 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
375 dev_err(&ndev->dev->dev,
376 "Memory registrations not supported.\n");
377 goto out_free_pd;
378 }
379
380 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
381 ndev->dev->attrs.max_send_sge - 1);
382 list_add(&ndev->entry, &device_list);
383 out_unlock:
384 mutex_unlock(&device_list_mutex);
385 return ndev;
386
387 out_free_pd:
388 ib_dealloc_pd(ndev->pd);
389 out_free_dev:
390 kfree(ndev);
391 out_err:
392 mutex_unlock(&device_list_mutex);
393 return NULL;
394 }
395
396 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
397 {
398 struct nvme_rdma_device *dev;
399 struct ib_device *ibdev;
400
401 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
402 return;
403
404 dev = queue->device;
405 ibdev = dev->dev;
406
407 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
408
409 /*
410 * The cm_id object might have been destroyed during RDMA connection
411 * establishment error flow to avoid getting other cma events, thus
412 * the destruction of the QP shouldn't use rdma_cm API.
413 */
414 ib_destroy_qp(queue->qp);
415 ib_free_cq(queue->ib_cq);
416
417 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
418 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
419
420 nvme_rdma_dev_put(dev);
421 }
422
423 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
424 {
425 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
426 ibdev->attrs.max_fast_reg_page_list_len);
427 }
428
429 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
430 {
431 struct ib_device *ibdev;
432 const int send_wr_factor = 3; /* MR, SEND, INV */
433 const int cq_factor = send_wr_factor + 1; /* + RECV */
434 int comp_vector, idx = nvme_rdma_queue_idx(queue);
435 int ret;
436
437 queue->device = nvme_rdma_find_get_device(queue->cm_id);
438 if (!queue->device) {
439 dev_err(queue->cm_id->device->dev.parent,
440 "no client data found!\n");
441 return -ECONNREFUSED;
442 }
443 ibdev = queue->device->dev;
444
445 /*
446 * Spread I/O queues completion vectors according their queue index.
447 * Admin queues can always go on completion vector 0.
448 */
449 comp_vector = idx == 0 ? idx : idx - 1;
450
451 /* +1 for ib_stop_cq */
452 queue->ib_cq = ib_alloc_cq(ibdev, queue,
453 cq_factor * queue->queue_size + 1,
454 comp_vector, IB_POLL_SOFTIRQ);
455 if (IS_ERR(queue->ib_cq)) {
456 ret = PTR_ERR(queue->ib_cq);
457 goto out_put_dev;
458 }
459
460 ret = nvme_rdma_create_qp(queue, send_wr_factor);
461 if (ret)
462 goto out_destroy_ib_cq;
463
464 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
465 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
466 if (!queue->rsp_ring) {
467 ret = -ENOMEM;
468 goto out_destroy_qp;
469 }
470
471 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
472 queue->queue_size,
473 IB_MR_TYPE_MEM_REG,
474 nvme_rdma_get_max_fr_pages(ibdev));
475 if (ret) {
476 dev_err(queue->ctrl->ctrl.device,
477 "failed to initialize MR pool sized %d for QID %d\n",
478 queue->queue_size, idx);
479 goto out_destroy_ring;
480 }
481
482 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
483
484 return 0;
485
486 out_destroy_ring:
487 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
488 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
489 out_destroy_qp:
490 rdma_destroy_qp(queue->cm_id);
491 out_destroy_ib_cq:
492 ib_free_cq(queue->ib_cq);
493 out_put_dev:
494 nvme_rdma_dev_put(queue->device);
495 return ret;
496 }
497
498 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
499 int idx, size_t queue_size)
500 {
501 struct nvme_rdma_queue *queue;
502 struct sockaddr *src_addr = NULL;
503 int ret;
504
505 queue = &ctrl->queues[idx];
506 queue->ctrl = ctrl;
507 init_completion(&queue->cm_done);
508
509 if (idx > 0)
510 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
511 else
512 queue->cmnd_capsule_len = sizeof(struct nvme_command);
513
514 queue->queue_size = queue_size;
515
516 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
517 RDMA_PS_TCP, IB_QPT_RC);
518 if (IS_ERR(queue->cm_id)) {
519 dev_info(ctrl->ctrl.device,
520 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
521 return PTR_ERR(queue->cm_id);
522 }
523
524 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
525 src_addr = (struct sockaddr *)&ctrl->src_addr;
526
527 queue->cm_error = -ETIMEDOUT;
528 ret = rdma_resolve_addr(queue->cm_id, src_addr,
529 (struct sockaddr *)&ctrl->addr,
530 NVME_RDMA_CONNECT_TIMEOUT_MS);
531 if (ret) {
532 dev_info(ctrl->ctrl.device,
533 "rdma_resolve_addr failed (%d).\n", ret);
534 goto out_destroy_cm_id;
535 }
536
537 ret = nvme_rdma_wait_for_cm(queue);
538 if (ret) {
539 dev_info(ctrl->ctrl.device,
540 "rdma connection establishment failed (%d)\n", ret);
541 goto out_destroy_cm_id;
542 }
543
544 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
545
546 return 0;
547
548 out_destroy_cm_id:
549 rdma_destroy_id(queue->cm_id);
550 nvme_rdma_destroy_queue_ib(queue);
551 return ret;
552 }
553
554 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
555 {
556 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
557 return;
558
559 rdma_disconnect(queue->cm_id);
560 ib_drain_qp(queue->qp);
561 }
562
563 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
564 {
565 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
566 return;
567
568 nvme_rdma_destroy_queue_ib(queue);
569 rdma_destroy_id(queue->cm_id);
570 }
571
572 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
573 {
574 int i;
575
576 for (i = 1; i < ctrl->ctrl.queue_count; i++)
577 nvme_rdma_free_queue(&ctrl->queues[i]);
578 }
579
580 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
581 {
582 int i;
583
584 for (i = 1; i < ctrl->ctrl.queue_count; i++)
585 nvme_rdma_stop_queue(&ctrl->queues[i]);
586 }
587
588 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
589 {
590 int ret;
591
592 if (idx)
593 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
594 else
595 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
596
597 if (!ret)
598 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
599 else
600 dev_info(ctrl->ctrl.device,
601 "failed to connect queue: %d ret=%d\n", idx, ret);
602 return ret;
603 }
604
605 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
606 {
607 int i, ret = 0;
608
609 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
610 ret = nvme_rdma_start_queue(ctrl, i);
611 if (ret)
612 goto out_stop_queues;
613 }
614
615 return 0;
616
617 out_stop_queues:
618 for (i--; i >= 1; i--)
619 nvme_rdma_stop_queue(&ctrl->queues[i]);
620 return ret;
621 }
622
623 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
624 {
625 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
626 struct ib_device *ibdev = ctrl->device->dev;
627 unsigned int nr_io_queues;
628 int i, ret;
629
630 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
631
632 /*
633 * we map queues according to the device irq vectors for
634 * optimal locality so we don't need more queues than
635 * completion vectors.
636 */
637 nr_io_queues = min_t(unsigned int, nr_io_queues,
638 ibdev->num_comp_vectors);
639
640 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
641 if (ret)
642 return ret;
643
644 ctrl->ctrl.queue_count = nr_io_queues + 1;
645 if (ctrl->ctrl.queue_count < 2)
646 return 0;
647
648 dev_info(ctrl->ctrl.device,
649 "creating %d I/O queues.\n", nr_io_queues);
650
651 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
652 ret = nvme_rdma_alloc_queue(ctrl, i,
653 ctrl->ctrl.sqsize + 1);
654 if (ret)
655 goto out_free_queues;
656 }
657
658 return 0;
659
660 out_free_queues:
661 for (i--; i >= 1; i--)
662 nvme_rdma_free_queue(&ctrl->queues[i]);
663
664 return ret;
665 }
666
667 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
668 struct blk_mq_tag_set *set)
669 {
670 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
671
672 blk_mq_free_tag_set(set);
673 nvme_rdma_dev_put(ctrl->device);
674 }
675
676 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
677 bool admin)
678 {
679 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
680 struct blk_mq_tag_set *set;
681 int ret;
682
683 if (admin) {
684 set = &ctrl->admin_tag_set;
685 memset(set, 0, sizeof(*set));
686 set->ops = &nvme_rdma_admin_mq_ops;
687 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
688 set->reserved_tags = 2; /* connect + keep-alive */
689 set->numa_node = NUMA_NO_NODE;
690 set->cmd_size = sizeof(struct nvme_rdma_request) +
691 SG_CHUNK_SIZE * sizeof(struct scatterlist);
692 set->driver_data = ctrl;
693 set->nr_hw_queues = 1;
694 set->timeout = ADMIN_TIMEOUT;
695 set->flags = BLK_MQ_F_NO_SCHED;
696 } else {
697 set = &ctrl->tag_set;
698 memset(set, 0, sizeof(*set));
699 set->ops = &nvme_rdma_mq_ops;
700 set->queue_depth = nctrl->sqsize + 1;
701 set->reserved_tags = 1; /* fabric connect */
702 set->numa_node = NUMA_NO_NODE;
703 set->flags = BLK_MQ_F_SHOULD_MERGE;
704 set->cmd_size = sizeof(struct nvme_rdma_request) +
705 SG_CHUNK_SIZE * sizeof(struct scatterlist);
706 set->driver_data = ctrl;
707 set->nr_hw_queues = nctrl->queue_count - 1;
708 set->timeout = NVME_IO_TIMEOUT;
709 }
710
711 ret = blk_mq_alloc_tag_set(set);
712 if (ret)
713 goto out;
714
715 /*
716 * We need a reference on the device as long as the tag_set is alive,
717 * as the MRs in the request structures need a valid ib_device.
718 */
719 ret = nvme_rdma_dev_get(ctrl->device);
720 if (!ret) {
721 ret = -EINVAL;
722 goto out_free_tagset;
723 }
724
725 return set;
726
727 out_free_tagset:
728 blk_mq_free_tag_set(set);
729 out:
730 return ERR_PTR(ret);
731 }
732
733 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
734 bool remove)
735 {
736 if (remove) {
737 blk_cleanup_queue(ctrl->ctrl.admin_q);
738 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
739 }
740 if (ctrl->async_event_sqe.data) {
741 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
742 sizeof(struct nvme_command), DMA_TO_DEVICE);
743 ctrl->async_event_sqe.data = NULL;
744 }
745 nvme_rdma_free_queue(&ctrl->queues[0]);
746 }
747
748 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
749 bool new)
750 {
751 int error;
752
753 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
754 if (error)
755 return error;
756
757 ctrl->device = ctrl->queues[0].device;
758
759 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
760
761 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
762 sizeof(struct nvme_command), DMA_TO_DEVICE);
763 if (error)
764 goto out_free_queue;
765
766 if (new) {
767 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
768 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
769 error = PTR_ERR(ctrl->ctrl.admin_tagset);
770 goto out_free_async_qe;
771 }
772
773 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
774 if (IS_ERR(ctrl->ctrl.admin_q)) {
775 error = PTR_ERR(ctrl->ctrl.admin_q);
776 goto out_free_tagset;
777 }
778 }
779
780 error = nvme_rdma_start_queue(ctrl, 0);
781 if (error)
782 goto out_cleanup_queue;
783
784 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
785 &ctrl->ctrl.cap);
786 if (error) {
787 dev_err(ctrl->ctrl.device,
788 "prop_get NVME_REG_CAP failed\n");
789 goto out_stop_queue;
790 }
791
792 ctrl->ctrl.sqsize =
793 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
794
795 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
796 if (error)
797 goto out_stop_queue;
798
799 ctrl->ctrl.max_hw_sectors =
800 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
801
802 error = nvme_init_identify(&ctrl->ctrl);
803 if (error)
804 goto out_stop_queue;
805
806 return 0;
807
808 out_stop_queue:
809 nvme_rdma_stop_queue(&ctrl->queues[0]);
810 out_cleanup_queue:
811 if (new)
812 blk_cleanup_queue(ctrl->ctrl.admin_q);
813 out_free_tagset:
814 if (new)
815 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
816 out_free_async_qe:
817 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
818 sizeof(struct nvme_command), DMA_TO_DEVICE);
819 out_free_queue:
820 nvme_rdma_free_queue(&ctrl->queues[0]);
821 return error;
822 }
823
824 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
825 bool remove)
826 {
827 if (remove) {
828 blk_cleanup_queue(ctrl->ctrl.connect_q);
829 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
830 }
831 nvme_rdma_free_io_queues(ctrl);
832 }
833
834 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
835 {
836 int ret;
837
838 ret = nvme_rdma_alloc_io_queues(ctrl);
839 if (ret)
840 return ret;
841
842 if (new) {
843 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
844 if (IS_ERR(ctrl->ctrl.tagset)) {
845 ret = PTR_ERR(ctrl->ctrl.tagset);
846 goto out_free_io_queues;
847 }
848
849 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
850 if (IS_ERR(ctrl->ctrl.connect_q)) {
851 ret = PTR_ERR(ctrl->ctrl.connect_q);
852 goto out_free_tag_set;
853 }
854 } else {
855 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
856 ctrl->ctrl.queue_count - 1);
857 }
858
859 ret = nvme_rdma_start_io_queues(ctrl);
860 if (ret)
861 goto out_cleanup_connect_q;
862
863 return 0;
864
865 out_cleanup_connect_q:
866 if (new)
867 blk_cleanup_queue(ctrl->ctrl.connect_q);
868 out_free_tag_set:
869 if (new)
870 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
871 out_free_io_queues:
872 nvme_rdma_free_io_queues(ctrl);
873 return ret;
874 }
875
876 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
877 bool remove)
878 {
879 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
880 nvme_rdma_stop_queue(&ctrl->queues[0]);
881 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
882 &ctrl->ctrl);
883 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
884 nvme_rdma_destroy_admin_queue(ctrl, remove);
885 }
886
887 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
888 bool remove)
889 {
890 if (ctrl->ctrl.queue_count > 1) {
891 nvme_stop_queues(&ctrl->ctrl);
892 nvme_rdma_stop_io_queues(ctrl);
893 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
894 &ctrl->ctrl);
895 if (remove)
896 nvme_start_queues(&ctrl->ctrl);
897 nvme_rdma_destroy_io_queues(ctrl, remove);
898 }
899 }
900
901 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
902 {
903 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
904
905 cancel_work_sync(&ctrl->err_work);
906 cancel_delayed_work_sync(&ctrl->reconnect_work);
907 }
908
909 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
910 {
911 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
912
913 if (list_empty(&ctrl->list))
914 goto free_ctrl;
915
916 mutex_lock(&nvme_rdma_ctrl_mutex);
917 list_del(&ctrl->list);
918 mutex_unlock(&nvme_rdma_ctrl_mutex);
919
920 nvmf_free_options(nctrl->opts);
921 free_ctrl:
922 kfree(ctrl->queues);
923 kfree(ctrl);
924 }
925
926 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
927 {
928 /* If we are resetting/deleting then do nothing */
929 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
930 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
931 ctrl->ctrl.state == NVME_CTRL_LIVE);
932 return;
933 }
934
935 if (nvmf_should_reconnect(&ctrl->ctrl)) {
936 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
937 ctrl->ctrl.opts->reconnect_delay);
938 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
939 ctrl->ctrl.opts->reconnect_delay * HZ);
940 } else {
941 nvme_delete_ctrl(&ctrl->ctrl);
942 }
943 }
944
945 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
946 {
947 int ret = -EINVAL;
948 bool changed;
949
950 ret = nvme_rdma_configure_admin_queue(ctrl, new);
951 if (ret)
952 return ret;
953
954 if (ctrl->ctrl.icdoff) {
955 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
956 goto destroy_admin;
957 }
958
959 if (!(ctrl->ctrl.sgls & (1 << 2))) {
960 dev_err(ctrl->ctrl.device,
961 "Mandatory keyed sgls are not supported!\n");
962 goto destroy_admin;
963 }
964
965 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
966 dev_warn(ctrl->ctrl.device,
967 "queue_size %zu > ctrl sqsize %u, clamping down\n",
968 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
969 }
970
971 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
972 dev_warn(ctrl->ctrl.device,
973 "sqsize %u > ctrl maxcmd %u, clamping down\n",
974 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
975 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
976 }
977
978 if (ctrl->ctrl.sgls & (1 << 20))
979 ctrl->use_inline_data = true;
980
981 if (ctrl->ctrl.queue_count > 1) {
982 ret = nvme_rdma_configure_io_queues(ctrl, new);
983 if (ret)
984 goto destroy_admin;
985 }
986
987 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
988 if (!changed) {
989 /* state change failure is ok if we're in DELETING state */
990 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
991 ret = -EINVAL;
992 goto destroy_io;
993 }
994
995 nvme_start_ctrl(&ctrl->ctrl);
996 return 0;
997
998 destroy_io:
999 if (ctrl->ctrl.queue_count > 1)
1000 nvme_rdma_destroy_io_queues(ctrl, new);
1001 destroy_admin:
1002 nvme_rdma_stop_queue(&ctrl->queues[0]);
1003 nvme_rdma_destroy_admin_queue(ctrl, new);
1004 return ret;
1005 }
1006
1007 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1008 {
1009 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1010 struct nvme_rdma_ctrl, reconnect_work);
1011
1012 ++ctrl->ctrl.nr_reconnects;
1013
1014 if (nvme_rdma_setup_ctrl(ctrl, false))
1015 goto requeue;
1016
1017 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1018 ctrl->ctrl.nr_reconnects);
1019
1020 ctrl->ctrl.nr_reconnects = 0;
1021
1022 return;
1023
1024 requeue:
1025 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1026 ctrl->ctrl.nr_reconnects);
1027 nvme_rdma_reconnect_or_remove(ctrl);
1028 }
1029
1030 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1031 {
1032 struct nvme_rdma_ctrl *ctrl = container_of(work,
1033 struct nvme_rdma_ctrl, err_work);
1034
1035 nvme_stop_keep_alive(&ctrl->ctrl);
1036 nvme_rdma_teardown_io_queues(ctrl, false);
1037 nvme_start_queues(&ctrl->ctrl);
1038 nvme_rdma_teardown_admin_queue(ctrl, false);
1039
1040 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1041 /* state change failure is ok if we're in DELETING state */
1042 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1043 return;
1044 }
1045
1046 nvme_rdma_reconnect_or_remove(ctrl);
1047 }
1048
1049 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1050 {
1051 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1052 return;
1053
1054 queue_work(nvme_wq, &ctrl->err_work);
1055 }
1056
1057 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1058 const char *op)
1059 {
1060 struct nvme_rdma_queue *queue = cq->cq_context;
1061 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1062
1063 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1064 dev_info(ctrl->ctrl.device,
1065 "%s for CQE 0x%p failed with status %s (%d)\n",
1066 op, wc->wr_cqe,
1067 ib_wc_status_msg(wc->status), wc->status);
1068 nvme_rdma_error_recovery(ctrl);
1069 }
1070
1071 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1072 {
1073 if (unlikely(wc->status != IB_WC_SUCCESS))
1074 nvme_rdma_wr_error(cq, wc, "MEMREG");
1075 }
1076
1077 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1078 {
1079 struct nvme_rdma_request *req =
1080 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1081 struct request *rq = blk_mq_rq_from_pdu(req);
1082
1083 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1084 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1085 return;
1086 }
1087
1088 if (refcount_dec_and_test(&req->ref))
1089 nvme_end_request(rq, req->status, req->result);
1090
1091 }
1092
1093 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1094 struct nvme_rdma_request *req)
1095 {
1096 struct ib_send_wr wr = {
1097 .opcode = IB_WR_LOCAL_INV,
1098 .next = NULL,
1099 .num_sge = 0,
1100 .send_flags = IB_SEND_SIGNALED,
1101 .ex.invalidate_rkey = req->mr->rkey,
1102 };
1103
1104 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1105 wr.wr_cqe = &req->reg_cqe;
1106
1107 return ib_post_send(queue->qp, &wr, NULL);
1108 }
1109
1110 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1111 struct request *rq)
1112 {
1113 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1114 struct nvme_rdma_device *dev = queue->device;
1115 struct ib_device *ibdev = dev->dev;
1116
1117 if (!blk_rq_payload_bytes(rq))
1118 return;
1119
1120 if (req->mr) {
1121 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1122 req->mr = NULL;
1123 }
1124
1125 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1126 req->nents, rq_data_dir(rq) ==
1127 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1128
1129 nvme_cleanup_cmd(rq);
1130 sg_free_table_chained(&req->sg_table, true);
1131 }
1132
1133 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1134 {
1135 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1136
1137 sg->addr = 0;
1138 put_unaligned_le24(0, sg->length);
1139 put_unaligned_le32(0, sg->key);
1140 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1141 return 0;
1142 }
1143
1144 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1145 struct nvme_rdma_request *req, struct nvme_command *c,
1146 int count)
1147 {
1148 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1149 struct scatterlist *sgl = req->sg_table.sgl;
1150 struct ib_sge *sge = &req->sge[1];
1151 u32 len = 0;
1152 int i;
1153
1154 for (i = 0; i < count; i++, sgl++, sge++) {
1155 sge->addr = sg_dma_address(sgl);
1156 sge->length = sg_dma_len(sgl);
1157 sge->lkey = queue->device->pd->local_dma_lkey;
1158 len += sge->length;
1159 }
1160
1161 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1162 sg->length = cpu_to_le32(len);
1163 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1164
1165 req->num_sge += count;
1166 return 0;
1167 }
1168
1169 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1170 struct nvme_rdma_request *req, struct nvme_command *c)
1171 {
1172 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1173
1174 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1175 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1176 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1177 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1178 return 0;
1179 }
1180
1181 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1182 struct nvme_rdma_request *req, struct nvme_command *c,
1183 int count)
1184 {
1185 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1186 int nr;
1187
1188 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1189 if (WARN_ON_ONCE(!req->mr))
1190 return -EAGAIN;
1191
1192 /*
1193 * Align the MR to a 4K page size to match the ctrl page size and
1194 * the block virtual boundary.
1195 */
1196 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1197 if (unlikely(nr < count)) {
1198 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1199 req->mr = NULL;
1200 if (nr < 0)
1201 return nr;
1202 return -EINVAL;
1203 }
1204
1205 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1206
1207 req->reg_cqe.done = nvme_rdma_memreg_done;
1208 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1209 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1210 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1211 req->reg_wr.wr.num_sge = 0;
1212 req->reg_wr.mr = req->mr;
1213 req->reg_wr.key = req->mr->rkey;
1214 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1215 IB_ACCESS_REMOTE_READ |
1216 IB_ACCESS_REMOTE_WRITE;
1217
1218 sg->addr = cpu_to_le64(req->mr->iova);
1219 put_unaligned_le24(req->mr->length, sg->length);
1220 put_unaligned_le32(req->mr->rkey, sg->key);
1221 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1222 NVME_SGL_FMT_INVALIDATE;
1223
1224 return 0;
1225 }
1226
1227 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1228 struct request *rq, struct nvme_command *c)
1229 {
1230 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1231 struct nvme_rdma_device *dev = queue->device;
1232 struct ib_device *ibdev = dev->dev;
1233 int count, ret;
1234
1235 req->num_sge = 1;
1236 refcount_set(&req->ref, 2); /* send and recv completions */
1237
1238 c->common.flags |= NVME_CMD_SGL_METABUF;
1239
1240 if (!blk_rq_payload_bytes(rq))
1241 return nvme_rdma_set_sg_null(c);
1242
1243 req->sg_table.sgl = req->first_sgl;
1244 ret = sg_alloc_table_chained(&req->sg_table,
1245 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1246 if (ret)
1247 return -ENOMEM;
1248
1249 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1250
1251 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1252 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1253 if (unlikely(count <= 0)) {
1254 ret = -EIO;
1255 goto out_free_table;
1256 }
1257
1258 if (count <= dev->num_inline_segments) {
1259 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1260 queue->ctrl->use_inline_data &&
1261 blk_rq_payload_bytes(rq) <=
1262 nvme_rdma_inline_data_size(queue)) {
1263 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1264 goto out;
1265 }
1266
1267 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1268 ret = nvme_rdma_map_sg_single(queue, req, c);
1269 goto out;
1270 }
1271 }
1272
1273 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1274 out:
1275 if (unlikely(ret))
1276 goto out_unmap_sg;
1277
1278 return 0;
1279
1280 out_unmap_sg:
1281 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1282 req->nents, rq_data_dir(rq) ==
1283 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1284 out_free_table:
1285 sg_free_table_chained(&req->sg_table, true);
1286 return ret;
1287 }
1288
1289 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1290 {
1291 struct nvme_rdma_qe *qe =
1292 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1293 struct nvme_rdma_request *req =
1294 container_of(qe, struct nvme_rdma_request, sqe);
1295 struct request *rq = blk_mq_rq_from_pdu(req);
1296
1297 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1298 nvme_rdma_wr_error(cq, wc, "SEND");
1299 return;
1300 }
1301
1302 if (refcount_dec_and_test(&req->ref))
1303 nvme_end_request(rq, req->status, req->result);
1304 }
1305
1306 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1307 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1308 struct ib_send_wr *first)
1309 {
1310 struct ib_send_wr wr;
1311 int ret;
1312
1313 sge->addr = qe->dma;
1314 sge->length = sizeof(struct nvme_command),
1315 sge->lkey = queue->device->pd->local_dma_lkey;
1316
1317 wr.next = NULL;
1318 wr.wr_cqe = &qe->cqe;
1319 wr.sg_list = sge;
1320 wr.num_sge = num_sge;
1321 wr.opcode = IB_WR_SEND;
1322 wr.send_flags = IB_SEND_SIGNALED;
1323
1324 if (first)
1325 first->next = &wr;
1326 else
1327 first = &wr;
1328
1329 ret = ib_post_send(queue->qp, first, NULL);
1330 if (unlikely(ret)) {
1331 dev_err(queue->ctrl->ctrl.device,
1332 "%s failed with error code %d\n", __func__, ret);
1333 }
1334 return ret;
1335 }
1336
1337 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1338 struct nvme_rdma_qe *qe)
1339 {
1340 struct ib_recv_wr wr;
1341 struct ib_sge list;
1342 int ret;
1343
1344 list.addr = qe->dma;
1345 list.length = sizeof(struct nvme_completion);
1346 list.lkey = queue->device->pd->local_dma_lkey;
1347
1348 qe->cqe.done = nvme_rdma_recv_done;
1349
1350 wr.next = NULL;
1351 wr.wr_cqe = &qe->cqe;
1352 wr.sg_list = &list;
1353 wr.num_sge = 1;
1354
1355 ret = ib_post_recv(queue->qp, &wr, NULL);
1356 if (unlikely(ret)) {
1357 dev_err(queue->ctrl->ctrl.device,
1358 "%s failed with error code %d\n", __func__, ret);
1359 }
1360 return ret;
1361 }
1362
1363 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1364 {
1365 u32 queue_idx = nvme_rdma_queue_idx(queue);
1366
1367 if (queue_idx == 0)
1368 return queue->ctrl->admin_tag_set.tags[queue_idx];
1369 return queue->ctrl->tag_set.tags[queue_idx - 1];
1370 }
1371
1372 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1373 {
1374 if (unlikely(wc->status != IB_WC_SUCCESS))
1375 nvme_rdma_wr_error(cq, wc, "ASYNC");
1376 }
1377
1378 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1379 {
1380 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1381 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1382 struct ib_device *dev = queue->device->dev;
1383 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1384 struct nvme_command *cmd = sqe->data;
1385 struct ib_sge sge;
1386 int ret;
1387
1388 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1389
1390 memset(cmd, 0, sizeof(*cmd));
1391 cmd->common.opcode = nvme_admin_async_event;
1392 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1393 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1394 nvme_rdma_set_sg_null(cmd);
1395
1396 sqe->cqe.done = nvme_rdma_async_done;
1397
1398 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1399 DMA_TO_DEVICE);
1400
1401 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1402 WARN_ON_ONCE(ret);
1403 }
1404
1405 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1406 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1407 {
1408 struct request *rq;
1409 struct nvme_rdma_request *req;
1410 int ret = 0;
1411
1412 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1413 if (!rq) {
1414 dev_err(queue->ctrl->ctrl.device,
1415 "tag 0x%x on QP %#x not found\n",
1416 cqe->command_id, queue->qp->qp_num);
1417 nvme_rdma_error_recovery(queue->ctrl);
1418 return ret;
1419 }
1420 req = blk_mq_rq_to_pdu(rq);
1421
1422 req->status = cqe->status;
1423 req->result = cqe->result;
1424
1425 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1426 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1427 dev_err(queue->ctrl->ctrl.device,
1428 "Bogus remote invalidation for rkey %#x\n",
1429 req->mr->rkey);
1430 nvme_rdma_error_recovery(queue->ctrl);
1431 }
1432 } else if (req->mr) {
1433 ret = nvme_rdma_inv_rkey(queue, req);
1434 if (unlikely(ret < 0)) {
1435 dev_err(queue->ctrl->ctrl.device,
1436 "Queueing INV WR for rkey %#x failed (%d)\n",
1437 req->mr->rkey, ret);
1438 nvme_rdma_error_recovery(queue->ctrl);
1439 }
1440 /* the local invalidation completion will end the request */
1441 return 0;
1442 }
1443
1444 if (refcount_dec_and_test(&req->ref)) {
1445 if (rq->tag == tag)
1446 ret = 1;
1447 nvme_end_request(rq, req->status, req->result);
1448 }
1449
1450 return ret;
1451 }
1452
1453 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1454 {
1455 struct nvme_rdma_qe *qe =
1456 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1457 struct nvme_rdma_queue *queue = cq->cq_context;
1458 struct ib_device *ibdev = queue->device->dev;
1459 struct nvme_completion *cqe = qe->data;
1460 const size_t len = sizeof(struct nvme_completion);
1461 int ret = 0;
1462
1463 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1464 nvme_rdma_wr_error(cq, wc, "RECV");
1465 return 0;
1466 }
1467
1468 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1469 /*
1470 * AEN requests are special as they don't time out and can
1471 * survive any kind of queue freeze and often don't respond to
1472 * aborts. We don't even bother to allocate a struct request
1473 * for them but rather special case them here.
1474 */
1475 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1476 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1477 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1478 &cqe->result);
1479 else
1480 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1481 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1482
1483 nvme_rdma_post_recv(queue, qe);
1484 return ret;
1485 }
1486
1487 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1488 {
1489 __nvme_rdma_recv_done(cq, wc, -1);
1490 }
1491
1492 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1493 {
1494 int ret, i;
1495
1496 for (i = 0; i < queue->queue_size; i++) {
1497 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1498 if (ret)
1499 goto out_destroy_queue_ib;
1500 }
1501
1502 return 0;
1503
1504 out_destroy_queue_ib:
1505 nvme_rdma_destroy_queue_ib(queue);
1506 return ret;
1507 }
1508
1509 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1510 struct rdma_cm_event *ev)
1511 {
1512 struct rdma_cm_id *cm_id = queue->cm_id;
1513 int status = ev->status;
1514 const char *rej_msg;
1515 const struct nvme_rdma_cm_rej *rej_data;
1516 u8 rej_data_len;
1517
1518 rej_msg = rdma_reject_msg(cm_id, status);
1519 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1520
1521 if (rej_data && rej_data_len >= sizeof(u16)) {
1522 u16 sts = le16_to_cpu(rej_data->sts);
1523
1524 dev_err(queue->ctrl->ctrl.device,
1525 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1526 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1527 } else {
1528 dev_err(queue->ctrl->ctrl.device,
1529 "Connect rejected: status %d (%s).\n", status, rej_msg);
1530 }
1531
1532 return -ECONNRESET;
1533 }
1534
1535 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1536 {
1537 int ret;
1538
1539 ret = nvme_rdma_create_queue_ib(queue);
1540 if (ret)
1541 return ret;
1542
1543 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1544 if (ret) {
1545 dev_err(queue->ctrl->ctrl.device,
1546 "rdma_resolve_route failed (%d).\n",
1547 queue->cm_error);
1548 goto out_destroy_queue;
1549 }
1550
1551 return 0;
1552
1553 out_destroy_queue:
1554 nvme_rdma_destroy_queue_ib(queue);
1555 return ret;
1556 }
1557
1558 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1559 {
1560 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1561 struct rdma_conn_param param = { };
1562 struct nvme_rdma_cm_req priv = { };
1563 int ret;
1564
1565 param.qp_num = queue->qp->qp_num;
1566 param.flow_control = 1;
1567
1568 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1569 /* maximum retry count */
1570 param.retry_count = 7;
1571 param.rnr_retry_count = 7;
1572 param.private_data = &priv;
1573 param.private_data_len = sizeof(priv);
1574
1575 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1576 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1577 /*
1578 * set the admin queue depth to the minimum size
1579 * specified by the Fabrics standard.
1580 */
1581 if (priv.qid == 0) {
1582 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1583 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1584 } else {
1585 /*
1586 * current interpretation of the fabrics spec
1587 * is at minimum you make hrqsize sqsize+1, or a
1588 * 1's based representation of sqsize.
1589 */
1590 priv.hrqsize = cpu_to_le16(queue->queue_size);
1591 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1592 }
1593
1594 ret = rdma_connect(queue->cm_id, &param);
1595 if (ret) {
1596 dev_err(ctrl->ctrl.device,
1597 "rdma_connect failed (%d).\n", ret);
1598 goto out_destroy_queue_ib;
1599 }
1600
1601 return 0;
1602
1603 out_destroy_queue_ib:
1604 nvme_rdma_destroy_queue_ib(queue);
1605 return ret;
1606 }
1607
1608 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1609 struct rdma_cm_event *ev)
1610 {
1611 struct nvme_rdma_queue *queue = cm_id->context;
1612 int cm_error = 0;
1613
1614 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1615 rdma_event_msg(ev->event), ev->event,
1616 ev->status, cm_id);
1617
1618 switch (ev->event) {
1619 case RDMA_CM_EVENT_ADDR_RESOLVED:
1620 cm_error = nvme_rdma_addr_resolved(queue);
1621 break;
1622 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1623 cm_error = nvme_rdma_route_resolved(queue);
1624 break;
1625 case RDMA_CM_EVENT_ESTABLISHED:
1626 queue->cm_error = nvme_rdma_conn_established(queue);
1627 /* complete cm_done regardless of success/failure */
1628 complete(&queue->cm_done);
1629 return 0;
1630 case RDMA_CM_EVENT_REJECTED:
1631 nvme_rdma_destroy_queue_ib(queue);
1632 cm_error = nvme_rdma_conn_rejected(queue, ev);
1633 break;
1634 case RDMA_CM_EVENT_ROUTE_ERROR:
1635 case RDMA_CM_EVENT_CONNECT_ERROR:
1636 case RDMA_CM_EVENT_UNREACHABLE:
1637 nvme_rdma_destroy_queue_ib(queue);
1638 /* fall through */
1639 case RDMA_CM_EVENT_ADDR_ERROR:
1640 dev_dbg(queue->ctrl->ctrl.device,
1641 "CM error event %d\n", ev->event);
1642 cm_error = -ECONNRESET;
1643 break;
1644 case RDMA_CM_EVENT_DISCONNECTED:
1645 case RDMA_CM_EVENT_ADDR_CHANGE:
1646 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1647 dev_dbg(queue->ctrl->ctrl.device,
1648 "disconnect received - connection closed\n");
1649 nvme_rdma_error_recovery(queue->ctrl);
1650 break;
1651 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1652 /* device removal is handled via the ib_client API */
1653 break;
1654 default:
1655 dev_err(queue->ctrl->ctrl.device,
1656 "Unexpected RDMA CM event (%d)\n", ev->event);
1657 nvme_rdma_error_recovery(queue->ctrl);
1658 break;
1659 }
1660
1661 if (cm_error) {
1662 queue->cm_error = cm_error;
1663 complete(&queue->cm_done);
1664 }
1665
1666 return 0;
1667 }
1668
1669 static enum blk_eh_timer_return
1670 nvme_rdma_timeout(struct request *rq, bool reserved)
1671 {
1672 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1673
1674 dev_warn(req->queue->ctrl->ctrl.device,
1675 "I/O %d QID %d timeout, reset controller\n",
1676 rq->tag, nvme_rdma_queue_idx(req->queue));
1677
1678 /* queue error recovery */
1679 nvme_rdma_error_recovery(req->queue->ctrl);
1680
1681 /* fail with DNR on cmd timeout */
1682 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1683
1684 return BLK_EH_DONE;
1685 }
1686
1687 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1688 const struct blk_mq_queue_data *bd)
1689 {
1690 struct nvme_ns *ns = hctx->queue->queuedata;
1691 struct nvme_rdma_queue *queue = hctx->driver_data;
1692 struct request *rq = bd->rq;
1693 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1694 struct nvme_rdma_qe *sqe = &req->sqe;
1695 struct nvme_command *c = sqe->data;
1696 struct ib_device *dev;
1697 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1698 blk_status_t ret;
1699 int err;
1700
1701 WARN_ON_ONCE(rq->tag < 0);
1702
1703 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1704 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1705
1706 dev = queue->device->dev;
1707 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1708 sizeof(struct nvme_command), DMA_TO_DEVICE);
1709
1710 ret = nvme_setup_cmd(ns, rq, c);
1711 if (ret)
1712 return ret;
1713
1714 blk_mq_start_request(rq);
1715
1716 err = nvme_rdma_map_data(queue, rq, c);
1717 if (unlikely(err < 0)) {
1718 dev_err(queue->ctrl->ctrl.device,
1719 "Failed to map data (%d)\n", err);
1720 nvme_cleanup_cmd(rq);
1721 goto err;
1722 }
1723
1724 sqe->cqe.done = nvme_rdma_send_done;
1725
1726 ib_dma_sync_single_for_device(dev, sqe->dma,
1727 sizeof(struct nvme_command), DMA_TO_DEVICE);
1728
1729 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1730 req->mr ? &req->reg_wr.wr : NULL);
1731 if (unlikely(err)) {
1732 nvme_rdma_unmap_data(queue, rq);
1733 goto err;
1734 }
1735
1736 return BLK_STS_OK;
1737 err:
1738 if (err == -ENOMEM || err == -EAGAIN)
1739 return BLK_STS_RESOURCE;
1740 return BLK_STS_IOERR;
1741 }
1742
1743 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1744 {
1745 struct nvme_rdma_queue *queue = hctx->driver_data;
1746 struct ib_cq *cq = queue->ib_cq;
1747 struct ib_wc wc;
1748 int found = 0;
1749
1750 while (ib_poll_cq(cq, 1, &wc) > 0) {
1751 struct ib_cqe *cqe = wc.wr_cqe;
1752
1753 if (cqe) {
1754 if (cqe->done == nvme_rdma_recv_done)
1755 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1756 else
1757 cqe->done(cq, &wc);
1758 }
1759 }
1760
1761 return found;
1762 }
1763
1764 static void nvme_rdma_complete_rq(struct request *rq)
1765 {
1766 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1767
1768 nvme_rdma_unmap_data(req->queue, rq);
1769 nvme_complete_rq(rq);
1770 }
1771
1772 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1773 {
1774 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1775
1776 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1777 }
1778
1779 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1780 .queue_rq = nvme_rdma_queue_rq,
1781 .complete = nvme_rdma_complete_rq,
1782 .init_request = nvme_rdma_init_request,
1783 .exit_request = nvme_rdma_exit_request,
1784 .init_hctx = nvme_rdma_init_hctx,
1785 .poll = nvme_rdma_poll,
1786 .timeout = nvme_rdma_timeout,
1787 .map_queues = nvme_rdma_map_queues,
1788 };
1789
1790 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1791 .queue_rq = nvme_rdma_queue_rq,
1792 .complete = nvme_rdma_complete_rq,
1793 .init_request = nvme_rdma_init_request,
1794 .exit_request = nvme_rdma_exit_request,
1795 .init_hctx = nvme_rdma_init_admin_hctx,
1796 .timeout = nvme_rdma_timeout,
1797 };
1798
1799 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1800 {
1801 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1802 if (shutdown)
1803 nvme_shutdown_ctrl(&ctrl->ctrl);
1804 else
1805 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1806 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1807 }
1808
1809 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1810 {
1811 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1812 }
1813
1814 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1815 {
1816 struct nvme_rdma_ctrl *ctrl =
1817 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1818
1819 nvme_stop_ctrl(&ctrl->ctrl);
1820 nvme_rdma_shutdown_ctrl(ctrl, false);
1821
1822 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1823 /* state change failure should never happen */
1824 WARN_ON_ONCE(1);
1825 return;
1826 }
1827
1828 if (nvme_rdma_setup_ctrl(ctrl, false))
1829 goto out_fail;
1830
1831 return;
1832
1833 out_fail:
1834 ++ctrl->ctrl.nr_reconnects;
1835 nvme_rdma_reconnect_or_remove(ctrl);
1836 }
1837
1838 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1839 .name = "rdma",
1840 .module = THIS_MODULE,
1841 .flags = NVME_F_FABRICS,
1842 .reg_read32 = nvmf_reg_read32,
1843 .reg_read64 = nvmf_reg_read64,
1844 .reg_write32 = nvmf_reg_write32,
1845 .free_ctrl = nvme_rdma_free_ctrl,
1846 .submit_async_event = nvme_rdma_submit_async_event,
1847 .delete_ctrl = nvme_rdma_delete_ctrl,
1848 .get_address = nvmf_get_address,
1849 .stop_ctrl = nvme_rdma_stop_ctrl,
1850 };
1851
1852 static inline bool
1853 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1854 struct nvmf_ctrl_options *opts)
1855 {
1856 char *stdport = __stringify(NVME_RDMA_IP_PORT);
1857
1858
1859 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1860 strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1861 return false;
1862
1863 if (opts->mask & NVMF_OPT_TRSVCID &&
1864 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1865 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1866 return false;
1867 } else if (opts->mask & NVMF_OPT_TRSVCID) {
1868 if (strcmp(opts->trsvcid, stdport))
1869 return false;
1870 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1871 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1872 return false;
1873 }
1874 /* else, it's a match as both have stdport. Fall to next checks */
1875
1876 /*
1877 * checking the local address is rough. In most cases, one
1878 * is not specified and the host port is selected by the stack.
1879 *
1880 * Assume no match if:
1881 * local address is specified and address is not the same
1882 * local address is not specified but remote is, or vice versa
1883 * (admin using specific host_traddr when it matters).
1884 */
1885 if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1886 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1887 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1888 return false;
1889 } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1890 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1891 return false;
1892 /*
1893 * if neither controller had an host port specified, assume it's
1894 * a match as everything else matched.
1895 */
1896
1897 return true;
1898 }
1899
1900 /*
1901 * Fails a connection request if it matches an existing controller
1902 * (association) with the same tuple:
1903 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1904 *
1905 * if local address is not specified in the request, it will match an
1906 * existing controller with all the other parameters the same and no
1907 * local port address specified as well.
1908 *
1909 * The ports don't need to be compared as they are intrinsically
1910 * already matched by the port pointers supplied.
1911 */
1912 static bool
1913 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1914 {
1915 struct nvme_rdma_ctrl *ctrl;
1916 bool found = false;
1917
1918 mutex_lock(&nvme_rdma_ctrl_mutex);
1919 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1920 found = __nvme_rdma_options_match(ctrl, opts);
1921 if (found)
1922 break;
1923 }
1924 mutex_unlock(&nvme_rdma_ctrl_mutex);
1925
1926 return found;
1927 }
1928
1929 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1930 struct nvmf_ctrl_options *opts)
1931 {
1932 struct nvme_rdma_ctrl *ctrl;
1933 int ret;
1934 bool changed;
1935 char *port;
1936
1937 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1938 if (!ctrl)
1939 return ERR_PTR(-ENOMEM);
1940 ctrl->ctrl.opts = opts;
1941 INIT_LIST_HEAD(&ctrl->list);
1942
1943 if (opts->mask & NVMF_OPT_TRSVCID)
1944 port = opts->trsvcid;
1945 else
1946 port = __stringify(NVME_RDMA_IP_PORT);
1947
1948 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1949 opts->traddr, port, &ctrl->addr);
1950 if (ret) {
1951 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1952 goto out_free_ctrl;
1953 }
1954
1955 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1956 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1957 opts->host_traddr, NULL, &ctrl->src_addr);
1958 if (ret) {
1959 pr_err("malformed src address passed: %s\n",
1960 opts->host_traddr);
1961 goto out_free_ctrl;
1962 }
1963 }
1964
1965 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1966 ret = -EALREADY;
1967 goto out_free_ctrl;
1968 }
1969
1970 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1971 nvme_rdma_reconnect_ctrl_work);
1972 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1973 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1974
1975 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1976 ctrl->ctrl.sqsize = opts->queue_size - 1;
1977 ctrl->ctrl.kato = opts->kato;
1978
1979 ret = -ENOMEM;
1980 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1981 GFP_KERNEL);
1982 if (!ctrl->queues)
1983 goto out_free_ctrl;
1984
1985 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1986 0 /* no quirks, we're perfect! */);
1987 if (ret)
1988 goto out_kfree_queues;
1989
1990 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1991 WARN_ON_ONCE(!changed);
1992
1993 ret = nvme_rdma_setup_ctrl(ctrl, true);
1994 if (ret)
1995 goto out_uninit_ctrl;
1996
1997 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1998 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1999
2000 nvme_get_ctrl(&ctrl->ctrl);
2001
2002 mutex_lock(&nvme_rdma_ctrl_mutex);
2003 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2004 mutex_unlock(&nvme_rdma_ctrl_mutex);
2005
2006 return &ctrl->ctrl;
2007
2008 out_uninit_ctrl:
2009 nvme_uninit_ctrl(&ctrl->ctrl);
2010 nvme_put_ctrl(&ctrl->ctrl);
2011 if (ret > 0)
2012 ret = -EIO;
2013 return ERR_PTR(ret);
2014 out_kfree_queues:
2015 kfree(ctrl->queues);
2016 out_free_ctrl:
2017 kfree(ctrl);
2018 return ERR_PTR(ret);
2019 }
2020
2021 static struct nvmf_transport_ops nvme_rdma_transport = {
2022 .name = "rdma",
2023 .module = THIS_MODULE,
2024 .required_opts = NVMF_OPT_TRADDR,
2025 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2026 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2027 .create_ctrl = nvme_rdma_create_ctrl,
2028 };
2029
2030 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2031 {
2032 struct nvme_rdma_ctrl *ctrl;
2033 struct nvme_rdma_device *ndev;
2034 bool found = false;
2035
2036 mutex_lock(&device_list_mutex);
2037 list_for_each_entry(ndev, &device_list, entry) {
2038 if (ndev->dev == ib_device) {
2039 found = true;
2040 break;
2041 }
2042 }
2043 mutex_unlock(&device_list_mutex);
2044
2045 if (!found)
2046 return;
2047
2048 /* Delete all controllers using this device */
2049 mutex_lock(&nvme_rdma_ctrl_mutex);
2050 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2051 if (ctrl->device->dev != ib_device)
2052 continue;
2053 nvme_delete_ctrl(&ctrl->ctrl);
2054 }
2055 mutex_unlock(&nvme_rdma_ctrl_mutex);
2056
2057 flush_workqueue(nvme_delete_wq);
2058 }
2059
2060 static struct ib_client nvme_rdma_ib_client = {
2061 .name = "nvme_rdma",
2062 .remove = nvme_rdma_remove_one
2063 };
2064
2065 static int __init nvme_rdma_init_module(void)
2066 {
2067 int ret;
2068
2069 ret = ib_register_client(&nvme_rdma_ib_client);
2070 if (ret)
2071 return ret;
2072
2073 ret = nvmf_register_transport(&nvme_rdma_transport);
2074 if (ret)
2075 goto err_unreg_client;
2076
2077 return 0;
2078
2079 err_unreg_client:
2080 ib_unregister_client(&nvme_rdma_ib_client);
2081 return ret;
2082 }
2083
2084 static void __exit nvme_rdma_cleanup_module(void)
2085 {
2086 nvmf_unregister_transport(&nvme_rdma_transport);
2087 ib_unregister_client(&nvme_rdma_ib_client);
2088 }
2089
2090 module_init(nvme_rdma_init_module);
2091 module_exit(nvme_rdma_cleanup_module);
2092
2093 MODULE_LICENSE("GPL v2");