]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/rdma.c
Merge tag 'reset-fixes-for-4.18' of git://git.pengutronix.de/git/pza/linux into next...
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS 256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
44
45 struct nvme_rdma_device {
46 struct ib_device *dev;
47 struct ib_pd *pd;
48 struct kref ref;
49 struct list_head entry;
50 };
51
52 struct nvme_rdma_qe {
53 struct ib_cqe cqe;
54 void *data;
55 u64 dma;
56 };
57
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60 struct nvme_request req;
61 struct ib_mr *mr;
62 struct nvme_rdma_qe sqe;
63 union nvme_result result;
64 __le16 status;
65 refcount_t ref;
66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67 u32 num_sge;
68 int nents;
69 struct ib_reg_wr reg_wr;
70 struct ib_cqe reg_cqe;
71 struct nvme_rdma_queue *queue;
72 struct sg_table sg_table;
73 struct scatterlist first_sgl[];
74 };
75
76 enum nvme_rdma_queue_flags {
77 NVME_RDMA_Q_ALLOCATED = 0,
78 NVME_RDMA_Q_LIVE = 1,
79 NVME_RDMA_Q_TR_READY = 2,
80 };
81
82 struct nvme_rdma_queue {
83 struct nvme_rdma_qe *rsp_ring;
84 int queue_size;
85 size_t cmnd_capsule_len;
86 struct nvme_rdma_ctrl *ctrl;
87 struct nvme_rdma_device *device;
88 struct ib_cq *ib_cq;
89 struct ib_qp *qp;
90
91 unsigned long flags;
92 struct rdma_cm_id *cm_id;
93 int cm_error;
94 struct completion cm_done;
95 };
96
97 struct nvme_rdma_ctrl {
98 /* read only in the hot path */
99 struct nvme_rdma_queue *queues;
100
101 /* other member variables */
102 struct blk_mq_tag_set tag_set;
103 struct work_struct err_work;
104
105 struct nvme_rdma_qe async_event_sqe;
106
107 struct delayed_work reconnect_work;
108
109 struct list_head list;
110
111 struct blk_mq_tag_set admin_tag_set;
112 struct nvme_rdma_device *device;
113
114 u32 max_fr_pages;
115
116 struct sockaddr_storage addr;
117 struct sockaddr_storage src_addr;
118
119 struct nvme_ctrl ctrl;
120 };
121
122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
123 {
124 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
125 }
126
127 static LIST_HEAD(device_list);
128 static DEFINE_MUTEX(device_list_mutex);
129
130 static LIST_HEAD(nvme_rdma_ctrl_list);
131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
132
133 /*
134 * Disabling this option makes small I/O goes faster, but is fundamentally
135 * unsafe. With it turned off we will have to register a global rkey that
136 * allows read and write access to all physical memory.
137 */
138 static bool register_always = true;
139 module_param(register_always, bool, 0444);
140 MODULE_PARM_DESC(register_always,
141 "Use memory registration even for contiguous memory regions");
142
143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
144 struct rdma_cm_event *event);
145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
146
147 static const struct blk_mq_ops nvme_rdma_mq_ops;
148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
149
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline void put_unaligned_le24(u32 val, u8 *p)
152 {
153 *p++ = val;
154 *p++ = val >> 8;
155 *p++ = val >> 16;
156 }
157
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160 return queue - queue->ctrl->queues;
161 }
162
163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
164 {
165 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
166 }
167
168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
169 size_t capsule_size, enum dma_data_direction dir)
170 {
171 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
172 kfree(qe->data);
173 }
174
175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176 size_t capsule_size, enum dma_data_direction dir)
177 {
178 qe->data = kzalloc(capsule_size, GFP_KERNEL);
179 if (!qe->data)
180 return -ENOMEM;
181
182 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
183 if (ib_dma_mapping_error(ibdev, qe->dma)) {
184 kfree(qe->data);
185 return -ENOMEM;
186 }
187
188 return 0;
189 }
190
191 static void nvme_rdma_free_ring(struct ib_device *ibdev,
192 struct nvme_rdma_qe *ring, size_t ib_queue_size,
193 size_t capsule_size, enum dma_data_direction dir)
194 {
195 int i;
196
197 for (i = 0; i < ib_queue_size; i++)
198 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
199 kfree(ring);
200 }
201
202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
203 size_t ib_queue_size, size_t capsule_size,
204 enum dma_data_direction dir)
205 {
206 struct nvme_rdma_qe *ring;
207 int i;
208
209 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
210 if (!ring)
211 return NULL;
212
213 for (i = 0; i < ib_queue_size; i++) {
214 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215 goto out_free_ring;
216 }
217
218 return ring;
219
220 out_free_ring:
221 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222 return NULL;
223 }
224
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227 pr_debug("QP event %s (%d)\n",
228 ib_event_msg(event->event), event->event);
229
230 }
231
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234 wait_for_completion_interruptible_timeout(&queue->cm_done,
235 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
236 return queue->cm_error;
237 }
238
239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
240 {
241 struct nvme_rdma_device *dev = queue->device;
242 struct ib_qp_init_attr init_attr;
243 int ret;
244
245 memset(&init_attr, 0, sizeof(init_attr));
246 init_attr.event_handler = nvme_rdma_qp_event;
247 /* +1 for drain */
248 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
249 /* +1 for drain */
250 init_attr.cap.max_recv_wr = queue->queue_size + 1;
251 init_attr.cap.max_recv_sge = 1;
252 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
253 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
254 init_attr.qp_type = IB_QPT_RC;
255 init_attr.send_cq = queue->ib_cq;
256 init_attr.recv_cq = queue->ib_cq;
257
258 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
259
260 queue->qp = queue->cm_id->qp;
261 return ret;
262 }
263
264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
265 struct request *rq, unsigned int hctx_idx)
266 {
267 struct nvme_rdma_ctrl *ctrl = set->driver_data;
268 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
271 struct nvme_rdma_device *dev = queue->device;
272
273 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
274 DMA_TO_DEVICE);
275 }
276
277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
278 struct request *rq, unsigned int hctx_idx,
279 unsigned int numa_node)
280 {
281 struct nvme_rdma_ctrl *ctrl = set->driver_data;
282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
285 struct nvme_rdma_device *dev = queue->device;
286 struct ib_device *ibdev = dev->dev;
287 int ret;
288
289 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
290 DMA_TO_DEVICE);
291 if (ret)
292 return ret;
293
294 req->queue = queue;
295
296 return 0;
297 }
298
299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
300 unsigned int hctx_idx)
301 {
302 struct nvme_rdma_ctrl *ctrl = data;
303 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
304
305 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306
307 hctx->driver_data = queue;
308 return 0;
309 }
310
311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
312 unsigned int hctx_idx)
313 {
314 struct nvme_rdma_ctrl *ctrl = data;
315 struct nvme_rdma_queue *queue = &ctrl->queues[0];
316
317 BUG_ON(hctx_idx != 0);
318
319 hctx->driver_data = queue;
320 return 0;
321 }
322
323 static void nvme_rdma_free_dev(struct kref *ref)
324 {
325 struct nvme_rdma_device *ndev =
326 container_of(ref, struct nvme_rdma_device, ref);
327
328 mutex_lock(&device_list_mutex);
329 list_del(&ndev->entry);
330 mutex_unlock(&device_list_mutex);
331
332 ib_dealloc_pd(ndev->pd);
333 kfree(ndev);
334 }
335
336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
337 {
338 kref_put(&dev->ref, nvme_rdma_free_dev);
339 }
340
341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
342 {
343 return kref_get_unless_zero(&dev->ref);
344 }
345
346 static struct nvme_rdma_device *
347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
348 {
349 struct nvme_rdma_device *ndev;
350
351 mutex_lock(&device_list_mutex);
352 list_for_each_entry(ndev, &device_list, entry) {
353 if (ndev->dev->node_guid == cm_id->device->node_guid &&
354 nvme_rdma_dev_get(ndev))
355 goto out_unlock;
356 }
357
358 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
359 if (!ndev)
360 goto out_err;
361
362 ndev->dev = cm_id->device;
363 kref_init(&ndev->ref);
364
365 ndev->pd = ib_alloc_pd(ndev->dev,
366 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367 if (IS_ERR(ndev->pd))
368 goto out_free_dev;
369
370 if (!(ndev->dev->attrs.device_cap_flags &
371 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
372 dev_err(&ndev->dev->dev,
373 "Memory registrations not supported.\n");
374 goto out_free_pd;
375 }
376
377 list_add(&ndev->entry, &device_list);
378 out_unlock:
379 mutex_unlock(&device_list_mutex);
380 return ndev;
381
382 out_free_pd:
383 ib_dealloc_pd(ndev->pd);
384 out_free_dev:
385 kfree(ndev);
386 out_err:
387 mutex_unlock(&device_list_mutex);
388 return NULL;
389 }
390
391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
392 {
393 struct nvme_rdma_device *dev;
394 struct ib_device *ibdev;
395
396 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
397 return;
398
399 dev = queue->device;
400 ibdev = dev->dev;
401
402 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
403
404 /*
405 * The cm_id object might have been destroyed during RDMA connection
406 * establishment error flow to avoid getting other cma events, thus
407 * the destruction of the QP shouldn't use rdma_cm API.
408 */
409 ib_destroy_qp(queue->qp);
410 ib_free_cq(queue->ib_cq);
411
412 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
413 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
414
415 nvme_rdma_dev_put(dev);
416 }
417
418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
419 {
420 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
421 ibdev->attrs.max_fast_reg_page_list_len);
422 }
423
424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 struct ib_device *ibdev;
427 const int send_wr_factor = 3; /* MR, SEND, INV */
428 const int cq_factor = send_wr_factor + 1; /* + RECV */
429 int comp_vector, idx = nvme_rdma_queue_idx(queue);
430 int ret;
431
432 queue->device = nvme_rdma_find_get_device(queue->cm_id);
433 if (!queue->device) {
434 dev_err(queue->cm_id->device->dev.parent,
435 "no client data found!\n");
436 return -ECONNREFUSED;
437 }
438 ibdev = queue->device->dev;
439
440 /*
441 * Spread I/O queues completion vectors according their queue index.
442 * Admin queues can always go on completion vector 0.
443 */
444 comp_vector = idx == 0 ? idx : idx - 1;
445
446 /* +1 for ib_stop_cq */
447 queue->ib_cq = ib_alloc_cq(ibdev, queue,
448 cq_factor * queue->queue_size + 1,
449 comp_vector, IB_POLL_SOFTIRQ);
450 if (IS_ERR(queue->ib_cq)) {
451 ret = PTR_ERR(queue->ib_cq);
452 goto out_put_dev;
453 }
454
455 ret = nvme_rdma_create_qp(queue, send_wr_factor);
456 if (ret)
457 goto out_destroy_ib_cq;
458
459 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
460 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
461 if (!queue->rsp_ring) {
462 ret = -ENOMEM;
463 goto out_destroy_qp;
464 }
465
466 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
467 queue->queue_size,
468 IB_MR_TYPE_MEM_REG,
469 nvme_rdma_get_max_fr_pages(ibdev));
470 if (ret) {
471 dev_err(queue->ctrl->ctrl.device,
472 "failed to initialize MR pool sized %d for QID %d\n",
473 queue->queue_size, idx);
474 goto out_destroy_ring;
475 }
476
477 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
478
479 return 0;
480
481 out_destroy_ring:
482 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 out_destroy_qp:
485 rdma_destroy_qp(queue->cm_id);
486 out_destroy_ib_cq:
487 ib_free_cq(queue->ib_cq);
488 out_put_dev:
489 nvme_rdma_dev_put(queue->device);
490 return ret;
491 }
492
493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494 int idx, size_t queue_size)
495 {
496 struct nvme_rdma_queue *queue;
497 struct sockaddr *src_addr = NULL;
498 int ret;
499
500 queue = &ctrl->queues[idx];
501 queue->ctrl = ctrl;
502 init_completion(&queue->cm_done);
503
504 if (idx > 0)
505 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
506 else
507 queue->cmnd_capsule_len = sizeof(struct nvme_command);
508
509 queue->queue_size = queue_size;
510
511 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
512 RDMA_PS_TCP, IB_QPT_RC);
513 if (IS_ERR(queue->cm_id)) {
514 dev_info(ctrl->ctrl.device,
515 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
516 return PTR_ERR(queue->cm_id);
517 }
518
519 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520 src_addr = (struct sockaddr *)&ctrl->src_addr;
521
522 queue->cm_error = -ETIMEDOUT;
523 ret = rdma_resolve_addr(queue->cm_id, src_addr,
524 (struct sockaddr *)&ctrl->addr,
525 NVME_RDMA_CONNECT_TIMEOUT_MS);
526 if (ret) {
527 dev_info(ctrl->ctrl.device,
528 "rdma_resolve_addr failed (%d).\n", ret);
529 goto out_destroy_cm_id;
530 }
531
532 ret = nvme_rdma_wait_for_cm(queue);
533 if (ret) {
534 dev_info(ctrl->ctrl.device,
535 "rdma connection establishment failed (%d)\n", ret);
536 goto out_destroy_cm_id;
537 }
538
539 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540
541 return 0;
542
543 out_destroy_cm_id:
544 rdma_destroy_id(queue->cm_id);
545 nvme_rdma_destroy_queue_ib(queue);
546 return ret;
547 }
548
549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
550 {
551 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
552 return;
553
554 rdma_disconnect(queue->cm_id);
555 ib_drain_qp(queue->qp);
556 }
557
558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
559 {
560 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561 return;
562
563 nvme_rdma_destroy_queue_ib(queue);
564 rdma_destroy_id(queue->cm_id);
565 }
566
567 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
568 {
569 int i;
570
571 for (i = 1; i < ctrl->ctrl.queue_count; i++)
572 nvme_rdma_free_queue(&ctrl->queues[i]);
573 }
574
575 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
576 {
577 int i;
578
579 for (i = 1; i < ctrl->ctrl.queue_count; i++)
580 nvme_rdma_stop_queue(&ctrl->queues[i]);
581 }
582
583 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
584 {
585 int ret;
586
587 if (idx)
588 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
589 else
590 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
591
592 if (!ret)
593 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
594 else
595 dev_info(ctrl->ctrl.device,
596 "failed to connect queue: %d ret=%d\n", idx, ret);
597 return ret;
598 }
599
600 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
601 {
602 int i, ret = 0;
603
604 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
605 ret = nvme_rdma_start_queue(ctrl, i);
606 if (ret)
607 goto out_stop_queues;
608 }
609
610 return 0;
611
612 out_stop_queues:
613 for (i--; i >= 1; i--)
614 nvme_rdma_stop_queue(&ctrl->queues[i]);
615 return ret;
616 }
617
618 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
621 struct ib_device *ibdev = ctrl->device->dev;
622 unsigned int nr_io_queues;
623 int i, ret;
624
625 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
626
627 /*
628 * we map queues according to the device irq vectors for
629 * optimal locality so we don't need more queues than
630 * completion vectors.
631 */
632 nr_io_queues = min_t(unsigned int, nr_io_queues,
633 ibdev->num_comp_vectors);
634
635 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
636 if (ret)
637 return ret;
638
639 ctrl->ctrl.queue_count = nr_io_queues + 1;
640 if (ctrl->ctrl.queue_count < 2)
641 return 0;
642
643 dev_info(ctrl->ctrl.device,
644 "creating %d I/O queues.\n", nr_io_queues);
645
646 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
647 ret = nvme_rdma_alloc_queue(ctrl, i,
648 ctrl->ctrl.sqsize + 1);
649 if (ret)
650 goto out_free_queues;
651 }
652
653 return 0;
654
655 out_free_queues:
656 for (i--; i >= 1; i--)
657 nvme_rdma_free_queue(&ctrl->queues[i]);
658
659 return ret;
660 }
661
662 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
663 struct blk_mq_tag_set *set)
664 {
665 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
666
667 blk_mq_free_tag_set(set);
668 nvme_rdma_dev_put(ctrl->device);
669 }
670
671 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
672 bool admin)
673 {
674 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
675 struct blk_mq_tag_set *set;
676 int ret;
677
678 if (admin) {
679 set = &ctrl->admin_tag_set;
680 memset(set, 0, sizeof(*set));
681 set->ops = &nvme_rdma_admin_mq_ops;
682 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
683 set->reserved_tags = 2; /* connect + keep-alive */
684 set->numa_node = NUMA_NO_NODE;
685 set->cmd_size = sizeof(struct nvme_rdma_request) +
686 SG_CHUNK_SIZE * sizeof(struct scatterlist);
687 set->driver_data = ctrl;
688 set->nr_hw_queues = 1;
689 set->timeout = ADMIN_TIMEOUT;
690 set->flags = BLK_MQ_F_NO_SCHED;
691 } else {
692 set = &ctrl->tag_set;
693 memset(set, 0, sizeof(*set));
694 set->ops = &nvme_rdma_mq_ops;
695 set->queue_depth = nctrl->sqsize + 1;
696 set->reserved_tags = 1; /* fabric connect */
697 set->numa_node = NUMA_NO_NODE;
698 set->flags = BLK_MQ_F_SHOULD_MERGE;
699 set->cmd_size = sizeof(struct nvme_rdma_request) +
700 SG_CHUNK_SIZE * sizeof(struct scatterlist);
701 set->driver_data = ctrl;
702 set->nr_hw_queues = nctrl->queue_count - 1;
703 set->timeout = NVME_IO_TIMEOUT;
704 }
705
706 ret = blk_mq_alloc_tag_set(set);
707 if (ret)
708 goto out;
709
710 /*
711 * We need a reference on the device as long as the tag_set is alive,
712 * as the MRs in the request structures need a valid ib_device.
713 */
714 ret = nvme_rdma_dev_get(ctrl->device);
715 if (!ret) {
716 ret = -EINVAL;
717 goto out_free_tagset;
718 }
719
720 return set;
721
722 out_free_tagset:
723 blk_mq_free_tag_set(set);
724 out:
725 return ERR_PTR(ret);
726 }
727
728 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
729 bool remove)
730 {
731 if (remove) {
732 blk_cleanup_queue(ctrl->ctrl.admin_q);
733 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
734 }
735 if (ctrl->async_event_sqe.data) {
736 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
737 sizeof(struct nvme_command), DMA_TO_DEVICE);
738 ctrl->async_event_sqe.data = NULL;
739 }
740 nvme_rdma_free_queue(&ctrl->queues[0]);
741 }
742
743 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
744 bool new)
745 {
746 int error;
747
748 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
749 if (error)
750 return error;
751
752 ctrl->device = ctrl->queues[0].device;
753
754 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
755
756 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
757 sizeof(struct nvme_command), DMA_TO_DEVICE);
758 if (error)
759 goto out_free_queue;
760
761 if (new) {
762 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
763 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
764 error = PTR_ERR(ctrl->ctrl.admin_tagset);
765 goto out_free_async_qe;
766 }
767
768 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
769 if (IS_ERR(ctrl->ctrl.admin_q)) {
770 error = PTR_ERR(ctrl->ctrl.admin_q);
771 goto out_free_tagset;
772 }
773 }
774
775 error = nvme_rdma_start_queue(ctrl, 0);
776 if (error)
777 goto out_cleanup_queue;
778
779 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
780 &ctrl->ctrl.cap);
781 if (error) {
782 dev_err(ctrl->ctrl.device,
783 "prop_get NVME_REG_CAP failed\n");
784 goto out_stop_queue;
785 }
786
787 ctrl->ctrl.sqsize =
788 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
789
790 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
791 if (error)
792 goto out_stop_queue;
793
794 ctrl->ctrl.max_hw_sectors =
795 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
796
797 error = nvme_init_identify(&ctrl->ctrl);
798 if (error)
799 goto out_stop_queue;
800
801 return 0;
802
803 out_stop_queue:
804 nvme_rdma_stop_queue(&ctrl->queues[0]);
805 out_cleanup_queue:
806 if (new)
807 blk_cleanup_queue(ctrl->ctrl.admin_q);
808 out_free_tagset:
809 if (new)
810 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
811 out_free_async_qe:
812 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
813 sizeof(struct nvme_command), DMA_TO_DEVICE);
814 out_free_queue:
815 nvme_rdma_free_queue(&ctrl->queues[0]);
816 return error;
817 }
818
819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
820 bool remove)
821 {
822 if (remove) {
823 blk_cleanup_queue(ctrl->ctrl.connect_q);
824 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
825 }
826 nvme_rdma_free_io_queues(ctrl);
827 }
828
829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
830 {
831 int ret;
832
833 ret = nvme_rdma_alloc_io_queues(ctrl);
834 if (ret)
835 return ret;
836
837 if (new) {
838 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
839 if (IS_ERR(ctrl->ctrl.tagset)) {
840 ret = PTR_ERR(ctrl->ctrl.tagset);
841 goto out_free_io_queues;
842 }
843
844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
845 if (IS_ERR(ctrl->ctrl.connect_q)) {
846 ret = PTR_ERR(ctrl->ctrl.connect_q);
847 goto out_free_tag_set;
848 }
849 } else {
850 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
851 ctrl->ctrl.queue_count - 1);
852 }
853
854 ret = nvme_rdma_start_io_queues(ctrl);
855 if (ret)
856 goto out_cleanup_connect_q;
857
858 return 0;
859
860 out_cleanup_connect_q:
861 if (new)
862 blk_cleanup_queue(ctrl->ctrl.connect_q);
863 out_free_tag_set:
864 if (new)
865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 out_free_io_queues:
867 nvme_rdma_free_io_queues(ctrl);
868 return ret;
869 }
870
871 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
872 {
873 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
874
875 cancel_work_sync(&ctrl->err_work);
876 cancel_delayed_work_sync(&ctrl->reconnect_work);
877 }
878
879 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
880 {
881 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
882
883 if (list_empty(&ctrl->list))
884 goto free_ctrl;
885
886 mutex_lock(&nvme_rdma_ctrl_mutex);
887 list_del(&ctrl->list);
888 mutex_unlock(&nvme_rdma_ctrl_mutex);
889
890 nvmf_free_options(nctrl->opts);
891 free_ctrl:
892 kfree(ctrl->queues);
893 kfree(ctrl);
894 }
895
896 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
897 {
898 /* If we are resetting/deleting then do nothing */
899 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
900 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
901 ctrl->ctrl.state == NVME_CTRL_LIVE);
902 return;
903 }
904
905 if (nvmf_should_reconnect(&ctrl->ctrl)) {
906 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
907 ctrl->ctrl.opts->reconnect_delay);
908 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
909 ctrl->ctrl.opts->reconnect_delay * HZ);
910 } else {
911 nvme_delete_ctrl(&ctrl->ctrl);
912 }
913 }
914
915 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
916 {
917 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
918 struct nvme_rdma_ctrl, reconnect_work);
919 bool changed;
920 int ret;
921
922 ++ctrl->ctrl.nr_reconnects;
923
924 ret = nvme_rdma_configure_admin_queue(ctrl, false);
925 if (ret)
926 goto requeue;
927
928 if (ctrl->ctrl.queue_count > 1) {
929 ret = nvme_rdma_configure_io_queues(ctrl, false);
930 if (ret)
931 goto destroy_admin;
932 }
933
934 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
935 if (!changed) {
936 /* state change failure is ok if we're in DELETING state */
937 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
938 return;
939 }
940
941 nvme_start_ctrl(&ctrl->ctrl);
942
943 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
944 ctrl->ctrl.nr_reconnects);
945
946 ctrl->ctrl.nr_reconnects = 0;
947
948 return;
949
950 destroy_admin:
951 nvme_rdma_stop_queue(&ctrl->queues[0]);
952 nvme_rdma_destroy_admin_queue(ctrl, false);
953 requeue:
954 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
955 ctrl->ctrl.nr_reconnects);
956 nvme_rdma_reconnect_or_remove(ctrl);
957 }
958
959 static void nvme_rdma_error_recovery_work(struct work_struct *work)
960 {
961 struct nvme_rdma_ctrl *ctrl = container_of(work,
962 struct nvme_rdma_ctrl, err_work);
963
964 nvme_stop_keep_alive(&ctrl->ctrl);
965
966 if (ctrl->ctrl.queue_count > 1) {
967 nvme_stop_queues(&ctrl->ctrl);
968 nvme_rdma_stop_io_queues(ctrl);
969 blk_mq_tagset_busy_iter(&ctrl->tag_set,
970 nvme_cancel_request, &ctrl->ctrl);
971 nvme_rdma_destroy_io_queues(ctrl, false);
972 }
973
974 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
975 nvme_rdma_stop_queue(&ctrl->queues[0]);
976 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
977 nvme_cancel_request, &ctrl->ctrl);
978 nvme_rdma_destroy_admin_queue(ctrl, false);
979
980 /*
981 * queues are not a live anymore, so restart the queues to fail fast
982 * new IO
983 */
984 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
985 nvme_start_queues(&ctrl->ctrl);
986
987 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
988 /* state change failure is ok if we're in DELETING state */
989 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
990 return;
991 }
992
993 nvme_rdma_reconnect_or_remove(ctrl);
994 }
995
996 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
997 {
998 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
999 return;
1000
1001 queue_work(nvme_wq, &ctrl->err_work);
1002 }
1003
1004 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1005 const char *op)
1006 {
1007 struct nvme_rdma_queue *queue = cq->cq_context;
1008 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1009
1010 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1011 dev_info(ctrl->ctrl.device,
1012 "%s for CQE 0x%p failed with status %s (%d)\n",
1013 op, wc->wr_cqe,
1014 ib_wc_status_msg(wc->status), wc->status);
1015 nvme_rdma_error_recovery(ctrl);
1016 }
1017
1018 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1019 {
1020 if (unlikely(wc->status != IB_WC_SUCCESS))
1021 nvme_rdma_wr_error(cq, wc, "MEMREG");
1022 }
1023
1024 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1025 {
1026 struct nvme_rdma_request *req =
1027 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1028 struct request *rq = blk_mq_rq_from_pdu(req);
1029
1030 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1031 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1032 return;
1033 }
1034
1035 if (refcount_dec_and_test(&req->ref))
1036 nvme_end_request(rq, req->status, req->result);
1037
1038 }
1039
1040 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1041 struct nvme_rdma_request *req)
1042 {
1043 struct ib_send_wr *bad_wr;
1044 struct ib_send_wr wr = {
1045 .opcode = IB_WR_LOCAL_INV,
1046 .next = NULL,
1047 .num_sge = 0,
1048 .send_flags = IB_SEND_SIGNALED,
1049 .ex.invalidate_rkey = req->mr->rkey,
1050 };
1051
1052 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1053 wr.wr_cqe = &req->reg_cqe;
1054
1055 return ib_post_send(queue->qp, &wr, &bad_wr);
1056 }
1057
1058 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1059 struct request *rq)
1060 {
1061 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1062 struct nvme_rdma_device *dev = queue->device;
1063 struct ib_device *ibdev = dev->dev;
1064
1065 if (!blk_rq_payload_bytes(rq))
1066 return;
1067
1068 if (req->mr) {
1069 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1070 req->mr = NULL;
1071 }
1072
1073 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1074 req->nents, rq_data_dir(rq) ==
1075 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1076
1077 nvme_cleanup_cmd(rq);
1078 sg_free_table_chained(&req->sg_table, true);
1079 }
1080
1081 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1082 {
1083 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1084
1085 sg->addr = 0;
1086 put_unaligned_le24(0, sg->length);
1087 put_unaligned_le32(0, sg->key);
1088 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1089 return 0;
1090 }
1091
1092 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1093 struct nvme_rdma_request *req, struct nvme_command *c)
1094 {
1095 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1096
1097 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1098 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1099 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1100
1101 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1102 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1103 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1104
1105 req->num_sge++;
1106 return 0;
1107 }
1108
1109 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1110 struct nvme_rdma_request *req, struct nvme_command *c)
1111 {
1112 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1113
1114 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1115 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1116 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1117 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1118 return 0;
1119 }
1120
1121 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1122 struct nvme_rdma_request *req, struct nvme_command *c,
1123 int count)
1124 {
1125 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1126 int nr;
1127
1128 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1129 if (WARN_ON_ONCE(!req->mr))
1130 return -EAGAIN;
1131
1132 /*
1133 * Align the MR to a 4K page size to match the ctrl page size and
1134 * the block virtual boundary.
1135 */
1136 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1137 if (unlikely(nr < count)) {
1138 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1139 req->mr = NULL;
1140 if (nr < 0)
1141 return nr;
1142 return -EINVAL;
1143 }
1144
1145 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1146
1147 req->reg_cqe.done = nvme_rdma_memreg_done;
1148 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1149 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1150 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1151 req->reg_wr.wr.num_sge = 0;
1152 req->reg_wr.mr = req->mr;
1153 req->reg_wr.key = req->mr->rkey;
1154 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1155 IB_ACCESS_REMOTE_READ |
1156 IB_ACCESS_REMOTE_WRITE;
1157
1158 sg->addr = cpu_to_le64(req->mr->iova);
1159 put_unaligned_le24(req->mr->length, sg->length);
1160 put_unaligned_le32(req->mr->rkey, sg->key);
1161 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1162 NVME_SGL_FMT_INVALIDATE;
1163
1164 return 0;
1165 }
1166
1167 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1168 struct request *rq, struct nvme_command *c)
1169 {
1170 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1171 struct nvme_rdma_device *dev = queue->device;
1172 struct ib_device *ibdev = dev->dev;
1173 int count, ret;
1174
1175 req->num_sge = 1;
1176 refcount_set(&req->ref, 2); /* send and recv completions */
1177
1178 c->common.flags |= NVME_CMD_SGL_METABUF;
1179
1180 if (!blk_rq_payload_bytes(rq))
1181 return nvme_rdma_set_sg_null(c);
1182
1183 req->sg_table.sgl = req->first_sgl;
1184 ret = sg_alloc_table_chained(&req->sg_table,
1185 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1186 if (ret)
1187 return -ENOMEM;
1188
1189 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1190
1191 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1192 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1193 if (unlikely(count <= 0)) {
1194 ret = -EIO;
1195 goto out_free_table;
1196 }
1197
1198 if (count == 1) {
1199 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1200 blk_rq_payload_bytes(rq) <=
1201 nvme_rdma_inline_data_size(queue)) {
1202 ret = nvme_rdma_map_sg_inline(queue, req, c);
1203 goto out;
1204 }
1205
1206 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1207 ret = nvme_rdma_map_sg_single(queue, req, c);
1208 goto out;
1209 }
1210 }
1211
1212 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1213 out:
1214 if (unlikely(ret))
1215 goto out_unmap_sg;
1216
1217 return 0;
1218
1219 out_unmap_sg:
1220 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1221 req->nents, rq_data_dir(rq) ==
1222 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1223 out_free_table:
1224 sg_free_table_chained(&req->sg_table, true);
1225 return ret;
1226 }
1227
1228 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1229 {
1230 struct nvme_rdma_qe *qe =
1231 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1232 struct nvme_rdma_request *req =
1233 container_of(qe, struct nvme_rdma_request, sqe);
1234 struct request *rq = blk_mq_rq_from_pdu(req);
1235
1236 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1237 nvme_rdma_wr_error(cq, wc, "SEND");
1238 return;
1239 }
1240
1241 if (refcount_dec_and_test(&req->ref))
1242 nvme_end_request(rq, req->status, req->result);
1243 }
1244
1245 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1246 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1247 struct ib_send_wr *first)
1248 {
1249 struct ib_send_wr wr, *bad_wr;
1250 int ret;
1251
1252 sge->addr = qe->dma;
1253 sge->length = sizeof(struct nvme_command),
1254 sge->lkey = queue->device->pd->local_dma_lkey;
1255
1256 wr.next = NULL;
1257 wr.wr_cqe = &qe->cqe;
1258 wr.sg_list = sge;
1259 wr.num_sge = num_sge;
1260 wr.opcode = IB_WR_SEND;
1261 wr.send_flags = IB_SEND_SIGNALED;
1262
1263 if (first)
1264 first->next = &wr;
1265 else
1266 first = &wr;
1267
1268 ret = ib_post_send(queue->qp, first, &bad_wr);
1269 if (unlikely(ret)) {
1270 dev_err(queue->ctrl->ctrl.device,
1271 "%s failed with error code %d\n", __func__, ret);
1272 }
1273 return ret;
1274 }
1275
1276 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1277 struct nvme_rdma_qe *qe)
1278 {
1279 struct ib_recv_wr wr, *bad_wr;
1280 struct ib_sge list;
1281 int ret;
1282
1283 list.addr = qe->dma;
1284 list.length = sizeof(struct nvme_completion);
1285 list.lkey = queue->device->pd->local_dma_lkey;
1286
1287 qe->cqe.done = nvme_rdma_recv_done;
1288
1289 wr.next = NULL;
1290 wr.wr_cqe = &qe->cqe;
1291 wr.sg_list = &list;
1292 wr.num_sge = 1;
1293
1294 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1295 if (unlikely(ret)) {
1296 dev_err(queue->ctrl->ctrl.device,
1297 "%s failed with error code %d\n", __func__, ret);
1298 }
1299 return ret;
1300 }
1301
1302 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1303 {
1304 u32 queue_idx = nvme_rdma_queue_idx(queue);
1305
1306 if (queue_idx == 0)
1307 return queue->ctrl->admin_tag_set.tags[queue_idx];
1308 return queue->ctrl->tag_set.tags[queue_idx - 1];
1309 }
1310
1311 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1312 {
1313 if (unlikely(wc->status != IB_WC_SUCCESS))
1314 nvme_rdma_wr_error(cq, wc, "ASYNC");
1315 }
1316
1317 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1318 {
1319 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1320 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1321 struct ib_device *dev = queue->device->dev;
1322 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1323 struct nvme_command *cmd = sqe->data;
1324 struct ib_sge sge;
1325 int ret;
1326
1327 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1328
1329 memset(cmd, 0, sizeof(*cmd));
1330 cmd->common.opcode = nvme_admin_async_event;
1331 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1332 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1333 nvme_rdma_set_sg_null(cmd);
1334
1335 sqe->cqe.done = nvme_rdma_async_done;
1336
1337 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1338 DMA_TO_DEVICE);
1339
1340 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1341 WARN_ON_ONCE(ret);
1342 }
1343
1344 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1345 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1346 {
1347 struct request *rq;
1348 struct nvme_rdma_request *req;
1349 int ret = 0;
1350
1351 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1352 if (!rq) {
1353 dev_err(queue->ctrl->ctrl.device,
1354 "tag 0x%x on QP %#x not found\n",
1355 cqe->command_id, queue->qp->qp_num);
1356 nvme_rdma_error_recovery(queue->ctrl);
1357 return ret;
1358 }
1359 req = blk_mq_rq_to_pdu(rq);
1360
1361 req->status = cqe->status;
1362 req->result = cqe->result;
1363
1364 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1365 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1366 dev_err(queue->ctrl->ctrl.device,
1367 "Bogus remote invalidation for rkey %#x\n",
1368 req->mr->rkey);
1369 nvme_rdma_error_recovery(queue->ctrl);
1370 }
1371 } else if (req->mr) {
1372 ret = nvme_rdma_inv_rkey(queue, req);
1373 if (unlikely(ret < 0)) {
1374 dev_err(queue->ctrl->ctrl.device,
1375 "Queueing INV WR for rkey %#x failed (%d)\n",
1376 req->mr->rkey, ret);
1377 nvme_rdma_error_recovery(queue->ctrl);
1378 }
1379 /* the local invalidation completion will end the request */
1380 return 0;
1381 }
1382
1383 if (refcount_dec_and_test(&req->ref)) {
1384 if (rq->tag == tag)
1385 ret = 1;
1386 nvme_end_request(rq, req->status, req->result);
1387 }
1388
1389 return ret;
1390 }
1391
1392 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1393 {
1394 struct nvme_rdma_qe *qe =
1395 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1396 struct nvme_rdma_queue *queue = cq->cq_context;
1397 struct ib_device *ibdev = queue->device->dev;
1398 struct nvme_completion *cqe = qe->data;
1399 const size_t len = sizeof(struct nvme_completion);
1400 int ret = 0;
1401
1402 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1403 nvme_rdma_wr_error(cq, wc, "RECV");
1404 return 0;
1405 }
1406
1407 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1408 /*
1409 * AEN requests are special as they don't time out and can
1410 * survive any kind of queue freeze and often don't respond to
1411 * aborts. We don't even bother to allocate a struct request
1412 * for them but rather special case them here.
1413 */
1414 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1415 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1416 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1417 &cqe->result);
1418 else
1419 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1420 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1421
1422 nvme_rdma_post_recv(queue, qe);
1423 return ret;
1424 }
1425
1426 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1427 {
1428 __nvme_rdma_recv_done(cq, wc, -1);
1429 }
1430
1431 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1432 {
1433 int ret, i;
1434
1435 for (i = 0; i < queue->queue_size; i++) {
1436 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1437 if (ret)
1438 goto out_destroy_queue_ib;
1439 }
1440
1441 return 0;
1442
1443 out_destroy_queue_ib:
1444 nvme_rdma_destroy_queue_ib(queue);
1445 return ret;
1446 }
1447
1448 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1449 struct rdma_cm_event *ev)
1450 {
1451 struct rdma_cm_id *cm_id = queue->cm_id;
1452 int status = ev->status;
1453 const char *rej_msg;
1454 const struct nvme_rdma_cm_rej *rej_data;
1455 u8 rej_data_len;
1456
1457 rej_msg = rdma_reject_msg(cm_id, status);
1458 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1459
1460 if (rej_data && rej_data_len >= sizeof(u16)) {
1461 u16 sts = le16_to_cpu(rej_data->sts);
1462
1463 dev_err(queue->ctrl->ctrl.device,
1464 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1465 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1466 } else {
1467 dev_err(queue->ctrl->ctrl.device,
1468 "Connect rejected: status %d (%s).\n", status, rej_msg);
1469 }
1470
1471 return -ECONNRESET;
1472 }
1473
1474 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1475 {
1476 int ret;
1477
1478 ret = nvme_rdma_create_queue_ib(queue);
1479 if (ret)
1480 return ret;
1481
1482 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1483 if (ret) {
1484 dev_err(queue->ctrl->ctrl.device,
1485 "rdma_resolve_route failed (%d).\n",
1486 queue->cm_error);
1487 goto out_destroy_queue;
1488 }
1489
1490 return 0;
1491
1492 out_destroy_queue:
1493 nvme_rdma_destroy_queue_ib(queue);
1494 return ret;
1495 }
1496
1497 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1498 {
1499 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1500 struct rdma_conn_param param = { };
1501 struct nvme_rdma_cm_req priv = { };
1502 int ret;
1503
1504 param.qp_num = queue->qp->qp_num;
1505 param.flow_control = 1;
1506
1507 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1508 /* maximum retry count */
1509 param.retry_count = 7;
1510 param.rnr_retry_count = 7;
1511 param.private_data = &priv;
1512 param.private_data_len = sizeof(priv);
1513
1514 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1515 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1516 /*
1517 * set the admin queue depth to the minimum size
1518 * specified by the Fabrics standard.
1519 */
1520 if (priv.qid == 0) {
1521 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1522 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1523 } else {
1524 /*
1525 * current interpretation of the fabrics spec
1526 * is at minimum you make hrqsize sqsize+1, or a
1527 * 1's based representation of sqsize.
1528 */
1529 priv.hrqsize = cpu_to_le16(queue->queue_size);
1530 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1531 }
1532
1533 ret = rdma_connect(queue->cm_id, &param);
1534 if (ret) {
1535 dev_err(ctrl->ctrl.device,
1536 "rdma_connect failed (%d).\n", ret);
1537 goto out_destroy_queue_ib;
1538 }
1539
1540 return 0;
1541
1542 out_destroy_queue_ib:
1543 nvme_rdma_destroy_queue_ib(queue);
1544 return ret;
1545 }
1546
1547 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1548 struct rdma_cm_event *ev)
1549 {
1550 struct nvme_rdma_queue *queue = cm_id->context;
1551 int cm_error = 0;
1552
1553 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1554 rdma_event_msg(ev->event), ev->event,
1555 ev->status, cm_id);
1556
1557 switch (ev->event) {
1558 case RDMA_CM_EVENT_ADDR_RESOLVED:
1559 cm_error = nvme_rdma_addr_resolved(queue);
1560 break;
1561 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1562 cm_error = nvme_rdma_route_resolved(queue);
1563 break;
1564 case RDMA_CM_EVENT_ESTABLISHED:
1565 queue->cm_error = nvme_rdma_conn_established(queue);
1566 /* complete cm_done regardless of success/failure */
1567 complete(&queue->cm_done);
1568 return 0;
1569 case RDMA_CM_EVENT_REJECTED:
1570 nvme_rdma_destroy_queue_ib(queue);
1571 cm_error = nvme_rdma_conn_rejected(queue, ev);
1572 break;
1573 case RDMA_CM_EVENT_ROUTE_ERROR:
1574 case RDMA_CM_EVENT_CONNECT_ERROR:
1575 case RDMA_CM_EVENT_UNREACHABLE:
1576 nvme_rdma_destroy_queue_ib(queue);
1577 case RDMA_CM_EVENT_ADDR_ERROR:
1578 dev_dbg(queue->ctrl->ctrl.device,
1579 "CM error event %d\n", ev->event);
1580 cm_error = -ECONNRESET;
1581 break;
1582 case RDMA_CM_EVENT_DISCONNECTED:
1583 case RDMA_CM_EVENT_ADDR_CHANGE:
1584 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1585 dev_dbg(queue->ctrl->ctrl.device,
1586 "disconnect received - connection closed\n");
1587 nvme_rdma_error_recovery(queue->ctrl);
1588 break;
1589 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1590 /* device removal is handled via the ib_client API */
1591 break;
1592 default:
1593 dev_err(queue->ctrl->ctrl.device,
1594 "Unexpected RDMA CM event (%d)\n", ev->event);
1595 nvme_rdma_error_recovery(queue->ctrl);
1596 break;
1597 }
1598
1599 if (cm_error) {
1600 queue->cm_error = cm_error;
1601 complete(&queue->cm_done);
1602 }
1603
1604 return 0;
1605 }
1606
1607 static enum blk_eh_timer_return
1608 nvme_rdma_timeout(struct request *rq, bool reserved)
1609 {
1610 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1611
1612 dev_warn(req->queue->ctrl->ctrl.device,
1613 "I/O %d QID %d timeout, reset controller\n",
1614 rq->tag, nvme_rdma_queue_idx(req->queue));
1615
1616 /* queue error recovery */
1617 nvme_rdma_error_recovery(req->queue->ctrl);
1618
1619 /* fail with DNR on cmd timeout */
1620 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1621
1622 return BLK_EH_DONE;
1623 }
1624
1625 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1626 const struct blk_mq_queue_data *bd)
1627 {
1628 struct nvme_ns *ns = hctx->queue->queuedata;
1629 struct nvme_rdma_queue *queue = hctx->driver_data;
1630 struct request *rq = bd->rq;
1631 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1632 struct nvme_rdma_qe *sqe = &req->sqe;
1633 struct nvme_command *c = sqe->data;
1634 struct ib_device *dev;
1635 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1636 blk_status_t ret;
1637 int err;
1638
1639 WARN_ON_ONCE(rq->tag < 0);
1640
1641 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1642 return nvmf_fail_nonready_command(rq);
1643
1644 dev = queue->device->dev;
1645 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1646 sizeof(struct nvme_command), DMA_TO_DEVICE);
1647
1648 ret = nvme_setup_cmd(ns, rq, c);
1649 if (ret)
1650 return ret;
1651
1652 blk_mq_start_request(rq);
1653
1654 err = nvme_rdma_map_data(queue, rq, c);
1655 if (unlikely(err < 0)) {
1656 dev_err(queue->ctrl->ctrl.device,
1657 "Failed to map data (%d)\n", err);
1658 nvme_cleanup_cmd(rq);
1659 goto err;
1660 }
1661
1662 sqe->cqe.done = nvme_rdma_send_done;
1663
1664 ib_dma_sync_single_for_device(dev, sqe->dma,
1665 sizeof(struct nvme_command), DMA_TO_DEVICE);
1666
1667 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1668 req->mr ? &req->reg_wr.wr : NULL);
1669 if (unlikely(err)) {
1670 nvme_rdma_unmap_data(queue, rq);
1671 goto err;
1672 }
1673
1674 return BLK_STS_OK;
1675 err:
1676 if (err == -ENOMEM || err == -EAGAIN)
1677 return BLK_STS_RESOURCE;
1678 return BLK_STS_IOERR;
1679 }
1680
1681 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1682 {
1683 struct nvme_rdma_queue *queue = hctx->driver_data;
1684 struct ib_cq *cq = queue->ib_cq;
1685 struct ib_wc wc;
1686 int found = 0;
1687
1688 while (ib_poll_cq(cq, 1, &wc) > 0) {
1689 struct ib_cqe *cqe = wc.wr_cqe;
1690
1691 if (cqe) {
1692 if (cqe->done == nvme_rdma_recv_done)
1693 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1694 else
1695 cqe->done(cq, &wc);
1696 }
1697 }
1698
1699 return found;
1700 }
1701
1702 static void nvme_rdma_complete_rq(struct request *rq)
1703 {
1704 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1705
1706 nvme_rdma_unmap_data(req->queue, rq);
1707 nvme_complete_rq(rq);
1708 }
1709
1710 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1711 {
1712 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1713
1714 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1715 }
1716
1717 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1718 .queue_rq = nvme_rdma_queue_rq,
1719 .complete = nvme_rdma_complete_rq,
1720 .init_request = nvme_rdma_init_request,
1721 .exit_request = nvme_rdma_exit_request,
1722 .init_hctx = nvme_rdma_init_hctx,
1723 .poll = nvme_rdma_poll,
1724 .timeout = nvme_rdma_timeout,
1725 .map_queues = nvme_rdma_map_queues,
1726 };
1727
1728 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1729 .queue_rq = nvme_rdma_queue_rq,
1730 .complete = nvme_rdma_complete_rq,
1731 .init_request = nvme_rdma_init_request,
1732 .exit_request = nvme_rdma_exit_request,
1733 .init_hctx = nvme_rdma_init_admin_hctx,
1734 .timeout = nvme_rdma_timeout,
1735 };
1736
1737 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1738 {
1739 if (ctrl->ctrl.queue_count > 1) {
1740 nvme_stop_queues(&ctrl->ctrl);
1741 nvme_rdma_stop_io_queues(ctrl);
1742 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1743 nvme_cancel_request, &ctrl->ctrl);
1744 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1745 }
1746
1747 if (shutdown)
1748 nvme_shutdown_ctrl(&ctrl->ctrl);
1749 else
1750 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1751
1752 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1753 nvme_rdma_stop_queue(&ctrl->queues[0]);
1754 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1755 nvme_cancel_request, &ctrl->ctrl);
1756 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1757 nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1758 }
1759
1760 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1761 {
1762 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1763 }
1764
1765 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1766 {
1767 struct nvme_rdma_ctrl *ctrl =
1768 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1769 int ret;
1770 bool changed;
1771
1772 nvme_stop_ctrl(&ctrl->ctrl);
1773 nvme_rdma_shutdown_ctrl(ctrl, false);
1774
1775 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1776 /* state change failure should never happen */
1777 WARN_ON_ONCE(1);
1778 return;
1779 }
1780
1781 ret = nvme_rdma_configure_admin_queue(ctrl, false);
1782 if (ret)
1783 goto out_fail;
1784
1785 if (ctrl->ctrl.queue_count > 1) {
1786 ret = nvme_rdma_configure_io_queues(ctrl, false);
1787 if (ret)
1788 goto out_fail;
1789 }
1790
1791 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1792 if (!changed) {
1793 /* state change failure is ok if we're in DELETING state */
1794 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1795 return;
1796 }
1797
1798 nvme_start_ctrl(&ctrl->ctrl);
1799
1800 return;
1801
1802 out_fail:
1803 ++ctrl->ctrl.nr_reconnects;
1804 nvme_rdma_reconnect_or_remove(ctrl);
1805 }
1806
1807 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1808 .name = "rdma",
1809 .module = THIS_MODULE,
1810 .flags = NVME_F_FABRICS,
1811 .reg_read32 = nvmf_reg_read32,
1812 .reg_read64 = nvmf_reg_read64,
1813 .reg_write32 = nvmf_reg_write32,
1814 .free_ctrl = nvme_rdma_free_ctrl,
1815 .submit_async_event = nvme_rdma_submit_async_event,
1816 .delete_ctrl = nvme_rdma_delete_ctrl,
1817 .get_address = nvmf_get_address,
1818 .stop_ctrl = nvme_rdma_stop_ctrl,
1819 };
1820
1821 static inline bool
1822 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1823 struct nvmf_ctrl_options *opts)
1824 {
1825 char *stdport = __stringify(NVME_RDMA_IP_PORT);
1826
1827
1828 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1829 strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1830 return false;
1831
1832 if (opts->mask & NVMF_OPT_TRSVCID &&
1833 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1834 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1835 return false;
1836 } else if (opts->mask & NVMF_OPT_TRSVCID) {
1837 if (strcmp(opts->trsvcid, stdport))
1838 return false;
1839 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1840 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1841 return false;
1842 }
1843 /* else, it's a match as both have stdport. Fall to next checks */
1844
1845 /*
1846 * checking the local address is rough. In most cases, one
1847 * is not specified and the host port is selected by the stack.
1848 *
1849 * Assume no match if:
1850 * local address is specified and address is not the same
1851 * local address is not specified but remote is, or vice versa
1852 * (admin using specific host_traddr when it matters).
1853 */
1854 if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1855 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1856 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1857 return false;
1858 } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1859 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1860 return false;
1861 /*
1862 * if neither controller had an host port specified, assume it's
1863 * a match as everything else matched.
1864 */
1865
1866 return true;
1867 }
1868
1869 /*
1870 * Fails a connection request if it matches an existing controller
1871 * (association) with the same tuple:
1872 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1873 *
1874 * if local address is not specified in the request, it will match an
1875 * existing controller with all the other parameters the same and no
1876 * local port address specified as well.
1877 *
1878 * The ports don't need to be compared as they are intrinsically
1879 * already matched by the port pointers supplied.
1880 */
1881 static bool
1882 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1883 {
1884 struct nvme_rdma_ctrl *ctrl;
1885 bool found = false;
1886
1887 mutex_lock(&nvme_rdma_ctrl_mutex);
1888 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1889 found = __nvme_rdma_options_match(ctrl, opts);
1890 if (found)
1891 break;
1892 }
1893 mutex_unlock(&nvme_rdma_ctrl_mutex);
1894
1895 return found;
1896 }
1897
1898 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1899 struct nvmf_ctrl_options *opts)
1900 {
1901 struct nvme_rdma_ctrl *ctrl;
1902 int ret;
1903 bool changed;
1904 char *port;
1905
1906 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1907 if (!ctrl)
1908 return ERR_PTR(-ENOMEM);
1909 ctrl->ctrl.opts = opts;
1910 INIT_LIST_HEAD(&ctrl->list);
1911
1912 if (opts->mask & NVMF_OPT_TRSVCID)
1913 port = opts->trsvcid;
1914 else
1915 port = __stringify(NVME_RDMA_IP_PORT);
1916
1917 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1918 opts->traddr, port, &ctrl->addr);
1919 if (ret) {
1920 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1921 goto out_free_ctrl;
1922 }
1923
1924 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1925 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1926 opts->host_traddr, NULL, &ctrl->src_addr);
1927 if (ret) {
1928 pr_err("malformed src address passed: %s\n",
1929 opts->host_traddr);
1930 goto out_free_ctrl;
1931 }
1932 }
1933
1934 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1935 ret = -EALREADY;
1936 goto out_free_ctrl;
1937 }
1938
1939 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1940 nvme_rdma_reconnect_ctrl_work);
1941 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1942 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1943
1944 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1945 ctrl->ctrl.sqsize = opts->queue_size - 1;
1946 ctrl->ctrl.kato = opts->kato;
1947
1948 ret = -ENOMEM;
1949 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1950 GFP_KERNEL);
1951 if (!ctrl->queues)
1952 goto out_free_ctrl;
1953
1954 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1955 0 /* no quirks, we're perfect! */);
1956 if (ret)
1957 goto out_kfree_queues;
1958
1959 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1960 WARN_ON_ONCE(!changed);
1961
1962 ret = nvme_rdma_configure_admin_queue(ctrl, true);
1963 if (ret)
1964 goto out_uninit_ctrl;
1965
1966 /* sanity check icdoff */
1967 if (ctrl->ctrl.icdoff) {
1968 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1969 ret = -EINVAL;
1970 goto out_remove_admin_queue;
1971 }
1972
1973 /* sanity check keyed sgls */
1974 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1975 dev_err(ctrl->ctrl.device,
1976 "Mandatory keyed sgls are not supported!\n");
1977 ret = -EINVAL;
1978 goto out_remove_admin_queue;
1979 }
1980
1981 /* only warn if argument is too large here, will clamp later */
1982 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1983 dev_warn(ctrl->ctrl.device,
1984 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1985 opts->queue_size, ctrl->ctrl.sqsize + 1);
1986 }
1987
1988 /* warn if maxcmd is lower than sqsize+1 */
1989 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1990 dev_warn(ctrl->ctrl.device,
1991 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1992 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1993 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1994 }
1995
1996 if (opts->nr_io_queues) {
1997 ret = nvme_rdma_configure_io_queues(ctrl, true);
1998 if (ret)
1999 goto out_remove_admin_queue;
2000 }
2001
2002 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2003 WARN_ON_ONCE(!changed);
2004
2005 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2006 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2007
2008 nvme_get_ctrl(&ctrl->ctrl);
2009
2010 mutex_lock(&nvme_rdma_ctrl_mutex);
2011 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2012 mutex_unlock(&nvme_rdma_ctrl_mutex);
2013
2014 nvme_start_ctrl(&ctrl->ctrl);
2015
2016 return &ctrl->ctrl;
2017
2018 out_remove_admin_queue:
2019 nvme_rdma_stop_queue(&ctrl->queues[0]);
2020 nvme_rdma_destroy_admin_queue(ctrl, true);
2021 out_uninit_ctrl:
2022 nvme_uninit_ctrl(&ctrl->ctrl);
2023 nvme_put_ctrl(&ctrl->ctrl);
2024 if (ret > 0)
2025 ret = -EIO;
2026 return ERR_PTR(ret);
2027 out_kfree_queues:
2028 kfree(ctrl->queues);
2029 out_free_ctrl:
2030 kfree(ctrl);
2031 return ERR_PTR(ret);
2032 }
2033
2034 static struct nvmf_transport_ops nvme_rdma_transport = {
2035 .name = "rdma",
2036 .module = THIS_MODULE,
2037 .required_opts = NVMF_OPT_TRADDR,
2038 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2039 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2040 .create_ctrl = nvme_rdma_create_ctrl,
2041 };
2042
2043 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2044 {
2045 struct nvme_rdma_ctrl *ctrl;
2046 struct nvme_rdma_device *ndev;
2047 bool found = false;
2048
2049 mutex_lock(&device_list_mutex);
2050 list_for_each_entry(ndev, &device_list, entry) {
2051 if (ndev->dev == ib_device) {
2052 found = true;
2053 break;
2054 }
2055 }
2056 mutex_unlock(&device_list_mutex);
2057
2058 if (!found)
2059 return;
2060
2061 /* Delete all controllers using this device */
2062 mutex_lock(&nvme_rdma_ctrl_mutex);
2063 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2064 if (ctrl->device->dev != ib_device)
2065 continue;
2066 nvme_delete_ctrl(&ctrl->ctrl);
2067 }
2068 mutex_unlock(&nvme_rdma_ctrl_mutex);
2069
2070 flush_workqueue(nvme_delete_wq);
2071 }
2072
2073 static struct ib_client nvme_rdma_ib_client = {
2074 .name = "nvme_rdma",
2075 .remove = nvme_rdma_remove_one
2076 };
2077
2078 static int __init nvme_rdma_init_module(void)
2079 {
2080 int ret;
2081
2082 ret = ib_register_client(&nvme_rdma_ib_client);
2083 if (ret)
2084 return ret;
2085
2086 ret = nvmf_register_transport(&nvme_rdma_transport);
2087 if (ret)
2088 goto err_unreg_client;
2089
2090 return 0;
2091
2092 err_unreg_client:
2093 ib_unregister_client(&nvme_rdma_ib_client);
2094 return ret;
2095 }
2096
2097 static void __exit nvme_rdma_cleanup_module(void)
2098 {
2099 nvmf_unregister_transport(&nvme_rdma_transport);
2100 ib_unregister_client(&nvme_rdma_ib_client);
2101 }
2102
2103 module_init(nvme_rdma_init_module);
2104 module_exit(nvme_rdma_cleanup_module);
2105
2106 MODULE_LICENSE("GPL v2");