]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/rdma.c
Merge tag 'f2fs-for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
39
40 #define NVME_RDMA_MAX_SEGMENTS 256
41
42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
43
44 /*
45 * We handle AEN commands ourselves and don't even let the
46 * block layer know about them.
47 */
48 #define NVME_RDMA_NR_AEN_COMMANDS 1
49 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
50 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51
52 struct nvme_rdma_device {
53 struct ib_device *dev;
54 struct ib_pd *pd;
55 struct kref ref;
56 struct list_head entry;
57 };
58
59 struct nvme_rdma_qe {
60 struct ib_cqe cqe;
61 void *data;
62 u64 dma;
63 };
64
65 struct nvme_rdma_queue;
66 struct nvme_rdma_request {
67 struct nvme_request req;
68 struct ib_mr *mr;
69 struct nvme_rdma_qe sqe;
70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 u32 num_sge;
72 int nents;
73 bool inline_data;
74 struct ib_reg_wr reg_wr;
75 struct ib_cqe reg_cqe;
76 struct nvme_rdma_queue *queue;
77 struct sg_table sg_table;
78 struct scatterlist first_sgl[];
79 };
80
81 enum nvme_rdma_queue_flags {
82 NVME_RDMA_Q_LIVE = 0,
83 NVME_RDMA_Q_DELETING = 1,
84 };
85
86 struct nvme_rdma_queue {
87 struct nvme_rdma_qe *rsp_ring;
88 atomic_t sig_count;
89 int queue_size;
90 size_t cmnd_capsule_len;
91 struct nvme_rdma_ctrl *ctrl;
92 struct nvme_rdma_device *device;
93 struct ib_cq *ib_cq;
94 struct ib_qp *qp;
95
96 unsigned long flags;
97 struct rdma_cm_id *cm_id;
98 int cm_error;
99 struct completion cm_done;
100 };
101
102 struct nvme_rdma_ctrl {
103 /* read only in the hot path */
104 struct nvme_rdma_queue *queues;
105
106 /* other member variables */
107 struct blk_mq_tag_set tag_set;
108 struct work_struct delete_work;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 };
127
128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
129 {
130 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
131 }
132
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135
136 static LIST_HEAD(nvme_rdma_ctrl_list);
137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
138
139 /*
140 * Disabling this option makes small I/O goes faster, but is fundamentally
141 * unsafe. With it turned off we will have to register a global rkey that
142 * allows read and write access to all physical memory.
143 */
144 static bool register_always = true;
145 module_param(register_always, bool, 0444);
146 MODULE_PARM_DESC(register_always,
147 "Use memory registration even for contiguous memory regions");
148
149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
150 struct rdma_cm_event *event);
151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
152
153 static const struct blk_mq_ops nvme_rdma_mq_ops;
154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
155
156 /* XXX: really should move to a generic header sooner or later.. */
157 static inline void put_unaligned_le24(u32 val, u8 *p)
158 {
159 *p++ = val;
160 *p++ = val >> 8;
161 *p++ = val >> 16;
162 }
163
164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
165 {
166 return queue - queue->ctrl->queues;
167 }
168
169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
170 {
171 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173
174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
175 size_t capsule_size, enum dma_data_direction dir)
176 {
177 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
178 kfree(qe->data);
179 }
180
181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
182 size_t capsule_size, enum dma_data_direction dir)
183 {
184 qe->data = kzalloc(capsule_size, GFP_KERNEL);
185 if (!qe->data)
186 return -ENOMEM;
187
188 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
189 if (ib_dma_mapping_error(ibdev, qe->dma)) {
190 kfree(qe->data);
191 return -ENOMEM;
192 }
193
194 return 0;
195 }
196
197 static void nvme_rdma_free_ring(struct ib_device *ibdev,
198 struct nvme_rdma_qe *ring, size_t ib_queue_size,
199 size_t capsule_size, enum dma_data_direction dir)
200 {
201 int i;
202
203 for (i = 0; i < ib_queue_size; i++)
204 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
205 kfree(ring);
206 }
207
208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
209 size_t ib_queue_size, size_t capsule_size,
210 enum dma_data_direction dir)
211 {
212 struct nvme_rdma_qe *ring;
213 int i;
214
215 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
216 if (!ring)
217 return NULL;
218
219 for (i = 0; i < ib_queue_size; i++) {
220 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
221 goto out_free_ring;
222 }
223
224 return ring;
225
226 out_free_ring:
227 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
228 return NULL;
229 }
230
231 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
232 {
233 pr_debug("QP event %s (%d)\n",
234 ib_event_msg(event->event), event->event);
235
236 }
237
238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
239 {
240 wait_for_completion_interruptible_timeout(&queue->cm_done,
241 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
242 return queue->cm_error;
243 }
244
245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
246 {
247 struct nvme_rdma_device *dev = queue->device;
248 struct ib_qp_init_attr init_attr;
249 int ret;
250
251 memset(&init_attr, 0, sizeof(init_attr));
252 init_attr.event_handler = nvme_rdma_qp_event;
253 /* +1 for drain */
254 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
255 /* +1 for drain */
256 init_attr.cap.max_recv_wr = queue->queue_size + 1;
257 init_attr.cap.max_recv_sge = 1;
258 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
259 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
260 init_attr.qp_type = IB_QPT_RC;
261 init_attr.send_cq = queue->ib_cq;
262 init_attr.recv_cq = queue->ib_cq;
263
264 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
265
266 queue->qp = queue->cm_id->qp;
267 return ret;
268 }
269
270 static int nvme_rdma_reinit_request(void *data, struct request *rq)
271 {
272 struct nvme_rdma_ctrl *ctrl = data;
273 struct nvme_rdma_device *dev = ctrl->device;
274 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
275 int ret = 0;
276
277 ib_dereg_mr(req->mr);
278
279 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
280 ctrl->max_fr_pages);
281 if (IS_ERR(req->mr)) {
282 ret = PTR_ERR(req->mr);
283 req->mr = NULL;
284 goto out;
285 }
286
287 req->mr->need_inval = false;
288
289 out:
290 return ret;
291 }
292
293 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
294 struct request *rq, unsigned int hctx_idx)
295 {
296 struct nvme_rdma_ctrl *ctrl = set->driver_data;
297 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
298 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
299 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
300 struct nvme_rdma_device *dev = queue->device;
301
302 if (req->mr)
303 ib_dereg_mr(req->mr);
304
305 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
306 DMA_TO_DEVICE);
307 }
308
309 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
310 struct request *rq, unsigned int hctx_idx,
311 unsigned int numa_node)
312 {
313 struct nvme_rdma_ctrl *ctrl = set->driver_data;
314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
315 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
316 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
317 struct nvme_rdma_device *dev = queue->device;
318 struct ib_device *ibdev = dev->dev;
319 int ret;
320
321 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
322 DMA_TO_DEVICE);
323 if (ret)
324 return ret;
325
326 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
327 ctrl->max_fr_pages);
328 if (IS_ERR(req->mr)) {
329 ret = PTR_ERR(req->mr);
330 goto out_free_qe;
331 }
332
333 req->queue = queue;
334
335 return 0;
336
337 out_free_qe:
338 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
339 DMA_TO_DEVICE);
340 return -ENOMEM;
341 }
342
343 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
344 unsigned int hctx_idx)
345 {
346 struct nvme_rdma_ctrl *ctrl = data;
347 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
348
349 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
350
351 hctx->driver_data = queue;
352 return 0;
353 }
354
355 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
356 unsigned int hctx_idx)
357 {
358 struct nvme_rdma_ctrl *ctrl = data;
359 struct nvme_rdma_queue *queue = &ctrl->queues[0];
360
361 BUG_ON(hctx_idx != 0);
362
363 hctx->driver_data = queue;
364 return 0;
365 }
366
367 static void nvme_rdma_free_dev(struct kref *ref)
368 {
369 struct nvme_rdma_device *ndev =
370 container_of(ref, struct nvme_rdma_device, ref);
371
372 mutex_lock(&device_list_mutex);
373 list_del(&ndev->entry);
374 mutex_unlock(&device_list_mutex);
375
376 ib_dealloc_pd(ndev->pd);
377 kfree(ndev);
378 }
379
380 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
381 {
382 kref_put(&dev->ref, nvme_rdma_free_dev);
383 }
384
385 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
386 {
387 return kref_get_unless_zero(&dev->ref);
388 }
389
390 static struct nvme_rdma_device *
391 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
392 {
393 struct nvme_rdma_device *ndev;
394
395 mutex_lock(&device_list_mutex);
396 list_for_each_entry(ndev, &device_list, entry) {
397 if (ndev->dev->node_guid == cm_id->device->node_guid &&
398 nvme_rdma_dev_get(ndev))
399 goto out_unlock;
400 }
401
402 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
403 if (!ndev)
404 goto out_err;
405
406 ndev->dev = cm_id->device;
407 kref_init(&ndev->ref);
408
409 ndev->pd = ib_alloc_pd(ndev->dev,
410 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
411 if (IS_ERR(ndev->pd))
412 goto out_free_dev;
413
414 if (!(ndev->dev->attrs.device_cap_flags &
415 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
416 dev_err(&ndev->dev->dev,
417 "Memory registrations not supported.\n");
418 goto out_free_pd;
419 }
420
421 list_add(&ndev->entry, &device_list);
422 out_unlock:
423 mutex_unlock(&device_list_mutex);
424 return ndev;
425
426 out_free_pd:
427 ib_dealloc_pd(ndev->pd);
428 out_free_dev:
429 kfree(ndev);
430 out_err:
431 mutex_unlock(&device_list_mutex);
432 return NULL;
433 }
434
435 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
436 {
437 struct nvme_rdma_device *dev;
438 struct ib_device *ibdev;
439
440 dev = queue->device;
441 ibdev = dev->dev;
442 rdma_destroy_qp(queue->cm_id);
443 ib_free_cq(queue->ib_cq);
444
445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447
448 nvme_rdma_dev_put(dev);
449 }
450
451 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
452 {
453 struct ib_device *ibdev;
454 const int send_wr_factor = 3; /* MR, SEND, INV */
455 const int cq_factor = send_wr_factor + 1; /* + RECV */
456 int comp_vector, idx = nvme_rdma_queue_idx(queue);
457 int ret;
458
459 queue->device = nvme_rdma_find_get_device(queue->cm_id);
460 if (!queue->device) {
461 dev_err(queue->cm_id->device->dev.parent,
462 "no client data found!\n");
463 return -ECONNREFUSED;
464 }
465 ibdev = queue->device->dev;
466
467 /*
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
470 */
471 comp_vector = idx == 0 ? idx : idx - 1;
472
473 /* +1 for ib_stop_cq */
474 queue->ib_cq = ib_alloc_cq(ibdev, queue,
475 cq_factor * queue->queue_size + 1,
476 comp_vector, IB_POLL_SOFTIRQ);
477 if (IS_ERR(queue->ib_cq)) {
478 ret = PTR_ERR(queue->ib_cq);
479 goto out_put_dev;
480 }
481
482 ret = nvme_rdma_create_qp(queue, send_wr_factor);
483 if (ret)
484 goto out_destroy_ib_cq;
485
486 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
487 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
488 if (!queue->rsp_ring) {
489 ret = -ENOMEM;
490 goto out_destroy_qp;
491 }
492
493 return 0;
494
495 out_destroy_qp:
496 ib_destroy_qp(queue->qp);
497 out_destroy_ib_cq:
498 ib_free_cq(queue->ib_cq);
499 out_put_dev:
500 nvme_rdma_dev_put(queue->device);
501 return ret;
502 }
503
504 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
505 int idx, size_t queue_size)
506 {
507 struct nvme_rdma_queue *queue;
508 struct sockaddr *src_addr = NULL;
509 int ret;
510
511 queue = &ctrl->queues[idx];
512 queue->ctrl = ctrl;
513 init_completion(&queue->cm_done);
514
515 if (idx > 0)
516 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
517 else
518 queue->cmnd_capsule_len = sizeof(struct nvme_command);
519
520 queue->queue_size = queue_size;
521 atomic_set(&queue->sig_count, 0);
522
523 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
524 RDMA_PS_TCP, IB_QPT_RC);
525 if (IS_ERR(queue->cm_id)) {
526 dev_info(ctrl->ctrl.device,
527 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
528 return PTR_ERR(queue->cm_id);
529 }
530
531 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
532 src_addr = (struct sockaddr *)&ctrl->src_addr;
533
534 queue->cm_error = -ETIMEDOUT;
535 ret = rdma_resolve_addr(queue->cm_id, src_addr,
536 (struct sockaddr *)&ctrl->addr,
537 NVME_RDMA_CONNECT_TIMEOUT_MS);
538 if (ret) {
539 dev_info(ctrl->ctrl.device,
540 "rdma_resolve_addr failed (%d).\n", ret);
541 goto out_destroy_cm_id;
542 }
543
544 ret = nvme_rdma_wait_for_cm(queue);
545 if (ret) {
546 dev_info(ctrl->ctrl.device,
547 "rdma_resolve_addr wait failed (%d).\n", ret);
548 goto out_destroy_cm_id;
549 }
550
551 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
552
553 return 0;
554
555 out_destroy_cm_id:
556 rdma_destroy_id(queue->cm_id);
557 return ret;
558 }
559
560 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
561 {
562 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
563 return;
564
565 rdma_disconnect(queue->cm_id);
566 ib_drain_qp(queue->qp);
567 }
568
569 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
570 {
571 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
572 return;
573
574 nvme_rdma_destroy_queue_ib(queue);
575 rdma_destroy_id(queue->cm_id);
576 }
577
578 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
579 {
580 int i;
581
582 for (i = 1; i < ctrl->ctrl.queue_count; i++)
583 nvme_rdma_free_queue(&ctrl->queues[i]);
584 }
585
586 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
587 {
588 int i;
589
590 for (i = 1; i < ctrl->ctrl.queue_count; i++)
591 nvme_rdma_stop_queue(&ctrl->queues[i]);
592 }
593
594 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
595 {
596 int ret;
597
598 if (idx)
599 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
600 else
601 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
602
603 if (!ret)
604 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
605 else
606 dev_info(ctrl->ctrl.device,
607 "failed to connect queue: %d ret=%d\n", idx, ret);
608 return ret;
609 }
610
611 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
612 {
613 int i, ret = 0;
614
615 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
616 ret = nvme_rdma_start_queue(ctrl, i);
617 if (ret)
618 goto out_stop_queues;
619 }
620
621 return 0;
622
623 out_stop_queues:
624 for (i--; i >= 1; i--)
625 nvme_rdma_stop_queue(&ctrl->queues[i]);
626 return ret;
627 }
628
629 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
630 {
631 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
632 struct ib_device *ibdev = ctrl->device->dev;
633 unsigned int nr_io_queues;
634 int i, ret;
635
636 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
637
638 /*
639 * we map queues according to the device irq vectors for
640 * optimal locality so we don't need more queues than
641 * completion vectors.
642 */
643 nr_io_queues = min_t(unsigned int, nr_io_queues,
644 ibdev->num_comp_vectors);
645
646 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
647 if (ret)
648 return ret;
649
650 ctrl->ctrl.queue_count = nr_io_queues + 1;
651 if (ctrl->ctrl.queue_count < 2)
652 return 0;
653
654 dev_info(ctrl->ctrl.device,
655 "creating %d I/O queues.\n", nr_io_queues);
656
657 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
658 ret = nvme_rdma_alloc_queue(ctrl, i,
659 ctrl->ctrl.sqsize + 1);
660 if (ret)
661 goto out_free_queues;
662 }
663
664 return 0;
665
666 out_free_queues:
667 for (i--; i >= 1; i--)
668 nvme_rdma_free_queue(&ctrl->queues[i]);
669
670 return ret;
671 }
672
673 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
674 {
675 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
676 struct blk_mq_tag_set *set = admin ?
677 &ctrl->admin_tag_set : &ctrl->tag_set;
678
679 blk_mq_free_tag_set(set);
680 nvme_rdma_dev_put(ctrl->device);
681 }
682
683 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
684 bool admin)
685 {
686 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
687 struct blk_mq_tag_set *set;
688 int ret;
689
690 if (admin) {
691 set = &ctrl->admin_tag_set;
692 memset(set, 0, sizeof(*set));
693 set->ops = &nvme_rdma_admin_mq_ops;
694 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
695 set->reserved_tags = 2; /* connect + keep-alive */
696 set->numa_node = NUMA_NO_NODE;
697 set->cmd_size = sizeof(struct nvme_rdma_request) +
698 SG_CHUNK_SIZE * sizeof(struct scatterlist);
699 set->driver_data = ctrl;
700 set->nr_hw_queues = 1;
701 set->timeout = ADMIN_TIMEOUT;
702 } else {
703 set = &ctrl->tag_set;
704 memset(set, 0, sizeof(*set));
705 set->ops = &nvme_rdma_mq_ops;
706 set->queue_depth = nctrl->opts->queue_size;
707 set->reserved_tags = 1; /* fabric connect */
708 set->numa_node = NUMA_NO_NODE;
709 set->flags = BLK_MQ_F_SHOULD_MERGE;
710 set->cmd_size = sizeof(struct nvme_rdma_request) +
711 SG_CHUNK_SIZE * sizeof(struct scatterlist);
712 set->driver_data = ctrl;
713 set->nr_hw_queues = nctrl->queue_count - 1;
714 set->timeout = NVME_IO_TIMEOUT;
715 }
716
717 ret = blk_mq_alloc_tag_set(set);
718 if (ret)
719 goto out;
720
721 /*
722 * We need a reference on the device as long as the tag_set is alive,
723 * as the MRs in the request structures need a valid ib_device.
724 */
725 ret = nvme_rdma_dev_get(ctrl->device);
726 if (!ret) {
727 ret = -EINVAL;
728 goto out_free_tagset;
729 }
730
731 return set;
732
733 out_free_tagset:
734 blk_mq_free_tag_set(set);
735 out:
736 return ERR_PTR(ret);
737 }
738
739 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
740 bool remove)
741 {
742 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
743 sizeof(struct nvme_command), DMA_TO_DEVICE);
744 nvme_rdma_stop_queue(&ctrl->queues[0]);
745 if (remove) {
746 blk_cleanup_queue(ctrl->ctrl.admin_q);
747 nvme_rdma_free_tagset(&ctrl->ctrl, true);
748 }
749 nvme_rdma_free_queue(&ctrl->queues[0]);
750 }
751
752 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
753 bool new)
754 {
755 int error;
756
757 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
758 if (error)
759 return error;
760
761 ctrl->device = ctrl->queues[0].device;
762
763 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
764 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
765
766 if (new) {
767 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
768 if (IS_ERR(ctrl->ctrl.admin_tagset))
769 goto out_free_queue;
770
771 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
772 if (IS_ERR(ctrl->ctrl.admin_q)) {
773 error = PTR_ERR(ctrl->ctrl.admin_q);
774 goto out_free_tagset;
775 }
776 } else {
777 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
778 nvme_rdma_reinit_request);
779 if (error)
780 goto out_free_queue;
781 }
782
783 error = nvme_rdma_start_queue(ctrl, 0);
784 if (error)
785 goto out_cleanup_queue;
786
787 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
788 &ctrl->ctrl.cap);
789 if (error) {
790 dev_err(ctrl->ctrl.device,
791 "prop_get NVME_REG_CAP failed\n");
792 goto out_cleanup_queue;
793 }
794
795 ctrl->ctrl.sqsize =
796 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
797
798 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
799 if (error)
800 goto out_cleanup_queue;
801
802 ctrl->ctrl.max_hw_sectors =
803 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
804
805 error = nvme_init_identify(&ctrl->ctrl);
806 if (error)
807 goto out_cleanup_queue;
808
809 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
810 &ctrl->async_event_sqe, sizeof(struct nvme_command),
811 DMA_TO_DEVICE);
812 if (error)
813 goto out_cleanup_queue;
814
815 return 0;
816
817 out_cleanup_queue:
818 if (new)
819 blk_cleanup_queue(ctrl->ctrl.admin_q);
820 out_free_tagset:
821 if (new)
822 nvme_rdma_free_tagset(&ctrl->ctrl, true);
823 out_free_queue:
824 nvme_rdma_free_queue(&ctrl->queues[0]);
825 return error;
826 }
827
828 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
829 bool remove)
830 {
831 nvme_rdma_stop_io_queues(ctrl);
832 if (remove) {
833 blk_cleanup_queue(ctrl->ctrl.connect_q);
834 nvme_rdma_free_tagset(&ctrl->ctrl, false);
835 }
836 nvme_rdma_free_io_queues(ctrl);
837 }
838
839 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
840 {
841 int ret;
842
843 ret = nvme_rdma_alloc_io_queues(ctrl);
844 if (ret)
845 return ret;
846
847 if (new) {
848 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
849 if (IS_ERR(ctrl->ctrl.tagset))
850 goto out_free_io_queues;
851
852 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
853 if (IS_ERR(ctrl->ctrl.connect_q)) {
854 ret = PTR_ERR(ctrl->ctrl.connect_q);
855 goto out_free_tag_set;
856 }
857 } else {
858 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
859 nvme_rdma_reinit_request);
860 if (ret)
861 goto out_free_io_queues;
862
863 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
864 ctrl->ctrl.queue_count - 1);
865 }
866
867 ret = nvme_rdma_start_io_queues(ctrl);
868 if (ret)
869 goto out_cleanup_connect_q;
870
871 return 0;
872
873 out_cleanup_connect_q:
874 if (new)
875 blk_cleanup_queue(ctrl->ctrl.connect_q);
876 out_free_tag_set:
877 if (new)
878 nvme_rdma_free_tagset(&ctrl->ctrl, false);
879 out_free_io_queues:
880 nvme_rdma_free_io_queues(ctrl);
881 return ret;
882 }
883
884 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
885 {
886 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
887
888 if (list_empty(&ctrl->list))
889 goto free_ctrl;
890
891 mutex_lock(&nvme_rdma_ctrl_mutex);
892 list_del(&ctrl->list);
893 mutex_unlock(&nvme_rdma_ctrl_mutex);
894
895 kfree(ctrl->queues);
896 nvmf_free_options(nctrl->opts);
897 free_ctrl:
898 kfree(ctrl);
899 }
900
901 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
902 {
903 /* If we are resetting/deleting then do nothing */
904 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
905 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
906 ctrl->ctrl.state == NVME_CTRL_LIVE);
907 return;
908 }
909
910 if (nvmf_should_reconnect(&ctrl->ctrl)) {
911 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
912 ctrl->ctrl.opts->reconnect_delay);
913 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
914 ctrl->ctrl.opts->reconnect_delay * HZ);
915 } else {
916 dev_info(ctrl->ctrl.device, "Removing controller...\n");
917 queue_work(nvme_wq, &ctrl->delete_work);
918 }
919 }
920
921 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
922 {
923 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
924 struct nvme_rdma_ctrl, reconnect_work);
925 bool changed;
926 int ret;
927
928 ++ctrl->ctrl.nr_reconnects;
929
930 if (ctrl->ctrl.queue_count > 1)
931 nvme_rdma_destroy_io_queues(ctrl, false);
932
933 nvme_rdma_destroy_admin_queue(ctrl, false);
934 ret = nvme_rdma_configure_admin_queue(ctrl, false);
935 if (ret)
936 goto requeue;
937
938 if (ctrl->ctrl.queue_count > 1) {
939 ret = nvme_rdma_configure_io_queues(ctrl, false);
940 if (ret)
941 goto requeue;
942 }
943
944 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
945 WARN_ON_ONCE(!changed);
946 ctrl->ctrl.nr_reconnects = 0;
947
948 nvme_start_ctrl(&ctrl->ctrl);
949
950 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
951
952 return;
953
954 requeue:
955 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
956 ctrl->ctrl.nr_reconnects);
957 nvme_rdma_reconnect_or_remove(ctrl);
958 }
959
960 static void nvme_rdma_error_recovery_work(struct work_struct *work)
961 {
962 struct nvme_rdma_ctrl *ctrl = container_of(work,
963 struct nvme_rdma_ctrl, err_work);
964
965 nvme_stop_ctrl(&ctrl->ctrl);
966
967 if (ctrl->ctrl.queue_count > 1) {
968 nvme_stop_queues(&ctrl->ctrl);
969 nvme_rdma_stop_io_queues(ctrl);
970 }
971 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
972 nvme_rdma_stop_queue(&ctrl->queues[0]);
973
974 /* We must take care of fastfail/requeue all our inflight requests */
975 if (ctrl->ctrl.queue_count > 1)
976 blk_mq_tagset_busy_iter(&ctrl->tag_set,
977 nvme_cancel_request, &ctrl->ctrl);
978 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
979 nvme_cancel_request, &ctrl->ctrl);
980
981 /*
982 * queues are not a live anymore, so restart the queues to fail fast
983 * new IO
984 */
985 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
986 nvme_start_queues(&ctrl->ctrl);
987
988 nvme_rdma_reconnect_or_remove(ctrl);
989 }
990
991 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
992 {
993 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
994 return;
995
996 queue_work(nvme_wq, &ctrl->err_work);
997 }
998
999 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1000 const char *op)
1001 {
1002 struct nvme_rdma_queue *queue = cq->cq_context;
1003 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1004
1005 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1006 dev_info(ctrl->ctrl.device,
1007 "%s for CQE 0x%p failed with status %s (%d)\n",
1008 op, wc->wr_cqe,
1009 ib_wc_status_msg(wc->status), wc->status);
1010 nvme_rdma_error_recovery(ctrl);
1011 }
1012
1013 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1014 {
1015 if (unlikely(wc->status != IB_WC_SUCCESS))
1016 nvme_rdma_wr_error(cq, wc, "MEMREG");
1017 }
1018
1019 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1020 {
1021 if (unlikely(wc->status != IB_WC_SUCCESS))
1022 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1023 }
1024
1025 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1026 struct nvme_rdma_request *req)
1027 {
1028 struct ib_send_wr *bad_wr;
1029 struct ib_send_wr wr = {
1030 .opcode = IB_WR_LOCAL_INV,
1031 .next = NULL,
1032 .num_sge = 0,
1033 .send_flags = 0,
1034 .ex.invalidate_rkey = req->mr->rkey,
1035 };
1036
1037 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1038 wr.wr_cqe = &req->reg_cqe;
1039
1040 return ib_post_send(queue->qp, &wr, &bad_wr);
1041 }
1042
1043 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1044 struct request *rq)
1045 {
1046 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1047 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1048 struct nvme_rdma_device *dev = queue->device;
1049 struct ib_device *ibdev = dev->dev;
1050 int res;
1051
1052 if (!blk_rq_bytes(rq))
1053 return;
1054
1055 if (req->mr->need_inval) {
1056 res = nvme_rdma_inv_rkey(queue, req);
1057 if (unlikely(res < 0)) {
1058 dev_err(ctrl->ctrl.device,
1059 "Queueing INV WR for rkey %#x failed (%d)\n",
1060 req->mr->rkey, res);
1061 nvme_rdma_error_recovery(queue->ctrl);
1062 }
1063 }
1064
1065 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1066 req->nents, rq_data_dir(rq) ==
1067 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1068
1069 nvme_cleanup_cmd(rq);
1070 sg_free_table_chained(&req->sg_table, true);
1071 }
1072
1073 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1074 {
1075 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1076
1077 sg->addr = 0;
1078 put_unaligned_le24(0, sg->length);
1079 put_unaligned_le32(0, sg->key);
1080 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1081 return 0;
1082 }
1083
1084 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1085 struct nvme_rdma_request *req, struct nvme_command *c)
1086 {
1087 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1088
1089 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1090 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1091 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1092
1093 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1094 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1095 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1096
1097 req->inline_data = true;
1098 req->num_sge++;
1099 return 0;
1100 }
1101
1102 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1103 struct nvme_rdma_request *req, struct nvme_command *c)
1104 {
1105 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1106
1107 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1108 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1109 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1110 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1111 return 0;
1112 }
1113
1114 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1115 struct nvme_rdma_request *req, struct nvme_command *c,
1116 int count)
1117 {
1118 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1119 int nr;
1120
1121 /*
1122 * Align the MR to a 4K page size to match the ctrl page size and
1123 * the block virtual boundary.
1124 */
1125 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1126 if (unlikely(nr < count)) {
1127 if (nr < 0)
1128 return nr;
1129 return -EINVAL;
1130 }
1131
1132 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1133
1134 req->reg_cqe.done = nvme_rdma_memreg_done;
1135 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1136 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1137 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1138 req->reg_wr.wr.num_sge = 0;
1139 req->reg_wr.mr = req->mr;
1140 req->reg_wr.key = req->mr->rkey;
1141 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1142 IB_ACCESS_REMOTE_READ |
1143 IB_ACCESS_REMOTE_WRITE;
1144
1145 req->mr->need_inval = true;
1146
1147 sg->addr = cpu_to_le64(req->mr->iova);
1148 put_unaligned_le24(req->mr->length, sg->length);
1149 put_unaligned_le32(req->mr->rkey, sg->key);
1150 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1151 NVME_SGL_FMT_INVALIDATE;
1152
1153 return 0;
1154 }
1155
1156 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1157 struct request *rq, struct nvme_command *c)
1158 {
1159 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1160 struct nvme_rdma_device *dev = queue->device;
1161 struct ib_device *ibdev = dev->dev;
1162 int count, ret;
1163
1164 req->num_sge = 1;
1165 req->inline_data = false;
1166 req->mr->need_inval = false;
1167
1168 c->common.flags |= NVME_CMD_SGL_METABUF;
1169
1170 if (!blk_rq_bytes(rq))
1171 return nvme_rdma_set_sg_null(c);
1172
1173 req->sg_table.sgl = req->first_sgl;
1174 ret = sg_alloc_table_chained(&req->sg_table,
1175 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1176 if (ret)
1177 return -ENOMEM;
1178
1179 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1180
1181 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1182 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1183 if (unlikely(count <= 0)) {
1184 sg_free_table_chained(&req->sg_table, true);
1185 return -EIO;
1186 }
1187
1188 if (count == 1) {
1189 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1190 blk_rq_payload_bytes(rq) <=
1191 nvme_rdma_inline_data_size(queue))
1192 return nvme_rdma_map_sg_inline(queue, req, c);
1193
1194 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1195 return nvme_rdma_map_sg_single(queue, req, c);
1196 }
1197
1198 return nvme_rdma_map_sg_fr(queue, req, c, count);
1199 }
1200
1201 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1202 {
1203 if (unlikely(wc->status != IB_WC_SUCCESS))
1204 nvme_rdma_wr_error(cq, wc, "SEND");
1205 }
1206
1207 /*
1208 * We want to signal completion at least every queue depth/2. This returns the
1209 * largest power of two that is not above half of (queue size + 1) to optimize
1210 * (avoid divisions).
1211 */
1212 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1213 {
1214 int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1215
1216 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1217 }
1218
1219 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1220 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1221 struct ib_send_wr *first, bool flush)
1222 {
1223 struct ib_send_wr wr, *bad_wr;
1224 int ret;
1225
1226 sge->addr = qe->dma;
1227 sge->length = sizeof(struct nvme_command),
1228 sge->lkey = queue->device->pd->local_dma_lkey;
1229
1230 qe->cqe.done = nvme_rdma_send_done;
1231
1232 wr.next = NULL;
1233 wr.wr_cqe = &qe->cqe;
1234 wr.sg_list = sge;
1235 wr.num_sge = num_sge;
1236 wr.opcode = IB_WR_SEND;
1237 wr.send_flags = 0;
1238
1239 /*
1240 * Unsignalled send completions are another giant desaster in the
1241 * IB Verbs spec: If we don't regularly post signalled sends
1242 * the send queue will fill up and only a QP reset will rescue us.
1243 * Would have been way to obvious to handle this in hardware or
1244 * at least the RDMA stack..
1245 *
1246 * Always signal the flushes. The magic request used for the flush
1247 * sequencer is not allocated in our driver's tagset and it's
1248 * triggered to be freed by blk_cleanup_queue(). So we need to
1249 * always mark it as signaled to ensure that the "wr_cqe", which is
1250 * embedded in request's payload, is not freed when __ib_process_cq()
1251 * calls wr_cqe->done().
1252 */
1253 if (nvme_rdma_queue_sig_limit(queue) || flush)
1254 wr.send_flags |= IB_SEND_SIGNALED;
1255
1256 if (first)
1257 first->next = &wr;
1258 else
1259 first = &wr;
1260
1261 ret = ib_post_send(queue->qp, first, &bad_wr);
1262 if (unlikely(ret)) {
1263 dev_err(queue->ctrl->ctrl.device,
1264 "%s failed with error code %d\n", __func__, ret);
1265 }
1266 return ret;
1267 }
1268
1269 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1270 struct nvme_rdma_qe *qe)
1271 {
1272 struct ib_recv_wr wr, *bad_wr;
1273 struct ib_sge list;
1274 int ret;
1275
1276 list.addr = qe->dma;
1277 list.length = sizeof(struct nvme_completion);
1278 list.lkey = queue->device->pd->local_dma_lkey;
1279
1280 qe->cqe.done = nvme_rdma_recv_done;
1281
1282 wr.next = NULL;
1283 wr.wr_cqe = &qe->cqe;
1284 wr.sg_list = &list;
1285 wr.num_sge = 1;
1286
1287 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1288 if (unlikely(ret)) {
1289 dev_err(queue->ctrl->ctrl.device,
1290 "%s failed with error code %d\n", __func__, ret);
1291 }
1292 return ret;
1293 }
1294
1295 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1296 {
1297 u32 queue_idx = nvme_rdma_queue_idx(queue);
1298
1299 if (queue_idx == 0)
1300 return queue->ctrl->admin_tag_set.tags[queue_idx];
1301 return queue->ctrl->tag_set.tags[queue_idx - 1];
1302 }
1303
1304 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1305 {
1306 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1307 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1308 struct ib_device *dev = queue->device->dev;
1309 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1310 struct nvme_command *cmd = sqe->data;
1311 struct ib_sge sge;
1312 int ret;
1313
1314 if (WARN_ON_ONCE(aer_idx != 0))
1315 return;
1316
1317 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1318
1319 memset(cmd, 0, sizeof(*cmd));
1320 cmd->common.opcode = nvme_admin_async_event;
1321 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1322 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1323 nvme_rdma_set_sg_null(cmd);
1324
1325 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1326 DMA_TO_DEVICE);
1327
1328 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1329 WARN_ON_ONCE(ret);
1330 }
1331
1332 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1333 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1334 {
1335 struct request *rq;
1336 struct nvme_rdma_request *req;
1337 int ret = 0;
1338
1339 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1340 if (!rq) {
1341 dev_err(queue->ctrl->ctrl.device,
1342 "tag 0x%x on QP %#x not found\n",
1343 cqe->command_id, queue->qp->qp_num);
1344 nvme_rdma_error_recovery(queue->ctrl);
1345 return ret;
1346 }
1347 req = blk_mq_rq_to_pdu(rq);
1348
1349 if (rq->tag == tag)
1350 ret = 1;
1351
1352 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1353 wc->ex.invalidate_rkey == req->mr->rkey)
1354 req->mr->need_inval = false;
1355
1356 nvme_end_request(rq, cqe->status, cqe->result);
1357 return ret;
1358 }
1359
1360 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1361 {
1362 struct nvme_rdma_qe *qe =
1363 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1364 struct nvme_rdma_queue *queue = cq->cq_context;
1365 struct ib_device *ibdev = queue->device->dev;
1366 struct nvme_completion *cqe = qe->data;
1367 const size_t len = sizeof(struct nvme_completion);
1368 int ret = 0;
1369
1370 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1371 nvme_rdma_wr_error(cq, wc, "RECV");
1372 return 0;
1373 }
1374
1375 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1376 /*
1377 * AEN requests are special as they don't time out and can
1378 * survive any kind of queue freeze and often don't respond to
1379 * aborts. We don't even bother to allocate a struct request
1380 * for them but rather special case them here.
1381 */
1382 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1383 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1384 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1385 &cqe->result);
1386 else
1387 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1388 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1389
1390 nvme_rdma_post_recv(queue, qe);
1391 return ret;
1392 }
1393
1394 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1395 {
1396 __nvme_rdma_recv_done(cq, wc, -1);
1397 }
1398
1399 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1400 {
1401 int ret, i;
1402
1403 for (i = 0; i < queue->queue_size; i++) {
1404 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1405 if (ret)
1406 goto out_destroy_queue_ib;
1407 }
1408
1409 return 0;
1410
1411 out_destroy_queue_ib:
1412 nvme_rdma_destroy_queue_ib(queue);
1413 return ret;
1414 }
1415
1416 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1417 struct rdma_cm_event *ev)
1418 {
1419 struct rdma_cm_id *cm_id = queue->cm_id;
1420 int status = ev->status;
1421 const char *rej_msg;
1422 const struct nvme_rdma_cm_rej *rej_data;
1423 u8 rej_data_len;
1424
1425 rej_msg = rdma_reject_msg(cm_id, status);
1426 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1427
1428 if (rej_data && rej_data_len >= sizeof(u16)) {
1429 u16 sts = le16_to_cpu(rej_data->sts);
1430
1431 dev_err(queue->ctrl->ctrl.device,
1432 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1433 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1434 } else {
1435 dev_err(queue->ctrl->ctrl.device,
1436 "Connect rejected: status %d (%s).\n", status, rej_msg);
1437 }
1438
1439 return -ECONNRESET;
1440 }
1441
1442 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1443 {
1444 int ret;
1445
1446 ret = nvme_rdma_create_queue_ib(queue);
1447 if (ret)
1448 return ret;
1449
1450 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1451 if (ret) {
1452 dev_err(queue->ctrl->ctrl.device,
1453 "rdma_resolve_route failed (%d).\n",
1454 queue->cm_error);
1455 goto out_destroy_queue;
1456 }
1457
1458 return 0;
1459
1460 out_destroy_queue:
1461 nvme_rdma_destroy_queue_ib(queue);
1462 return ret;
1463 }
1464
1465 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1466 {
1467 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1468 struct rdma_conn_param param = { };
1469 struct nvme_rdma_cm_req priv = { };
1470 int ret;
1471
1472 param.qp_num = queue->qp->qp_num;
1473 param.flow_control = 1;
1474
1475 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1476 /* maximum retry count */
1477 param.retry_count = 7;
1478 param.rnr_retry_count = 7;
1479 param.private_data = &priv;
1480 param.private_data_len = sizeof(priv);
1481
1482 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1483 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1484 /*
1485 * set the admin queue depth to the minimum size
1486 * specified by the Fabrics standard.
1487 */
1488 if (priv.qid == 0) {
1489 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1490 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1491 } else {
1492 /*
1493 * current interpretation of the fabrics spec
1494 * is at minimum you make hrqsize sqsize+1, or a
1495 * 1's based representation of sqsize.
1496 */
1497 priv.hrqsize = cpu_to_le16(queue->queue_size);
1498 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1499 }
1500
1501 ret = rdma_connect(queue->cm_id, &param);
1502 if (ret) {
1503 dev_err(ctrl->ctrl.device,
1504 "rdma_connect failed (%d).\n", ret);
1505 goto out_destroy_queue_ib;
1506 }
1507
1508 return 0;
1509
1510 out_destroy_queue_ib:
1511 nvme_rdma_destroy_queue_ib(queue);
1512 return ret;
1513 }
1514
1515 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1516 struct rdma_cm_event *ev)
1517 {
1518 struct nvme_rdma_queue *queue = cm_id->context;
1519 int cm_error = 0;
1520
1521 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1522 rdma_event_msg(ev->event), ev->event,
1523 ev->status, cm_id);
1524
1525 switch (ev->event) {
1526 case RDMA_CM_EVENT_ADDR_RESOLVED:
1527 cm_error = nvme_rdma_addr_resolved(queue);
1528 break;
1529 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1530 cm_error = nvme_rdma_route_resolved(queue);
1531 break;
1532 case RDMA_CM_EVENT_ESTABLISHED:
1533 queue->cm_error = nvme_rdma_conn_established(queue);
1534 /* complete cm_done regardless of success/failure */
1535 complete(&queue->cm_done);
1536 return 0;
1537 case RDMA_CM_EVENT_REJECTED:
1538 nvme_rdma_destroy_queue_ib(queue);
1539 cm_error = nvme_rdma_conn_rejected(queue, ev);
1540 break;
1541 case RDMA_CM_EVENT_ROUTE_ERROR:
1542 case RDMA_CM_EVENT_CONNECT_ERROR:
1543 case RDMA_CM_EVENT_UNREACHABLE:
1544 nvme_rdma_destroy_queue_ib(queue);
1545 case RDMA_CM_EVENT_ADDR_ERROR:
1546 dev_dbg(queue->ctrl->ctrl.device,
1547 "CM error event %d\n", ev->event);
1548 cm_error = -ECONNRESET;
1549 break;
1550 case RDMA_CM_EVENT_DISCONNECTED:
1551 case RDMA_CM_EVENT_ADDR_CHANGE:
1552 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1553 dev_dbg(queue->ctrl->ctrl.device,
1554 "disconnect received - connection closed\n");
1555 nvme_rdma_error_recovery(queue->ctrl);
1556 break;
1557 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1558 /* device removal is handled via the ib_client API */
1559 break;
1560 default:
1561 dev_err(queue->ctrl->ctrl.device,
1562 "Unexpected RDMA CM event (%d)\n", ev->event);
1563 nvme_rdma_error_recovery(queue->ctrl);
1564 break;
1565 }
1566
1567 if (cm_error) {
1568 queue->cm_error = cm_error;
1569 complete(&queue->cm_done);
1570 }
1571
1572 return 0;
1573 }
1574
1575 static enum blk_eh_timer_return
1576 nvme_rdma_timeout(struct request *rq, bool reserved)
1577 {
1578 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1579
1580 /* queue error recovery */
1581 nvme_rdma_error_recovery(req->queue->ctrl);
1582
1583 /* fail with DNR on cmd timeout */
1584 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1585
1586 return BLK_EH_HANDLED;
1587 }
1588
1589 /*
1590 * We cannot accept any other command until the Connect command has completed.
1591 */
1592 static inline blk_status_t
1593 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1594 {
1595 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1596 struct nvme_command *cmd = nvme_req(rq)->cmd;
1597
1598 if (!blk_rq_is_passthrough(rq) ||
1599 cmd->common.opcode != nvme_fabrics_command ||
1600 cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1601 /*
1602 * reconnecting state means transport disruption, which
1603 * can take a long time and even might fail permanently,
1604 * so we can't let incoming I/O be requeued forever.
1605 * fail it fast to allow upper layers a chance to
1606 * failover.
1607 */
1608 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1609 return BLK_STS_IOERR;
1610 return BLK_STS_RESOURCE; /* try again later */
1611 }
1612 }
1613
1614 return 0;
1615 }
1616
1617 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1618 const struct blk_mq_queue_data *bd)
1619 {
1620 struct nvme_ns *ns = hctx->queue->queuedata;
1621 struct nvme_rdma_queue *queue = hctx->driver_data;
1622 struct request *rq = bd->rq;
1623 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1624 struct nvme_rdma_qe *sqe = &req->sqe;
1625 struct nvme_command *c = sqe->data;
1626 bool flush = false;
1627 struct ib_device *dev;
1628 blk_status_t ret;
1629 int err;
1630
1631 WARN_ON_ONCE(rq->tag < 0);
1632
1633 ret = nvme_rdma_queue_is_ready(queue, rq);
1634 if (unlikely(ret))
1635 return ret;
1636
1637 dev = queue->device->dev;
1638 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1639 sizeof(struct nvme_command), DMA_TO_DEVICE);
1640
1641 ret = nvme_setup_cmd(ns, rq, c);
1642 if (ret)
1643 return ret;
1644
1645 blk_mq_start_request(rq);
1646
1647 err = nvme_rdma_map_data(queue, rq, c);
1648 if (unlikely(err < 0)) {
1649 dev_err(queue->ctrl->ctrl.device,
1650 "Failed to map data (%d)\n", err);
1651 nvme_cleanup_cmd(rq);
1652 goto err;
1653 }
1654
1655 ib_dma_sync_single_for_device(dev, sqe->dma,
1656 sizeof(struct nvme_command), DMA_TO_DEVICE);
1657
1658 if (req_op(rq) == REQ_OP_FLUSH)
1659 flush = true;
1660 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1661 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1662 if (unlikely(err)) {
1663 nvme_rdma_unmap_data(queue, rq);
1664 goto err;
1665 }
1666
1667 return BLK_STS_OK;
1668 err:
1669 if (err == -ENOMEM || err == -EAGAIN)
1670 return BLK_STS_RESOURCE;
1671 return BLK_STS_IOERR;
1672 }
1673
1674 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1675 {
1676 struct nvme_rdma_queue *queue = hctx->driver_data;
1677 struct ib_cq *cq = queue->ib_cq;
1678 struct ib_wc wc;
1679 int found = 0;
1680
1681 while (ib_poll_cq(cq, 1, &wc) > 0) {
1682 struct ib_cqe *cqe = wc.wr_cqe;
1683
1684 if (cqe) {
1685 if (cqe->done == nvme_rdma_recv_done)
1686 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1687 else
1688 cqe->done(cq, &wc);
1689 }
1690 }
1691
1692 return found;
1693 }
1694
1695 static void nvme_rdma_complete_rq(struct request *rq)
1696 {
1697 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1698
1699 nvme_rdma_unmap_data(req->queue, rq);
1700 nvme_complete_rq(rq);
1701 }
1702
1703 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1704 {
1705 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1706
1707 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1708 }
1709
1710 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1711 .queue_rq = nvme_rdma_queue_rq,
1712 .complete = nvme_rdma_complete_rq,
1713 .init_request = nvme_rdma_init_request,
1714 .exit_request = nvme_rdma_exit_request,
1715 .init_hctx = nvme_rdma_init_hctx,
1716 .poll = nvme_rdma_poll,
1717 .timeout = nvme_rdma_timeout,
1718 .map_queues = nvme_rdma_map_queues,
1719 };
1720
1721 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1722 .queue_rq = nvme_rdma_queue_rq,
1723 .complete = nvme_rdma_complete_rq,
1724 .init_request = nvme_rdma_init_request,
1725 .exit_request = nvme_rdma_exit_request,
1726 .init_hctx = nvme_rdma_init_admin_hctx,
1727 .timeout = nvme_rdma_timeout,
1728 };
1729
1730 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1731 {
1732 cancel_work_sync(&ctrl->err_work);
1733 cancel_delayed_work_sync(&ctrl->reconnect_work);
1734
1735 if (ctrl->ctrl.queue_count > 1) {
1736 nvme_stop_queues(&ctrl->ctrl);
1737 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1738 nvme_cancel_request, &ctrl->ctrl);
1739 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1740 }
1741
1742 if (shutdown)
1743 nvme_shutdown_ctrl(&ctrl->ctrl);
1744 else
1745 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1746
1747 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1748 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1749 nvme_cancel_request, &ctrl->ctrl);
1750 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1751 nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1752 }
1753
1754 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1755 {
1756 nvme_remove_namespaces(&ctrl->ctrl);
1757 nvme_rdma_shutdown_ctrl(ctrl, true);
1758 nvme_uninit_ctrl(&ctrl->ctrl);
1759 nvme_put_ctrl(&ctrl->ctrl);
1760 }
1761
1762 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1763 {
1764 struct nvme_rdma_ctrl *ctrl = container_of(work,
1765 struct nvme_rdma_ctrl, delete_work);
1766
1767 nvme_stop_ctrl(&ctrl->ctrl);
1768 nvme_rdma_remove_ctrl(ctrl);
1769 }
1770
1771 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1772 {
1773 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1774 return -EBUSY;
1775
1776 if (!queue_work(nvme_wq, &ctrl->delete_work))
1777 return -EBUSY;
1778
1779 return 0;
1780 }
1781
1782 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1783 {
1784 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1785 int ret = 0;
1786
1787 /*
1788 * Keep a reference until all work is flushed since
1789 * __nvme_rdma_del_ctrl can free the ctrl mem
1790 */
1791 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1792 return -EBUSY;
1793 ret = __nvme_rdma_del_ctrl(ctrl);
1794 if (!ret)
1795 flush_work(&ctrl->delete_work);
1796 nvme_put_ctrl(&ctrl->ctrl);
1797 return ret;
1798 }
1799
1800 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1801 {
1802 struct nvme_rdma_ctrl *ctrl =
1803 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1804 int ret;
1805 bool changed;
1806
1807 nvme_stop_ctrl(&ctrl->ctrl);
1808 nvme_rdma_shutdown_ctrl(ctrl, false);
1809
1810 ret = nvme_rdma_configure_admin_queue(ctrl, false);
1811 if (ret)
1812 goto out_fail;
1813
1814 if (ctrl->ctrl.queue_count > 1) {
1815 ret = nvme_rdma_configure_io_queues(ctrl, false);
1816 if (ret)
1817 goto out_fail;
1818 }
1819
1820 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1821 WARN_ON_ONCE(!changed);
1822
1823 nvme_start_ctrl(&ctrl->ctrl);
1824
1825 return;
1826
1827 out_fail:
1828 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1829 nvme_rdma_remove_ctrl(ctrl);
1830 }
1831
1832 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1833 .name = "rdma",
1834 .module = THIS_MODULE,
1835 .flags = NVME_F_FABRICS,
1836 .reg_read32 = nvmf_reg_read32,
1837 .reg_read64 = nvmf_reg_read64,
1838 .reg_write32 = nvmf_reg_write32,
1839 .free_ctrl = nvme_rdma_free_ctrl,
1840 .submit_async_event = nvme_rdma_submit_async_event,
1841 .delete_ctrl = nvme_rdma_del_ctrl,
1842 .get_address = nvmf_get_address,
1843 };
1844
1845 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1846 struct nvmf_ctrl_options *opts)
1847 {
1848 struct nvme_rdma_ctrl *ctrl;
1849 int ret;
1850 bool changed;
1851 char *port;
1852
1853 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1854 if (!ctrl)
1855 return ERR_PTR(-ENOMEM);
1856 ctrl->ctrl.opts = opts;
1857 INIT_LIST_HEAD(&ctrl->list);
1858
1859 if (opts->mask & NVMF_OPT_TRSVCID)
1860 port = opts->trsvcid;
1861 else
1862 port = __stringify(NVME_RDMA_IP_PORT);
1863
1864 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1865 opts->traddr, port, &ctrl->addr);
1866 if (ret) {
1867 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1868 goto out_free_ctrl;
1869 }
1870
1871 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1872 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1873 opts->host_traddr, NULL, &ctrl->src_addr);
1874 if (ret) {
1875 pr_err("malformed src address passed: %s\n",
1876 opts->host_traddr);
1877 goto out_free_ctrl;
1878 }
1879 }
1880
1881 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1882 0 /* no quirks, we're perfect! */);
1883 if (ret)
1884 goto out_free_ctrl;
1885
1886 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1887 nvme_rdma_reconnect_ctrl_work);
1888 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1889 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1890 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1891
1892 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1893 ctrl->ctrl.sqsize = opts->queue_size - 1;
1894 ctrl->ctrl.kato = opts->kato;
1895
1896 ret = -ENOMEM;
1897 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1898 GFP_KERNEL);
1899 if (!ctrl->queues)
1900 goto out_uninit_ctrl;
1901
1902 ret = nvme_rdma_configure_admin_queue(ctrl, true);
1903 if (ret)
1904 goto out_kfree_queues;
1905
1906 /* sanity check icdoff */
1907 if (ctrl->ctrl.icdoff) {
1908 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1909 ret = -EINVAL;
1910 goto out_remove_admin_queue;
1911 }
1912
1913 /* sanity check keyed sgls */
1914 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1915 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1916 ret = -EINVAL;
1917 goto out_remove_admin_queue;
1918 }
1919
1920 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1921 /* warn if maxcmd is lower than queue_size */
1922 dev_warn(ctrl->ctrl.device,
1923 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1924 opts->queue_size, ctrl->ctrl.maxcmd);
1925 opts->queue_size = ctrl->ctrl.maxcmd;
1926 }
1927
1928 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1929 /* warn if sqsize is lower than queue_size */
1930 dev_warn(ctrl->ctrl.device,
1931 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1932 opts->queue_size, ctrl->ctrl.sqsize + 1);
1933 opts->queue_size = ctrl->ctrl.sqsize + 1;
1934 }
1935
1936 if (opts->nr_io_queues) {
1937 ret = nvme_rdma_configure_io_queues(ctrl, true);
1938 if (ret)
1939 goto out_remove_admin_queue;
1940 }
1941
1942 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1943 WARN_ON_ONCE(!changed);
1944
1945 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1946 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1947
1948 kref_get(&ctrl->ctrl.kref);
1949
1950 mutex_lock(&nvme_rdma_ctrl_mutex);
1951 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1952 mutex_unlock(&nvme_rdma_ctrl_mutex);
1953
1954 nvme_start_ctrl(&ctrl->ctrl);
1955
1956 return &ctrl->ctrl;
1957
1958 out_remove_admin_queue:
1959 nvme_rdma_destroy_admin_queue(ctrl, true);
1960 out_kfree_queues:
1961 kfree(ctrl->queues);
1962 out_uninit_ctrl:
1963 nvme_uninit_ctrl(&ctrl->ctrl);
1964 nvme_put_ctrl(&ctrl->ctrl);
1965 if (ret > 0)
1966 ret = -EIO;
1967 return ERR_PTR(ret);
1968 out_free_ctrl:
1969 kfree(ctrl);
1970 return ERR_PTR(ret);
1971 }
1972
1973 static struct nvmf_transport_ops nvme_rdma_transport = {
1974 .name = "rdma",
1975 .required_opts = NVMF_OPT_TRADDR,
1976 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1977 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1978 .create_ctrl = nvme_rdma_create_ctrl,
1979 };
1980
1981 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1982 {
1983 struct nvme_rdma_ctrl *ctrl;
1984
1985 /* Delete all controllers using this device */
1986 mutex_lock(&nvme_rdma_ctrl_mutex);
1987 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1988 if (ctrl->device->dev != ib_device)
1989 continue;
1990 dev_info(ctrl->ctrl.device,
1991 "Removing ctrl: NQN \"%s\", addr %pISp\n",
1992 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1993 __nvme_rdma_del_ctrl(ctrl);
1994 }
1995 mutex_unlock(&nvme_rdma_ctrl_mutex);
1996
1997 flush_workqueue(nvme_wq);
1998 }
1999
2000 static struct ib_client nvme_rdma_ib_client = {
2001 .name = "nvme_rdma",
2002 .remove = nvme_rdma_remove_one
2003 };
2004
2005 static int __init nvme_rdma_init_module(void)
2006 {
2007 int ret;
2008
2009 ret = ib_register_client(&nvme_rdma_ib_client);
2010 if (ret)
2011 return ret;
2012
2013 ret = nvmf_register_transport(&nvme_rdma_transport);
2014 if (ret)
2015 goto err_unreg_client;
2016
2017 return 0;
2018
2019 err_unreg_client:
2020 ib_unregister_client(&nvme_rdma_ib_client);
2021 return ret;
2022 }
2023
2024 static void __exit nvme_rdma_cleanup_module(void)
2025 {
2026 nvmf_unregister_transport(&nvme_rdma_transport);
2027 ib_unregister_client(&nvme_rdma_ib_client);
2028 }
2029
2030 module_init(nvme_rdma_init_module);
2031 module_exit(nvme_rdma_cleanup_module);
2032
2033 MODULE_LICENSE("GPL v2");