]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/nvme/target/core.c
Merge tag 'imx-fixes-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo...
[mirror_ubuntu-focal-kernel.git] / drivers / nvme / target / core.c
1 /*
2 * Common code for the NVMe target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/rculist.h>
18
19 #include "nvmet.h"
20
21 static struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
22 static DEFINE_IDA(cntlid_ida);
23
24 /*
25 * This read/write semaphore is used to synchronize access to configuration
26 * information on a target system that will result in discovery log page
27 * information change for at least one host.
28 * The full list of resources to protected by this semaphore is:
29 *
30 * - subsystems list
31 * - per-subsystem allowed hosts list
32 * - allow_any_host subsystem attribute
33 * - nvmet_genctr
34 * - the nvmet_transports array
35 *
36 * When updating any of those lists/structures write lock should be obtained,
37 * while when reading (popolating discovery log page or checking host-subsystem
38 * link) read lock is obtained to allow concurrent reads.
39 */
40 DECLARE_RWSEM(nvmet_config_sem);
41
42 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
43 const char *subsysnqn);
44
45 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
46 size_t len)
47 {
48 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
49 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
50 return 0;
51 }
52
53 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
54 {
55 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
56 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
57 return 0;
58 }
59
60 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
61 {
62 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
63 }
64
65 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
66 {
67 struct nvmet_req *req;
68
69 while (1) {
70 mutex_lock(&ctrl->lock);
71 if (!ctrl->nr_async_event_cmds) {
72 mutex_unlock(&ctrl->lock);
73 return;
74 }
75
76 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
77 mutex_unlock(&ctrl->lock);
78 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
79 }
80 }
81
82 static void nvmet_async_event_work(struct work_struct *work)
83 {
84 struct nvmet_ctrl *ctrl =
85 container_of(work, struct nvmet_ctrl, async_event_work);
86 struct nvmet_async_event *aen;
87 struct nvmet_req *req;
88
89 while (1) {
90 mutex_lock(&ctrl->lock);
91 aen = list_first_entry_or_null(&ctrl->async_events,
92 struct nvmet_async_event, entry);
93 if (!aen || !ctrl->nr_async_event_cmds) {
94 mutex_unlock(&ctrl->lock);
95 return;
96 }
97
98 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
99 nvmet_set_result(req, nvmet_async_event_result(aen));
100
101 list_del(&aen->entry);
102 kfree(aen);
103
104 mutex_unlock(&ctrl->lock);
105 nvmet_req_complete(req, 0);
106 }
107 }
108
109 static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
110 u8 event_info, u8 log_page)
111 {
112 struct nvmet_async_event *aen;
113
114 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
115 if (!aen)
116 return;
117
118 aen->event_type = event_type;
119 aen->event_info = event_info;
120 aen->log_page = log_page;
121
122 mutex_lock(&ctrl->lock);
123 list_add_tail(&aen->entry, &ctrl->async_events);
124 mutex_unlock(&ctrl->lock);
125
126 schedule_work(&ctrl->async_event_work);
127 }
128
129 int nvmet_register_transport(struct nvmet_fabrics_ops *ops)
130 {
131 int ret = 0;
132
133 down_write(&nvmet_config_sem);
134 if (nvmet_transports[ops->type])
135 ret = -EINVAL;
136 else
137 nvmet_transports[ops->type] = ops;
138 up_write(&nvmet_config_sem);
139
140 return ret;
141 }
142 EXPORT_SYMBOL_GPL(nvmet_register_transport);
143
144 void nvmet_unregister_transport(struct nvmet_fabrics_ops *ops)
145 {
146 down_write(&nvmet_config_sem);
147 nvmet_transports[ops->type] = NULL;
148 up_write(&nvmet_config_sem);
149 }
150 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
151
152 int nvmet_enable_port(struct nvmet_port *port)
153 {
154 struct nvmet_fabrics_ops *ops;
155 int ret;
156
157 lockdep_assert_held(&nvmet_config_sem);
158
159 ops = nvmet_transports[port->disc_addr.trtype];
160 if (!ops) {
161 up_write(&nvmet_config_sem);
162 request_module("nvmet-transport-%d", port->disc_addr.trtype);
163 down_write(&nvmet_config_sem);
164 ops = nvmet_transports[port->disc_addr.trtype];
165 if (!ops) {
166 pr_err("transport type %d not supported\n",
167 port->disc_addr.trtype);
168 return -EINVAL;
169 }
170 }
171
172 if (!try_module_get(ops->owner))
173 return -EINVAL;
174
175 ret = ops->add_port(port);
176 if (ret) {
177 module_put(ops->owner);
178 return ret;
179 }
180
181 port->enabled = true;
182 return 0;
183 }
184
185 void nvmet_disable_port(struct nvmet_port *port)
186 {
187 struct nvmet_fabrics_ops *ops;
188
189 lockdep_assert_held(&nvmet_config_sem);
190
191 port->enabled = false;
192
193 ops = nvmet_transports[port->disc_addr.trtype];
194 ops->remove_port(port);
195 module_put(ops->owner);
196 }
197
198 static void nvmet_keep_alive_timer(struct work_struct *work)
199 {
200 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
201 struct nvmet_ctrl, ka_work);
202
203 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
204 ctrl->cntlid, ctrl->kato);
205
206 nvmet_ctrl_fatal_error(ctrl);
207 }
208
209 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
210 {
211 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
212 ctrl->cntlid, ctrl->kato);
213
214 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
215 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
216 }
217
218 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
219 {
220 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
221
222 cancel_delayed_work_sync(&ctrl->ka_work);
223 }
224
225 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
226 __le32 nsid)
227 {
228 struct nvmet_ns *ns;
229
230 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
231 if (ns->nsid == le32_to_cpu(nsid))
232 return ns;
233 }
234
235 return NULL;
236 }
237
238 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
239 {
240 struct nvmet_ns *ns;
241
242 rcu_read_lock();
243 ns = __nvmet_find_namespace(ctrl, nsid);
244 if (ns)
245 percpu_ref_get(&ns->ref);
246 rcu_read_unlock();
247
248 return ns;
249 }
250
251 static void nvmet_destroy_namespace(struct percpu_ref *ref)
252 {
253 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
254
255 complete(&ns->disable_done);
256 }
257
258 void nvmet_put_namespace(struct nvmet_ns *ns)
259 {
260 percpu_ref_put(&ns->ref);
261 }
262
263 int nvmet_ns_enable(struct nvmet_ns *ns)
264 {
265 struct nvmet_subsys *subsys = ns->subsys;
266 struct nvmet_ctrl *ctrl;
267 int ret = 0;
268
269 mutex_lock(&subsys->lock);
270 if (ns->enabled)
271 goto out_unlock;
272
273 ns->bdev = blkdev_get_by_path(ns->device_path, FMODE_READ | FMODE_WRITE,
274 NULL);
275 if (IS_ERR(ns->bdev)) {
276 pr_err("failed to open block device %s: (%ld)\n",
277 ns->device_path, PTR_ERR(ns->bdev));
278 ret = PTR_ERR(ns->bdev);
279 ns->bdev = NULL;
280 goto out_unlock;
281 }
282
283 ns->size = i_size_read(ns->bdev->bd_inode);
284 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
285
286 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
287 0, GFP_KERNEL);
288 if (ret)
289 goto out_blkdev_put;
290
291 if (ns->nsid > subsys->max_nsid)
292 subsys->max_nsid = ns->nsid;
293
294 /*
295 * The namespaces list needs to be sorted to simplify the implementation
296 * of the Identify Namepace List subcommand.
297 */
298 if (list_empty(&subsys->namespaces)) {
299 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
300 } else {
301 struct nvmet_ns *old;
302
303 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
304 BUG_ON(ns->nsid == old->nsid);
305 if (ns->nsid < old->nsid)
306 break;
307 }
308
309 list_add_tail_rcu(&ns->dev_link, &old->dev_link);
310 }
311
312 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
313 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 0, 0);
314
315 ns->enabled = true;
316 ret = 0;
317 out_unlock:
318 mutex_unlock(&subsys->lock);
319 return ret;
320 out_blkdev_put:
321 blkdev_put(ns->bdev, FMODE_WRITE|FMODE_READ);
322 ns->bdev = NULL;
323 goto out_unlock;
324 }
325
326 void nvmet_ns_disable(struct nvmet_ns *ns)
327 {
328 struct nvmet_subsys *subsys = ns->subsys;
329 struct nvmet_ctrl *ctrl;
330
331 mutex_lock(&subsys->lock);
332 if (!ns->enabled)
333 goto out_unlock;
334
335 ns->enabled = false;
336 list_del_rcu(&ns->dev_link);
337 mutex_unlock(&subsys->lock);
338
339 /*
340 * Now that we removed the namespaces from the lookup list, we
341 * can kill the per_cpu ref and wait for any remaining references
342 * to be dropped, as well as a RCU grace period for anyone only
343 * using the namepace under rcu_read_lock(). Note that we can't
344 * use call_rcu here as we need to ensure the namespaces have
345 * been fully destroyed before unloading the module.
346 */
347 percpu_ref_kill(&ns->ref);
348 synchronize_rcu();
349 wait_for_completion(&ns->disable_done);
350 percpu_ref_exit(&ns->ref);
351
352 mutex_lock(&subsys->lock);
353 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
354 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 0, 0);
355
356 if (ns->bdev)
357 blkdev_put(ns->bdev, FMODE_WRITE|FMODE_READ);
358 out_unlock:
359 mutex_unlock(&subsys->lock);
360 }
361
362 void nvmet_ns_free(struct nvmet_ns *ns)
363 {
364 nvmet_ns_disable(ns);
365
366 kfree(ns->device_path);
367 kfree(ns);
368 }
369
370 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
371 {
372 struct nvmet_ns *ns;
373
374 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
375 if (!ns)
376 return NULL;
377
378 INIT_LIST_HEAD(&ns->dev_link);
379 init_completion(&ns->disable_done);
380
381 ns->nsid = nsid;
382 ns->subsys = subsys;
383 uuid_gen(&ns->uuid);
384
385 return ns;
386 }
387
388 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
389 {
390 if (status)
391 nvmet_set_status(req, status);
392
393 if (req->sq->size)
394 req->sq->sqhd = (req->sq->sqhd + 1) % req->sq->size;
395 req->rsp->sq_head = cpu_to_le16(req->sq->sqhd);
396 req->rsp->sq_id = cpu_to_le16(req->sq->qid);
397 req->rsp->command_id = req->cmd->common.command_id;
398
399 if (req->ns)
400 nvmet_put_namespace(req->ns);
401 req->ops->queue_response(req);
402 }
403
404 void nvmet_req_complete(struct nvmet_req *req, u16 status)
405 {
406 __nvmet_req_complete(req, status);
407 percpu_ref_put(&req->sq->ref);
408 }
409 EXPORT_SYMBOL_GPL(nvmet_req_complete);
410
411 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
412 u16 qid, u16 size)
413 {
414 cq->qid = qid;
415 cq->size = size;
416
417 ctrl->cqs[qid] = cq;
418 }
419
420 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
421 u16 qid, u16 size)
422 {
423 sq->sqhd = 0;
424 sq->qid = qid;
425 sq->size = size;
426
427 ctrl->sqs[qid] = sq;
428 }
429
430 static void nvmet_confirm_sq(struct percpu_ref *ref)
431 {
432 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
433
434 complete(&sq->confirm_done);
435 }
436
437 void nvmet_sq_destroy(struct nvmet_sq *sq)
438 {
439 /*
440 * If this is the admin queue, complete all AERs so that our
441 * queue doesn't have outstanding requests on it.
442 */
443 if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
444 nvmet_async_events_free(sq->ctrl);
445 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
446 wait_for_completion(&sq->confirm_done);
447 wait_for_completion(&sq->free_done);
448 percpu_ref_exit(&sq->ref);
449
450 if (sq->ctrl) {
451 nvmet_ctrl_put(sq->ctrl);
452 sq->ctrl = NULL; /* allows reusing the queue later */
453 }
454 }
455 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
456
457 static void nvmet_sq_free(struct percpu_ref *ref)
458 {
459 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
460
461 complete(&sq->free_done);
462 }
463
464 int nvmet_sq_init(struct nvmet_sq *sq)
465 {
466 int ret;
467
468 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
469 if (ret) {
470 pr_err("percpu_ref init failed!\n");
471 return ret;
472 }
473 init_completion(&sq->free_done);
474 init_completion(&sq->confirm_done);
475
476 return 0;
477 }
478 EXPORT_SYMBOL_GPL(nvmet_sq_init);
479
480 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
481 struct nvmet_sq *sq, struct nvmet_fabrics_ops *ops)
482 {
483 u8 flags = req->cmd->common.flags;
484 u16 status;
485
486 req->cq = cq;
487 req->sq = sq;
488 req->ops = ops;
489 req->sg = NULL;
490 req->sg_cnt = 0;
491 req->rsp->status = 0;
492
493 /* no support for fused commands yet */
494 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
495 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
496 goto fail;
497 }
498
499 /* either variant of SGLs is fine, as we don't support metadata */
500 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF &&
501 (flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METASEG)) {
502 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
503 goto fail;
504 }
505
506 if (unlikely(!req->sq->ctrl))
507 /* will return an error for any Non-connect command: */
508 status = nvmet_parse_connect_cmd(req);
509 else if (likely(req->sq->qid != 0))
510 status = nvmet_parse_io_cmd(req);
511 else if (req->cmd->common.opcode == nvme_fabrics_command)
512 status = nvmet_parse_fabrics_cmd(req);
513 else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
514 status = nvmet_parse_discovery_cmd(req);
515 else
516 status = nvmet_parse_admin_cmd(req);
517
518 if (status)
519 goto fail;
520
521 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
522 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
523 goto fail;
524 }
525
526 return true;
527
528 fail:
529 __nvmet_req_complete(req, status);
530 return false;
531 }
532 EXPORT_SYMBOL_GPL(nvmet_req_init);
533
534 void nvmet_req_uninit(struct nvmet_req *req)
535 {
536 percpu_ref_put(&req->sq->ref);
537 }
538 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
539
540 static inline bool nvmet_cc_en(u32 cc)
541 {
542 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
543 }
544
545 static inline u8 nvmet_cc_css(u32 cc)
546 {
547 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
548 }
549
550 static inline u8 nvmet_cc_mps(u32 cc)
551 {
552 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
553 }
554
555 static inline u8 nvmet_cc_ams(u32 cc)
556 {
557 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
558 }
559
560 static inline u8 nvmet_cc_shn(u32 cc)
561 {
562 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
563 }
564
565 static inline u8 nvmet_cc_iosqes(u32 cc)
566 {
567 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
568 }
569
570 static inline u8 nvmet_cc_iocqes(u32 cc)
571 {
572 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
573 }
574
575 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
576 {
577 lockdep_assert_held(&ctrl->lock);
578
579 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
580 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
581 nvmet_cc_mps(ctrl->cc) != 0 ||
582 nvmet_cc_ams(ctrl->cc) != 0 ||
583 nvmet_cc_css(ctrl->cc) != 0) {
584 ctrl->csts = NVME_CSTS_CFS;
585 return;
586 }
587
588 ctrl->csts = NVME_CSTS_RDY;
589 }
590
591 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
592 {
593 lockdep_assert_held(&ctrl->lock);
594
595 /* XXX: tear down queues? */
596 ctrl->csts &= ~NVME_CSTS_RDY;
597 ctrl->cc = 0;
598 }
599
600 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
601 {
602 u32 old;
603
604 mutex_lock(&ctrl->lock);
605 old = ctrl->cc;
606 ctrl->cc = new;
607
608 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
609 nvmet_start_ctrl(ctrl);
610 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
611 nvmet_clear_ctrl(ctrl);
612 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
613 nvmet_clear_ctrl(ctrl);
614 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
615 }
616 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
617 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
618 mutex_unlock(&ctrl->lock);
619 }
620
621 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
622 {
623 /* command sets supported: NVMe command set: */
624 ctrl->cap = (1ULL << 37);
625 /* CC.EN timeout in 500msec units: */
626 ctrl->cap |= (15ULL << 24);
627 /* maximum queue entries supported: */
628 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
629 }
630
631 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
632 struct nvmet_req *req, struct nvmet_ctrl **ret)
633 {
634 struct nvmet_subsys *subsys;
635 struct nvmet_ctrl *ctrl;
636 u16 status = 0;
637
638 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
639 if (!subsys) {
640 pr_warn("connect request for invalid subsystem %s!\n",
641 subsysnqn);
642 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
643 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
644 }
645
646 mutex_lock(&subsys->lock);
647 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
648 if (ctrl->cntlid == cntlid) {
649 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
650 pr_warn("hostnqn mismatch.\n");
651 continue;
652 }
653 if (!kref_get_unless_zero(&ctrl->ref))
654 continue;
655
656 *ret = ctrl;
657 goto out;
658 }
659 }
660
661 pr_warn("could not find controller %d for subsys %s / host %s\n",
662 cntlid, subsysnqn, hostnqn);
663 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
664 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
665
666 out:
667 mutex_unlock(&subsys->lock);
668 nvmet_subsys_put(subsys);
669 return status;
670 }
671
672 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
673 {
674 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
675 pr_err("got io cmd %d while CC.EN == 0 on qid = %d\n",
676 cmd->common.opcode, req->sq->qid);
677 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
678 }
679
680 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
681 pr_err("got io cmd %d while CSTS.RDY == 0 on qid = %d\n",
682 cmd->common.opcode, req->sq->qid);
683 req->ns = NULL;
684 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
685 }
686 return 0;
687 }
688
689 static bool __nvmet_host_allowed(struct nvmet_subsys *subsys,
690 const char *hostnqn)
691 {
692 struct nvmet_host_link *p;
693
694 if (subsys->allow_any_host)
695 return true;
696
697 list_for_each_entry(p, &subsys->hosts, entry) {
698 if (!strcmp(nvmet_host_name(p->host), hostnqn))
699 return true;
700 }
701
702 return false;
703 }
704
705 static bool nvmet_host_discovery_allowed(struct nvmet_req *req,
706 const char *hostnqn)
707 {
708 struct nvmet_subsys_link *s;
709
710 list_for_each_entry(s, &req->port->subsystems, entry) {
711 if (__nvmet_host_allowed(s->subsys, hostnqn))
712 return true;
713 }
714
715 return false;
716 }
717
718 bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys,
719 const char *hostnqn)
720 {
721 lockdep_assert_held(&nvmet_config_sem);
722
723 if (subsys->type == NVME_NQN_DISC)
724 return nvmet_host_discovery_allowed(req, hostnqn);
725 else
726 return __nvmet_host_allowed(subsys, hostnqn);
727 }
728
729 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
730 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
731 {
732 struct nvmet_subsys *subsys;
733 struct nvmet_ctrl *ctrl;
734 int ret;
735 u16 status;
736
737 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
738 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
739 if (!subsys) {
740 pr_warn("connect request for invalid subsystem %s!\n",
741 subsysnqn);
742 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
743 goto out;
744 }
745
746 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
747 down_read(&nvmet_config_sem);
748 if (!nvmet_host_allowed(req, subsys, hostnqn)) {
749 pr_info("connect by host %s for subsystem %s not allowed\n",
750 hostnqn, subsysnqn);
751 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
752 up_read(&nvmet_config_sem);
753 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
754 goto out_put_subsystem;
755 }
756 up_read(&nvmet_config_sem);
757
758 status = NVME_SC_INTERNAL;
759 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
760 if (!ctrl)
761 goto out_put_subsystem;
762 mutex_init(&ctrl->lock);
763
764 nvmet_init_cap(ctrl);
765
766 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
767 INIT_LIST_HEAD(&ctrl->async_events);
768
769 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
770 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
771
772 kref_init(&ctrl->ref);
773 ctrl->subsys = subsys;
774
775 ctrl->cqs = kcalloc(subsys->max_qid + 1,
776 sizeof(struct nvmet_cq *),
777 GFP_KERNEL);
778 if (!ctrl->cqs)
779 goto out_free_ctrl;
780
781 ctrl->sqs = kcalloc(subsys->max_qid + 1,
782 sizeof(struct nvmet_sq *),
783 GFP_KERNEL);
784 if (!ctrl->sqs)
785 goto out_free_cqs;
786
787 ret = ida_simple_get(&cntlid_ida,
788 NVME_CNTLID_MIN, NVME_CNTLID_MAX,
789 GFP_KERNEL);
790 if (ret < 0) {
791 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
792 goto out_free_sqs;
793 }
794 ctrl->cntlid = ret;
795
796 ctrl->ops = req->ops;
797 if (ctrl->subsys->type == NVME_NQN_DISC) {
798 /* Don't accept keep-alive timeout for discovery controllers */
799 if (kato) {
800 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
801 goto out_free_sqs;
802 }
803
804 /*
805 * Discovery controllers use some arbitrary high value in order
806 * to cleanup stale discovery sessions
807 *
808 * From the latest base diff RC:
809 * "The Keep Alive command is not supported by
810 * Discovery controllers. A transport may specify a
811 * fixed Discovery controller activity timeout value
812 * (e.g., 2 minutes). If no commands are received
813 * by a Discovery controller within that time
814 * period, the controller may perform the
815 * actions for Keep Alive Timer expiration".
816 */
817 ctrl->kato = NVMET_DISC_KATO;
818 } else {
819 /* keep-alive timeout in seconds */
820 ctrl->kato = DIV_ROUND_UP(kato, 1000);
821 }
822 nvmet_start_keep_alive_timer(ctrl);
823
824 mutex_lock(&subsys->lock);
825 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
826 mutex_unlock(&subsys->lock);
827
828 *ctrlp = ctrl;
829 return 0;
830
831 out_free_sqs:
832 kfree(ctrl->sqs);
833 out_free_cqs:
834 kfree(ctrl->cqs);
835 out_free_ctrl:
836 kfree(ctrl);
837 out_put_subsystem:
838 nvmet_subsys_put(subsys);
839 out:
840 return status;
841 }
842
843 static void nvmet_ctrl_free(struct kref *ref)
844 {
845 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
846 struct nvmet_subsys *subsys = ctrl->subsys;
847
848 nvmet_stop_keep_alive_timer(ctrl);
849
850 mutex_lock(&subsys->lock);
851 list_del(&ctrl->subsys_entry);
852 mutex_unlock(&subsys->lock);
853
854 flush_work(&ctrl->async_event_work);
855 cancel_work_sync(&ctrl->fatal_err_work);
856
857 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
858 nvmet_subsys_put(subsys);
859
860 kfree(ctrl->sqs);
861 kfree(ctrl->cqs);
862 kfree(ctrl);
863 }
864
865 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
866 {
867 kref_put(&ctrl->ref, nvmet_ctrl_free);
868 }
869
870 static void nvmet_fatal_error_handler(struct work_struct *work)
871 {
872 struct nvmet_ctrl *ctrl =
873 container_of(work, struct nvmet_ctrl, fatal_err_work);
874
875 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
876 ctrl->ops->delete_ctrl(ctrl);
877 }
878
879 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
880 {
881 mutex_lock(&ctrl->lock);
882 if (!(ctrl->csts & NVME_CSTS_CFS)) {
883 ctrl->csts |= NVME_CSTS_CFS;
884 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
885 schedule_work(&ctrl->fatal_err_work);
886 }
887 mutex_unlock(&ctrl->lock);
888 }
889 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
890
891 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
892 const char *subsysnqn)
893 {
894 struct nvmet_subsys_link *p;
895
896 if (!port)
897 return NULL;
898
899 if (!strncmp(NVME_DISC_SUBSYS_NAME, subsysnqn,
900 NVMF_NQN_SIZE)) {
901 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
902 return NULL;
903 return nvmet_disc_subsys;
904 }
905
906 down_read(&nvmet_config_sem);
907 list_for_each_entry(p, &port->subsystems, entry) {
908 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
909 NVMF_NQN_SIZE)) {
910 if (!kref_get_unless_zero(&p->subsys->ref))
911 break;
912 up_read(&nvmet_config_sem);
913 return p->subsys;
914 }
915 }
916 up_read(&nvmet_config_sem);
917 return NULL;
918 }
919
920 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
921 enum nvme_subsys_type type)
922 {
923 struct nvmet_subsys *subsys;
924
925 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
926 if (!subsys)
927 return NULL;
928
929 subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
930 /* generate a random serial number as our controllers are ephemeral: */
931 get_random_bytes(&subsys->serial, sizeof(subsys->serial));
932
933 switch (type) {
934 case NVME_NQN_NVME:
935 subsys->max_qid = NVMET_NR_QUEUES;
936 break;
937 case NVME_NQN_DISC:
938 subsys->max_qid = 0;
939 break;
940 default:
941 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
942 kfree(subsys);
943 return NULL;
944 }
945 subsys->type = type;
946 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
947 GFP_KERNEL);
948 if (!subsys->subsysnqn) {
949 kfree(subsys);
950 return NULL;
951 }
952
953 kref_init(&subsys->ref);
954
955 mutex_init(&subsys->lock);
956 INIT_LIST_HEAD(&subsys->namespaces);
957 INIT_LIST_HEAD(&subsys->ctrls);
958 INIT_LIST_HEAD(&subsys->hosts);
959
960 return subsys;
961 }
962
963 static void nvmet_subsys_free(struct kref *ref)
964 {
965 struct nvmet_subsys *subsys =
966 container_of(ref, struct nvmet_subsys, ref);
967
968 WARN_ON_ONCE(!list_empty(&subsys->namespaces));
969
970 kfree(subsys->subsysnqn);
971 kfree(subsys);
972 }
973
974 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
975 {
976 struct nvmet_ctrl *ctrl;
977
978 mutex_lock(&subsys->lock);
979 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
980 ctrl->ops->delete_ctrl(ctrl);
981 mutex_unlock(&subsys->lock);
982 }
983
984 void nvmet_subsys_put(struct nvmet_subsys *subsys)
985 {
986 kref_put(&subsys->ref, nvmet_subsys_free);
987 }
988
989 static int __init nvmet_init(void)
990 {
991 int error;
992
993 error = nvmet_init_discovery();
994 if (error)
995 goto out;
996
997 error = nvmet_init_configfs();
998 if (error)
999 goto out_exit_discovery;
1000 return 0;
1001
1002 out_exit_discovery:
1003 nvmet_exit_discovery();
1004 out:
1005 return error;
1006 }
1007
1008 static void __exit nvmet_exit(void)
1009 {
1010 nvmet_exit_configfs();
1011 nvmet_exit_discovery();
1012 ida_destroy(&cntlid_ida);
1013
1014 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1015 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1016 }
1017
1018 module_init(nvmet_init);
1019 module_exit(nvmet_exit);
1020
1021 MODULE_LICENSE("GPL v2");