]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/target/fc.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / target / fc.c
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT 4
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43 struct nvmefc_tgt_ls_req *lsreq;
44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
45
46 struct list_head ls_list; /* tgtport->ls_list */
47
48 struct nvmet_fc_tgtport *tgtport;
49 struct nvmet_fc_tgt_assoc *assoc;
50
51 u8 *rqstbuf;
52 u8 *rspbuf;
53 u16 rqstdatalen;
54 dma_addr_t rspdma;
55
56 struct scatterlist sg[2];
57
58 struct work_struct work;
59 } __aligned(sizeof(unsigned long long));
60
61 #define NVMET_FC_MAX_KB_PER_XFR 256
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *data_sg;
77 struct scatterlist *next_sg;
78 int data_sg_cnt;
79 u32 next_sg_offset;
80 u32 total_length;
81 u32 offset;
82 enum nvmet_fcp_datadir io_dir;
83 bool active;
84 bool abort;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97
98 struct nvmet_fc_target_port fc_target_port;
99
100 struct list_head tgt_list; /* nvmet_fc_target_list */
101 struct device *dev; /* dev for dma mapping */
102 struct nvmet_fc_target_template *ops;
103
104 struct nvmet_fc_ls_iod *iod;
105 spinlock_t lock;
106 struct list_head ls_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct ida assoc_cnt;
110 struct nvmet_port *port;
111 struct kref ref;
112 };
113
114 struct nvmet_fc_tgt_queue {
115 bool ninetypercent;
116 u16 qid;
117 u16 sqsize;
118 u16 ersp_ratio;
119 u16 sqhd;
120 int cpu;
121 atomic_t connected;
122 atomic_t sqtail;
123 atomic_t zrspcnt;
124 atomic_t rsn;
125 spinlock_t qlock;
126 struct nvmet_port *port;
127 struct nvmet_cq nvme_cq;
128 struct nvmet_sq nvme_sq;
129 struct nvmet_fc_tgt_assoc *assoc;
130 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */
131 struct list_head fod_list;
132 struct workqueue_struct *work_q;
133 struct kref ref;
134 } __aligned(sizeof(unsigned long long));
135
136 struct nvmet_fc_tgt_assoc {
137 u64 association_id;
138 u32 a_id;
139 struct nvmet_fc_tgtport *tgtport;
140 struct list_head a_list;
141 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES];
142 struct kref ref;
143 };
144
145
146 static inline int
147 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
148 {
149 return (iodptr - iodptr->tgtport->iod);
150 }
151
152 static inline int
153 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
154 {
155 return (fodptr - fodptr->queue->fod);
156 }
157
158
159 /*
160 * Association and Connection IDs:
161 *
162 * Association ID will have random number in upper 6 bytes and zero
163 * in lower 2 bytes
164 *
165 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
166 *
167 * note: Association ID = Connection ID for queue 0
168 */
169 #define BYTES_FOR_QID sizeof(u16)
170 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
171 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
172
173 static inline u64
174 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
175 {
176 return (assoc->association_id | qid);
177 }
178
179 static inline u64
180 nvmet_fc_getassociationid(u64 connectionid)
181 {
182 return connectionid & ~NVMET_FC_QUEUEID_MASK;
183 }
184
185 static inline u16
186 nvmet_fc_getqueueid(u64 connectionid)
187 {
188 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
189 }
190
191 static inline struct nvmet_fc_tgtport *
192 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
193 {
194 return container_of(targetport, struct nvmet_fc_tgtport,
195 fc_target_port);
196 }
197
198 static inline struct nvmet_fc_fcp_iod *
199 nvmet_req_to_fod(struct nvmet_req *nvme_req)
200 {
201 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
202 }
203
204
205 /* *************************** Globals **************************** */
206
207
208 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
209
210 static LIST_HEAD(nvmet_fc_target_list);
211 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
212
213
214 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
215 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
216 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
217 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
218 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
219 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
220 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
221 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
222
223
224 /* *********************** FC-NVME DMA Handling **************************** */
225
226 /*
227 * The fcloop device passes in a NULL device pointer. Real LLD's will
228 * pass in a valid device pointer. If NULL is passed to the dma mapping
229 * routines, depending on the platform, it may or may not succeed, and
230 * may crash.
231 *
232 * As such:
233 * Wrapper all the dma routines and check the dev pointer.
234 *
235 * If simple mappings (return just a dma address, we'll noop them,
236 * returning a dma address of 0.
237 *
238 * On more complex mappings (dma_map_sg), a pseudo routine fills
239 * in the scatter list, setting all dma addresses to 0.
240 */
241
242 static inline dma_addr_t
243 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
244 enum dma_data_direction dir)
245 {
246 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
247 }
248
249 static inline int
250 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
251 {
252 return dev ? dma_mapping_error(dev, dma_addr) : 0;
253 }
254
255 static inline void
256 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
257 enum dma_data_direction dir)
258 {
259 if (dev)
260 dma_unmap_single(dev, addr, size, dir);
261 }
262
263 static inline void
264 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
265 enum dma_data_direction dir)
266 {
267 if (dev)
268 dma_sync_single_for_cpu(dev, addr, size, dir);
269 }
270
271 static inline void
272 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
273 enum dma_data_direction dir)
274 {
275 if (dev)
276 dma_sync_single_for_device(dev, addr, size, dir);
277 }
278
279 /* pseudo dma_map_sg call */
280 static int
281 fc_map_sg(struct scatterlist *sg, int nents)
282 {
283 struct scatterlist *s;
284 int i;
285
286 WARN_ON(nents == 0 || sg[0].length == 0);
287
288 for_each_sg(sg, s, nents, i) {
289 s->dma_address = 0L;
290 #ifdef CONFIG_NEED_SG_DMA_LENGTH
291 s->dma_length = s->length;
292 #endif
293 }
294 return nents;
295 }
296
297 static inline int
298 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
299 enum dma_data_direction dir)
300 {
301 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
302 }
303
304 static inline void
305 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
306 enum dma_data_direction dir)
307 {
308 if (dev)
309 dma_unmap_sg(dev, sg, nents, dir);
310 }
311
312
313 /* *********************** FC-NVME Port Management ************************ */
314
315
316 static int
317 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
318 {
319 struct nvmet_fc_ls_iod *iod;
320 int i;
321
322 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
323 GFP_KERNEL);
324 if (!iod)
325 return -ENOMEM;
326
327 tgtport->iod = iod;
328
329 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
330 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
331 iod->tgtport = tgtport;
332 list_add_tail(&iod->ls_list, &tgtport->ls_list);
333
334 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
335 GFP_KERNEL);
336 if (!iod->rqstbuf)
337 goto out_fail;
338
339 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
340
341 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
342 NVME_FC_MAX_LS_BUFFER_SIZE,
343 DMA_TO_DEVICE);
344 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
345 goto out_fail;
346 }
347
348 return 0;
349
350 out_fail:
351 kfree(iod->rqstbuf);
352 list_del(&iod->ls_list);
353 for (iod--, i--; i >= 0; iod--, i--) {
354 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
355 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
356 kfree(iod->rqstbuf);
357 list_del(&iod->ls_list);
358 }
359
360 kfree(iod);
361
362 return -EFAULT;
363 }
364
365 static void
366 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
367 {
368 struct nvmet_fc_ls_iod *iod = tgtport->iod;
369 int i;
370
371 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
372 fc_dma_unmap_single(tgtport->dev,
373 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
374 DMA_TO_DEVICE);
375 kfree(iod->rqstbuf);
376 list_del(&iod->ls_list);
377 }
378 kfree(tgtport->iod);
379 }
380
381 static struct nvmet_fc_ls_iod *
382 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
383 {
384 static struct nvmet_fc_ls_iod *iod;
385 unsigned long flags;
386
387 spin_lock_irqsave(&tgtport->lock, flags);
388 iod = list_first_entry_or_null(&tgtport->ls_list,
389 struct nvmet_fc_ls_iod, ls_list);
390 if (iod)
391 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
392 spin_unlock_irqrestore(&tgtport->lock, flags);
393 return iod;
394 }
395
396
397 static void
398 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
399 struct nvmet_fc_ls_iod *iod)
400 {
401 unsigned long flags;
402
403 spin_lock_irqsave(&tgtport->lock, flags);
404 list_move(&iod->ls_list, &tgtport->ls_list);
405 spin_unlock_irqrestore(&tgtport->lock, flags);
406 }
407
408 static void
409 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
410 struct nvmet_fc_tgt_queue *queue)
411 {
412 struct nvmet_fc_fcp_iod *fod = queue->fod;
413 int i;
414
415 for (i = 0; i < queue->sqsize; fod++, i++) {
416 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
417 fod->tgtport = tgtport;
418 fod->queue = queue;
419 fod->active = false;
420 list_add_tail(&fod->fcp_list, &queue->fod_list);
421 spin_lock_init(&fod->flock);
422
423 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
424 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
425 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
426 list_del(&fod->fcp_list);
427 for (fod--, i--; i >= 0; fod--, i--) {
428 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
429 sizeof(fod->rspiubuf),
430 DMA_TO_DEVICE);
431 fod->rspdma = 0L;
432 list_del(&fod->fcp_list);
433 }
434
435 return;
436 }
437 }
438 }
439
440 static void
441 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
442 struct nvmet_fc_tgt_queue *queue)
443 {
444 struct nvmet_fc_fcp_iod *fod = queue->fod;
445 int i;
446
447 for (i = 0; i < queue->sqsize; fod++, i++) {
448 if (fod->rspdma)
449 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
450 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
451 }
452 }
453
454 static struct nvmet_fc_fcp_iod *
455 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
456 {
457 static struct nvmet_fc_fcp_iod *fod;
458 unsigned long flags;
459
460 spin_lock_irqsave(&queue->qlock, flags);
461 fod = list_first_entry_or_null(&queue->fod_list,
462 struct nvmet_fc_fcp_iod, fcp_list);
463 if (fod) {
464 list_del(&fod->fcp_list);
465 fod->active = true;
466 fod->abort = false;
467 /*
468 * no queue reference is taken, as it was taken by the
469 * queue lookup just prior to the allocation. The iod
470 * will "inherit" that reference.
471 */
472 }
473 spin_unlock_irqrestore(&queue->qlock, flags);
474 return fod;
475 }
476
477
478 static void
479 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
480 struct nvmet_fc_fcp_iod *fod)
481 {
482 unsigned long flags;
483
484 spin_lock_irqsave(&queue->qlock, flags);
485 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
486 fod->active = false;
487 spin_unlock_irqrestore(&queue->qlock, flags);
488
489 /*
490 * release the reference taken at queue lookup and fod allocation
491 */
492 nvmet_fc_tgt_q_put(queue);
493 }
494
495 static int
496 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
497 {
498 int cpu, idx, cnt;
499
500 if (!(tgtport->ops->target_features &
501 NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED) ||
502 tgtport->ops->max_hw_queues == 1)
503 return WORK_CPU_UNBOUND;
504
505 /* Simple cpu selection based on qid modulo active cpu count */
506 idx = !qid ? 0 : (qid - 1) % num_active_cpus();
507
508 /* find the n'th active cpu */
509 for (cpu = 0, cnt = 0; ; ) {
510 if (cpu_active(cpu)) {
511 if (cnt == idx)
512 break;
513 cnt++;
514 }
515 cpu = (cpu + 1) % num_possible_cpus();
516 }
517
518 return cpu;
519 }
520
521 static struct nvmet_fc_tgt_queue *
522 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
523 u16 qid, u16 sqsize)
524 {
525 struct nvmet_fc_tgt_queue *queue;
526 unsigned long flags;
527 int ret;
528
529 if (qid >= NVMET_NR_QUEUES)
530 return NULL;
531
532 queue = kzalloc((sizeof(*queue) +
533 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
534 GFP_KERNEL);
535 if (!queue)
536 return NULL;
537
538 if (!nvmet_fc_tgt_a_get(assoc))
539 goto out_free_queue;
540
541 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
542 assoc->tgtport->fc_target_port.port_num,
543 assoc->a_id, qid);
544 if (!queue->work_q)
545 goto out_a_put;
546
547 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
548 queue->qid = qid;
549 queue->sqsize = sqsize;
550 queue->assoc = assoc;
551 queue->port = assoc->tgtport->port;
552 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
553 INIT_LIST_HEAD(&queue->fod_list);
554 atomic_set(&queue->connected, 0);
555 atomic_set(&queue->sqtail, 0);
556 atomic_set(&queue->rsn, 1);
557 atomic_set(&queue->zrspcnt, 0);
558 spin_lock_init(&queue->qlock);
559 kref_init(&queue->ref);
560
561 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
562
563 ret = nvmet_sq_init(&queue->nvme_sq);
564 if (ret)
565 goto out_fail_iodlist;
566
567 WARN_ON(assoc->queues[qid]);
568 spin_lock_irqsave(&assoc->tgtport->lock, flags);
569 assoc->queues[qid] = queue;
570 spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
571
572 return queue;
573
574 out_fail_iodlist:
575 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
576 destroy_workqueue(queue->work_q);
577 out_a_put:
578 nvmet_fc_tgt_a_put(assoc);
579 out_free_queue:
580 kfree(queue);
581 return NULL;
582 }
583
584
585 static void
586 nvmet_fc_tgt_queue_free(struct kref *ref)
587 {
588 struct nvmet_fc_tgt_queue *queue =
589 container_of(ref, struct nvmet_fc_tgt_queue, ref);
590 unsigned long flags;
591
592 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
593 queue->assoc->queues[queue->qid] = NULL;
594 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
595
596 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
597
598 nvmet_fc_tgt_a_put(queue->assoc);
599
600 destroy_workqueue(queue->work_q);
601
602 kfree(queue);
603 }
604
605 static void
606 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
607 {
608 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
609 }
610
611 static int
612 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
613 {
614 return kref_get_unless_zero(&queue->ref);
615 }
616
617
618 static void
619 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
620 struct nvmefc_tgt_fcp_req *fcpreq)
621 {
622 int ret;
623
624 fcpreq->op = NVMET_FCOP_ABORT;
625 fcpreq->offset = 0;
626 fcpreq->timeout = 0;
627 fcpreq->transfer_length = 0;
628 fcpreq->transferred_length = 0;
629 fcpreq->fcp_error = 0;
630 fcpreq->sg_cnt = 0;
631
632 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fcpreq);
633 if (ret)
634 /* should never reach here !! */
635 WARN_ON(1);
636 }
637
638
639 static void
640 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
641 {
642 struct nvmet_fc_fcp_iod *fod = queue->fod;
643 unsigned long flags;
644 int i;
645 bool disconnect;
646
647 disconnect = atomic_xchg(&queue->connected, 0);
648
649 spin_lock_irqsave(&queue->qlock, flags);
650 /* about outstanding io's */
651 for (i = 0; i < queue->sqsize; fod++, i++) {
652 if (fod->active) {
653 spin_lock(&fod->flock);
654 fod->abort = true;
655 spin_unlock(&fod->flock);
656 }
657 }
658 spin_unlock_irqrestore(&queue->qlock, flags);
659
660 flush_workqueue(queue->work_q);
661
662 if (disconnect)
663 nvmet_sq_destroy(&queue->nvme_sq);
664
665 nvmet_fc_tgt_q_put(queue);
666 }
667
668 static struct nvmet_fc_tgt_queue *
669 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
670 u64 connection_id)
671 {
672 struct nvmet_fc_tgt_assoc *assoc;
673 struct nvmet_fc_tgt_queue *queue;
674 u64 association_id = nvmet_fc_getassociationid(connection_id);
675 u16 qid = nvmet_fc_getqueueid(connection_id);
676 unsigned long flags;
677
678 spin_lock_irqsave(&tgtport->lock, flags);
679 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
680 if (association_id == assoc->association_id) {
681 queue = assoc->queues[qid];
682 if (queue &&
683 (!atomic_read(&queue->connected) ||
684 !nvmet_fc_tgt_q_get(queue)))
685 queue = NULL;
686 spin_unlock_irqrestore(&tgtport->lock, flags);
687 return queue;
688 }
689 }
690 spin_unlock_irqrestore(&tgtport->lock, flags);
691 return NULL;
692 }
693
694 static struct nvmet_fc_tgt_assoc *
695 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
696 {
697 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
698 unsigned long flags;
699 u64 ran;
700 int idx;
701 bool needrandom = true;
702
703 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
704 if (!assoc)
705 return NULL;
706
707 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
708 if (idx < 0)
709 goto out_free_assoc;
710
711 if (!nvmet_fc_tgtport_get(tgtport))
712 goto out_ida_put;
713
714 assoc->tgtport = tgtport;
715 assoc->a_id = idx;
716 INIT_LIST_HEAD(&assoc->a_list);
717 kref_init(&assoc->ref);
718
719 while (needrandom) {
720 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
721 ran = ran << BYTES_FOR_QID_SHIFT;
722
723 spin_lock_irqsave(&tgtport->lock, flags);
724 needrandom = false;
725 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
726 if (ran == tmpassoc->association_id) {
727 needrandom = true;
728 break;
729 }
730 if (!needrandom) {
731 assoc->association_id = ran;
732 list_add_tail(&assoc->a_list, &tgtport->assoc_list);
733 }
734 spin_unlock_irqrestore(&tgtport->lock, flags);
735 }
736
737 return assoc;
738
739 out_ida_put:
740 ida_simple_remove(&tgtport->assoc_cnt, idx);
741 out_free_assoc:
742 kfree(assoc);
743 return NULL;
744 }
745
746 static void
747 nvmet_fc_target_assoc_free(struct kref *ref)
748 {
749 struct nvmet_fc_tgt_assoc *assoc =
750 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
751 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
752 unsigned long flags;
753
754 spin_lock_irqsave(&tgtport->lock, flags);
755 list_del(&assoc->a_list);
756 spin_unlock_irqrestore(&tgtport->lock, flags);
757 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
758 kfree(assoc);
759 nvmet_fc_tgtport_put(tgtport);
760 }
761
762 static void
763 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
764 {
765 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
766 }
767
768 static int
769 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
770 {
771 return kref_get_unless_zero(&assoc->ref);
772 }
773
774 static void
775 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
776 {
777 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
778 struct nvmet_fc_tgt_queue *queue;
779 unsigned long flags;
780 int i;
781
782 spin_lock_irqsave(&tgtport->lock, flags);
783 for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) {
784 queue = assoc->queues[i];
785 if (queue) {
786 if (!nvmet_fc_tgt_q_get(queue))
787 continue;
788 spin_unlock_irqrestore(&tgtport->lock, flags);
789 nvmet_fc_delete_target_queue(queue);
790 nvmet_fc_tgt_q_put(queue);
791 spin_lock_irqsave(&tgtport->lock, flags);
792 }
793 }
794 spin_unlock_irqrestore(&tgtport->lock, flags);
795
796 nvmet_fc_tgt_a_put(assoc);
797 }
798
799 static struct nvmet_fc_tgt_assoc *
800 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
801 u64 association_id)
802 {
803 struct nvmet_fc_tgt_assoc *assoc;
804 struct nvmet_fc_tgt_assoc *ret = NULL;
805 unsigned long flags;
806
807 spin_lock_irqsave(&tgtport->lock, flags);
808 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
809 if (association_id == assoc->association_id) {
810 ret = assoc;
811 nvmet_fc_tgt_a_get(assoc);
812 break;
813 }
814 }
815 spin_unlock_irqrestore(&tgtport->lock, flags);
816
817 return ret;
818 }
819
820
821 /**
822 * nvme_fc_register_targetport - transport entry point called by an
823 * LLDD to register the existence of a local
824 * NVME subystem FC port.
825 * @pinfo: pointer to information about the port to be registered
826 * @template: LLDD entrypoints and operational parameters for the port
827 * @dev: physical hardware device node port corresponds to. Will be
828 * used for DMA mappings
829 * @portptr: pointer to a local port pointer. Upon success, the routine
830 * will allocate a nvme_fc_local_port structure and place its
831 * address in the local port pointer. Upon failure, local port
832 * pointer will be set to NULL.
833 *
834 * Returns:
835 * a completion status. Must be 0 upon success; a negative errno
836 * (ex: -ENXIO) upon failure.
837 */
838 int
839 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
840 struct nvmet_fc_target_template *template,
841 struct device *dev,
842 struct nvmet_fc_target_port **portptr)
843 {
844 struct nvmet_fc_tgtport *newrec;
845 unsigned long flags;
846 int ret, idx;
847
848 if (!template->xmt_ls_rsp || !template->fcp_op ||
849 !template->targetport_delete ||
850 !template->max_hw_queues || !template->max_sgl_segments ||
851 !template->max_dif_sgl_segments || !template->dma_boundary) {
852 ret = -EINVAL;
853 goto out_regtgt_failed;
854 }
855
856 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
857 GFP_KERNEL);
858 if (!newrec) {
859 ret = -ENOMEM;
860 goto out_regtgt_failed;
861 }
862
863 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
864 if (idx < 0) {
865 ret = -ENOSPC;
866 goto out_fail_kfree;
867 }
868
869 if (!get_device(dev) && dev) {
870 ret = -ENODEV;
871 goto out_ida_put;
872 }
873
874 newrec->fc_target_port.node_name = pinfo->node_name;
875 newrec->fc_target_port.port_name = pinfo->port_name;
876 newrec->fc_target_port.private = &newrec[1];
877 newrec->fc_target_port.port_id = pinfo->port_id;
878 newrec->fc_target_port.port_num = idx;
879 INIT_LIST_HEAD(&newrec->tgt_list);
880 newrec->dev = dev;
881 newrec->ops = template;
882 spin_lock_init(&newrec->lock);
883 INIT_LIST_HEAD(&newrec->ls_list);
884 INIT_LIST_HEAD(&newrec->ls_busylist);
885 INIT_LIST_HEAD(&newrec->assoc_list);
886 kref_init(&newrec->ref);
887 ida_init(&newrec->assoc_cnt);
888
889 ret = nvmet_fc_alloc_ls_iodlist(newrec);
890 if (ret) {
891 ret = -ENOMEM;
892 goto out_free_newrec;
893 }
894
895 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
896 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
897 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
898
899 *portptr = &newrec->fc_target_port;
900 return 0;
901
902 out_free_newrec:
903 put_device(dev);
904 out_ida_put:
905 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
906 out_fail_kfree:
907 kfree(newrec);
908 out_regtgt_failed:
909 *portptr = NULL;
910 return ret;
911 }
912 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
913
914
915 static void
916 nvmet_fc_free_tgtport(struct kref *ref)
917 {
918 struct nvmet_fc_tgtport *tgtport =
919 container_of(ref, struct nvmet_fc_tgtport, ref);
920 struct device *dev = tgtport->dev;
921 unsigned long flags;
922
923 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
924 list_del(&tgtport->tgt_list);
925 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
926
927 nvmet_fc_free_ls_iodlist(tgtport);
928
929 /* let the LLDD know we've finished tearing it down */
930 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
931
932 ida_simple_remove(&nvmet_fc_tgtport_cnt,
933 tgtport->fc_target_port.port_num);
934
935 ida_destroy(&tgtport->assoc_cnt);
936
937 kfree(tgtport);
938
939 put_device(dev);
940 }
941
942 static void
943 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
944 {
945 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
946 }
947
948 static int
949 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
950 {
951 return kref_get_unless_zero(&tgtport->ref);
952 }
953
954 static void
955 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
956 {
957 struct nvmet_fc_tgt_assoc *assoc, *next;
958 unsigned long flags;
959
960 spin_lock_irqsave(&tgtport->lock, flags);
961 list_for_each_entry_safe(assoc, next,
962 &tgtport->assoc_list, a_list) {
963 if (!nvmet_fc_tgt_a_get(assoc))
964 continue;
965 spin_unlock_irqrestore(&tgtport->lock, flags);
966 nvmet_fc_delete_target_assoc(assoc);
967 nvmet_fc_tgt_a_put(assoc);
968 spin_lock_irqsave(&tgtport->lock, flags);
969 }
970 spin_unlock_irqrestore(&tgtport->lock, flags);
971 }
972
973 /*
974 * nvmet layer has called to terminate an association
975 */
976 static void
977 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
978 {
979 struct nvmet_fc_tgtport *tgtport, *next;
980 struct nvmet_fc_tgt_assoc *assoc;
981 struct nvmet_fc_tgt_queue *queue;
982 unsigned long flags;
983 bool found_ctrl = false;
984
985 /* this is a bit ugly, but don't want to make locks layered */
986 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
987 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
988 tgt_list) {
989 if (!nvmet_fc_tgtport_get(tgtport))
990 continue;
991 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
992
993 spin_lock_irqsave(&tgtport->lock, flags);
994 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
995 queue = assoc->queues[0];
996 if (queue && queue->nvme_sq.ctrl == ctrl) {
997 if (nvmet_fc_tgt_a_get(assoc))
998 found_ctrl = true;
999 break;
1000 }
1001 }
1002 spin_unlock_irqrestore(&tgtport->lock, flags);
1003
1004 nvmet_fc_tgtport_put(tgtport);
1005
1006 if (found_ctrl) {
1007 nvmet_fc_delete_target_assoc(assoc);
1008 nvmet_fc_tgt_a_put(assoc);
1009 return;
1010 }
1011
1012 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1013 }
1014 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1015 }
1016
1017 /**
1018 * nvme_fc_unregister_targetport - transport entry point called by an
1019 * LLDD to deregister/remove a previously
1020 * registered a local NVME subsystem FC port.
1021 * @tgtport: pointer to the (registered) target port that is to be
1022 * deregistered.
1023 *
1024 * Returns:
1025 * a completion status. Must be 0 upon success; a negative errno
1026 * (ex: -ENXIO) upon failure.
1027 */
1028 int
1029 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1030 {
1031 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1032
1033 /* terminate any outstanding associations */
1034 __nvmet_fc_free_assocs(tgtport);
1035
1036 nvmet_fc_tgtport_put(tgtport);
1037
1038 return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1041
1042
1043 /* *********************** FC-NVME LS Handling **************************** */
1044
1045
1046 static void
1047 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, u32 desc_len, u8 rqst_ls_cmd)
1048 {
1049 struct fcnvme_ls_acc_hdr *acc = buf;
1050
1051 acc->w0.ls_cmd = ls_cmd;
1052 acc->desc_list_len = desc_len;
1053 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1054 acc->rqst.desc_len =
1055 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1056 acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1057 }
1058
1059 static int
1060 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1061 u8 reason, u8 explanation, u8 vendor)
1062 {
1063 struct fcnvme_ls_rjt *rjt = buf;
1064
1065 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1066 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1067 ls_cmd);
1068 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1069 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1070 rjt->rjt.reason_code = reason;
1071 rjt->rjt.reason_explanation = explanation;
1072 rjt->rjt.vendor = vendor;
1073
1074 return sizeof(struct fcnvme_ls_rjt);
1075 }
1076
1077 /* Validation Error indexes into the string table below */
1078 enum {
1079 VERR_NO_ERROR = 0,
1080 VERR_CR_ASSOC_LEN = 1,
1081 VERR_CR_ASSOC_RQST_LEN = 2,
1082 VERR_CR_ASSOC_CMD = 3,
1083 VERR_CR_ASSOC_CMD_LEN = 4,
1084 VERR_ERSP_RATIO = 5,
1085 VERR_ASSOC_ALLOC_FAIL = 6,
1086 VERR_QUEUE_ALLOC_FAIL = 7,
1087 VERR_CR_CONN_LEN = 8,
1088 VERR_CR_CONN_RQST_LEN = 9,
1089 VERR_ASSOC_ID = 10,
1090 VERR_ASSOC_ID_LEN = 11,
1091 VERR_NO_ASSOC = 12,
1092 VERR_CONN_ID = 13,
1093 VERR_CONN_ID_LEN = 14,
1094 VERR_NO_CONN = 15,
1095 VERR_CR_CONN_CMD = 16,
1096 VERR_CR_CONN_CMD_LEN = 17,
1097 VERR_DISCONN_LEN = 18,
1098 VERR_DISCONN_RQST_LEN = 19,
1099 VERR_DISCONN_CMD = 20,
1100 VERR_DISCONN_CMD_LEN = 21,
1101 VERR_DISCONN_SCOPE = 22,
1102 VERR_RS_LEN = 23,
1103 VERR_RS_RQST_LEN = 24,
1104 VERR_RS_CMD = 25,
1105 VERR_RS_CMD_LEN = 26,
1106 VERR_RS_RCTL = 27,
1107 VERR_RS_RO = 28,
1108 };
1109
1110 static char *validation_errors[] = {
1111 "OK",
1112 "Bad CR_ASSOC Length",
1113 "Bad CR_ASSOC Rqst Length",
1114 "Not CR_ASSOC Cmd",
1115 "Bad CR_ASSOC Cmd Length",
1116 "Bad Ersp Ratio",
1117 "Association Allocation Failed",
1118 "Queue Allocation Failed",
1119 "Bad CR_CONN Length",
1120 "Bad CR_CONN Rqst Length",
1121 "Not Association ID",
1122 "Bad Association ID Length",
1123 "No Association",
1124 "Not Connection ID",
1125 "Bad Connection ID Length",
1126 "No Connection",
1127 "Not CR_CONN Cmd",
1128 "Bad CR_CONN Cmd Length",
1129 "Bad DISCONN Length",
1130 "Bad DISCONN Rqst Length",
1131 "Not DISCONN Cmd",
1132 "Bad DISCONN Cmd Length",
1133 "Bad Disconnect Scope",
1134 "Bad RS Length",
1135 "Bad RS Rqst Length",
1136 "Not RS Cmd",
1137 "Bad RS Cmd Length",
1138 "Bad RS R_CTL",
1139 "Bad RS Relative Offset",
1140 };
1141
1142 static void
1143 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1144 struct nvmet_fc_ls_iod *iod)
1145 {
1146 struct fcnvme_ls_cr_assoc_rqst *rqst =
1147 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1148 struct fcnvme_ls_cr_assoc_acc *acc =
1149 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1150 struct nvmet_fc_tgt_queue *queue;
1151 int ret = 0;
1152
1153 memset(acc, 0, sizeof(*acc));
1154
1155 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_assoc_rqst))
1156 ret = VERR_CR_ASSOC_LEN;
1157 else if (rqst->desc_list_len !=
1158 fcnvme_lsdesc_len(
1159 sizeof(struct fcnvme_ls_cr_assoc_rqst)))
1160 ret = VERR_CR_ASSOC_RQST_LEN;
1161 else if (rqst->assoc_cmd.desc_tag !=
1162 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1163 ret = VERR_CR_ASSOC_CMD;
1164 else if (rqst->assoc_cmd.desc_len !=
1165 fcnvme_lsdesc_len(
1166 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)))
1167 ret = VERR_CR_ASSOC_CMD_LEN;
1168 else if (!rqst->assoc_cmd.ersp_ratio ||
1169 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1170 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1171 ret = VERR_ERSP_RATIO;
1172
1173 else {
1174 /* new association w/ admin queue */
1175 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1176 if (!iod->assoc)
1177 ret = VERR_ASSOC_ALLOC_FAIL;
1178 else {
1179 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1180 be16_to_cpu(rqst->assoc_cmd.sqsize));
1181 if (!queue)
1182 ret = VERR_QUEUE_ALLOC_FAIL;
1183 }
1184 }
1185
1186 if (ret) {
1187 dev_err(tgtport->dev,
1188 "Create Association LS failed: %s\n",
1189 validation_errors[ret]);
1190 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1191 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1192 ELS_RJT_LOGIC,
1193 ELS_EXPL_NONE, 0);
1194 return;
1195 }
1196
1197 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1198 atomic_set(&queue->connected, 1);
1199 queue->sqhd = 0; /* best place to init value */
1200
1201 /* format a response */
1202
1203 iod->lsreq->rsplen = sizeof(*acc);
1204
1205 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1206 fcnvme_lsdesc_len(
1207 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1208 FCNVME_LS_CREATE_ASSOCIATION);
1209 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1210 acc->associd.desc_len =
1211 fcnvme_lsdesc_len(
1212 sizeof(struct fcnvme_lsdesc_assoc_id));
1213 acc->associd.association_id =
1214 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1215 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1216 acc->connectid.desc_len =
1217 fcnvme_lsdesc_len(
1218 sizeof(struct fcnvme_lsdesc_conn_id));
1219 acc->connectid.connection_id = acc->associd.association_id;
1220 }
1221
1222 static void
1223 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1224 struct nvmet_fc_ls_iod *iod)
1225 {
1226 struct fcnvme_ls_cr_conn_rqst *rqst =
1227 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1228 struct fcnvme_ls_cr_conn_acc *acc =
1229 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1230 struct nvmet_fc_tgt_queue *queue;
1231 int ret = 0;
1232
1233 memset(acc, 0, sizeof(*acc));
1234
1235 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1236 ret = VERR_CR_CONN_LEN;
1237 else if (rqst->desc_list_len !=
1238 fcnvme_lsdesc_len(
1239 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1240 ret = VERR_CR_CONN_RQST_LEN;
1241 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1242 ret = VERR_ASSOC_ID;
1243 else if (rqst->associd.desc_len !=
1244 fcnvme_lsdesc_len(
1245 sizeof(struct fcnvme_lsdesc_assoc_id)))
1246 ret = VERR_ASSOC_ID_LEN;
1247 else if (rqst->connect_cmd.desc_tag !=
1248 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1249 ret = VERR_CR_CONN_CMD;
1250 else if (rqst->connect_cmd.desc_len !=
1251 fcnvme_lsdesc_len(
1252 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1253 ret = VERR_CR_CONN_CMD_LEN;
1254 else if (!rqst->connect_cmd.ersp_ratio ||
1255 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1256 be16_to_cpu(rqst->connect_cmd.sqsize)))
1257 ret = VERR_ERSP_RATIO;
1258
1259 else {
1260 /* new io queue */
1261 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1262 be64_to_cpu(rqst->associd.association_id));
1263 if (!iod->assoc)
1264 ret = VERR_NO_ASSOC;
1265 else {
1266 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1267 be16_to_cpu(rqst->connect_cmd.qid),
1268 be16_to_cpu(rqst->connect_cmd.sqsize));
1269 if (!queue)
1270 ret = VERR_QUEUE_ALLOC_FAIL;
1271
1272 /* release get taken in nvmet_fc_find_target_assoc */
1273 nvmet_fc_tgt_a_put(iod->assoc);
1274 }
1275 }
1276
1277 if (ret) {
1278 dev_err(tgtport->dev,
1279 "Create Connection LS failed: %s\n",
1280 validation_errors[ret]);
1281 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1282 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1283 (ret == VERR_NO_ASSOC) ?
1284 ELS_RJT_PROT : ELS_RJT_LOGIC,
1285 ELS_EXPL_NONE, 0);
1286 return;
1287 }
1288
1289 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1290 atomic_set(&queue->connected, 1);
1291 queue->sqhd = 0; /* best place to init value */
1292
1293 /* format a response */
1294
1295 iod->lsreq->rsplen = sizeof(*acc);
1296
1297 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1298 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1299 FCNVME_LS_CREATE_CONNECTION);
1300 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1301 acc->connectid.desc_len =
1302 fcnvme_lsdesc_len(
1303 sizeof(struct fcnvme_lsdesc_conn_id));
1304 acc->connectid.connection_id =
1305 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1306 be16_to_cpu(rqst->connect_cmd.qid)));
1307 }
1308
1309 static void
1310 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1311 struct nvmet_fc_ls_iod *iod)
1312 {
1313 struct fcnvme_ls_disconnect_rqst *rqst =
1314 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1315 struct fcnvme_ls_disconnect_acc *acc =
1316 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1317 struct nvmet_fc_tgt_queue *queue = NULL;
1318 struct nvmet_fc_tgt_assoc *assoc;
1319 int ret = 0;
1320 bool del_assoc = false;
1321
1322 memset(acc, 0, sizeof(*acc));
1323
1324 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1325 ret = VERR_DISCONN_LEN;
1326 else if (rqst->desc_list_len !=
1327 fcnvme_lsdesc_len(
1328 sizeof(struct fcnvme_ls_disconnect_rqst)))
1329 ret = VERR_DISCONN_RQST_LEN;
1330 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1331 ret = VERR_ASSOC_ID;
1332 else if (rqst->associd.desc_len !=
1333 fcnvme_lsdesc_len(
1334 sizeof(struct fcnvme_lsdesc_assoc_id)))
1335 ret = VERR_ASSOC_ID_LEN;
1336 else if (rqst->discon_cmd.desc_tag !=
1337 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1338 ret = VERR_DISCONN_CMD;
1339 else if (rqst->discon_cmd.desc_len !=
1340 fcnvme_lsdesc_len(
1341 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1342 ret = VERR_DISCONN_CMD_LEN;
1343 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1344 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1345 ret = VERR_DISCONN_SCOPE;
1346 else {
1347 /* match an active association */
1348 assoc = nvmet_fc_find_target_assoc(tgtport,
1349 be64_to_cpu(rqst->associd.association_id));
1350 iod->assoc = assoc;
1351 if (assoc) {
1352 if (rqst->discon_cmd.scope ==
1353 FCNVME_DISCONN_CONNECTION) {
1354 queue = nvmet_fc_find_target_queue(tgtport,
1355 be64_to_cpu(
1356 rqst->discon_cmd.id));
1357 if (!queue) {
1358 nvmet_fc_tgt_a_put(assoc);
1359 ret = VERR_NO_CONN;
1360 }
1361 }
1362 } else
1363 ret = VERR_NO_ASSOC;
1364 }
1365
1366 if (ret) {
1367 dev_err(tgtport->dev,
1368 "Disconnect LS failed: %s\n",
1369 validation_errors[ret]);
1370 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1371 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1372 (ret == 8) ? ELS_RJT_PROT : ELS_RJT_LOGIC,
1373 ELS_EXPL_NONE, 0);
1374 return;
1375 }
1376
1377 /* format a response */
1378
1379 iod->lsreq->rsplen = sizeof(*acc);
1380
1381 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1382 fcnvme_lsdesc_len(
1383 sizeof(struct fcnvme_ls_disconnect_acc)),
1384 FCNVME_LS_DISCONNECT);
1385
1386
1387 /* are we to delete a Connection ID (queue) */
1388 if (queue) {
1389 int qid = queue->qid;
1390
1391 nvmet_fc_delete_target_queue(queue);
1392
1393 /* release the get taken by find_target_queue */
1394 nvmet_fc_tgt_q_put(queue);
1395
1396 /* tear association down if io queue terminated */
1397 if (!qid)
1398 del_assoc = true;
1399 }
1400
1401 /* release get taken in nvmet_fc_find_target_assoc */
1402 nvmet_fc_tgt_a_put(iod->assoc);
1403
1404 if (del_assoc)
1405 nvmet_fc_delete_target_assoc(iod->assoc);
1406 }
1407
1408
1409 /* *********************** NVME Ctrl Routines **************************** */
1410
1411
1412 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1413
1414 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1415
1416 static void
1417 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1418 {
1419 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1420 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1421
1422 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1423 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1424 nvmet_fc_free_ls_iod(tgtport, iod);
1425 nvmet_fc_tgtport_put(tgtport);
1426 }
1427
1428 static void
1429 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1430 struct nvmet_fc_ls_iod *iod)
1431 {
1432 int ret;
1433
1434 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1435 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1436
1437 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1438 if (ret)
1439 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1440 }
1441
1442 /*
1443 * Actual processing routine for received FC-NVME LS Requests from the LLD
1444 */
1445 static void
1446 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1447 struct nvmet_fc_ls_iod *iod)
1448 {
1449 struct fcnvme_ls_rqst_w0 *w0 =
1450 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1451
1452 iod->lsreq->nvmet_fc_private = iod;
1453 iod->lsreq->rspbuf = iod->rspbuf;
1454 iod->lsreq->rspdma = iod->rspdma;
1455 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1456 /* Be preventative. handlers will later set to valid length */
1457 iod->lsreq->rsplen = 0;
1458
1459 iod->assoc = NULL;
1460
1461 /*
1462 * handlers:
1463 * parse request input, execute the request, and format the
1464 * LS response
1465 */
1466 switch (w0->ls_cmd) {
1467 case FCNVME_LS_CREATE_ASSOCIATION:
1468 /* Creates Association and initial Admin Queue/Connection */
1469 nvmet_fc_ls_create_association(tgtport, iod);
1470 break;
1471 case FCNVME_LS_CREATE_CONNECTION:
1472 /* Creates an IO Queue/Connection */
1473 nvmet_fc_ls_create_connection(tgtport, iod);
1474 break;
1475 case FCNVME_LS_DISCONNECT:
1476 /* Terminate a Queue/Connection or the Association */
1477 nvmet_fc_ls_disconnect(tgtport, iod);
1478 break;
1479 default:
1480 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1481 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1482 ELS_RJT_INVAL, ELS_EXPL_NONE, 0);
1483 }
1484
1485 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1486 }
1487
1488 /*
1489 * Actual processing routine for received FC-NVME LS Requests from the LLD
1490 */
1491 static void
1492 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1493 {
1494 struct nvmet_fc_ls_iod *iod =
1495 container_of(work, struct nvmet_fc_ls_iod, work);
1496 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1497
1498 nvmet_fc_handle_ls_rqst(tgtport, iod);
1499 }
1500
1501
1502 /**
1503 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1504 * upon the reception of a NVME LS request.
1505 *
1506 * The nvmet-fc layer will copy payload to an internal structure for
1507 * processing. As such, upon completion of the routine, the LLDD may
1508 * immediately free/reuse the LS request buffer passed in the call.
1509 *
1510 * If this routine returns error, the LLDD should abort the exchange.
1511 *
1512 * @tgtport: pointer to the (registered) target port the LS was
1513 * received on.
1514 * @lsreq: pointer to a lsreq request structure to be used to reference
1515 * the exchange corresponding to the LS.
1516 * @lsreqbuf: pointer to the buffer containing the LS Request
1517 * @lsreqbuf_len: length, in bytes, of the received LS request
1518 */
1519 int
1520 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1521 struct nvmefc_tgt_ls_req *lsreq,
1522 void *lsreqbuf, u32 lsreqbuf_len)
1523 {
1524 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1525 struct nvmet_fc_ls_iod *iod;
1526
1527 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1528 return -E2BIG;
1529
1530 if (!nvmet_fc_tgtport_get(tgtport))
1531 return -ESHUTDOWN;
1532
1533 iod = nvmet_fc_alloc_ls_iod(tgtport);
1534 if (!iod) {
1535 nvmet_fc_tgtport_put(tgtport);
1536 return -ENOENT;
1537 }
1538
1539 iod->lsreq = lsreq;
1540 iod->fcpreq = NULL;
1541 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1542 iod->rqstdatalen = lsreqbuf_len;
1543
1544 schedule_work(&iod->work);
1545
1546 return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1549
1550
1551 /*
1552 * **********************
1553 * Start of FCP handling
1554 * **********************
1555 */
1556
1557 static int
1558 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1559 {
1560 struct scatterlist *sg;
1561 struct page *page;
1562 unsigned int nent;
1563 u32 page_len, length;
1564 int i = 0;
1565
1566 length = fod->total_length;
1567 nent = DIV_ROUND_UP(length, PAGE_SIZE);
1568 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
1569 if (!sg)
1570 goto out;
1571
1572 sg_init_table(sg, nent);
1573
1574 while (length) {
1575 page_len = min_t(u32, length, PAGE_SIZE);
1576
1577 page = alloc_page(GFP_KERNEL);
1578 if (!page)
1579 goto out_free_pages;
1580
1581 sg_set_page(&sg[i], page, page_len, 0);
1582 length -= page_len;
1583 i++;
1584 }
1585
1586 fod->data_sg = sg;
1587 fod->data_sg_cnt = nent;
1588 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1589 ((fod->io_dir == NVMET_FCP_WRITE) ?
1590 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1591 /* note: write from initiator perspective */
1592
1593 return 0;
1594
1595 out_free_pages:
1596 while (i > 0) {
1597 i--;
1598 __free_page(sg_page(&sg[i]));
1599 }
1600 kfree(sg);
1601 fod->data_sg = NULL;
1602 fod->data_sg_cnt = 0;
1603 out:
1604 return NVME_SC_INTERNAL;
1605 }
1606
1607 static void
1608 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1609 {
1610 struct scatterlist *sg;
1611 int count;
1612
1613 if (!fod->data_sg || !fod->data_sg_cnt)
1614 return;
1615
1616 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1617 ((fod->io_dir == NVMET_FCP_WRITE) ?
1618 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1619 for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count)
1620 __free_page(sg_page(sg));
1621 kfree(fod->data_sg);
1622 }
1623
1624
1625 static bool
1626 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1627 {
1628 u32 sqtail, used;
1629
1630 /* egad, this is ugly. And sqtail is just a best guess */
1631 sqtail = atomic_read(&q->sqtail) % q->sqsize;
1632
1633 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1634 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1635 }
1636
1637 /*
1638 * Prep RSP payload.
1639 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1640 */
1641 static void
1642 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1643 struct nvmet_fc_fcp_iod *fod)
1644 {
1645 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1646 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1647 struct nvme_completion *cqe = &ersp->cqe;
1648 u32 *cqewd = (u32 *)cqe;
1649 bool send_ersp = false;
1650 u32 rsn, rspcnt, xfr_length;
1651
1652 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1653 xfr_length = fod->total_length;
1654 else
1655 xfr_length = fod->offset;
1656
1657 /*
1658 * check to see if we can send a 0's rsp.
1659 * Note: to send a 0's response, the NVME-FC host transport will
1660 * recreate the CQE. The host transport knows: sq id, SQHD (last
1661 * seen in an ersp), and command_id. Thus it will create a
1662 * zero-filled CQE with those known fields filled in. Transport
1663 * must send an ersp for any condition where the cqe won't match
1664 * this.
1665 *
1666 * Here are the FC-NVME mandated cases where we must send an ersp:
1667 * every N responses, where N=ersp_ratio
1668 * force fabric commands to send ersp's (not in FC-NVME but good
1669 * practice)
1670 * normal cmds: any time status is non-zero, or status is zero
1671 * but words 0 or 1 are non-zero.
1672 * the SQ is 90% or more full
1673 * the cmd is a fused command
1674 * transferred data length not equal to cmd iu length
1675 */
1676 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1677 if (!(rspcnt % fod->queue->ersp_ratio) ||
1678 sqe->opcode == nvme_fabrics_command ||
1679 xfr_length != fod->total_length ||
1680 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1681 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1682 queue_90percent_full(fod->queue, cqe->sq_head))
1683 send_ersp = true;
1684
1685 /* re-set the fields */
1686 fod->fcpreq->rspaddr = ersp;
1687 fod->fcpreq->rspdma = fod->rspdma;
1688
1689 if (!send_ersp) {
1690 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1691 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1692 } else {
1693 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1694 rsn = atomic_inc_return(&fod->queue->rsn);
1695 ersp->rsn = cpu_to_be32(rsn);
1696 ersp->xfrd_len = cpu_to_be32(xfr_length);
1697 fod->fcpreq->rsplen = sizeof(*ersp);
1698 }
1699
1700 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1701 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1702 }
1703
1704 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1705
1706 static void
1707 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1708 struct nvmet_fc_fcp_iod *fod)
1709 {
1710 int ret;
1711
1712 fod->fcpreq->op = NVMET_FCOP_RSP;
1713 fod->fcpreq->timeout = 0;
1714
1715 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1716
1717 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1718 if (ret)
1719 nvmet_fc_abort_op(tgtport, fod->fcpreq);
1720 }
1721
1722 static void
1723 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1724 struct nvmet_fc_fcp_iod *fod, u8 op)
1725 {
1726 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1727 struct scatterlist *sg, *datasg;
1728 u32 tlen, sg_off;
1729 int ret;
1730
1731 fcpreq->op = op;
1732 fcpreq->offset = fod->offset;
1733 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1734 tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024),
1735 (fod->total_length - fod->offset));
1736 tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE);
1737 tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments
1738 * PAGE_SIZE);
1739 fcpreq->transfer_length = tlen;
1740 fcpreq->transferred_length = 0;
1741 fcpreq->fcp_error = 0;
1742 fcpreq->rsplen = 0;
1743
1744 fcpreq->sg_cnt = 0;
1745
1746 datasg = fod->next_sg;
1747 sg_off = fod->next_sg_offset;
1748
1749 for (sg = fcpreq->sg ; tlen; sg++) {
1750 *sg = *datasg;
1751 if (sg_off) {
1752 sg->offset += sg_off;
1753 sg->length -= sg_off;
1754 sg->dma_address += sg_off;
1755 sg_off = 0;
1756 }
1757 if (tlen < sg->length) {
1758 sg->length = tlen;
1759 fod->next_sg = datasg;
1760 fod->next_sg_offset += tlen;
1761 } else if (tlen == sg->length) {
1762 fod->next_sg_offset = 0;
1763 fod->next_sg = sg_next(datasg);
1764 } else {
1765 fod->next_sg_offset = 0;
1766 datasg = sg_next(datasg);
1767 }
1768 tlen -= sg->length;
1769 fcpreq->sg_cnt++;
1770 }
1771
1772 /*
1773 * If the last READDATA request: check if LLDD supports
1774 * combined xfr with response.
1775 */
1776 if ((op == NVMET_FCOP_READDATA) &&
1777 ((fod->offset + fcpreq->transfer_length) == fod->total_length) &&
1778 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1779 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1780 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1781 }
1782
1783 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1784 if (ret) {
1785 /*
1786 * should be ok to set w/o lock as its in the thread of
1787 * execution (not an async timer routine) and doesn't
1788 * contend with any clearing action
1789 */
1790 fod->abort = true;
1791
1792 if (op == NVMET_FCOP_WRITEDATA)
1793 nvmet_req_complete(&fod->req,
1794 NVME_SC_FC_TRANSPORT_ERROR);
1795 else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1796 fcpreq->fcp_error = ret;
1797 fcpreq->transferred_length = 0;
1798 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1799 }
1800 }
1801 }
1802
1803 static void
1804 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
1805 {
1806 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
1807 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1808 unsigned long flags;
1809 bool abort;
1810
1811 spin_lock_irqsave(&fod->flock, flags);
1812 abort = fod->abort;
1813 spin_unlock_irqrestore(&fod->flock, flags);
1814
1815 /* if in the middle of an io and we need to tear down */
1816 if (abort && fcpreq->op != NVMET_FCOP_ABORT) {
1817 /* data no longer needed */
1818 nvmet_fc_free_tgt_pgs(fod);
1819
1820 nvmet_req_complete(&fod->req, fcpreq->fcp_error);
1821 return;
1822 }
1823
1824 switch (fcpreq->op) {
1825
1826 case NVMET_FCOP_WRITEDATA:
1827 if (fcpreq->fcp_error ||
1828 fcpreq->transferred_length != fcpreq->transfer_length) {
1829 nvmet_req_complete(&fod->req,
1830 NVME_SC_FC_TRANSPORT_ERROR);
1831 return;
1832 }
1833
1834 fod->offset += fcpreq->transferred_length;
1835 if (fod->offset != fod->total_length) {
1836 /* transfer the next chunk */
1837 nvmet_fc_transfer_fcp_data(tgtport, fod,
1838 NVMET_FCOP_WRITEDATA);
1839 return;
1840 }
1841
1842 /* data transfer complete, resume with nvmet layer */
1843
1844 fod->req.execute(&fod->req);
1845
1846 break;
1847
1848 case NVMET_FCOP_READDATA:
1849 case NVMET_FCOP_READDATA_RSP:
1850 if (fcpreq->fcp_error ||
1851 fcpreq->transferred_length != fcpreq->transfer_length) {
1852 /* data no longer needed */
1853 nvmet_fc_free_tgt_pgs(fod);
1854
1855 nvmet_fc_abort_op(tgtport, fod->fcpreq);
1856 return;
1857 }
1858
1859 /* success */
1860
1861 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
1862 /* data no longer needed */
1863 nvmet_fc_free_tgt_pgs(fod);
1864 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
1865 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1866 nvmet_fc_free_fcp_iod(fod->queue, fod);
1867 return;
1868 }
1869
1870 fod->offset += fcpreq->transferred_length;
1871 if (fod->offset != fod->total_length) {
1872 /* transfer the next chunk */
1873 nvmet_fc_transfer_fcp_data(tgtport, fod,
1874 NVMET_FCOP_READDATA);
1875 return;
1876 }
1877
1878 /* data transfer complete, send response */
1879
1880 /* data no longer needed */
1881 nvmet_fc_free_tgt_pgs(fod);
1882
1883 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
1884
1885 break;
1886
1887 case NVMET_FCOP_RSP:
1888 case NVMET_FCOP_ABORT:
1889 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
1890 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1891 nvmet_fc_free_fcp_iod(fod->queue, fod);
1892 break;
1893
1894 default:
1895 nvmet_fc_free_tgt_pgs(fod);
1896 nvmet_fc_abort_op(tgtport, fod->fcpreq);
1897 break;
1898 }
1899 }
1900
1901 /*
1902 * actual completion handler after execution by the nvmet layer
1903 */
1904 static void
1905 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
1906 struct nvmet_fc_fcp_iod *fod, int status)
1907 {
1908 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1909 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
1910 unsigned long flags;
1911 bool abort;
1912
1913 spin_lock_irqsave(&fod->flock, flags);
1914 abort = fod->abort;
1915 spin_unlock_irqrestore(&fod->flock, flags);
1916
1917 /* if we have a CQE, snoop the last sq_head value */
1918 if (!status)
1919 fod->queue->sqhd = cqe->sq_head;
1920
1921 if (abort) {
1922 /* data no longer needed */
1923 nvmet_fc_free_tgt_pgs(fod);
1924
1925 nvmet_fc_abort_op(tgtport, fod->fcpreq);
1926 return;
1927 }
1928
1929 /* if an error handling the cmd post initial parsing */
1930 if (status) {
1931 /* fudge up a failed CQE status for our transport error */
1932 memset(cqe, 0, sizeof(*cqe));
1933 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
1934 cqe->sq_id = cpu_to_le16(fod->queue->qid);
1935 cqe->command_id = sqe->command_id;
1936 cqe->status = cpu_to_le16(status);
1937 } else {
1938
1939 /*
1940 * try to push the data even if the SQE status is non-zero.
1941 * There may be a status where data still was intended to
1942 * be moved
1943 */
1944 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
1945 /* push the data over before sending rsp */
1946 nvmet_fc_transfer_fcp_data(tgtport, fod,
1947 NVMET_FCOP_READDATA);
1948 return;
1949 }
1950
1951 /* writes & no data - fall thru */
1952 }
1953
1954 /* data no longer needed */
1955 nvmet_fc_free_tgt_pgs(fod);
1956
1957 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
1958 }
1959
1960
1961 static void
1962 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
1963 {
1964 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
1965 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1966
1967 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
1968 }
1969
1970
1971 /*
1972 * Actual processing routine for received FC-NVME LS Requests from the LLD
1973 */
1974 void
1975 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
1976 struct nvmet_fc_fcp_iod *fod)
1977 {
1978 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
1979 int ret;
1980
1981 /*
1982 * Fused commands are currently not supported in the linux
1983 * implementation.
1984 *
1985 * As such, the implementation of the FC transport does not
1986 * look at the fused commands and order delivery to the upper
1987 * layer until we have both based on csn.
1988 */
1989
1990 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
1991
1992 fod->total_length = be32_to_cpu(cmdiu->data_len);
1993 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
1994 fod->io_dir = NVMET_FCP_WRITE;
1995 if (!nvme_is_write(&cmdiu->sqe))
1996 goto transport_error;
1997 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
1998 fod->io_dir = NVMET_FCP_READ;
1999 if (nvme_is_write(&cmdiu->sqe))
2000 goto transport_error;
2001 } else {
2002 fod->io_dir = NVMET_FCP_NODATA;
2003 if (fod->total_length)
2004 goto transport_error;
2005 }
2006
2007 fod->req.cmd = &fod->cmdiubuf.sqe;
2008 fod->req.rsp = &fod->rspiubuf.cqe;
2009 fod->req.port = fod->queue->port;
2010
2011 /* ensure nvmet handlers will set cmd handler callback */
2012 fod->req.execute = NULL;
2013
2014 /* clear any response payload */
2015 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2016
2017 ret = nvmet_req_init(&fod->req,
2018 &fod->queue->nvme_cq,
2019 &fod->queue->nvme_sq,
2020 &nvmet_fc_tgt_fcp_ops);
2021 if (!ret) { /* bad SQE content */
2022 nvmet_fc_abort_op(tgtport, fod->fcpreq);
2023 return;
2024 }
2025
2026 /* keep a running counter of tail position */
2027 atomic_inc(&fod->queue->sqtail);
2028
2029 fod->data_sg = NULL;
2030 fod->data_sg_cnt = 0;
2031 if (fod->total_length) {
2032 ret = nvmet_fc_alloc_tgt_pgs(fod);
2033 if (ret) {
2034 nvmet_req_complete(&fod->req, ret);
2035 return;
2036 }
2037 }
2038 fod->req.sg = fod->data_sg;
2039 fod->req.sg_cnt = fod->data_sg_cnt;
2040 fod->offset = 0;
2041 fod->next_sg = fod->data_sg;
2042 fod->next_sg_offset = 0;
2043
2044 if (fod->io_dir == NVMET_FCP_WRITE) {
2045 /* pull the data over before invoking nvmet layer */
2046 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2047 return;
2048 }
2049
2050 /*
2051 * Reads or no data:
2052 *
2053 * can invoke the nvmet_layer now. If read data, cmd completion will
2054 * push the data
2055 */
2056
2057 fod->req.execute(&fod->req);
2058
2059 return;
2060
2061 transport_error:
2062 nvmet_fc_abort_op(tgtport, fod->fcpreq);
2063 }
2064
2065 /*
2066 * Actual processing routine for received FC-NVME LS Requests from the LLD
2067 */
2068 static void
2069 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2070 {
2071 struct nvmet_fc_fcp_iod *fod =
2072 container_of(work, struct nvmet_fc_fcp_iod, work);
2073 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2074
2075 nvmet_fc_handle_fcp_rqst(tgtport, fod);
2076 }
2077
2078 /**
2079 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2080 * upon the reception of a NVME FCP CMD IU.
2081 *
2082 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2083 * layer for processing.
2084 *
2085 * The nvmet-fc layer will copy cmd payload to an internal structure for
2086 * processing. As such, upon completion of the routine, the LLDD may
2087 * immediately free/reuse the CMD IU buffer passed in the call.
2088 *
2089 * If this routine returns error, the lldd should abort the exchange.
2090 *
2091 * @target_port: pointer to the (registered) target port the FCP CMD IU
2092 * was receive on.
2093 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2094 * the exchange corresponding to the FCP Exchange.
2095 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2096 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2097 */
2098 int
2099 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2100 struct nvmefc_tgt_fcp_req *fcpreq,
2101 void *cmdiubuf, u32 cmdiubuf_len)
2102 {
2103 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2104 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2105 struct nvmet_fc_tgt_queue *queue;
2106 struct nvmet_fc_fcp_iod *fod;
2107
2108 /* validate iu, so the connection id can be used to find the queue */
2109 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2110 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2111 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2112 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2113 return -EIO;
2114
2115
2116 queue = nvmet_fc_find_target_queue(tgtport,
2117 be64_to_cpu(cmdiu->connection_id));
2118 if (!queue)
2119 return -ENOTCONN;
2120
2121 /*
2122 * note: reference taken by find_target_queue
2123 * After successful fod allocation, the fod will inherit the
2124 * ownership of that reference and will remove the reference
2125 * when the fod is freed.
2126 */
2127
2128 fod = nvmet_fc_alloc_fcp_iod(queue);
2129 if (!fod) {
2130 /* release the queue lookup reference */
2131 nvmet_fc_tgt_q_put(queue);
2132 return -ENOENT;
2133 }
2134
2135 fcpreq->nvmet_fc_private = fod;
2136 fod->fcpreq = fcpreq;
2137 /*
2138 * put all admin cmds on hw queue id 0. All io commands go to
2139 * the respective hw queue based on a modulo basis
2140 */
2141 fcpreq->hwqid = queue->qid ?
2142 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
2143 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2144
2145 queue_work_on(queue->cpu, queue->work_q, &fod->work);
2146
2147 return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2150
2151 enum {
2152 FCT_TRADDR_ERR = 0,
2153 FCT_TRADDR_WWNN = 1 << 0,
2154 FCT_TRADDR_WWPN = 1 << 1,
2155 };
2156
2157 struct nvmet_fc_traddr {
2158 u64 nn;
2159 u64 pn;
2160 };
2161
2162 static const match_table_t traddr_opt_tokens = {
2163 { FCT_TRADDR_WWNN, "nn-%s" },
2164 { FCT_TRADDR_WWPN, "pn-%s" },
2165 { FCT_TRADDR_ERR, NULL }
2166 };
2167
2168 static int
2169 nvmet_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf)
2170 {
2171 substring_t args[MAX_OPT_ARGS];
2172 char *options, *o, *p;
2173 int token, ret = 0;
2174 u64 token64;
2175
2176 options = o = kstrdup(buf, GFP_KERNEL);
2177 if (!options)
2178 return -ENOMEM;
2179
2180 while ((p = strsep(&o, ",\n")) != NULL) {
2181 if (!*p)
2182 continue;
2183
2184 token = match_token(p, traddr_opt_tokens, args);
2185 switch (token) {
2186 case FCT_TRADDR_WWNN:
2187 if (match_u64(args, &token64)) {
2188 ret = -EINVAL;
2189 goto out;
2190 }
2191 traddr->nn = token64;
2192 break;
2193 case FCT_TRADDR_WWPN:
2194 if (match_u64(args, &token64)) {
2195 ret = -EINVAL;
2196 goto out;
2197 }
2198 traddr->pn = token64;
2199 break;
2200 default:
2201 pr_warn("unknown traddr token or missing value '%s'\n",
2202 p);
2203 ret = -EINVAL;
2204 goto out;
2205 }
2206 }
2207
2208 out:
2209 kfree(options);
2210 return ret;
2211 }
2212
2213 static int
2214 nvmet_fc_add_port(struct nvmet_port *port)
2215 {
2216 struct nvmet_fc_tgtport *tgtport;
2217 struct nvmet_fc_traddr traddr = { 0L, 0L };
2218 unsigned long flags;
2219 int ret;
2220
2221 /* validate the address info */
2222 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2223 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2224 return -EINVAL;
2225
2226 /* map the traddr address info to a target port */
2227
2228 ret = nvmet_fc_parse_traddr(&traddr, port->disc_addr.traddr);
2229 if (ret)
2230 return ret;
2231
2232 ret = -ENXIO;
2233 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2234 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2235 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2236 (tgtport->fc_target_port.port_name == traddr.pn)) {
2237 /* a FC port can only be 1 nvmet port id */
2238 if (!tgtport->port) {
2239 tgtport->port = port;
2240 port->priv = tgtport;
2241 ret = 0;
2242 } else
2243 ret = -EALREADY;
2244 break;
2245 }
2246 }
2247 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2248 return ret;
2249 }
2250
2251 static void
2252 nvmet_fc_remove_port(struct nvmet_port *port)
2253 {
2254 struct nvmet_fc_tgtport *tgtport = port->priv;
2255 unsigned long flags;
2256
2257 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2258 if (tgtport->port == port) {
2259 nvmet_fc_tgtport_put(tgtport);
2260 tgtport->port = NULL;
2261 }
2262 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2263 }
2264
2265 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2266 .owner = THIS_MODULE,
2267 .type = NVMF_TRTYPE_FC,
2268 .msdbd = 1,
2269 .add_port = nvmet_fc_add_port,
2270 .remove_port = nvmet_fc_remove_port,
2271 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2272 .delete_ctrl = nvmet_fc_delete_ctrl,
2273 };
2274
2275 static int __init nvmet_fc_init_module(void)
2276 {
2277 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2278 }
2279
2280 static void __exit nvmet_fc_exit_module(void)
2281 {
2282 /* sanity check - all lports should be removed */
2283 if (!list_empty(&nvmet_fc_target_list))
2284 pr_warn("%s: targetport list not empty\n", __func__);
2285
2286 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2287
2288 ida_destroy(&nvmet_fc_tgtport_cnt);
2289 }
2290
2291 module_init(nvmet_fc_init_module);
2292 module_exit(nvmet_fc_exit_module);
2293
2294 MODULE_LICENSE("GPL v2");