]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/target/fc.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / target / fc.c
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT 4
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43 struct nvmefc_tgt_ls_req *lsreq;
44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
45
46 struct list_head ls_list; /* tgtport->ls_list */
47
48 struct nvmet_fc_tgtport *tgtport;
49 struct nvmet_fc_tgt_assoc *assoc;
50
51 u8 *rqstbuf;
52 u8 *rspbuf;
53 u16 rqstdatalen;
54 dma_addr_t rspdma;
55
56 struct scatterlist sg[2];
57
58 struct work_struct work;
59 } __aligned(sizeof(unsigned long long));
60
61 #define NVMET_FC_MAX_KB_PER_XFR 256
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *data_sg;
77 struct scatterlist *next_sg;
78 int data_sg_cnt;
79 u32 next_sg_offset;
80 u32 total_length;
81 u32 offset;
82 enum nvmet_fcp_datadir io_dir;
83 bool active;
84 bool abort;
85 bool aborted;
86 bool writedataactive;
87 spinlock_t flock;
88
89 struct nvmet_req req;
90 struct work_struct work;
91 struct work_struct done_work;
92
93 struct nvmet_fc_tgtport *tgtport;
94 struct nvmet_fc_tgt_queue *queue;
95
96 struct list_head fcp_list; /* tgtport->fcp_list */
97 };
98
99 struct nvmet_fc_tgtport {
100
101 struct nvmet_fc_target_port fc_target_port;
102
103 struct list_head tgt_list; /* nvmet_fc_target_list */
104 struct device *dev; /* dev for dma mapping */
105 struct nvmet_fc_target_template *ops;
106
107 struct nvmet_fc_ls_iod *iod;
108 spinlock_t lock;
109 struct list_head ls_list;
110 struct list_head ls_busylist;
111 struct list_head assoc_list;
112 struct ida assoc_cnt;
113 struct nvmet_port *port;
114 struct kref ref;
115 };
116
117 struct nvmet_fc_defer_fcp_req {
118 struct list_head req_list;
119 struct nvmefc_tgt_fcp_req *fcp_req;
120 };
121
122 struct nvmet_fc_tgt_queue {
123 bool ninetypercent;
124 u16 qid;
125 u16 sqsize;
126 u16 ersp_ratio;
127 __le16 sqhd;
128 int cpu;
129 atomic_t connected;
130 atomic_t sqtail;
131 atomic_t zrspcnt;
132 atomic_t rsn;
133 spinlock_t qlock;
134 struct nvmet_port *port;
135 struct nvmet_cq nvme_cq;
136 struct nvmet_sq nvme_sq;
137 struct nvmet_fc_tgt_assoc *assoc;
138 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */
139 struct list_head fod_list;
140 struct list_head pending_cmd_list;
141 struct list_head avail_defer_list;
142 struct workqueue_struct *work_q;
143 struct kref ref;
144 } __aligned(sizeof(unsigned long long));
145
146 struct nvmet_fc_tgt_assoc {
147 u64 association_id;
148 u32 a_id;
149 struct nvmet_fc_tgtport *tgtport;
150 struct list_head a_list;
151 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES];
152 struct kref ref;
153 };
154
155
156 static inline int
157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
158 {
159 return (iodptr - iodptr->tgtport->iod);
160 }
161
162 static inline int
163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
164 {
165 return (fodptr - fodptr->queue->fod);
166 }
167
168
169 /*
170 * Association and Connection IDs:
171 *
172 * Association ID will have random number in upper 6 bytes and zero
173 * in lower 2 bytes
174 *
175 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
176 *
177 * note: Association ID = Connection ID for queue 0
178 */
179 #define BYTES_FOR_QID sizeof(u16)
180 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
181 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
182
183 static inline u64
184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
185 {
186 return (assoc->association_id | qid);
187 }
188
189 static inline u64
190 nvmet_fc_getassociationid(u64 connectionid)
191 {
192 return connectionid & ~NVMET_FC_QUEUEID_MASK;
193 }
194
195 static inline u16
196 nvmet_fc_getqueueid(u64 connectionid)
197 {
198 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
199 }
200
201 static inline struct nvmet_fc_tgtport *
202 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
203 {
204 return container_of(targetport, struct nvmet_fc_tgtport,
205 fc_target_port);
206 }
207
208 static inline struct nvmet_fc_fcp_iod *
209 nvmet_req_to_fod(struct nvmet_req *nvme_req)
210 {
211 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
212 }
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
219
220 static LIST_HEAD(nvmet_fc_target_list);
221 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
222
223
224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
234 struct nvmet_fc_fcp_iod *fod);
235
236
237 /* *********************** FC-NVME DMA Handling **************************** */
238
239 /*
240 * The fcloop device passes in a NULL device pointer. Real LLD's will
241 * pass in a valid device pointer. If NULL is passed to the dma mapping
242 * routines, depending on the platform, it may or may not succeed, and
243 * may crash.
244 *
245 * As such:
246 * Wrapper all the dma routines and check the dev pointer.
247 *
248 * If simple mappings (return just a dma address, we'll noop them,
249 * returning a dma address of 0.
250 *
251 * On more complex mappings (dma_map_sg), a pseudo routine fills
252 * in the scatter list, setting all dma addresses to 0.
253 */
254
255 static inline dma_addr_t
256 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
257 enum dma_data_direction dir)
258 {
259 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
260 }
261
262 static inline int
263 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
264 {
265 return dev ? dma_mapping_error(dev, dma_addr) : 0;
266 }
267
268 static inline void
269 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
270 enum dma_data_direction dir)
271 {
272 if (dev)
273 dma_unmap_single(dev, addr, size, dir);
274 }
275
276 static inline void
277 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
278 enum dma_data_direction dir)
279 {
280 if (dev)
281 dma_sync_single_for_cpu(dev, addr, size, dir);
282 }
283
284 static inline void
285 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
286 enum dma_data_direction dir)
287 {
288 if (dev)
289 dma_sync_single_for_device(dev, addr, size, dir);
290 }
291
292 /* pseudo dma_map_sg call */
293 static int
294 fc_map_sg(struct scatterlist *sg, int nents)
295 {
296 struct scatterlist *s;
297 int i;
298
299 WARN_ON(nents == 0 || sg[0].length == 0);
300
301 for_each_sg(sg, s, nents, i) {
302 s->dma_address = 0L;
303 #ifdef CONFIG_NEED_SG_DMA_LENGTH
304 s->dma_length = s->length;
305 #endif
306 }
307 return nents;
308 }
309
310 static inline int
311 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
312 enum dma_data_direction dir)
313 {
314 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
315 }
316
317 static inline void
318 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
319 enum dma_data_direction dir)
320 {
321 if (dev)
322 dma_unmap_sg(dev, sg, nents, dir);
323 }
324
325
326 /* *********************** FC-NVME Port Management ************************ */
327
328
329 static int
330 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
331 {
332 struct nvmet_fc_ls_iod *iod;
333 int i;
334
335 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
336 GFP_KERNEL);
337 if (!iod)
338 return -ENOMEM;
339
340 tgtport->iod = iod;
341
342 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
343 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
344 iod->tgtport = tgtport;
345 list_add_tail(&iod->ls_list, &tgtport->ls_list);
346
347 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
348 GFP_KERNEL);
349 if (!iod->rqstbuf)
350 goto out_fail;
351
352 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
353
354 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
355 NVME_FC_MAX_LS_BUFFER_SIZE,
356 DMA_TO_DEVICE);
357 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
358 goto out_fail;
359 }
360
361 return 0;
362
363 out_fail:
364 kfree(iod->rqstbuf);
365 list_del(&iod->ls_list);
366 for (iod--, i--; i >= 0; iod--, i--) {
367 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
368 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
369 kfree(iod->rqstbuf);
370 list_del(&iod->ls_list);
371 }
372
373 kfree(iod);
374
375 return -EFAULT;
376 }
377
378 static void
379 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
380 {
381 struct nvmet_fc_ls_iod *iod = tgtport->iod;
382 int i;
383
384 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
385 fc_dma_unmap_single(tgtport->dev,
386 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
387 DMA_TO_DEVICE);
388 kfree(iod->rqstbuf);
389 list_del(&iod->ls_list);
390 }
391 kfree(tgtport->iod);
392 }
393
394 static struct nvmet_fc_ls_iod *
395 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
396 {
397 struct nvmet_fc_ls_iod *iod;
398 unsigned long flags;
399
400 spin_lock_irqsave(&tgtport->lock, flags);
401 iod = list_first_entry_or_null(&tgtport->ls_list,
402 struct nvmet_fc_ls_iod, ls_list);
403 if (iod)
404 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
405 spin_unlock_irqrestore(&tgtport->lock, flags);
406 return iod;
407 }
408
409
410 static void
411 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
412 struct nvmet_fc_ls_iod *iod)
413 {
414 unsigned long flags;
415
416 spin_lock_irqsave(&tgtport->lock, flags);
417 list_move(&iod->ls_list, &tgtport->ls_list);
418 spin_unlock_irqrestore(&tgtport->lock, flags);
419 }
420
421 static void
422 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
423 struct nvmet_fc_tgt_queue *queue)
424 {
425 struct nvmet_fc_fcp_iod *fod = queue->fod;
426 int i;
427
428 for (i = 0; i < queue->sqsize; fod++, i++) {
429 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
430 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
431 fod->tgtport = tgtport;
432 fod->queue = queue;
433 fod->active = false;
434 fod->abort = false;
435 fod->aborted = false;
436 fod->fcpreq = NULL;
437 list_add_tail(&fod->fcp_list, &queue->fod_list);
438 spin_lock_init(&fod->flock);
439
440 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
441 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
442 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
443 list_del(&fod->fcp_list);
444 for (fod--, i--; i >= 0; fod--, i--) {
445 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
446 sizeof(fod->rspiubuf),
447 DMA_TO_DEVICE);
448 fod->rspdma = 0L;
449 list_del(&fod->fcp_list);
450 }
451
452 return;
453 }
454 }
455 }
456
457 static void
458 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
459 struct nvmet_fc_tgt_queue *queue)
460 {
461 struct nvmet_fc_fcp_iod *fod = queue->fod;
462 int i;
463
464 for (i = 0; i < queue->sqsize; fod++, i++) {
465 if (fod->rspdma)
466 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
467 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
468 }
469 }
470
471 static struct nvmet_fc_fcp_iod *
472 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
473 {
474 struct nvmet_fc_fcp_iod *fod;
475
476 lockdep_assert_held(&queue->qlock);
477
478 fod = list_first_entry_or_null(&queue->fod_list,
479 struct nvmet_fc_fcp_iod, fcp_list);
480 if (fod) {
481 list_del(&fod->fcp_list);
482 fod->active = true;
483 /*
484 * no queue reference is taken, as it was taken by the
485 * queue lookup just prior to the allocation. The iod
486 * will "inherit" that reference.
487 */
488 }
489 return fod;
490 }
491
492
493 static void
494 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
495 struct nvmet_fc_tgt_queue *queue,
496 struct nvmefc_tgt_fcp_req *fcpreq)
497 {
498 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
499
500 /*
501 * put all admin cmds on hw queue id 0. All io commands go to
502 * the respective hw queue based on a modulo basis
503 */
504 fcpreq->hwqid = queue->qid ?
505 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
506
507 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
508 queue_work_on(queue->cpu, queue->work_q, &fod->work);
509 else
510 nvmet_fc_handle_fcp_rqst(tgtport, fod);
511 }
512
513 static void
514 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
515 struct nvmet_fc_fcp_iod *fod)
516 {
517 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
518 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
519 struct nvmet_fc_defer_fcp_req *deferfcp;
520 unsigned long flags;
521
522 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
523 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
524
525 fcpreq->nvmet_fc_private = NULL;
526
527 fod->active = false;
528 fod->abort = false;
529 fod->aborted = false;
530 fod->writedataactive = false;
531 fod->fcpreq = NULL;
532
533 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
534
535 spin_lock_irqsave(&queue->qlock, flags);
536 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
537 struct nvmet_fc_defer_fcp_req, req_list);
538 if (!deferfcp) {
539 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
540 spin_unlock_irqrestore(&queue->qlock, flags);
541
542 /* Release reference taken at queue lookup and fod allocation */
543 nvmet_fc_tgt_q_put(queue);
544 return;
545 }
546
547 /* Re-use the fod for the next pending cmd that was deferred */
548 list_del(&deferfcp->req_list);
549
550 fcpreq = deferfcp->fcp_req;
551
552 /* deferfcp can be reused for another IO at a later date */
553 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
554
555 spin_unlock_irqrestore(&queue->qlock, flags);
556
557 /* Save NVME CMD IO in fod */
558 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
559
560 /* Setup new fcpreq to be processed */
561 fcpreq->rspaddr = NULL;
562 fcpreq->rsplen = 0;
563 fcpreq->nvmet_fc_private = fod;
564 fod->fcpreq = fcpreq;
565 fod->active = true;
566
567 /* inform LLDD IO is now being processed */
568 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
569
570 /* Submit deferred IO for processing */
571 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
572
573 /*
574 * Leave the queue lookup get reference taken when
575 * fod was originally allocated.
576 */
577 }
578
579 static int
580 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
581 {
582 int cpu, idx, cnt;
583
584 if (tgtport->ops->max_hw_queues == 1)
585 return WORK_CPU_UNBOUND;
586
587 /* Simple cpu selection based on qid modulo active cpu count */
588 idx = !qid ? 0 : (qid - 1) % num_active_cpus();
589
590 /* find the n'th active cpu */
591 for (cpu = 0, cnt = 0; ; ) {
592 if (cpu_active(cpu)) {
593 if (cnt == idx)
594 break;
595 cnt++;
596 }
597 cpu = (cpu + 1) % num_possible_cpus();
598 }
599
600 return cpu;
601 }
602
603 static struct nvmet_fc_tgt_queue *
604 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
605 u16 qid, u16 sqsize)
606 {
607 struct nvmet_fc_tgt_queue *queue;
608 unsigned long flags;
609 int ret;
610
611 if (qid >= NVMET_NR_QUEUES)
612 return NULL;
613
614 queue = kzalloc((sizeof(*queue) +
615 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
616 GFP_KERNEL);
617 if (!queue)
618 return NULL;
619
620 if (!nvmet_fc_tgt_a_get(assoc))
621 goto out_free_queue;
622
623 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
624 assoc->tgtport->fc_target_port.port_num,
625 assoc->a_id, qid);
626 if (!queue->work_q)
627 goto out_a_put;
628
629 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
630 queue->qid = qid;
631 queue->sqsize = sqsize;
632 queue->assoc = assoc;
633 queue->port = assoc->tgtport->port;
634 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
635 INIT_LIST_HEAD(&queue->fod_list);
636 INIT_LIST_HEAD(&queue->avail_defer_list);
637 INIT_LIST_HEAD(&queue->pending_cmd_list);
638 atomic_set(&queue->connected, 0);
639 atomic_set(&queue->sqtail, 0);
640 atomic_set(&queue->rsn, 1);
641 atomic_set(&queue->zrspcnt, 0);
642 spin_lock_init(&queue->qlock);
643 kref_init(&queue->ref);
644
645 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
646
647 ret = nvmet_sq_init(&queue->nvme_sq);
648 if (ret)
649 goto out_fail_iodlist;
650
651 WARN_ON(assoc->queues[qid]);
652 spin_lock_irqsave(&assoc->tgtport->lock, flags);
653 assoc->queues[qid] = queue;
654 spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
655
656 return queue;
657
658 out_fail_iodlist:
659 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
660 destroy_workqueue(queue->work_q);
661 out_a_put:
662 nvmet_fc_tgt_a_put(assoc);
663 out_free_queue:
664 kfree(queue);
665 return NULL;
666 }
667
668
669 static void
670 nvmet_fc_tgt_queue_free(struct kref *ref)
671 {
672 struct nvmet_fc_tgt_queue *queue =
673 container_of(ref, struct nvmet_fc_tgt_queue, ref);
674 unsigned long flags;
675
676 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
677 queue->assoc->queues[queue->qid] = NULL;
678 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
679
680 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
681
682 nvmet_fc_tgt_a_put(queue->assoc);
683
684 destroy_workqueue(queue->work_q);
685
686 kfree(queue);
687 }
688
689 static void
690 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
691 {
692 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
693 }
694
695 static int
696 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
697 {
698 return kref_get_unless_zero(&queue->ref);
699 }
700
701
702 static void
703 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
704 {
705 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
706 struct nvmet_fc_fcp_iod *fod = queue->fod;
707 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
708 unsigned long flags;
709 int i, writedataactive;
710 bool disconnect;
711
712 disconnect = atomic_xchg(&queue->connected, 0);
713
714 spin_lock_irqsave(&queue->qlock, flags);
715 /* about outstanding io's */
716 for (i = 0; i < queue->sqsize; fod++, i++) {
717 if (fod->active) {
718 spin_lock(&fod->flock);
719 fod->abort = true;
720 writedataactive = fod->writedataactive;
721 spin_unlock(&fod->flock);
722 /*
723 * only call lldd abort routine if waiting for
724 * writedata. other outstanding ops should finish
725 * on their own.
726 */
727 if (writedataactive) {
728 spin_lock(&fod->flock);
729 fod->aborted = true;
730 spin_unlock(&fod->flock);
731 tgtport->ops->fcp_abort(
732 &tgtport->fc_target_port, fod->fcpreq);
733 }
734 }
735 }
736
737 /* Cleanup defer'ed IOs in queue */
738 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
739 req_list) {
740 list_del(&deferfcp->req_list);
741 kfree(deferfcp);
742 }
743
744 for (;;) {
745 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 struct nvmet_fc_defer_fcp_req, req_list);
747 if (!deferfcp)
748 break;
749
750 list_del(&deferfcp->req_list);
751 spin_unlock_irqrestore(&queue->qlock, flags);
752
753 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
754 deferfcp->fcp_req);
755
756 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
757 deferfcp->fcp_req);
758
759 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
760 deferfcp->fcp_req);
761
762 kfree(deferfcp);
763
764 spin_lock_irqsave(&queue->qlock, flags);
765 }
766 spin_unlock_irqrestore(&queue->qlock, flags);
767
768 flush_workqueue(queue->work_q);
769
770 if (disconnect)
771 nvmet_sq_destroy(&queue->nvme_sq);
772
773 nvmet_fc_tgt_q_put(queue);
774 }
775
776 static struct nvmet_fc_tgt_queue *
777 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
778 u64 connection_id)
779 {
780 struct nvmet_fc_tgt_assoc *assoc;
781 struct nvmet_fc_tgt_queue *queue;
782 u64 association_id = nvmet_fc_getassociationid(connection_id);
783 u16 qid = nvmet_fc_getqueueid(connection_id);
784 unsigned long flags;
785
786 spin_lock_irqsave(&tgtport->lock, flags);
787 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
788 if (association_id == assoc->association_id) {
789 queue = assoc->queues[qid];
790 if (queue &&
791 (!atomic_read(&queue->connected) ||
792 !nvmet_fc_tgt_q_get(queue)))
793 queue = NULL;
794 spin_unlock_irqrestore(&tgtport->lock, flags);
795 return queue;
796 }
797 }
798 spin_unlock_irqrestore(&tgtport->lock, flags);
799 return NULL;
800 }
801
802 static struct nvmet_fc_tgt_assoc *
803 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
804 {
805 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
806 unsigned long flags;
807 u64 ran;
808 int idx;
809 bool needrandom = true;
810
811 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
812 if (!assoc)
813 return NULL;
814
815 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
816 if (idx < 0)
817 goto out_free_assoc;
818
819 if (!nvmet_fc_tgtport_get(tgtport))
820 goto out_ida_put;
821
822 assoc->tgtport = tgtport;
823 assoc->a_id = idx;
824 INIT_LIST_HEAD(&assoc->a_list);
825 kref_init(&assoc->ref);
826
827 while (needrandom) {
828 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
829 ran = ran << BYTES_FOR_QID_SHIFT;
830
831 spin_lock_irqsave(&tgtport->lock, flags);
832 needrandom = false;
833 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
834 if (ran == tmpassoc->association_id) {
835 needrandom = true;
836 break;
837 }
838 if (!needrandom) {
839 assoc->association_id = ran;
840 list_add_tail(&assoc->a_list, &tgtport->assoc_list);
841 }
842 spin_unlock_irqrestore(&tgtport->lock, flags);
843 }
844
845 return assoc;
846
847 out_ida_put:
848 ida_simple_remove(&tgtport->assoc_cnt, idx);
849 out_free_assoc:
850 kfree(assoc);
851 return NULL;
852 }
853
854 static void
855 nvmet_fc_target_assoc_free(struct kref *ref)
856 {
857 struct nvmet_fc_tgt_assoc *assoc =
858 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
859 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
860 unsigned long flags;
861
862 spin_lock_irqsave(&tgtport->lock, flags);
863 list_del(&assoc->a_list);
864 spin_unlock_irqrestore(&tgtport->lock, flags);
865 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
866 kfree(assoc);
867 nvmet_fc_tgtport_put(tgtport);
868 }
869
870 static void
871 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
872 {
873 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
874 }
875
876 static int
877 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
878 {
879 return kref_get_unless_zero(&assoc->ref);
880 }
881
882 static void
883 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
884 {
885 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
886 struct nvmet_fc_tgt_queue *queue;
887 unsigned long flags;
888 int i;
889
890 spin_lock_irqsave(&tgtport->lock, flags);
891 for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) {
892 queue = assoc->queues[i];
893 if (queue) {
894 if (!nvmet_fc_tgt_q_get(queue))
895 continue;
896 spin_unlock_irqrestore(&tgtport->lock, flags);
897 nvmet_fc_delete_target_queue(queue);
898 nvmet_fc_tgt_q_put(queue);
899 spin_lock_irqsave(&tgtport->lock, flags);
900 }
901 }
902 spin_unlock_irqrestore(&tgtport->lock, flags);
903
904 nvmet_fc_tgt_a_put(assoc);
905 }
906
907 static struct nvmet_fc_tgt_assoc *
908 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
909 u64 association_id)
910 {
911 struct nvmet_fc_tgt_assoc *assoc;
912 struct nvmet_fc_tgt_assoc *ret = NULL;
913 unsigned long flags;
914
915 spin_lock_irqsave(&tgtport->lock, flags);
916 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
917 if (association_id == assoc->association_id) {
918 ret = assoc;
919 nvmet_fc_tgt_a_get(assoc);
920 break;
921 }
922 }
923 spin_unlock_irqrestore(&tgtport->lock, flags);
924
925 return ret;
926 }
927
928
929 /**
930 * nvme_fc_register_targetport - transport entry point called by an
931 * LLDD to register the existence of a local
932 * NVME subystem FC port.
933 * @pinfo: pointer to information about the port to be registered
934 * @template: LLDD entrypoints and operational parameters for the port
935 * @dev: physical hardware device node port corresponds to. Will be
936 * used for DMA mappings
937 * @portptr: pointer to a local port pointer. Upon success, the routine
938 * will allocate a nvme_fc_local_port structure and place its
939 * address in the local port pointer. Upon failure, local port
940 * pointer will be set to NULL.
941 *
942 * Returns:
943 * a completion status. Must be 0 upon success; a negative errno
944 * (ex: -ENXIO) upon failure.
945 */
946 int
947 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
948 struct nvmet_fc_target_template *template,
949 struct device *dev,
950 struct nvmet_fc_target_port **portptr)
951 {
952 struct nvmet_fc_tgtport *newrec;
953 unsigned long flags;
954 int ret, idx;
955
956 if (!template->xmt_ls_rsp || !template->fcp_op ||
957 !template->fcp_abort ||
958 !template->fcp_req_release || !template->targetport_delete ||
959 !template->max_hw_queues || !template->max_sgl_segments ||
960 !template->max_dif_sgl_segments || !template->dma_boundary) {
961 ret = -EINVAL;
962 goto out_regtgt_failed;
963 }
964
965 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
966 GFP_KERNEL);
967 if (!newrec) {
968 ret = -ENOMEM;
969 goto out_regtgt_failed;
970 }
971
972 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
973 if (idx < 0) {
974 ret = -ENOSPC;
975 goto out_fail_kfree;
976 }
977
978 if (!get_device(dev) && dev) {
979 ret = -ENODEV;
980 goto out_ida_put;
981 }
982
983 newrec->fc_target_port.node_name = pinfo->node_name;
984 newrec->fc_target_port.port_name = pinfo->port_name;
985 newrec->fc_target_port.private = &newrec[1];
986 newrec->fc_target_port.port_id = pinfo->port_id;
987 newrec->fc_target_port.port_num = idx;
988 INIT_LIST_HEAD(&newrec->tgt_list);
989 newrec->dev = dev;
990 newrec->ops = template;
991 spin_lock_init(&newrec->lock);
992 INIT_LIST_HEAD(&newrec->ls_list);
993 INIT_LIST_HEAD(&newrec->ls_busylist);
994 INIT_LIST_HEAD(&newrec->assoc_list);
995 kref_init(&newrec->ref);
996 ida_init(&newrec->assoc_cnt);
997
998 ret = nvmet_fc_alloc_ls_iodlist(newrec);
999 if (ret) {
1000 ret = -ENOMEM;
1001 goto out_free_newrec;
1002 }
1003
1004 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1005 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1006 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1007
1008 *portptr = &newrec->fc_target_port;
1009 return 0;
1010
1011 out_free_newrec:
1012 put_device(dev);
1013 out_ida_put:
1014 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1015 out_fail_kfree:
1016 kfree(newrec);
1017 out_regtgt_failed:
1018 *portptr = NULL;
1019 return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1022
1023
1024 static void
1025 nvmet_fc_free_tgtport(struct kref *ref)
1026 {
1027 struct nvmet_fc_tgtport *tgtport =
1028 container_of(ref, struct nvmet_fc_tgtport, ref);
1029 struct device *dev = tgtport->dev;
1030 unsigned long flags;
1031
1032 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1033 list_del(&tgtport->tgt_list);
1034 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1035
1036 nvmet_fc_free_ls_iodlist(tgtport);
1037
1038 /* let the LLDD know we've finished tearing it down */
1039 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1040
1041 ida_simple_remove(&nvmet_fc_tgtport_cnt,
1042 tgtport->fc_target_port.port_num);
1043
1044 ida_destroy(&tgtport->assoc_cnt);
1045
1046 kfree(tgtport);
1047
1048 put_device(dev);
1049 }
1050
1051 static void
1052 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1053 {
1054 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1055 }
1056
1057 static int
1058 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1059 {
1060 return kref_get_unless_zero(&tgtport->ref);
1061 }
1062
1063 static void
1064 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1065 {
1066 struct nvmet_fc_tgt_assoc *assoc, *next;
1067 unsigned long flags;
1068
1069 spin_lock_irqsave(&tgtport->lock, flags);
1070 list_for_each_entry_safe(assoc, next,
1071 &tgtport->assoc_list, a_list) {
1072 if (!nvmet_fc_tgt_a_get(assoc))
1073 continue;
1074 spin_unlock_irqrestore(&tgtport->lock, flags);
1075 nvmet_fc_delete_target_assoc(assoc);
1076 nvmet_fc_tgt_a_put(assoc);
1077 spin_lock_irqsave(&tgtport->lock, flags);
1078 }
1079 spin_unlock_irqrestore(&tgtport->lock, flags);
1080 }
1081
1082 /*
1083 * nvmet layer has called to terminate an association
1084 */
1085 static void
1086 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1087 {
1088 struct nvmet_fc_tgtport *tgtport, *next;
1089 struct nvmet_fc_tgt_assoc *assoc;
1090 struct nvmet_fc_tgt_queue *queue;
1091 unsigned long flags;
1092 bool found_ctrl = false;
1093
1094 /* this is a bit ugly, but don't want to make locks layered */
1095 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1096 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1097 tgt_list) {
1098 if (!nvmet_fc_tgtport_get(tgtport))
1099 continue;
1100 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1101
1102 spin_lock_irqsave(&tgtport->lock, flags);
1103 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1104 queue = assoc->queues[0];
1105 if (queue && queue->nvme_sq.ctrl == ctrl) {
1106 if (nvmet_fc_tgt_a_get(assoc))
1107 found_ctrl = true;
1108 break;
1109 }
1110 }
1111 spin_unlock_irqrestore(&tgtport->lock, flags);
1112
1113 nvmet_fc_tgtport_put(tgtport);
1114
1115 if (found_ctrl) {
1116 nvmet_fc_delete_target_assoc(assoc);
1117 nvmet_fc_tgt_a_put(assoc);
1118 return;
1119 }
1120
1121 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1122 }
1123 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1124 }
1125
1126 /**
1127 * nvme_fc_unregister_targetport - transport entry point called by an
1128 * LLDD to deregister/remove a previously
1129 * registered a local NVME subsystem FC port.
1130 * @tgtport: pointer to the (registered) target port that is to be
1131 * deregistered.
1132 *
1133 * Returns:
1134 * a completion status. Must be 0 upon success; a negative errno
1135 * (ex: -ENXIO) upon failure.
1136 */
1137 int
1138 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1139 {
1140 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1141
1142 /* terminate any outstanding associations */
1143 __nvmet_fc_free_assocs(tgtport);
1144
1145 nvmet_fc_tgtport_put(tgtport);
1146
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1150
1151
1152 /* *********************** FC-NVME LS Handling **************************** */
1153
1154
1155 static void
1156 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1157 {
1158 struct fcnvme_ls_acc_hdr *acc = buf;
1159
1160 acc->w0.ls_cmd = ls_cmd;
1161 acc->desc_list_len = desc_len;
1162 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1163 acc->rqst.desc_len =
1164 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1165 acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1166 }
1167
1168 static int
1169 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1170 u8 reason, u8 explanation, u8 vendor)
1171 {
1172 struct fcnvme_ls_rjt *rjt = buf;
1173
1174 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1175 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1176 ls_cmd);
1177 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1178 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1179 rjt->rjt.reason_code = reason;
1180 rjt->rjt.reason_explanation = explanation;
1181 rjt->rjt.vendor = vendor;
1182
1183 return sizeof(struct fcnvme_ls_rjt);
1184 }
1185
1186 /* Validation Error indexes into the string table below */
1187 enum {
1188 VERR_NO_ERROR = 0,
1189 VERR_CR_ASSOC_LEN = 1,
1190 VERR_CR_ASSOC_RQST_LEN = 2,
1191 VERR_CR_ASSOC_CMD = 3,
1192 VERR_CR_ASSOC_CMD_LEN = 4,
1193 VERR_ERSP_RATIO = 5,
1194 VERR_ASSOC_ALLOC_FAIL = 6,
1195 VERR_QUEUE_ALLOC_FAIL = 7,
1196 VERR_CR_CONN_LEN = 8,
1197 VERR_CR_CONN_RQST_LEN = 9,
1198 VERR_ASSOC_ID = 10,
1199 VERR_ASSOC_ID_LEN = 11,
1200 VERR_NO_ASSOC = 12,
1201 VERR_CONN_ID = 13,
1202 VERR_CONN_ID_LEN = 14,
1203 VERR_NO_CONN = 15,
1204 VERR_CR_CONN_CMD = 16,
1205 VERR_CR_CONN_CMD_LEN = 17,
1206 VERR_DISCONN_LEN = 18,
1207 VERR_DISCONN_RQST_LEN = 19,
1208 VERR_DISCONN_CMD = 20,
1209 VERR_DISCONN_CMD_LEN = 21,
1210 VERR_DISCONN_SCOPE = 22,
1211 VERR_RS_LEN = 23,
1212 VERR_RS_RQST_LEN = 24,
1213 VERR_RS_CMD = 25,
1214 VERR_RS_CMD_LEN = 26,
1215 VERR_RS_RCTL = 27,
1216 VERR_RS_RO = 28,
1217 };
1218
1219 static char *validation_errors[] = {
1220 "OK",
1221 "Bad CR_ASSOC Length",
1222 "Bad CR_ASSOC Rqst Length",
1223 "Not CR_ASSOC Cmd",
1224 "Bad CR_ASSOC Cmd Length",
1225 "Bad Ersp Ratio",
1226 "Association Allocation Failed",
1227 "Queue Allocation Failed",
1228 "Bad CR_CONN Length",
1229 "Bad CR_CONN Rqst Length",
1230 "Not Association ID",
1231 "Bad Association ID Length",
1232 "No Association",
1233 "Not Connection ID",
1234 "Bad Connection ID Length",
1235 "No Connection",
1236 "Not CR_CONN Cmd",
1237 "Bad CR_CONN Cmd Length",
1238 "Bad DISCONN Length",
1239 "Bad DISCONN Rqst Length",
1240 "Not DISCONN Cmd",
1241 "Bad DISCONN Cmd Length",
1242 "Bad Disconnect Scope",
1243 "Bad RS Length",
1244 "Bad RS Rqst Length",
1245 "Not RS Cmd",
1246 "Bad RS Cmd Length",
1247 "Bad RS R_CTL",
1248 "Bad RS Relative Offset",
1249 };
1250
1251 static void
1252 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1253 struct nvmet_fc_ls_iod *iod)
1254 {
1255 struct fcnvme_ls_cr_assoc_rqst *rqst =
1256 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1257 struct fcnvme_ls_cr_assoc_acc *acc =
1258 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1259 struct nvmet_fc_tgt_queue *queue;
1260 int ret = 0;
1261
1262 memset(acc, 0, sizeof(*acc));
1263
1264 /*
1265 * FC-NVME spec changes. There are initiators sending different
1266 * lengths as padding sizes for Create Association Cmd descriptor
1267 * was incorrect.
1268 * Accept anything of "minimum" length. Assume format per 1.15
1269 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1270 * trailing pad length is.
1271 */
1272 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1273 ret = VERR_CR_ASSOC_LEN;
1274 else if (be32_to_cpu(rqst->desc_list_len) <
1275 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1276 ret = VERR_CR_ASSOC_RQST_LEN;
1277 else if (rqst->assoc_cmd.desc_tag !=
1278 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1279 ret = VERR_CR_ASSOC_CMD;
1280 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1281 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1282 ret = VERR_CR_ASSOC_CMD_LEN;
1283 else if (!rqst->assoc_cmd.ersp_ratio ||
1284 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1285 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1286 ret = VERR_ERSP_RATIO;
1287
1288 else {
1289 /* new association w/ admin queue */
1290 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1291 if (!iod->assoc)
1292 ret = VERR_ASSOC_ALLOC_FAIL;
1293 else {
1294 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1295 be16_to_cpu(rqst->assoc_cmd.sqsize));
1296 if (!queue)
1297 ret = VERR_QUEUE_ALLOC_FAIL;
1298 }
1299 }
1300
1301 if (ret) {
1302 dev_err(tgtport->dev,
1303 "Create Association LS failed: %s\n",
1304 validation_errors[ret]);
1305 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1306 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1307 FCNVME_RJT_RC_LOGIC,
1308 FCNVME_RJT_EXP_NONE, 0);
1309 return;
1310 }
1311
1312 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1313 atomic_set(&queue->connected, 1);
1314 queue->sqhd = 0; /* best place to init value */
1315
1316 /* format a response */
1317
1318 iod->lsreq->rsplen = sizeof(*acc);
1319
1320 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1321 fcnvme_lsdesc_len(
1322 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1323 FCNVME_LS_CREATE_ASSOCIATION);
1324 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1325 acc->associd.desc_len =
1326 fcnvme_lsdesc_len(
1327 sizeof(struct fcnvme_lsdesc_assoc_id));
1328 acc->associd.association_id =
1329 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1330 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1331 acc->connectid.desc_len =
1332 fcnvme_lsdesc_len(
1333 sizeof(struct fcnvme_lsdesc_conn_id));
1334 acc->connectid.connection_id = acc->associd.association_id;
1335 }
1336
1337 static void
1338 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1339 struct nvmet_fc_ls_iod *iod)
1340 {
1341 struct fcnvme_ls_cr_conn_rqst *rqst =
1342 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1343 struct fcnvme_ls_cr_conn_acc *acc =
1344 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1345 struct nvmet_fc_tgt_queue *queue;
1346 int ret = 0;
1347
1348 memset(acc, 0, sizeof(*acc));
1349
1350 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1351 ret = VERR_CR_CONN_LEN;
1352 else if (rqst->desc_list_len !=
1353 fcnvme_lsdesc_len(
1354 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1355 ret = VERR_CR_CONN_RQST_LEN;
1356 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1357 ret = VERR_ASSOC_ID;
1358 else if (rqst->associd.desc_len !=
1359 fcnvme_lsdesc_len(
1360 sizeof(struct fcnvme_lsdesc_assoc_id)))
1361 ret = VERR_ASSOC_ID_LEN;
1362 else if (rqst->connect_cmd.desc_tag !=
1363 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1364 ret = VERR_CR_CONN_CMD;
1365 else if (rqst->connect_cmd.desc_len !=
1366 fcnvme_lsdesc_len(
1367 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1368 ret = VERR_CR_CONN_CMD_LEN;
1369 else if (!rqst->connect_cmd.ersp_ratio ||
1370 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1371 be16_to_cpu(rqst->connect_cmd.sqsize)))
1372 ret = VERR_ERSP_RATIO;
1373
1374 else {
1375 /* new io queue */
1376 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1377 be64_to_cpu(rqst->associd.association_id));
1378 if (!iod->assoc)
1379 ret = VERR_NO_ASSOC;
1380 else {
1381 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1382 be16_to_cpu(rqst->connect_cmd.qid),
1383 be16_to_cpu(rqst->connect_cmd.sqsize));
1384 if (!queue)
1385 ret = VERR_QUEUE_ALLOC_FAIL;
1386
1387 /* release get taken in nvmet_fc_find_target_assoc */
1388 nvmet_fc_tgt_a_put(iod->assoc);
1389 }
1390 }
1391
1392 if (ret) {
1393 dev_err(tgtport->dev,
1394 "Create Connection LS failed: %s\n",
1395 validation_errors[ret]);
1396 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1397 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1398 (ret == VERR_NO_ASSOC) ?
1399 FCNVME_RJT_RC_INV_ASSOC :
1400 FCNVME_RJT_RC_LOGIC,
1401 FCNVME_RJT_EXP_NONE, 0);
1402 return;
1403 }
1404
1405 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1406 atomic_set(&queue->connected, 1);
1407 queue->sqhd = 0; /* best place to init value */
1408
1409 /* format a response */
1410
1411 iod->lsreq->rsplen = sizeof(*acc);
1412
1413 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1414 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1415 FCNVME_LS_CREATE_CONNECTION);
1416 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1417 acc->connectid.desc_len =
1418 fcnvme_lsdesc_len(
1419 sizeof(struct fcnvme_lsdesc_conn_id));
1420 acc->connectid.connection_id =
1421 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1422 be16_to_cpu(rqst->connect_cmd.qid)));
1423 }
1424
1425 static void
1426 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1427 struct nvmet_fc_ls_iod *iod)
1428 {
1429 struct fcnvme_ls_disconnect_rqst *rqst =
1430 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1431 struct fcnvme_ls_disconnect_acc *acc =
1432 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1433 struct nvmet_fc_tgt_queue *queue = NULL;
1434 struct nvmet_fc_tgt_assoc *assoc;
1435 int ret = 0;
1436 bool del_assoc = false;
1437
1438 memset(acc, 0, sizeof(*acc));
1439
1440 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1441 ret = VERR_DISCONN_LEN;
1442 else if (rqst->desc_list_len !=
1443 fcnvme_lsdesc_len(
1444 sizeof(struct fcnvme_ls_disconnect_rqst)))
1445 ret = VERR_DISCONN_RQST_LEN;
1446 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1447 ret = VERR_ASSOC_ID;
1448 else if (rqst->associd.desc_len !=
1449 fcnvme_lsdesc_len(
1450 sizeof(struct fcnvme_lsdesc_assoc_id)))
1451 ret = VERR_ASSOC_ID_LEN;
1452 else if (rqst->discon_cmd.desc_tag !=
1453 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1454 ret = VERR_DISCONN_CMD;
1455 else if (rqst->discon_cmd.desc_len !=
1456 fcnvme_lsdesc_len(
1457 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1458 ret = VERR_DISCONN_CMD_LEN;
1459 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1460 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1461 ret = VERR_DISCONN_SCOPE;
1462 else {
1463 /* match an active association */
1464 assoc = nvmet_fc_find_target_assoc(tgtport,
1465 be64_to_cpu(rqst->associd.association_id));
1466 iod->assoc = assoc;
1467 if (assoc) {
1468 if (rqst->discon_cmd.scope ==
1469 FCNVME_DISCONN_CONNECTION) {
1470 queue = nvmet_fc_find_target_queue(tgtport,
1471 be64_to_cpu(
1472 rqst->discon_cmd.id));
1473 if (!queue) {
1474 nvmet_fc_tgt_a_put(assoc);
1475 ret = VERR_NO_CONN;
1476 }
1477 }
1478 } else
1479 ret = VERR_NO_ASSOC;
1480 }
1481
1482 if (ret) {
1483 dev_err(tgtport->dev,
1484 "Disconnect LS failed: %s\n",
1485 validation_errors[ret]);
1486 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1487 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1488 (ret == VERR_NO_ASSOC) ?
1489 FCNVME_RJT_RC_INV_ASSOC :
1490 (ret == VERR_NO_CONN) ?
1491 FCNVME_RJT_RC_INV_CONN :
1492 FCNVME_RJT_RC_LOGIC,
1493 FCNVME_RJT_EXP_NONE, 0);
1494 return;
1495 }
1496
1497 /* format a response */
1498
1499 iod->lsreq->rsplen = sizeof(*acc);
1500
1501 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1502 fcnvme_lsdesc_len(
1503 sizeof(struct fcnvme_ls_disconnect_acc)),
1504 FCNVME_LS_DISCONNECT);
1505
1506
1507 /* are we to delete a Connection ID (queue) */
1508 if (queue) {
1509 int qid = queue->qid;
1510
1511 nvmet_fc_delete_target_queue(queue);
1512
1513 /* release the get taken by find_target_queue */
1514 nvmet_fc_tgt_q_put(queue);
1515
1516 /* tear association down if io queue terminated */
1517 if (!qid)
1518 del_assoc = true;
1519 }
1520
1521 /* release get taken in nvmet_fc_find_target_assoc */
1522 nvmet_fc_tgt_a_put(iod->assoc);
1523
1524 if (del_assoc)
1525 nvmet_fc_delete_target_assoc(iod->assoc);
1526 }
1527
1528
1529 /* *********************** NVME Ctrl Routines **************************** */
1530
1531
1532 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1533
1534 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1535
1536 static void
1537 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1538 {
1539 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1540 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1541
1542 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1543 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1544 nvmet_fc_free_ls_iod(tgtport, iod);
1545 nvmet_fc_tgtport_put(tgtport);
1546 }
1547
1548 static void
1549 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1550 struct nvmet_fc_ls_iod *iod)
1551 {
1552 int ret;
1553
1554 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1555 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1556
1557 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1558 if (ret)
1559 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1560 }
1561
1562 /*
1563 * Actual processing routine for received FC-NVME LS Requests from the LLD
1564 */
1565 static void
1566 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1567 struct nvmet_fc_ls_iod *iod)
1568 {
1569 struct fcnvme_ls_rqst_w0 *w0 =
1570 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1571
1572 iod->lsreq->nvmet_fc_private = iod;
1573 iod->lsreq->rspbuf = iod->rspbuf;
1574 iod->lsreq->rspdma = iod->rspdma;
1575 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1576 /* Be preventative. handlers will later set to valid length */
1577 iod->lsreq->rsplen = 0;
1578
1579 iod->assoc = NULL;
1580
1581 /*
1582 * handlers:
1583 * parse request input, execute the request, and format the
1584 * LS response
1585 */
1586 switch (w0->ls_cmd) {
1587 case FCNVME_LS_CREATE_ASSOCIATION:
1588 /* Creates Association and initial Admin Queue/Connection */
1589 nvmet_fc_ls_create_association(tgtport, iod);
1590 break;
1591 case FCNVME_LS_CREATE_CONNECTION:
1592 /* Creates an IO Queue/Connection */
1593 nvmet_fc_ls_create_connection(tgtport, iod);
1594 break;
1595 case FCNVME_LS_DISCONNECT:
1596 /* Terminate a Queue/Connection or the Association */
1597 nvmet_fc_ls_disconnect(tgtport, iod);
1598 break;
1599 default:
1600 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1601 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1602 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1603 }
1604
1605 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1606 }
1607
1608 /*
1609 * Actual processing routine for received FC-NVME LS Requests from the LLD
1610 */
1611 static void
1612 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1613 {
1614 struct nvmet_fc_ls_iod *iod =
1615 container_of(work, struct nvmet_fc_ls_iod, work);
1616 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1617
1618 nvmet_fc_handle_ls_rqst(tgtport, iod);
1619 }
1620
1621
1622 /**
1623 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1624 * upon the reception of a NVME LS request.
1625 *
1626 * The nvmet-fc layer will copy payload to an internal structure for
1627 * processing. As such, upon completion of the routine, the LLDD may
1628 * immediately free/reuse the LS request buffer passed in the call.
1629 *
1630 * If this routine returns error, the LLDD should abort the exchange.
1631 *
1632 * @tgtport: pointer to the (registered) target port the LS was
1633 * received on.
1634 * @lsreq: pointer to a lsreq request structure to be used to reference
1635 * the exchange corresponding to the LS.
1636 * @lsreqbuf: pointer to the buffer containing the LS Request
1637 * @lsreqbuf_len: length, in bytes, of the received LS request
1638 */
1639 int
1640 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1641 struct nvmefc_tgt_ls_req *lsreq,
1642 void *lsreqbuf, u32 lsreqbuf_len)
1643 {
1644 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1645 struct nvmet_fc_ls_iod *iod;
1646
1647 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1648 return -E2BIG;
1649
1650 if (!nvmet_fc_tgtport_get(tgtport))
1651 return -ESHUTDOWN;
1652
1653 iod = nvmet_fc_alloc_ls_iod(tgtport);
1654 if (!iod) {
1655 nvmet_fc_tgtport_put(tgtport);
1656 return -ENOENT;
1657 }
1658
1659 iod->lsreq = lsreq;
1660 iod->fcpreq = NULL;
1661 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1662 iod->rqstdatalen = lsreqbuf_len;
1663
1664 schedule_work(&iod->work);
1665
1666 return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1669
1670
1671 /*
1672 * **********************
1673 * Start of FCP handling
1674 * **********************
1675 */
1676
1677 static int
1678 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1679 {
1680 struct scatterlist *sg;
1681 struct page *page;
1682 unsigned int nent;
1683 u32 page_len, length;
1684 int i = 0;
1685
1686 length = fod->total_length;
1687 nent = DIV_ROUND_UP(length, PAGE_SIZE);
1688 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
1689 if (!sg)
1690 goto out;
1691
1692 sg_init_table(sg, nent);
1693
1694 while (length) {
1695 page_len = min_t(u32, length, PAGE_SIZE);
1696
1697 page = alloc_page(GFP_KERNEL);
1698 if (!page)
1699 goto out_free_pages;
1700
1701 sg_set_page(&sg[i], page, page_len, 0);
1702 length -= page_len;
1703 i++;
1704 }
1705
1706 fod->data_sg = sg;
1707 fod->data_sg_cnt = nent;
1708 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1709 ((fod->io_dir == NVMET_FCP_WRITE) ?
1710 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1711 /* note: write from initiator perspective */
1712
1713 return 0;
1714
1715 out_free_pages:
1716 while (i > 0) {
1717 i--;
1718 __free_page(sg_page(&sg[i]));
1719 }
1720 kfree(sg);
1721 fod->data_sg = NULL;
1722 fod->data_sg_cnt = 0;
1723 out:
1724 return NVME_SC_INTERNAL;
1725 }
1726
1727 static void
1728 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1729 {
1730 struct scatterlist *sg;
1731 int count;
1732
1733 if (!fod->data_sg || !fod->data_sg_cnt)
1734 return;
1735
1736 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1737 ((fod->io_dir == NVMET_FCP_WRITE) ?
1738 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1739 for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count)
1740 __free_page(sg_page(sg));
1741 kfree(fod->data_sg);
1742 fod->data_sg = NULL;
1743 fod->data_sg_cnt = 0;
1744 }
1745
1746
1747 static bool
1748 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1749 {
1750 u32 sqtail, used;
1751
1752 /* egad, this is ugly. And sqtail is just a best guess */
1753 sqtail = atomic_read(&q->sqtail) % q->sqsize;
1754
1755 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1756 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1757 }
1758
1759 /*
1760 * Prep RSP payload.
1761 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1762 */
1763 static void
1764 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1765 struct nvmet_fc_fcp_iod *fod)
1766 {
1767 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1768 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1769 struct nvme_completion *cqe = &ersp->cqe;
1770 u32 *cqewd = (u32 *)cqe;
1771 bool send_ersp = false;
1772 u32 rsn, rspcnt, xfr_length;
1773
1774 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1775 xfr_length = fod->total_length;
1776 else
1777 xfr_length = fod->offset;
1778
1779 /*
1780 * check to see if we can send a 0's rsp.
1781 * Note: to send a 0's response, the NVME-FC host transport will
1782 * recreate the CQE. The host transport knows: sq id, SQHD (last
1783 * seen in an ersp), and command_id. Thus it will create a
1784 * zero-filled CQE with those known fields filled in. Transport
1785 * must send an ersp for any condition where the cqe won't match
1786 * this.
1787 *
1788 * Here are the FC-NVME mandated cases where we must send an ersp:
1789 * every N responses, where N=ersp_ratio
1790 * force fabric commands to send ersp's (not in FC-NVME but good
1791 * practice)
1792 * normal cmds: any time status is non-zero, or status is zero
1793 * but words 0 or 1 are non-zero.
1794 * the SQ is 90% or more full
1795 * the cmd is a fused command
1796 * transferred data length not equal to cmd iu length
1797 */
1798 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1799 if (!(rspcnt % fod->queue->ersp_ratio) ||
1800 sqe->opcode == nvme_fabrics_command ||
1801 xfr_length != fod->total_length ||
1802 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1803 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1804 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1805 send_ersp = true;
1806
1807 /* re-set the fields */
1808 fod->fcpreq->rspaddr = ersp;
1809 fod->fcpreq->rspdma = fod->rspdma;
1810
1811 if (!send_ersp) {
1812 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1813 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1814 } else {
1815 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1816 rsn = atomic_inc_return(&fod->queue->rsn);
1817 ersp->rsn = cpu_to_be32(rsn);
1818 ersp->xfrd_len = cpu_to_be32(xfr_length);
1819 fod->fcpreq->rsplen = sizeof(*ersp);
1820 }
1821
1822 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1823 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1824 }
1825
1826 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1827
1828 static void
1829 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1830 struct nvmet_fc_fcp_iod *fod)
1831 {
1832 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1833
1834 /* data no longer needed */
1835 nvmet_fc_free_tgt_pgs(fod);
1836
1837 /*
1838 * if an ABTS was received or we issued the fcp_abort early
1839 * don't call abort routine again.
1840 */
1841 /* no need to take lock - lock was taken earlier to get here */
1842 if (!fod->aborted)
1843 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1844
1845 nvmet_fc_free_fcp_iod(fod->queue, fod);
1846 }
1847
1848 static void
1849 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1850 struct nvmet_fc_fcp_iod *fod)
1851 {
1852 int ret;
1853
1854 fod->fcpreq->op = NVMET_FCOP_RSP;
1855 fod->fcpreq->timeout = 0;
1856
1857 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1858
1859 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1860 if (ret)
1861 nvmet_fc_abort_op(tgtport, fod);
1862 }
1863
1864 static void
1865 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1866 struct nvmet_fc_fcp_iod *fod, u8 op)
1867 {
1868 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1869 struct scatterlist *sg, *datasg;
1870 unsigned long flags;
1871 u32 tlen, sg_off;
1872 int ret;
1873
1874 fcpreq->op = op;
1875 fcpreq->offset = fod->offset;
1876 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1877 tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024),
1878 (fod->total_length - fod->offset));
1879 tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE);
1880 tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments
1881 * PAGE_SIZE);
1882 fcpreq->transfer_length = tlen;
1883 fcpreq->transferred_length = 0;
1884 fcpreq->fcp_error = 0;
1885 fcpreq->rsplen = 0;
1886
1887 fcpreq->sg_cnt = 0;
1888
1889 datasg = fod->next_sg;
1890 sg_off = fod->next_sg_offset;
1891
1892 for (sg = fcpreq->sg ; tlen; sg++) {
1893 *sg = *datasg;
1894 if (sg_off) {
1895 sg->offset += sg_off;
1896 sg->length -= sg_off;
1897 sg->dma_address += sg_off;
1898 sg_off = 0;
1899 }
1900 if (tlen < sg->length) {
1901 sg->length = tlen;
1902 fod->next_sg = datasg;
1903 fod->next_sg_offset += tlen;
1904 } else if (tlen == sg->length) {
1905 fod->next_sg_offset = 0;
1906 fod->next_sg = sg_next(datasg);
1907 } else {
1908 fod->next_sg_offset = 0;
1909 datasg = sg_next(datasg);
1910 }
1911 tlen -= sg->length;
1912 fcpreq->sg_cnt++;
1913 }
1914
1915 /*
1916 * If the last READDATA request: check if LLDD supports
1917 * combined xfr with response.
1918 */
1919 if ((op == NVMET_FCOP_READDATA) &&
1920 ((fod->offset + fcpreq->transfer_length) == fod->total_length) &&
1921 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1922 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1923 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1924 }
1925
1926 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1927 if (ret) {
1928 /*
1929 * should be ok to set w/o lock as its in the thread of
1930 * execution (not an async timer routine) and doesn't
1931 * contend with any clearing action
1932 */
1933 fod->abort = true;
1934
1935 if (op == NVMET_FCOP_WRITEDATA) {
1936 spin_lock_irqsave(&fod->flock, flags);
1937 fod->writedataactive = false;
1938 spin_unlock_irqrestore(&fod->flock, flags);
1939 nvmet_req_complete(&fod->req,
1940 NVME_SC_FC_TRANSPORT_ERROR);
1941 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1942 fcpreq->fcp_error = ret;
1943 fcpreq->transferred_length = 0;
1944 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1945 }
1946 }
1947 }
1948
1949 static inline bool
1950 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1951 {
1952 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1953 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1954
1955 /* if in the middle of an io and we need to tear down */
1956 if (abort) {
1957 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1958 nvmet_req_complete(&fod->req,
1959 NVME_SC_FC_TRANSPORT_ERROR);
1960 return true;
1961 }
1962
1963 nvmet_fc_abort_op(tgtport, fod);
1964 return true;
1965 }
1966
1967 return false;
1968 }
1969
1970 /*
1971 * actual done handler for FCP operations when completed by the lldd
1972 */
1973 static void
1974 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1975 {
1976 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1977 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1978 unsigned long flags;
1979 bool abort;
1980
1981 spin_lock_irqsave(&fod->flock, flags);
1982 abort = fod->abort;
1983 fod->writedataactive = false;
1984 spin_unlock_irqrestore(&fod->flock, flags);
1985
1986 switch (fcpreq->op) {
1987
1988 case NVMET_FCOP_WRITEDATA:
1989 if (__nvmet_fc_fod_op_abort(fod, abort))
1990 return;
1991 if (fcpreq->fcp_error ||
1992 fcpreq->transferred_length != fcpreq->transfer_length) {
1993 spin_lock(&fod->flock);
1994 fod->abort = true;
1995 spin_unlock(&fod->flock);
1996
1997 nvmet_req_complete(&fod->req,
1998 NVME_SC_FC_TRANSPORT_ERROR);
1999 return;
2000 }
2001
2002 fod->offset += fcpreq->transferred_length;
2003 if (fod->offset != fod->total_length) {
2004 spin_lock_irqsave(&fod->flock, flags);
2005 fod->writedataactive = true;
2006 spin_unlock_irqrestore(&fod->flock, flags);
2007
2008 /* transfer the next chunk */
2009 nvmet_fc_transfer_fcp_data(tgtport, fod,
2010 NVMET_FCOP_WRITEDATA);
2011 return;
2012 }
2013
2014 /* data transfer complete, resume with nvmet layer */
2015
2016 fod->req.execute(&fod->req);
2017
2018 break;
2019
2020 case NVMET_FCOP_READDATA:
2021 case NVMET_FCOP_READDATA_RSP:
2022 if (__nvmet_fc_fod_op_abort(fod, abort))
2023 return;
2024 if (fcpreq->fcp_error ||
2025 fcpreq->transferred_length != fcpreq->transfer_length) {
2026 nvmet_fc_abort_op(tgtport, fod);
2027 return;
2028 }
2029
2030 /* success */
2031
2032 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2033 /* data no longer needed */
2034 nvmet_fc_free_tgt_pgs(fod);
2035 nvmet_fc_free_fcp_iod(fod->queue, fod);
2036 return;
2037 }
2038
2039 fod->offset += fcpreq->transferred_length;
2040 if (fod->offset != fod->total_length) {
2041 /* transfer the next chunk */
2042 nvmet_fc_transfer_fcp_data(tgtport, fod,
2043 NVMET_FCOP_READDATA);
2044 return;
2045 }
2046
2047 /* data transfer complete, send response */
2048
2049 /* data no longer needed */
2050 nvmet_fc_free_tgt_pgs(fod);
2051
2052 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2053
2054 break;
2055
2056 case NVMET_FCOP_RSP:
2057 if (__nvmet_fc_fod_op_abort(fod, abort))
2058 return;
2059 nvmet_fc_free_fcp_iod(fod->queue, fod);
2060 break;
2061
2062 default:
2063 break;
2064 }
2065 }
2066
2067 static void
2068 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2069 {
2070 struct nvmet_fc_fcp_iod *fod =
2071 container_of(work, struct nvmet_fc_fcp_iod, done_work);
2072
2073 nvmet_fc_fod_op_done(fod);
2074 }
2075
2076 static void
2077 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2078 {
2079 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2080 struct nvmet_fc_tgt_queue *queue = fod->queue;
2081
2082 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2083 /* context switch so completion is not in ISR context */
2084 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2085 else
2086 nvmet_fc_fod_op_done(fod);
2087 }
2088
2089 /*
2090 * actual completion handler after execution by the nvmet layer
2091 */
2092 static void
2093 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2094 struct nvmet_fc_fcp_iod *fod, int status)
2095 {
2096 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2097 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2098 unsigned long flags;
2099 bool abort;
2100
2101 spin_lock_irqsave(&fod->flock, flags);
2102 abort = fod->abort;
2103 spin_unlock_irqrestore(&fod->flock, flags);
2104
2105 /* if we have a CQE, snoop the last sq_head value */
2106 if (!status)
2107 fod->queue->sqhd = cqe->sq_head;
2108
2109 if (abort) {
2110 nvmet_fc_abort_op(tgtport, fod);
2111 return;
2112 }
2113
2114 /* if an error handling the cmd post initial parsing */
2115 if (status) {
2116 /* fudge up a failed CQE status for our transport error */
2117 memset(cqe, 0, sizeof(*cqe));
2118 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2119 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2120 cqe->command_id = sqe->command_id;
2121 cqe->status = cpu_to_le16(status);
2122 } else {
2123
2124 /*
2125 * try to push the data even if the SQE status is non-zero.
2126 * There may be a status where data still was intended to
2127 * be moved
2128 */
2129 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2130 /* push the data over before sending rsp */
2131 nvmet_fc_transfer_fcp_data(tgtport, fod,
2132 NVMET_FCOP_READDATA);
2133 return;
2134 }
2135
2136 /* writes & no data - fall thru */
2137 }
2138
2139 /* data no longer needed */
2140 nvmet_fc_free_tgt_pgs(fod);
2141
2142 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2143 }
2144
2145
2146 static void
2147 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2148 {
2149 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2150 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2151
2152 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2153 }
2154
2155
2156 /*
2157 * Actual processing routine for received FC-NVME LS Requests from the LLD
2158 */
2159 static void
2160 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2161 struct nvmet_fc_fcp_iod *fod)
2162 {
2163 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2164 int ret;
2165
2166 /*
2167 * Fused commands are currently not supported in the linux
2168 * implementation.
2169 *
2170 * As such, the implementation of the FC transport does not
2171 * look at the fused commands and order delivery to the upper
2172 * layer until we have both based on csn.
2173 */
2174
2175 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2176
2177 fod->total_length = be32_to_cpu(cmdiu->data_len);
2178 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2179 fod->io_dir = NVMET_FCP_WRITE;
2180 if (!nvme_is_write(&cmdiu->sqe))
2181 goto transport_error;
2182 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2183 fod->io_dir = NVMET_FCP_READ;
2184 if (nvme_is_write(&cmdiu->sqe))
2185 goto transport_error;
2186 } else {
2187 fod->io_dir = NVMET_FCP_NODATA;
2188 if (fod->total_length)
2189 goto transport_error;
2190 }
2191
2192 fod->req.cmd = &fod->cmdiubuf.sqe;
2193 fod->req.rsp = &fod->rspiubuf.cqe;
2194 fod->req.port = fod->queue->port;
2195
2196 /* ensure nvmet handlers will set cmd handler callback */
2197 fod->req.execute = NULL;
2198
2199 /* clear any response payload */
2200 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2201
2202 fod->data_sg = NULL;
2203 fod->data_sg_cnt = 0;
2204
2205 ret = nvmet_req_init(&fod->req,
2206 &fod->queue->nvme_cq,
2207 &fod->queue->nvme_sq,
2208 &nvmet_fc_tgt_fcp_ops);
2209 if (!ret) {
2210 /* bad SQE content or invalid ctrl state */
2211 /* nvmet layer has already called op done to send rsp. */
2212 return;
2213 }
2214
2215 /* keep a running counter of tail position */
2216 atomic_inc(&fod->queue->sqtail);
2217
2218 if (fod->total_length) {
2219 ret = nvmet_fc_alloc_tgt_pgs(fod);
2220 if (ret) {
2221 nvmet_req_complete(&fod->req, ret);
2222 return;
2223 }
2224 }
2225 fod->req.sg = fod->data_sg;
2226 fod->req.sg_cnt = fod->data_sg_cnt;
2227 fod->offset = 0;
2228 fod->next_sg = fod->data_sg;
2229 fod->next_sg_offset = 0;
2230
2231 if (fod->io_dir == NVMET_FCP_WRITE) {
2232 /* pull the data over before invoking nvmet layer */
2233 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2234 return;
2235 }
2236
2237 /*
2238 * Reads or no data:
2239 *
2240 * can invoke the nvmet_layer now. If read data, cmd completion will
2241 * push the data
2242 */
2243
2244 fod->req.execute(&fod->req);
2245
2246 return;
2247
2248 transport_error:
2249 nvmet_fc_abort_op(tgtport, fod);
2250 }
2251
2252 /*
2253 * Actual processing routine for received FC-NVME LS Requests from the LLD
2254 */
2255 static void
2256 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2257 {
2258 struct nvmet_fc_fcp_iod *fod =
2259 container_of(work, struct nvmet_fc_fcp_iod, work);
2260 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2261
2262 nvmet_fc_handle_fcp_rqst(tgtport, fod);
2263 }
2264
2265 /**
2266 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2267 * upon the reception of a NVME FCP CMD IU.
2268 *
2269 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2270 * layer for processing.
2271 *
2272 * The nvmet_fc layer allocates a local job structure (struct
2273 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2274 * CMD IU buffer to the job structure. As such, on a successful
2275 * completion (returns 0), the LLDD may immediately free/reuse
2276 * the CMD IU buffer passed in the call.
2277 *
2278 * However, in some circumstances, due to the packetized nature of FC
2279 * and the api of the FC LLDD which may issue a hw command to send the
2280 * response, but the LLDD may not get the hw completion for that command
2281 * and upcall the nvmet_fc layer before a new command may be
2282 * asynchronously received - its possible for a command to be received
2283 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2284 * the appearance of more commands received than fits in the sq.
2285 * To alleviate this scenario, a temporary queue is maintained in the
2286 * transport for pending LLDD requests waiting for a queue job structure.
2287 * In these "overrun" cases, a temporary queue element is allocated
2288 * the LLDD request and CMD iu buffer information remembered, and the
2289 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2290 * structure is freed, it is immediately reallocated for anything on the
2291 * pending request list. The LLDDs defer_rcv() callback is called,
2292 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2293 * is then started normally with the transport.
2294 *
2295 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2296 * the completion as successful but must not reuse the CMD IU buffer
2297 * until the LLDD's defer_rcv() callback has been called for the
2298 * corresponding struct nvmefc_tgt_fcp_req pointer.
2299 *
2300 * If there is any other condition in which an error occurs, the
2301 * transport will return a non-zero status indicating the error.
2302 * In all cases other than -EOVERFLOW, the transport has not accepted the
2303 * request and the LLDD should abort the exchange.
2304 *
2305 * @target_port: pointer to the (registered) target port the FCP CMD IU
2306 * was received on.
2307 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2308 * the exchange corresponding to the FCP Exchange.
2309 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2310 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2311 */
2312 int
2313 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2314 struct nvmefc_tgt_fcp_req *fcpreq,
2315 void *cmdiubuf, u32 cmdiubuf_len)
2316 {
2317 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2318 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2319 struct nvmet_fc_tgt_queue *queue;
2320 struct nvmet_fc_fcp_iod *fod;
2321 struct nvmet_fc_defer_fcp_req *deferfcp;
2322 unsigned long flags;
2323
2324 /* validate iu, so the connection id can be used to find the queue */
2325 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2326 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2327 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2328 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2329 return -EIO;
2330
2331 queue = nvmet_fc_find_target_queue(tgtport,
2332 be64_to_cpu(cmdiu->connection_id));
2333 if (!queue)
2334 return -ENOTCONN;
2335
2336 /*
2337 * note: reference taken by find_target_queue
2338 * After successful fod allocation, the fod will inherit the
2339 * ownership of that reference and will remove the reference
2340 * when the fod is freed.
2341 */
2342
2343 spin_lock_irqsave(&queue->qlock, flags);
2344
2345 fod = nvmet_fc_alloc_fcp_iod(queue);
2346 if (fod) {
2347 spin_unlock_irqrestore(&queue->qlock, flags);
2348
2349 fcpreq->nvmet_fc_private = fod;
2350 fod->fcpreq = fcpreq;
2351
2352 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2353
2354 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2355
2356 return 0;
2357 }
2358
2359 if (!tgtport->ops->defer_rcv) {
2360 spin_unlock_irqrestore(&queue->qlock, flags);
2361 /* release the queue lookup reference */
2362 nvmet_fc_tgt_q_put(queue);
2363 return -ENOENT;
2364 }
2365
2366 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2367 struct nvmet_fc_defer_fcp_req, req_list);
2368 if (deferfcp) {
2369 /* Just re-use one that was previously allocated */
2370 list_del(&deferfcp->req_list);
2371 } else {
2372 spin_unlock_irqrestore(&queue->qlock, flags);
2373
2374 /* Now we need to dynamically allocate one */
2375 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2376 if (!deferfcp) {
2377 /* release the queue lookup reference */
2378 nvmet_fc_tgt_q_put(queue);
2379 return -ENOMEM;
2380 }
2381 spin_lock_irqsave(&queue->qlock, flags);
2382 }
2383
2384 /* For now, use rspaddr / rsplen to save payload information */
2385 fcpreq->rspaddr = cmdiubuf;
2386 fcpreq->rsplen = cmdiubuf_len;
2387 deferfcp->fcp_req = fcpreq;
2388
2389 /* defer processing till a fod becomes available */
2390 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2391
2392 /* NOTE: the queue lookup reference is still valid */
2393
2394 spin_unlock_irqrestore(&queue->qlock, flags);
2395
2396 return -EOVERFLOW;
2397 }
2398 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2399
2400 /**
2401 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2402 * upon the reception of an ABTS for a FCP command
2403 *
2404 * Notify the transport that an ABTS has been received for a FCP command
2405 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2406 * LLDD believes the command is still being worked on
2407 * (template_ops->fcp_req_release() has not been called).
2408 *
2409 * The transport will wait for any outstanding work (an op to the LLDD,
2410 * which the lldd should complete with error due to the ABTS; or the
2411 * completion from the nvmet layer of the nvme command), then will
2412 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2413 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2414 * to the ABTS either after return from this function (assuming any
2415 * outstanding op work has been terminated) or upon the callback being
2416 * called.
2417 *
2418 * @target_port: pointer to the (registered) target port the FCP CMD IU
2419 * was received on.
2420 * @fcpreq: pointer to the fcpreq request structure that corresponds
2421 * to the exchange that received the ABTS.
2422 */
2423 void
2424 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2425 struct nvmefc_tgt_fcp_req *fcpreq)
2426 {
2427 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2428 struct nvmet_fc_tgt_queue *queue;
2429 unsigned long flags;
2430
2431 if (!fod || fod->fcpreq != fcpreq)
2432 /* job appears to have already completed, ignore abort */
2433 return;
2434
2435 queue = fod->queue;
2436
2437 spin_lock_irqsave(&queue->qlock, flags);
2438 if (fod->active) {
2439 /*
2440 * mark as abort. The abort handler, invoked upon completion
2441 * of any work, will detect the aborted status and do the
2442 * callback.
2443 */
2444 spin_lock(&fod->flock);
2445 fod->abort = true;
2446 fod->aborted = true;
2447 spin_unlock(&fod->flock);
2448 }
2449 spin_unlock_irqrestore(&queue->qlock, flags);
2450 }
2451 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2452
2453
2454 struct nvmet_fc_traddr {
2455 u64 nn;
2456 u64 pn;
2457 };
2458
2459 static int
2460 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2461 {
2462 u64 token64;
2463
2464 if (match_u64(sstr, &token64))
2465 return -EINVAL;
2466 *val = token64;
2467
2468 return 0;
2469 }
2470
2471 /*
2472 * This routine validates and extracts the WWN's from the TRADDR string.
2473 * As kernel parsers need the 0x to determine number base, universally
2474 * build string to parse with 0x prefix before parsing name strings.
2475 */
2476 static int
2477 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2478 {
2479 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2480 substring_t wwn = { name, &name[sizeof(name)-1] };
2481 int nnoffset, pnoffset;
2482
2483 /* validate it string one of the 2 allowed formats */
2484 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2485 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2486 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2487 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2488 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2489 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2490 NVME_FC_TRADDR_OXNNLEN;
2491 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2492 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2493 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2494 "pn-", NVME_FC_TRADDR_NNLEN))) {
2495 nnoffset = NVME_FC_TRADDR_NNLEN;
2496 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2497 } else
2498 goto out_einval;
2499
2500 name[0] = '0';
2501 name[1] = 'x';
2502 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2503
2504 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2505 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2506 goto out_einval;
2507
2508 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2509 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2510 goto out_einval;
2511
2512 return 0;
2513
2514 out_einval:
2515 pr_warn("%s: bad traddr string\n", __func__);
2516 return -EINVAL;
2517 }
2518
2519 static int
2520 nvmet_fc_add_port(struct nvmet_port *port)
2521 {
2522 struct nvmet_fc_tgtport *tgtport;
2523 struct nvmet_fc_traddr traddr = { 0L, 0L };
2524 unsigned long flags;
2525 int ret;
2526
2527 /* validate the address info */
2528 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2529 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2530 return -EINVAL;
2531
2532 /* map the traddr address info to a target port */
2533
2534 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2535 sizeof(port->disc_addr.traddr));
2536 if (ret)
2537 return ret;
2538
2539 ret = -ENXIO;
2540 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2541 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2542 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2543 (tgtport->fc_target_port.port_name == traddr.pn)) {
2544 /* a FC port can only be 1 nvmet port id */
2545 if (!tgtport->port) {
2546 tgtport->port = port;
2547 port->priv = tgtport;
2548 nvmet_fc_tgtport_get(tgtport);
2549 ret = 0;
2550 } else
2551 ret = -EALREADY;
2552 break;
2553 }
2554 }
2555 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2556 return ret;
2557 }
2558
2559 static void
2560 nvmet_fc_remove_port(struct nvmet_port *port)
2561 {
2562 struct nvmet_fc_tgtport *tgtport = port->priv;
2563 unsigned long flags;
2564
2565 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2566 if (tgtport->port == port) {
2567 nvmet_fc_tgtport_put(tgtport);
2568 tgtport->port = NULL;
2569 }
2570 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2571 }
2572
2573 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2574 .owner = THIS_MODULE,
2575 .type = NVMF_TRTYPE_FC,
2576 .msdbd = 1,
2577 .add_port = nvmet_fc_add_port,
2578 .remove_port = nvmet_fc_remove_port,
2579 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2580 .delete_ctrl = nvmet_fc_delete_ctrl,
2581 };
2582
2583 static int __init nvmet_fc_init_module(void)
2584 {
2585 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2586 }
2587
2588 static void __exit nvmet_fc_exit_module(void)
2589 {
2590 /* sanity check - all lports should be removed */
2591 if (!list_empty(&nvmet_fc_target_list))
2592 pr_warn("%s: targetport list not empty\n", __func__);
2593
2594 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2595
2596 ida_destroy(&nvmet_fc_tgtport_cnt);
2597 }
2598
2599 module_init(nvmet_fc_init_module);
2600 module_exit(nvmet_fc_exit_module);
2601
2602 MODULE_LICENSE("GPL v2");