]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/nvme/target/rdma.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / nvme / target / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23
24 #include <linux/nvme-rdma.h>
25 #include "nvmet.h"
26
27 /*
28 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29 */
30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
31 #define NVMET_RDMA_MAX_INLINE_SGE 4
32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
33
34 struct nvmet_rdma_cmd {
35 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
36 struct ib_cqe cqe;
37 struct ib_recv_wr wr;
38 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
39 struct nvme_command *nvme_cmd;
40 struct nvmet_rdma_queue *queue;
41 };
42
43 enum {
44 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
45 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
46 };
47
48 struct nvmet_rdma_rsp {
49 struct ib_sge send_sge;
50 struct ib_cqe send_cqe;
51 struct ib_send_wr send_wr;
52
53 struct nvmet_rdma_cmd *cmd;
54 struct nvmet_rdma_queue *queue;
55
56 struct ib_cqe read_cqe;
57 struct rdma_rw_ctx rw;
58
59 struct nvmet_req req;
60
61 bool allocated;
62 u8 n_rdma;
63 u32 flags;
64 u32 invalidate_rkey;
65
66 struct list_head wait_list;
67 struct list_head free_list;
68 };
69
70 enum nvmet_rdma_queue_state {
71 NVMET_RDMA_Q_CONNECTING,
72 NVMET_RDMA_Q_LIVE,
73 NVMET_RDMA_Q_DISCONNECTING,
74 };
75
76 struct nvmet_rdma_queue {
77 struct rdma_cm_id *cm_id;
78 struct nvmet_port *port;
79 struct ib_cq *cq;
80 atomic_t sq_wr_avail;
81 struct nvmet_rdma_device *dev;
82 spinlock_t state_lock;
83 enum nvmet_rdma_queue_state state;
84 struct nvmet_cq nvme_cq;
85 struct nvmet_sq nvme_sq;
86
87 struct nvmet_rdma_rsp *rsps;
88 struct list_head free_rsps;
89 spinlock_t rsps_lock;
90 struct nvmet_rdma_cmd *cmds;
91
92 struct work_struct release_work;
93 struct list_head rsp_wait_list;
94 struct list_head rsp_wr_wait_list;
95 spinlock_t rsp_wr_wait_lock;
96
97 int idx;
98 int host_qid;
99 int recv_queue_size;
100 int send_queue_size;
101
102 struct list_head queue_list;
103 };
104
105 struct nvmet_rdma_device {
106 struct ib_device *device;
107 struct ib_pd *pd;
108 struct ib_srq *srq;
109 struct nvmet_rdma_cmd *srq_cmds;
110 size_t srq_size;
111 struct kref ref;
112 struct list_head entry;
113 int inline_data_size;
114 int inline_page_count;
115 };
116
117 static bool nvmet_rdma_use_srq;
118 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
119 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
120
121 static DEFINE_IDA(nvmet_rdma_queue_ida);
122 static LIST_HEAD(nvmet_rdma_queue_list);
123 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
124
125 static LIST_HEAD(device_list);
126 static DEFINE_MUTEX(device_list_mutex);
127
128 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
129 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
130 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
131 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
132 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
133 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
134 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
135 struct nvmet_rdma_rsp *r);
136 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
137 struct nvmet_rdma_rsp *r);
138
139 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
140
141 static int num_pages(int len)
142 {
143 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
144 }
145
146 /* XXX: really should move to a generic header sooner or later.. */
147 static inline u32 get_unaligned_le24(const u8 *p)
148 {
149 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
150 }
151
152 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
153 {
154 return nvme_is_write(rsp->req.cmd) &&
155 rsp->req.transfer_len &&
156 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
157 }
158
159 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
160 {
161 return !nvme_is_write(rsp->req.cmd) &&
162 rsp->req.transfer_len &&
163 !rsp->req.rsp->status &&
164 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
165 }
166
167 static inline struct nvmet_rdma_rsp *
168 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
169 {
170 struct nvmet_rdma_rsp *rsp;
171 unsigned long flags;
172
173 spin_lock_irqsave(&queue->rsps_lock, flags);
174 rsp = list_first_entry_or_null(&queue->free_rsps,
175 struct nvmet_rdma_rsp, free_list);
176 if (likely(rsp))
177 list_del(&rsp->free_list);
178 spin_unlock_irqrestore(&queue->rsps_lock, flags);
179
180 if (unlikely(!rsp)) {
181 int ret;
182
183 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
184 if (unlikely(!rsp))
185 return NULL;
186 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
187 if (unlikely(ret)) {
188 kfree(rsp);
189 return NULL;
190 }
191
192 rsp->allocated = true;
193 }
194
195 return rsp;
196 }
197
198 static inline void
199 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
200 {
201 unsigned long flags;
202
203 if (unlikely(rsp->allocated)) {
204 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
205 kfree(rsp);
206 return;
207 }
208
209 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
210 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
211 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
212 }
213
214 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
215 struct nvmet_rdma_cmd *c)
216 {
217 struct scatterlist *sg;
218 struct ib_sge *sge;
219 int i;
220
221 if (!ndev->inline_data_size)
222 return;
223
224 sg = c->inline_sg;
225 sge = &c->sge[1];
226
227 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
228 if (sge->length)
229 ib_dma_unmap_page(ndev->device, sge->addr,
230 sge->length, DMA_FROM_DEVICE);
231 if (sg_page(sg))
232 __free_page(sg_page(sg));
233 }
234 }
235
236 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
237 struct nvmet_rdma_cmd *c)
238 {
239 struct scatterlist *sg;
240 struct ib_sge *sge;
241 struct page *pg;
242 int len;
243 int i;
244
245 if (!ndev->inline_data_size)
246 return 0;
247
248 sg = c->inline_sg;
249 sg_init_table(sg, ndev->inline_page_count);
250 sge = &c->sge[1];
251 len = ndev->inline_data_size;
252
253 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
254 pg = alloc_page(GFP_KERNEL);
255 if (!pg)
256 goto out_err;
257 sg_assign_page(sg, pg);
258 sge->addr = ib_dma_map_page(ndev->device,
259 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
260 if (ib_dma_mapping_error(ndev->device, sge->addr))
261 goto out_err;
262 sge->length = min_t(int, len, PAGE_SIZE);
263 sge->lkey = ndev->pd->local_dma_lkey;
264 len -= sge->length;
265 }
266
267 return 0;
268 out_err:
269 for (; i >= 0; i--, sg--, sge--) {
270 if (sge->length)
271 ib_dma_unmap_page(ndev->device, sge->addr,
272 sge->length, DMA_FROM_DEVICE);
273 if (sg_page(sg))
274 __free_page(sg_page(sg));
275 }
276 return -ENOMEM;
277 }
278
279 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
280 struct nvmet_rdma_cmd *c, bool admin)
281 {
282 /* NVMe command / RDMA RECV */
283 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
284 if (!c->nvme_cmd)
285 goto out;
286
287 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
288 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
289 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
290 goto out_free_cmd;
291
292 c->sge[0].length = sizeof(*c->nvme_cmd);
293 c->sge[0].lkey = ndev->pd->local_dma_lkey;
294
295 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
296 goto out_unmap_cmd;
297
298 c->cqe.done = nvmet_rdma_recv_done;
299
300 c->wr.wr_cqe = &c->cqe;
301 c->wr.sg_list = c->sge;
302 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
303
304 return 0;
305
306 out_unmap_cmd:
307 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
308 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
309 out_free_cmd:
310 kfree(c->nvme_cmd);
311
312 out:
313 return -ENOMEM;
314 }
315
316 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
317 struct nvmet_rdma_cmd *c, bool admin)
318 {
319 if (!admin)
320 nvmet_rdma_free_inline_pages(ndev, c);
321 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
322 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
323 kfree(c->nvme_cmd);
324 }
325
326 static struct nvmet_rdma_cmd *
327 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
328 int nr_cmds, bool admin)
329 {
330 struct nvmet_rdma_cmd *cmds;
331 int ret = -EINVAL, i;
332
333 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
334 if (!cmds)
335 goto out;
336
337 for (i = 0; i < nr_cmds; i++) {
338 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
339 if (ret)
340 goto out_free;
341 }
342
343 return cmds;
344
345 out_free:
346 while (--i >= 0)
347 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
348 kfree(cmds);
349 out:
350 return ERR_PTR(ret);
351 }
352
353 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
354 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
355 {
356 int i;
357
358 for (i = 0; i < nr_cmds; i++)
359 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
360 kfree(cmds);
361 }
362
363 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
364 struct nvmet_rdma_rsp *r)
365 {
366 /* NVMe CQE / RDMA SEND */
367 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
368 if (!r->req.rsp)
369 goto out;
370
371 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
372 sizeof(*r->req.rsp), DMA_TO_DEVICE);
373 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
374 goto out_free_rsp;
375
376 r->send_sge.length = sizeof(*r->req.rsp);
377 r->send_sge.lkey = ndev->pd->local_dma_lkey;
378
379 r->send_cqe.done = nvmet_rdma_send_done;
380
381 r->send_wr.wr_cqe = &r->send_cqe;
382 r->send_wr.sg_list = &r->send_sge;
383 r->send_wr.num_sge = 1;
384 r->send_wr.send_flags = IB_SEND_SIGNALED;
385
386 /* Data In / RDMA READ */
387 r->read_cqe.done = nvmet_rdma_read_data_done;
388 return 0;
389
390 out_free_rsp:
391 kfree(r->req.rsp);
392 out:
393 return -ENOMEM;
394 }
395
396 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
397 struct nvmet_rdma_rsp *r)
398 {
399 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
400 sizeof(*r->req.rsp), DMA_TO_DEVICE);
401 kfree(r->req.rsp);
402 }
403
404 static int
405 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
406 {
407 struct nvmet_rdma_device *ndev = queue->dev;
408 int nr_rsps = queue->recv_queue_size * 2;
409 int ret = -EINVAL, i;
410
411 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
412 GFP_KERNEL);
413 if (!queue->rsps)
414 goto out;
415
416 for (i = 0; i < nr_rsps; i++) {
417 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
418
419 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
420 if (ret)
421 goto out_free;
422
423 list_add_tail(&rsp->free_list, &queue->free_rsps);
424 }
425
426 return 0;
427
428 out_free:
429 while (--i >= 0) {
430 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
431
432 list_del(&rsp->free_list);
433 nvmet_rdma_free_rsp(ndev, rsp);
434 }
435 kfree(queue->rsps);
436 out:
437 return ret;
438 }
439
440 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
441 {
442 struct nvmet_rdma_device *ndev = queue->dev;
443 int i, nr_rsps = queue->recv_queue_size * 2;
444
445 for (i = 0; i < nr_rsps; i++) {
446 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
447
448 list_del(&rsp->free_list);
449 nvmet_rdma_free_rsp(ndev, rsp);
450 }
451 kfree(queue->rsps);
452 }
453
454 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
455 struct nvmet_rdma_cmd *cmd)
456 {
457 int ret;
458
459 ib_dma_sync_single_for_device(ndev->device,
460 cmd->sge[0].addr, cmd->sge[0].length,
461 DMA_FROM_DEVICE);
462
463 if (ndev->srq)
464 ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
465 else
466 ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
467
468 if (unlikely(ret))
469 pr_err("post_recv cmd failed\n");
470
471 return ret;
472 }
473
474 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
475 {
476 spin_lock(&queue->rsp_wr_wait_lock);
477 while (!list_empty(&queue->rsp_wr_wait_list)) {
478 struct nvmet_rdma_rsp *rsp;
479 bool ret;
480
481 rsp = list_entry(queue->rsp_wr_wait_list.next,
482 struct nvmet_rdma_rsp, wait_list);
483 list_del(&rsp->wait_list);
484
485 spin_unlock(&queue->rsp_wr_wait_lock);
486 ret = nvmet_rdma_execute_command(rsp);
487 spin_lock(&queue->rsp_wr_wait_lock);
488
489 if (!ret) {
490 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
491 break;
492 }
493 }
494 spin_unlock(&queue->rsp_wr_wait_lock);
495 }
496
497
498 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
499 {
500 struct nvmet_rdma_queue *queue = rsp->queue;
501
502 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
503
504 if (rsp->n_rdma) {
505 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
506 queue->cm_id->port_num, rsp->req.sg,
507 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
508 }
509
510 if (rsp->req.sg != rsp->cmd->inline_sg)
511 nvmet_req_free_sgl(&rsp->req);
512
513 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
514 nvmet_rdma_process_wr_wait_list(queue);
515
516 nvmet_rdma_put_rsp(rsp);
517 }
518
519 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
520 {
521 if (queue->nvme_sq.ctrl) {
522 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
523 } else {
524 /*
525 * we didn't setup the controller yet in case
526 * of admin connect error, just disconnect and
527 * cleanup the queue
528 */
529 nvmet_rdma_queue_disconnect(queue);
530 }
531 }
532
533 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
534 {
535 struct nvmet_rdma_rsp *rsp =
536 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
537 struct nvmet_rdma_queue *queue = cq->cq_context;
538
539 nvmet_rdma_release_rsp(rsp);
540
541 if (unlikely(wc->status != IB_WC_SUCCESS &&
542 wc->status != IB_WC_WR_FLUSH_ERR)) {
543 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
544 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
545 nvmet_rdma_error_comp(queue);
546 }
547 }
548
549 static void nvmet_rdma_queue_response(struct nvmet_req *req)
550 {
551 struct nvmet_rdma_rsp *rsp =
552 container_of(req, struct nvmet_rdma_rsp, req);
553 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
554 struct ib_send_wr *first_wr;
555
556 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
557 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
558 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
559 } else {
560 rsp->send_wr.opcode = IB_WR_SEND;
561 }
562
563 if (nvmet_rdma_need_data_out(rsp))
564 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
565 cm_id->port_num, NULL, &rsp->send_wr);
566 else
567 first_wr = &rsp->send_wr;
568
569 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
570
571 ib_dma_sync_single_for_device(rsp->queue->dev->device,
572 rsp->send_sge.addr, rsp->send_sge.length,
573 DMA_TO_DEVICE);
574
575 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
576 pr_err("sending cmd response failed\n");
577 nvmet_rdma_release_rsp(rsp);
578 }
579 }
580
581 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
582 {
583 struct nvmet_rdma_rsp *rsp =
584 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
585 struct nvmet_rdma_queue *queue = cq->cq_context;
586
587 WARN_ON(rsp->n_rdma <= 0);
588 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
589 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
590 queue->cm_id->port_num, rsp->req.sg,
591 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
592 rsp->n_rdma = 0;
593
594 if (unlikely(wc->status != IB_WC_SUCCESS)) {
595 nvmet_req_uninit(&rsp->req);
596 nvmet_rdma_release_rsp(rsp);
597 if (wc->status != IB_WC_WR_FLUSH_ERR) {
598 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
599 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
600 nvmet_rdma_error_comp(queue);
601 }
602 return;
603 }
604
605 nvmet_req_execute(&rsp->req);
606 }
607
608 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
609 u64 off)
610 {
611 int sg_count = num_pages(len);
612 struct scatterlist *sg;
613 int i;
614
615 sg = rsp->cmd->inline_sg;
616 for (i = 0; i < sg_count; i++, sg++) {
617 if (i < sg_count - 1)
618 sg_unmark_end(sg);
619 else
620 sg_mark_end(sg);
621 sg->offset = off;
622 sg->length = min_t(int, len, PAGE_SIZE - off);
623 len -= sg->length;
624 if (!i)
625 off = 0;
626 }
627
628 rsp->req.sg = rsp->cmd->inline_sg;
629 rsp->req.sg_cnt = sg_count;
630 }
631
632 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
633 {
634 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
635 u64 off = le64_to_cpu(sgl->addr);
636 u32 len = le32_to_cpu(sgl->length);
637
638 if (!nvme_is_write(rsp->req.cmd)) {
639 rsp->req.error_loc =
640 offsetof(struct nvme_common_command, opcode);
641 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
642 }
643
644 if (off + len > rsp->queue->dev->inline_data_size) {
645 pr_err("invalid inline data offset!\n");
646 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
647 }
648
649 /* no data command? */
650 if (!len)
651 return 0;
652
653 nvmet_rdma_use_inline_sg(rsp, len, off);
654 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
655 rsp->req.transfer_len += len;
656 return 0;
657 }
658
659 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
660 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
661 {
662 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
663 u64 addr = le64_to_cpu(sgl->addr);
664 u32 key = get_unaligned_le32(sgl->key);
665 int ret;
666
667 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
668
669 /* no data command? */
670 if (!rsp->req.transfer_len)
671 return 0;
672
673 ret = nvmet_req_alloc_sgl(&rsp->req);
674 if (ret < 0)
675 goto error_out;
676
677 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
678 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
679 nvmet_data_dir(&rsp->req));
680 if (ret < 0)
681 goto error_out;
682 rsp->n_rdma += ret;
683
684 if (invalidate) {
685 rsp->invalidate_rkey = key;
686 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
687 }
688
689 return 0;
690
691 error_out:
692 rsp->req.transfer_len = 0;
693 return NVME_SC_INTERNAL;
694 }
695
696 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
697 {
698 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
699
700 switch (sgl->type >> 4) {
701 case NVME_SGL_FMT_DATA_DESC:
702 switch (sgl->type & 0xf) {
703 case NVME_SGL_FMT_OFFSET:
704 return nvmet_rdma_map_sgl_inline(rsp);
705 default:
706 pr_err("invalid SGL subtype: %#x\n", sgl->type);
707 rsp->req.error_loc =
708 offsetof(struct nvme_common_command, dptr);
709 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
710 }
711 case NVME_KEY_SGL_FMT_DATA_DESC:
712 switch (sgl->type & 0xf) {
713 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
714 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
715 case NVME_SGL_FMT_ADDRESS:
716 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
717 default:
718 pr_err("invalid SGL subtype: %#x\n", sgl->type);
719 rsp->req.error_loc =
720 offsetof(struct nvme_common_command, dptr);
721 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
722 }
723 default:
724 pr_err("invalid SGL type: %#x\n", sgl->type);
725 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
726 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
727 }
728 }
729
730 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
731 {
732 struct nvmet_rdma_queue *queue = rsp->queue;
733
734 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
735 &queue->sq_wr_avail) < 0)) {
736 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
737 1 + rsp->n_rdma, queue->idx,
738 queue->nvme_sq.ctrl->cntlid);
739 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
740 return false;
741 }
742
743 if (nvmet_rdma_need_data_in(rsp)) {
744 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
745 queue->cm_id->port_num, &rsp->read_cqe, NULL))
746 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
747 } else {
748 nvmet_req_execute(&rsp->req);
749 }
750
751 return true;
752 }
753
754 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
755 struct nvmet_rdma_rsp *cmd)
756 {
757 u16 status;
758
759 ib_dma_sync_single_for_cpu(queue->dev->device,
760 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
761 DMA_FROM_DEVICE);
762 ib_dma_sync_single_for_cpu(queue->dev->device,
763 cmd->send_sge.addr, cmd->send_sge.length,
764 DMA_TO_DEVICE);
765
766 cmd->req.p2p_client = &queue->dev->device->dev;
767
768 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
769 &queue->nvme_sq, &nvmet_rdma_ops))
770 return;
771
772 status = nvmet_rdma_map_sgl(cmd);
773 if (status)
774 goto out_err;
775
776 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
777 spin_lock(&queue->rsp_wr_wait_lock);
778 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
779 spin_unlock(&queue->rsp_wr_wait_lock);
780 }
781
782 return;
783
784 out_err:
785 nvmet_req_complete(&cmd->req, status);
786 }
787
788 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
789 {
790 struct nvmet_rdma_cmd *cmd =
791 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
792 struct nvmet_rdma_queue *queue = cq->cq_context;
793 struct nvmet_rdma_rsp *rsp;
794
795 if (unlikely(wc->status != IB_WC_SUCCESS)) {
796 if (wc->status != IB_WC_WR_FLUSH_ERR) {
797 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
798 wc->wr_cqe, ib_wc_status_msg(wc->status),
799 wc->status);
800 nvmet_rdma_error_comp(queue);
801 }
802 return;
803 }
804
805 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
806 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
807 nvmet_rdma_error_comp(queue);
808 return;
809 }
810
811 cmd->queue = queue;
812 rsp = nvmet_rdma_get_rsp(queue);
813 if (unlikely(!rsp)) {
814 /*
815 * we get here only under memory pressure,
816 * silently drop and have the host retry
817 * as we can't even fail it.
818 */
819 nvmet_rdma_post_recv(queue->dev, cmd);
820 return;
821 }
822 rsp->queue = queue;
823 rsp->cmd = cmd;
824 rsp->flags = 0;
825 rsp->req.cmd = cmd->nvme_cmd;
826 rsp->req.port = queue->port;
827 rsp->n_rdma = 0;
828
829 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
830 unsigned long flags;
831
832 spin_lock_irqsave(&queue->state_lock, flags);
833 if (queue->state == NVMET_RDMA_Q_CONNECTING)
834 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
835 else
836 nvmet_rdma_put_rsp(rsp);
837 spin_unlock_irqrestore(&queue->state_lock, flags);
838 return;
839 }
840
841 nvmet_rdma_handle_command(queue, rsp);
842 }
843
844 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
845 {
846 if (!ndev->srq)
847 return;
848
849 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
850 ib_destroy_srq(ndev->srq);
851 }
852
853 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
854 {
855 struct ib_srq_init_attr srq_attr = { NULL, };
856 struct ib_srq *srq;
857 size_t srq_size;
858 int ret, i;
859
860 srq_size = 4095; /* XXX: tune */
861
862 srq_attr.attr.max_wr = srq_size;
863 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
864 srq_attr.attr.srq_limit = 0;
865 srq_attr.srq_type = IB_SRQT_BASIC;
866 srq = ib_create_srq(ndev->pd, &srq_attr);
867 if (IS_ERR(srq)) {
868 /*
869 * If SRQs aren't supported we just go ahead and use normal
870 * non-shared receive queues.
871 */
872 pr_info("SRQ requested but not supported.\n");
873 return 0;
874 }
875
876 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
877 if (IS_ERR(ndev->srq_cmds)) {
878 ret = PTR_ERR(ndev->srq_cmds);
879 goto out_destroy_srq;
880 }
881
882 ndev->srq = srq;
883 ndev->srq_size = srq_size;
884
885 for (i = 0; i < srq_size; i++) {
886 ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
887 if (ret)
888 goto out_free_cmds;
889 }
890
891 return 0;
892
893 out_free_cmds:
894 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
895 out_destroy_srq:
896 ib_destroy_srq(srq);
897 return ret;
898 }
899
900 static void nvmet_rdma_free_dev(struct kref *ref)
901 {
902 struct nvmet_rdma_device *ndev =
903 container_of(ref, struct nvmet_rdma_device, ref);
904
905 mutex_lock(&device_list_mutex);
906 list_del(&ndev->entry);
907 mutex_unlock(&device_list_mutex);
908
909 nvmet_rdma_destroy_srq(ndev);
910 ib_dealloc_pd(ndev->pd);
911
912 kfree(ndev);
913 }
914
915 static struct nvmet_rdma_device *
916 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
917 {
918 struct nvmet_port *port = cm_id->context;
919 struct nvmet_rdma_device *ndev;
920 int inline_page_count;
921 int inline_sge_count;
922 int ret;
923
924 mutex_lock(&device_list_mutex);
925 list_for_each_entry(ndev, &device_list, entry) {
926 if (ndev->device->node_guid == cm_id->device->node_guid &&
927 kref_get_unless_zero(&ndev->ref))
928 goto out_unlock;
929 }
930
931 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
932 if (!ndev)
933 goto out_err;
934
935 inline_page_count = num_pages(port->inline_data_size);
936 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
937 cm_id->device->attrs.max_recv_sge) - 1;
938 if (inline_page_count > inline_sge_count) {
939 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
940 port->inline_data_size, cm_id->device->name,
941 inline_sge_count * PAGE_SIZE);
942 port->inline_data_size = inline_sge_count * PAGE_SIZE;
943 inline_page_count = inline_sge_count;
944 }
945 ndev->inline_data_size = port->inline_data_size;
946 ndev->inline_page_count = inline_page_count;
947 ndev->device = cm_id->device;
948 kref_init(&ndev->ref);
949
950 ndev->pd = ib_alloc_pd(ndev->device, 0);
951 if (IS_ERR(ndev->pd))
952 goto out_free_dev;
953
954 if (nvmet_rdma_use_srq) {
955 ret = nvmet_rdma_init_srq(ndev);
956 if (ret)
957 goto out_free_pd;
958 }
959
960 list_add(&ndev->entry, &device_list);
961 out_unlock:
962 mutex_unlock(&device_list_mutex);
963 pr_debug("added %s.\n", ndev->device->name);
964 return ndev;
965
966 out_free_pd:
967 ib_dealloc_pd(ndev->pd);
968 out_free_dev:
969 kfree(ndev);
970 out_err:
971 mutex_unlock(&device_list_mutex);
972 return NULL;
973 }
974
975 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
976 {
977 struct ib_qp_init_attr qp_attr;
978 struct nvmet_rdma_device *ndev = queue->dev;
979 int comp_vector, nr_cqe, ret, i;
980
981 /*
982 * Spread the io queues across completion vectors,
983 * but still keep all admin queues on vector 0.
984 */
985 comp_vector = !queue->host_qid ? 0 :
986 queue->idx % ndev->device->num_comp_vectors;
987
988 /*
989 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
990 */
991 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
992
993 queue->cq = ib_alloc_cq(ndev->device, queue,
994 nr_cqe + 1, comp_vector,
995 IB_POLL_WORKQUEUE);
996 if (IS_ERR(queue->cq)) {
997 ret = PTR_ERR(queue->cq);
998 pr_err("failed to create CQ cqe= %d ret= %d\n",
999 nr_cqe + 1, ret);
1000 goto out;
1001 }
1002
1003 memset(&qp_attr, 0, sizeof(qp_attr));
1004 qp_attr.qp_context = queue;
1005 qp_attr.event_handler = nvmet_rdma_qp_event;
1006 qp_attr.send_cq = queue->cq;
1007 qp_attr.recv_cq = queue->cq;
1008 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1009 qp_attr.qp_type = IB_QPT_RC;
1010 /* +1 for drain */
1011 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1012 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
1013 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1014 ndev->device->attrs.max_send_sge);
1015
1016 if (ndev->srq) {
1017 qp_attr.srq = ndev->srq;
1018 } else {
1019 /* +1 for drain */
1020 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1021 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1022 }
1023
1024 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1025 if (ret) {
1026 pr_err("failed to create_qp ret= %d\n", ret);
1027 goto err_destroy_cq;
1028 }
1029
1030 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1031
1032 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1033 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1034 qp_attr.cap.max_send_wr, queue->cm_id);
1035
1036 if (!ndev->srq) {
1037 for (i = 0; i < queue->recv_queue_size; i++) {
1038 queue->cmds[i].queue = queue;
1039 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1040 if (ret)
1041 goto err_destroy_qp;
1042 }
1043 }
1044
1045 out:
1046 return ret;
1047
1048 err_destroy_qp:
1049 rdma_destroy_qp(queue->cm_id);
1050 err_destroy_cq:
1051 ib_free_cq(queue->cq);
1052 goto out;
1053 }
1054
1055 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1056 {
1057 struct ib_qp *qp = queue->cm_id->qp;
1058
1059 ib_drain_qp(qp);
1060 rdma_destroy_id(queue->cm_id);
1061 ib_destroy_qp(qp);
1062 ib_free_cq(queue->cq);
1063 }
1064
1065 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1066 {
1067 pr_debug("freeing queue %d\n", queue->idx);
1068
1069 nvmet_sq_destroy(&queue->nvme_sq);
1070
1071 nvmet_rdma_destroy_queue_ib(queue);
1072 if (!queue->dev->srq) {
1073 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1074 queue->recv_queue_size,
1075 !queue->host_qid);
1076 }
1077 nvmet_rdma_free_rsps(queue);
1078 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1079 kfree(queue);
1080 }
1081
1082 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1083 {
1084 struct nvmet_rdma_queue *queue =
1085 container_of(w, struct nvmet_rdma_queue, release_work);
1086 struct nvmet_rdma_device *dev = queue->dev;
1087
1088 nvmet_rdma_free_queue(queue);
1089
1090 kref_put(&dev->ref, nvmet_rdma_free_dev);
1091 }
1092
1093 static int
1094 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1095 struct nvmet_rdma_queue *queue)
1096 {
1097 struct nvme_rdma_cm_req *req;
1098
1099 req = (struct nvme_rdma_cm_req *)conn->private_data;
1100 if (!req || conn->private_data_len == 0)
1101 return NVME_RDMA_CM_INVALID_LEN;
1102
1103 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1104 return NVME_RDMA_CM_INVALID_RECFMT;
1105
1106 queue->host_qid = le16_to_cpu(req->qid);
1107
1108 /*
1109 * req->hsqsize corresponds to our recv queue size plus 1
1110 * req->hrqsize corresponds to our send queue size
1111 */
1112 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1113 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1114
1115 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1116 return NVME_RDMA_CM_INVALID_HSQSIZE;
1117
1118 /* XXX: Should we enforce some kind of max for IO queues? */
1119
1120 return 0;
1121 }
1122
1123 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1124 enum nvme_rdma_cm_status status)
1125 {
1126 struct nvme_rdma_cm_rej rej;
1127
1128 pr_debug("rejecting connect request: status %d (%s)\n",
1129 status, nvme_rdma_cm_msg(status));
1130
1131 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1132 rej.sts = cpu_to_le16(status);
1133
1134 return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1135 }
1136
1137 static struct nvmet_rdma_queue *
1138 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1139 struct rdma_cm_id *cm_id,
1140 struct rdma_cm_event *event)
1141 {
1142 struct nvmet_rdma_queue *queue;
1143 int ret;
1144
1145 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1146 if (!queue) {
1147 ret = NVME_RDMA_CM_NO_RSC;
1148 goto out_reject;
1149 }
1150
1151 ret = nvmet_sq_init(&queue->nvme_sq);
1152 if (ret) {
1153 ret = NVME_RDMA_CM_NO_RSC;
1154 goto out_free_queue;
1155 }
1156
1157 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1158 if (ret)
1159 goto out_destroy_sq;
1160
1161 /*
1162 * Schedules the actual release because calling rdma_destroy_id from
1163 * inside a CM callback would trigger a deadlock. (great API design..)
1164 */
1165 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1166 queue->dev = ndev;
1167 queue->cm_id = cm_id;
1168
1169 spin_lock_init(&queue->state_lock);
1170 queue->state = NVMET_RDMA_Q_CONNECTING;
1171 INIT_LIST_HEAD(&queue->rsp_wait_list);
1172 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1173 spin_lock_init(&queue->rsp_wr_wait_lock);
1174 INIT_LIST_HEAD(&queue->free_rsps);
1175 spin_lock_init(&queue->rsps_lock);
1176 INIT_LIST_HEAD(&queue->queue_list);
1177
1178 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1179 if (queue->idx < 0) {
1180 ret = NVME_RDMA_CM_NO_RSC;
1181 goto out_destroy_sq;
1182 }
1183
1184 ret = nvmet_rdma_alloc_rsps(queue);
1185 if (ret) {
1186 ret = NVME_RDMA_CM_NO_RSC;
1187 goto out_ida_remove;
1188 }
1189
1190 if (!ndev->srq) {
1191 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1192 queue->recv_queue_size,
1193 !queue->host_qid);
1194 if (IS_ERR(queue->cmds)) {
1195 ret = NVME_RDMA_CM_NO_RSC;
1196 goto out_free_responses;
1197 }
1198 }
1199
1200 ret = nvmet_rdma_create_queue_ib(queue);
1201 if (ret) {
1202 pr_err("%s: creating RDMA queue failed (%d).\n",
1203 __func__, ret);
1204 ret = NVME_RDMA_CM_NO_RSC;
1205 goto out_free_cmds;
1206 }
1207
1208 return queue;
1209
1210 out_free_cmds:
1211 if (!ndev->srq) {
1212 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1213 queue->recv_queue_size,
1214 !queue->host_qid);
1215 }
1216 out_free_responses:
1217 nvmet_rdma_free_rsps(queue);
1218 out_ida_remove:
1219 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1220 out_destroy_sq:
1221 nvmet_sq_destroy(&queue->nvme_sq);
1222 out_free_queue:
1223 kfree(queue);
1224 out_reject:
1225 nvmet_rdma_cm_reject(cm_id, ret);
1226 return NULL;
1227 }
1228
1229 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1230 {
1231 struct nvmet_rdma_queue *queue = priv;
1232
1233 switch (event->event) {
1234 case IB_EVENT_COMM_EST:
1235 rdma_notify(queue->cm_id, event->event);
1236 break;
1237 default:
1238 pr_err("received IB QP event: %s (%d)\n",
1239 ib_event_msg(event->event), event->event);
1240 break;
1241 }
1242 }
1243
1244 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1245 struct nvmet_rdma_queue *queue,
1246 struct rdma_conn_param *p)
1247 {
1248 struct rdma_conn_param param = { };
1249 struct nvme_rdma_cm_rep priv = { };
1250 int ret = -ENOMEM;
1251
1252 param.rnr_retry_count = 7;
1253 param.flow_control = 1;
1254 param.initiator_depth = min_t(u8, p->initiator_depth,
1255 queue->dev->device->attrs.max_qp_init_rd_atom);
1256 param.private_data = &priv;
1257 param.private_data_len = sizeof(priv);
1258 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1259 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1260
1261 ret = rdma_accept(cm_id, &param);
1262 if (ret)
1263 pr_err("rdma_accept failed (error code = %d)\n", ret);
1264
1265 return ret;
1266 }
1267
1268 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1269 struct rdma_cm_event *event)
1270 {
1271 struct nvmet_rdma_device *ndev;
1272 struct nvmet_rdma_queue *queue;
1273 int ret = -EINVAL;
1274
1275 ndev = nvmet_rdma_find_get_device(cm_id);
1276 if (!ndev) {
1277 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1278 return -ECONNREFUSED;
1279 }
1280
1281 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1282 if (!queue) {
1283 ret = -ENOMEM;
1284 goto put_device;
1285 }
1286 queue->port = cm_id->context;
1287
1288 if (queue->host_qid == 0) {
1289 /* Let inflight controller teardown complete */
1290 flush_scheduled_work();
1291 }
1292
1293 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1294 if (ret) {
1295 schedule_work(&queue->release_work);
1296 /* Destroying rdma_cm id is not needed here */
1297 return 0;
1298 }
1299
1300 mutex_lock(&nvmet_rdma_queue_mutex);
1301 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1302 mutex_unlock(&nvmet_rdma_queue_mutex);
1303
1304 return 0;
1305
1306 put_device:
1307 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1308
1309 return ret;
1310 }
1311
1312 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1313 {
1314 unsigned long flags;
1315
1316 spin_lock_irqsave(&queue->state_lock, flags);
1317 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1318 pr_warn("trying to establish a connected queue\n");
1319 goto out_unlock;
1320 }
1321 queue->state = NVMET_RDMA_Q_LIVE;
1322
1323 while (!list_empty(&queue->rsp_wait_list)) {
1324 struct nvmet_rdma_rsp *cmd;
1325
1326 cmd = list_first_entry(&queue->rsp_wait_list,
1327 struct nvmet_rdma_rsp, wait_list);
1328 list_del(&cmd->wait_list);
1329
1330 spin_unlock_irqrestore(&queue->state_lock, flags);
1331 nvmet_rdma_handle_command(queue, cmd);
1332 spin_lock_irqsave(&queue->state_lock, flags);
1333 }
1334
1335 out_unlock:
1336 spin_unlock_irqrestore(&queue->state_lock, flags);
1337 }
1338
1339 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1340 {
1341 bool disconnect = false;
1342 unsigned long flags;
1343
1344 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1345
1346 spin_lock_irqsave(&queue->state_lock, flags);
1347 switch (queue->state) {
1348 case NVMET_RDMA_Q_CONNECTING:
1349 case NVMET_RDMA_Q_LIVE:
1350 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1351 disconnect = true;
1352 break;
1353 case NVMET_RDMA_Q_DISCONNECTING:
1354 break;
1355 }
1356 spin_unlock_irqrestore(&queue->state_lock, flags);
1357
1358 if (disconnect) {
1359 rdma_disconnect(queue->cm_id);
1360 schedule_work(&queue->release_work);
1361 }
1362 }
1363
1364 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1365 {
1366 bool disconnect = false;
1367
1368 mutex_lock(&nvmet_rdma_queue_mutex);
1369 if (!list_empty(&queue->queue_list)) {
1370 list_del_init(&queue->queue_list);
1371 disconnect = true;
1372 }
1373 mutex_unlock(&nvmet_rdma_queue_mutex);
1374
1375 if (disconnect)
1376 __nvmet_rdma_queue_disconnect(queue);
1377 }
1378
1379 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1380 struct nvmet_rdma_queue *queue)
1381 {
1382 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1383
1384 mutex_lock(&nvmet_rdma_queue_mutex);
1385 if (!list_empty(&queue->queue_list))
1386 list_del_init(&queue->queue_list);
1387 mutex_unlock(&nvmet_rdma_queue_mutex);
1388
1389 pr_err("failed to connect queue %d\n", queue->idx);
1390 schedule_work(&queue->release_work);
1391 }
1392
1393 /**
1394 * nvme_rdma_device_removal() - Handle RDMA device removal
1395 * @cm_id: rdma_cm id, used for nvmet port
1396 * @queue: nvmet rdma queue (cm id qp_context)
1397 *
1398 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1399 * to unplug. Note that this event can be generated on a normal
1400 * queue cm_id and/or a device bound listener cm_id (where in this
1401 * case queue will be null).
1402 *
1403 * We registered an ib_client to handle device removal for queues,
1404 * so we only need to handle the listening port cm_ids. In this case
1405 * we nullify the priv to prevent double cm_id destruction and destroying
1406 * the cm_id implicitely by returning a non-zero rc to the callout.
1407 */
1408 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1409 struct nvmet_rdma_queue *queue)
1410 {
1411 struct nvmet_port *port;
1412
1413 if (queue) {
1414 /*
1415 * This is a queue cm_id. we have registered
1416 * an ib_client to handle queues removal
1417 * so don't interfear and just return.
1418 */
1419 return 0;
1420 }
1421
1422 port = cm_id->context;
1423
1424 /*
1425 * This is a listener cm_id. Make sure that
1426 * future remove_port won't invoke a double
1427 * cm_id destroy. use atomic xchg to make sure
1428 * we don't compete with remove_port.
1429 */
1430 if (xchg(&port->priv, NULL) != cm_id)
1431 return 0;
1432
1433 /*
1434 * We need to return 1 so that the core will destroy
1435 * it's own ID. What a great API design..
1436 */
1437 return 1;
1438 }
1439
1440 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1441 struct rdma_cm_event *event)
1442 {
1443 struct nvmet_rdma_queue *queue = NULL;
1444 int ret = 0;
1445
1446 if (cm_id->qp)
1447 queue = cm_id->qp->qp_context;
1448
1449 pr_debug("%s (%d): status %d id %p\n",
1450 rdma_event_msg(event->event), event->event,
1451 event->status, cm_id);
1452
1453 switch (event->event) {
1454 case RDMA_CM_EVENT_CONNECT_REQUEST:
1455 ret = nvmet_rdma_queue_connect(cm_id, event);
1456 break;
1457 case RDMA_CM_EVENT_ESTABLISHED:
1458 nvmet_rdma_queue_established(queue);
1459 break;
1460 case RDMA_CM_EVENT_ADDR_CHANGE:
1461 case RDMA_CM_EVENT_DISCONNECTED:
1462 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1463 nvmet_rdma_queue_disconnect(queue);
1464 break;
1465 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1466 ret = nvmet_rdma_device_removal(cm_id, queue);
1467 break;
1468 case RDMA_CM_EVENT_REJECTED:
1469 pr_debug("Connection rejected: %s\n",
1470 rdma_reject_msg(cm_id, event->status));
1471 /* FALLTHROUGH */
1472 case RDMA_CM_EVENT_UNREACHABLE:
1473 case RDMA_CM_EVENT_CONNECT_ERROR:
1474 nvmet_rdma_queue_connect_fail(cm_id, queue);
1475 break;
1476 default:
1477 pr_err("received unrecognized RDMA CM event %d\n",
1478 event->event);
1479 break;
1480 }
1481
1482 return ret;
1483 }
1484
1485 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1486 {
1487 struct nvmet_rdma_queue *queue;
1488
1489 restart:
1490 mutex_lock(&nvmet_rdma_queue_mutex);
1491 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1492 if (queue->nvme_sq.ctrl == ctrl) {
1493 list_del_init(&queue->queue_list);
1494 mutex_unlock(&nvmet_rdma_queue_mutex);
1495
1496 __nvmet_rdma_queue_disconnect(queue);
1497 goto restart;
1498 }
1499 }
1500 mutex_unlock(&nvmet_rdma_queue_mutex);
1501 }
1502
1503 static int nvmet_rdma_add_port(struct nvmet_port *port)
1504 {
1505 struct rdma_cm_id *cm_id;
1506 struct sockaddr_storage addr = { };
1507 __kernel_sa_family_t af;
1508 int ret;
1509
1510 switch (port->disc_addr.adrfam) {
1511 case NVMF_ADDR_FAMILY_IP4:
1512 af = AF_INET;
1513 break;
1514 case NVMF_ADDR_FAMILY_IP6:
1515 af = AF_INET6;
1516 break;
1517 default:
1518 pr_err("address family %d not supported\n",
1519 port->disc_addr.adrfam);
1520 return -EINVAL;
1521 }
1522
1523 if (port->inline_data_size < 0) {
1524 port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1525 } else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1526 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1527 port->inline_data_size,
1528 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1529 port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1530 }
1531
1532 ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1533 port->disc_addr.trsvcid, &addr);
1534 if (ret) {
1535 pr_err("malformed ip/port passed: %s:%s\n",
1536 port->disc_addr.traddr, port->disc_addr.trsvcid);
1537 return ret;
1538 }
1539
1540 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1541 RDMA_PS_TCP, IB_QPT_RC);
1542 if (IS_ERR(cm_id)) {
1543 pr_err("CM ID creation failed\n");
1544 return PTR_ERR(cm_id);
1545 }
1546
1547 /*
1548 * Allow both IPv4 and IPv6 sockets to bind a single port
1549 * at the same time.
1550 */
1551 ret = rdma_set_afonly(cm_id, 1);
1552 if (ret) {
1553 pr_err("rdma_set_afonly failed (%d)\n", ret);
1554 goto out_destroy_id;
1555 }
1556
1557 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1558 if (ret) {
1559 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1560 (struct sockaddr *)&addr, ret);
1561 goto out_destroy_id;
1562 }
1563
1564 ret = rdma_listen(cm_id, 128);
1565 if (ret) {
1566 pr_err("listening to %pISpcs failed (%d)\n",
1567 (struct sockaddr *)&addr, ret);
1568 goto out_destroy_id;
1569 }
1570
1571 pr_info("enabling port %d (%pISpcs)\n",
1572 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1573 port->priv = cm_id;
1574 return 0;
1575
1576 out_destroy_id:
1577 rdma_destroy_id(cm_id);
1578 return ret;
1579 }
1580
1581 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1582 {
1583 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1584
1585 if (cm_id)
1586 rdma_destroy_id(cm_id);
1587 }
1588
1589 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1590 struct nvmet_port *port, char *traddr)
1591 {
1592 struct rdma_cm_id *cm_id = port->priv;
1593
1594 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1595 struct nvmet_rdma_rsp *rsp =
1596 container_of(req, struct nvmet_rdma_rsp, req);
1597 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1598 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1599
1600 sprintf(traddr, "%pISc", addr);
1601 } else {
1602 memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
1603 }
1604 }
1605
1606 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1607 .owner = THIS_MODULE,
1608 .type = NVMF_TRTYPE_RDMA,
1609 .msdbd = 1,
1610 .has_keyed_sgls = 1,
1611 .add_port = nvmet_rdma_add_port,
1612 .remove_port = nvmet_rdma_remove_port,
1613 .queue_response = nvmet_rdma_queue_response,
1614 .delete_ctrl = nvmet_rdma_delete_ctrl,
1615 .disc_traddr = nvmet_rdma_disc_port_addr,
1616 };
1617
1618 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1619 {
1620 struct nvmet_rdma_queue *queue, *tmp;
1621 struct nvmet_rdma_device *ndev;
1622 bool found = false;
1623
1624 mutex_lock(&device_list_mutex);
1625 list_for_each_entry(ndev, &device_list, entry) {
1626 if (ndev->device == ib_device) {
1627 found = true;
1628 break;
1629 }
1630 }
1631 mutex_unlock(&device_list_mutex);
1632
1633 if (!found)
1634 return;
1635
1636 /*
1637 * IB Device that is used by nvmet controllers is being removed,
1638 * delete all queues using this device.
1639 */
1640 mutex_lock(&nvmet_rdma_queue_mutex);
1641 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1642 queue_list) {
1643 if (queue->dev->device != ib_device)
1644 continue;
1645
1646 pr_info("Removing queue %d\n", queue->idx);
1647 list_del_init(&queue->queue_list);
1648 __nvmet_rdma_queue_disconnect(queue);
1649 }
1650 mutex_unlock(&nvmet_rdma_queue_mutex);
1651
1652 flush_scheduled_work();
1653 }
1654
1655 static struct ib_client nvmet_rdma_ib_client = {
1656 .name = "nvmet_rdma",
1657 .remove = nvmet_rdma_remove_one
1658 };
1659
1660 static int __init nvmet_rdma_init(void)
1661 {
1662 int ret;
1663
1664 ret = ib_register_client(&nvmet_rdma_ib_client);
1665 if (ret)
1666 return ret;
1667
1668 ret = nvmet_register_transport(&nvmet_rdma_ops);
1669 if (ret)
1670 goto err_ib_client;
1671
1672 return 0;
1673
1674 err_ib_client:
1675 ib_unregister_client(&nvmet_rdma_ib_client);
1676 return ret;
1677 }
1678
1679 static void __exit nvmet_rdma_exit(void)
1680 {
1681 nvmet_unregister_transport(&nvmet_rdma_ops);
1682 ib_unregister_client(&nvmet_rdma_ib_client);
1683 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1684 ida_destroy(&nvmet_rdma_queue_ida);
1685 }
1686
1687 module_init(nvmet_rdma_init);
1688 module_exit(nvmet_rdma_exit);
1689
1690 MODULE_LICENSE("GPL v2");
1691 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */