]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/target/rdma.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / target / rdma.c
1 /*
2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34
35 /*
36 * We allow up to a page of inline data to go with the SQE
37 */
38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE
39
40 struct nvmet_rdma_cmd {
41 struct ib_sge sge[2];
42 struct ib_cqe cqe;
43 struct ib_recv_wr wr;
44 struct scatterlist inline_sg;
45 struct page *inline_page;
46 struct nvme_command *nvme_cmd;
47 struct nvmet_rdma_queue *queue;
48 };
49
50 enum {
51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
53 };
54
55 struct nvmet_rdma_rsp {
56 struct ib_sge send_sge;
57 struct ib_cqe send_cqe;
58 struct ib_send_wr send_wr;
59
60 struct nvmet_rdma_cmd *cmd;
61 struct nvmet_rdma_queue *queue;
62
63 struct ib_cqe read_cqe;
64 struct rdma_rw_ctx rw;
65
66 struct nvmet_req req;
67
68 u8 n_rdma;
69 u32 flags;
70 u32 invalidate_rkey;
71
72 struct list_head wait_list;
73 struct list_head free_list;
74 };
75
76 enum nvmet_rdma_queue_state {
77 NVMET_RDMA_Q_CONNECTING,
78 NVMET_RDMA_Q_LIVE,
79 NVMET_RDMA_Q_DISCONNECTING,
80 NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82
83 struct nvmet_rdma_queue {
84 struct rdma_cm_id *cm_id;
85 struct nvmet_port *port;
86 struct ib_cq *cq;
87 atomic_t sq_wr_avail;
88 struct nvmet_rdma_device *dev;
89 spinlock_t state_lock;
90 enum nvmet_rdma_queue_state state;
91 struct nvmet_cq nvme_cq;
92 struct nvmet_sq nvme_sq;
93
94 struct nvmet_rdma_rsp *rsps;
95 struct list_head free_rsps;
96 spinlock_t rsps_lock;
97 struct nvmet_rdma_cmd *cmds;
98
99 struct work_struct release_work;
100 struct list_head rsp_wait_list;
101 struct list_head rsp_wr_wait_list;
102 spinlock_t rsp_wr_wait_lock;
103
104 int idx;
105 int host_qid;
106 int recv_queue_size;
107 int send_queue_size;
108
109 struct list_head queue_list;
110 };
111
112 struct nvmet_rdma_device {
113 struct ib_device *device;
114 struct ib_pd *pd;
115 struct ib_srq *srq;
116 struct nvmet_rdma_cmd *srq_cmds;
117 size_t srq_size;
118 struct kref ref;
119 struct list_head entry;
120 };
121
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141
142 /* XXX: really should move to a generic header sooner or later.. */
143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147
148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150 return nvme_is_write(rsp->req.cmd) &&
151 rsp->req.data_len &&
152 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154
155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157 return !nvme_is_write(rsp->req.cmd) &&
158 rsp->req.data_len &&
159 !rsp->req.rsp->status &&
160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162
163 static inline struct nvmet_rdma_rsp *
164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166 struct nvmet_rdma_rsp *rsp;
167 unsigned long flags;
168
169 spin_lock_irqsave(&queue->rsps_lock, flags);
170 rsp = list_first_entry(&queue->free_rsps,
171 struct nvmet_rdma_rsp, free_list);
172 list_del(&rsp->free_list);
173 spin_unlock_irqrestore(&queue->rsps_lock, flags);
174
175 return rsp;
176 }
177
178 static inline void
179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181 unsigned long flags;
182
183 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187
188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190 struct scatterlist *sg;
191 int count;
192
193 if (!sgl || !nents)
194 return;
195
196 for_each_sg(sgl, sg, nents, count)
197 __free_page(sg_page(sg));
198 kfree(sgl);
199 }
200
201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202 u32 length)
203 {
204 struct scatterlist *sg;
205 struct page *page;
206 unsigned int nent;
207 int i = 0;
208
209 nent = DIV_ROUND_UP(length, PAGE_SIZE);
210 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211 if (!sg)
212 goto out;
213
214 sg_init_table(sg, nent);
215
216 while (length) {
217 u32 page_len = min_t(u32, length, PAGE_SIZE);
218
219 page = alloc_page(GFP_KERNEL);
220 if (!page)
221 goto out_free_pages;
222
223 sg_set_page(&sg[i], page, page_len, 0);
224 length -= page_len;
225 i++;
226 }
227 *sgl = sg;
228 *nents = nent;
229 return 0;
230
231 out_free_pages:
232 while (i > 0) {
233 i--;
234 __free_page(sg_page(&sg[i]));
235 }
236 kfree(sg);
237 out:
238 return NVME_SC_INTERNAL;
239 }
240
241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242 struct nvmet_rdma_cmd *c, bool admin)
243 {
244 /* NVMe command / RDMA RECV */
245 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246 if (!c->nvme_cmd)
247 goto out;
248
249 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252 goto out_free_cmd;
253
254 c->sge[0].length = sizeof(*c->nvme_cmd);
255 c->sge[0].lkey = ndev->pd->local_dma_lkey;
256
257 if (!admin) {
258 c->inline_page = alloc_pages(GFP_KERNEL,
259 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260 if (!c->inline_page)
261 goto out_unmap_cmd;
262 c->sge[1].addr = ib_dma_map_page(ndev->device,
263 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264 DMA_FROM_DEVICE);
265 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266 goto out_free_inline_page;
267 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268 c->sge[1].lkey = ndev->pd->local_dma_lkey;
269 }
270
271 c->cqe.done = nvmet_rdma_recv_done;
272
273 c->wr.wr_cqe = &c->cqe;
274 c->wr.sg_list = c->sge;
275 c->wr.num_sge = admin ? 1 : 2;
276
277 return 0;
278
279 out_free_inline_page:
280 if (!admin) {
281 __free_pages(c->inline_page,
282 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283 }
284 out_unmap_cmd:
285 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288 kfree(c->nvme_cmd);
289
290 out:
291 return -ENOMEM;
292 }
293
294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295 struct nvmet_rdma_cmd *c, bool admin)
296 {
297 if (!admin) {
298 ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300 __free_pages(c->inline_page,
301 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302 }
303 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305 kfree(c->nvme_cmd);
306 }
307
308 static struct nvmet_rdma_cmd *
309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310 int nr_cmds, bool admin)
311 {
312 struct nvmet_rdma_cmd *cmds;
313 int ret = -EINVAL, i;
314
315 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316 if (!cmds)
317 goto out;
318
319 for (i = 0; i < nr_cmds; i++) {
320 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321 if (ret)
322 goto out_free;
323 }
324
325 return cmds;
326
327 out_free:
328 while (--i >= 0)
329 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330 kfree(cmds);
331 out:
332 return ERR_PTR(ret);
333 }
334
335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338 int i;
339
340 for (i = 0; i < nr_cmds; i++)
341 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342 kfree(cmds);
343 }
344
345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346 struct nvmet_rdma_rsp *r)
347 {
348 /* NVMe CQE / RDMA SEND */
349 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350 if (!r->req.rsp)
351 goto out;
352
353 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354 sizeof(*r->req.rsp), DMA_TO_DEVICE);
355 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356 goto out_free_rsp;
357
358 r->send_sge.length = sizeof(*r->req.rsp);
359 r->send_sge.lkey = ndev->pd->local_dma_lkey;
360
361 r->send_cqe.done = nvmet_rdma_send_done;
362
363 r->send_wr.wr_cqe = &r->send_cqe;
364 r->send_wr.sg_list = &r->send_sge;
365 r->send_wr.num_sge = 1;
366 r->send_wr.send_flags = IB_SEND_SIGNALED;
367
368 /* Data In / RDMA READ */
369 r->read_cqe.done = nvmet_rdma_read_data_done;
370 return 0;
371
372 out_free_rsp:
373 kfree(r->req.rsp);
374 out:
375 return -ENOMEM;
376 }
377
378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379 struct nvmet_rdma_rsp *r)
380 {
381 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382 sizeof(*r->req.rsp), DMA_TO_DEVICE);
383 kfree(r->req.rsp);
384 }
385
386 static int
387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389 struct nvmet_rdma_device *ndev = queue->dev;
390 int nr_rsps = queue->recv_queue_size * 2;
391 int ret = -EINVAL, i;
392
393 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394 GFP_KERNEL);
395 if (!queue->rsps)
396 goto out;
397
398 for (i = 0; i < nr_rsps; i++) {
399 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400
401 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402 if (ret)
403 goto out_free;
404
405 list_add_tail(&rsp->free_list, &queue->free_rsps);
406 }
407
408 return 0;
409
410 out_free:
411 while (--i >= 0) {
412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413
414 list_del(&rsp->free_list);
415 nvmet_rdma_free_rsp(ndev, rsp);
416 }
417 kfree(queue->rsps);
418 out:
419 return ret;
420 }
421
422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424 struct nvmet_rdma_device *ndev = queue->dev;
425 int i, nr_rsps = queue->recv_queue_size * 2;
426
427 for (i = 0; i < nr_rsps; i++) {
428 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429
430 list_del(&rsp->free_list);
431 nvmet_rdma_free_rsp(ndev, rsp);
432 }
433 kfree(queue->rsps);
434 }
435
436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437 struct nvmet_rdma_cmd *cmd)
438 {
439 struct ib_recv_wr *bad_wr;
440
441 ib_dma_sync_single_for_device(ndev->device,
442 cmd->sge[0].addr, cmd->sge[0].length,
443 DMA_FROM_DEVICE);
444
445 if (ndev->srq)
446 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
447 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
448 }
449
450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
451 {
452 spin_lock(&queue->rsp_wr_wait_lock);
453 while (!list_empty(&queue->rsp_wr_wait_list)) {
454 struct nvmet_rdma_rsp *rsp;
455 bool ret;
456
457 rsp = list_entry(queue->rsp_wr_wait_list.next,
458 struct nvmet_rdma_rsp, wait_list);
459 list_del(&rsp->wait_list);
460
461 spin_unlock(&queue->rsp_wr_wait_lock);
462 ret = nvmet_rdma_execute_command(rsp);
463 spin_lock(&queue->rsp_wr_wait_lock);
464
465 if (!ret) {
466 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
467 break;
468 }
469 }
470 spin_unlock(&queue->rsp_wr_wait_lock);
471 }
472
473
474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
475 {
476 struct nvmet_rdma_queue *queue = rsp->queue;
477
478 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
479
480 if (rsp->n_rdma) {
481 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
482 queue->cm_id->port_num, rsp->req.sg,
483 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
484 }
485
486 if (rsp->req.sg != &rsp->cmd->inline_sg)
487 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
488
489 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
490 nvmet_rdma_process_wr_wait_list(queue);
491
492 nvmet_rdma_put_rsp(rsp);
493 }
494
495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
496 {
497 if (queue->nvme_sq.ctrl) {
498 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
499 } else {
500 /*
501 * we didn't setup the controller yet in case
502 * of admin connect error, just disconnect and
503 * cleanup the queue
504 */
505 nvmet_rdma_queue_disconnect(queue);
506 }
507 }
508
509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
510 {
511 struct nvmet_rdma_rsp *rsp =
512 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
513
514 nvmet_rdma_release_rsp(rsp);
515
516 if (unlikely(wc->status != IB_WC_SUCCESS &&
517 wc->status != IB_WC_WR_FLUSH_ERR)) {
518 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
519 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
520 nvmet_rdma_error_comp(rsp->queue);
521 }
522 }
523
524 static void nvmet_rdma_queue_response(struct nvmet_req *req)
525 {
526 struct nvmet_rdma_rsp *rsp =
527 container_of(req, struct nvmet_rdma_rsp, req);
528 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
529 struct ib_send_wr *first_wr, *bad_wr;
530
531 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
532 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
533 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
534 } else {
535 rsp->send_wr.opcode = IB_WR_SEND;
536 }
537
538 if (nvmet_rdma_need_data_out(rsp))
539 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
540 cm_id->port_num, NULL, &rsp->send_wr);
541 else
542 first_wr = &rsp->send_wr;
543
544 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
545
546 ib_dma_sync_single_for_device(rsp->queue->dev->device,
547 rsp->send_sge.addr, rsp->send_sge.length,
548 DMA_TO_DEVICE);
549
550 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
551 pr_err("sending cmd response failed\n");
552 nvmet_rdma_release_rsp(rsp);
553 }
554 }
555
556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
557 {
558 struct nvmet_rdma_rsp *rsp =
559 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
560 struct nvmet_rdma_queue *queue = cq->cq_context;
561
562 WARN_ON(rsp->n_rdma <= 0);
563 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
564 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
565 queue->cm_id->port_num, rsp->req.sg,
566 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
567 rsp->n_rdma = 0;
568
569 if (unlikely(wc->status != IB_WC_SUCCESS)) {
570 nvmet_req_uninit(&rsp->req);
571 nvmet_rdma_release_rsp(rsp);
572 if (wc->status != IB_WC_WR_FLUSH_ERR) {
573 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
574 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
575 nvmet_rdma_error_comp(queue);
576 }
577 return;
578 }
579
580 rsp->req.execute(&rsp->req);
581 }
582
583 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
584 u64 off)
585 {
586 sg_init_table(&rsp->cmd->inline_sg, 1);
587 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
588 rsp->req.sg = &rsp->cmd->inline_sg;
589 rsp->req.sg_cnt = 1;
590 }
591
592 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
593 {
594 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
595 u64 off = le64_to_cpu(sgl->addr);
596 u32 len = le32_to_cpu(sgl->length);
597
598 if (!nvme_is_write(rsp->req.cmd))
599 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
600
601 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
602 pr_err("invalid inline data offset!\n");
603 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
604 }
605
606 /* no data command? */
607 if (!len)
608 return 0;
609
610 nvmet_rdma_use_inline_sg(rsp, len, off);
611 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
612 return 0;
613 }
614
615 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
616 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
617 {
618 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
619 u64 addr = le64_to_cpu(sgl->addr);
620 u32 len = get_unaligned_le24(sgl->length);
621 u32 key = get_unaligned_le32(sgl->key);
622 int ret;
623 u16 status;
624
625 /* no data command? */
626 if (!len)
627 return 0;
628
629 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
630 len);
631 if (status)
632 return status;
633
634 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
635 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
636 nvmet_data_dir(&rsp->req));
637 if (ret < 0)
638 return NVME_SC_INTERNAL;
639 rsp->n_rdma += ret;
640
641 if (invalidate) {
642 rsp->invalidate_rkey = key;
643 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
644 }
645
646 return 0;
647 }
648
649 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
650 {
651 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
652
653 switch (sgl->type >> 4) {
654 case NVME_SGL_FMT_DATA_DESC:
655 switch (sgl->type & 0xf) {
656 case NVME_SGL_FMT_OFFSET:
657 return nvmet_rdma_map_sgl_inline(rsp);
658 default:
659 pr_err("invalid SGL subtype: %#x\n", sgl->type);
660 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
661 }
662 case NVME_KEY_SGL_FMT_DATA_DESC:
663 switch (sgl->type & 0xf) {
664 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
665 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
666 case NVME_SGL_FMT_ADDRESS:
667 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
668 default:
669 pr_err("invalid SGL subtype: %#x\n", sgl->type);
670 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
671 }
672 default:
673 pr_err("invalid SGL type: %#x\n", sgl->type);
674 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
675 }
676 }
677
678 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
679 {
680 struct nvmet_rdma_queue *queue = rsp->queue;
681
682 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
683 &queue->sq_wr_avail) < 0)) {
684 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
685 1 + rsp->n_rdma, queue->idx,
686 queue->nvme_sq.ctrl->cntlid);
687 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
688 return false;
689 }
690
691 if (nvmet_rdma_need_data_in(rsp)) {
692 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
693 queue->cm_id->port_num, &rsp->read_cqe, NULL))
694 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
695 } else {
696 rsp->req.execute(&rsp->req);
697 }
698
699 return true;
700 }
701
702 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
703 struct nvmet_rdma_rsp *cmd)
704 {
705 u16 status;
706
707 ib_dma_sync_single_for_cpu(queue->dev->device,
708 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
709 DMA_FROM_DEVICE);
710 ib_dma_sync_single_for_cpu(queue->dev->device,
711 cmd->send_sge.addr, cmd->send_sge.length,
712 DMA_TO_DEVICE);
713
714 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
715 &queue->nvme_sq, &nvmet_rdma_ops))
716 return;
717
718 status = nvmet_rdma_map_sgl(cmd);
719 if (status)
720 goto out_err;
721
722 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
723 spin_lock(&queue->rsp_wr_wait_lock);
724 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
725 spin_unlock(&queue->rsp_wr_wait_lock);
726 }
727
728 return;
729
730 out_err:
731 nvmet_req_complete(&cmd->req, status);
732 }
733
734 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
735 {
736 struct nvmet_rdma_cmd *cmd =
737 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
738 struct nvmet_rdma_queue *queue = cq->cq_context;
739 struct nvmet_rdma_rsp *rsp;
740
741 if (unlikely(wc->status != IB_WC_SUCCESS)) {
742 if (wc->status != IB_WC_WR_FLUSH_ERR) {
743 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
744 wc->wr_cqe, ib_wc_status_msg(wc->status),
745 wc->status);
746 nvmet_rdma_error_comp(queue);
747 }
748 return;
749 }
750
751 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
752 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
753 nvmet_rdma_error_comp(queue);
754 return;
755 }
756
757 cmd->queue = queue;
758 rsp = nvmet_rdma_get_rsp(queue);
759 rsp->queue = queue;
760 rsp->cmd = cmd;
761 rsp->flags = 0;
762 rsp->req.cmd = cmd->nvme_cmd;
763 rsp->req.port = queue->port;
764 rsp->n_rdma = 0;
765
766 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
767 unsigned long flags;
768
769 spin_lock_irqsave(&queue->state_lock, flags);
770 if (queue->state == NVMET_RDMA_Q_CONNECTING)
771 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
772 else
773 nvmet_rdma_put_rsp(rsp);
774 spin_unlock_irqrestore(&queue->state_lock, flags);
775 return;
776 }
777
778 nvmet_rdma_handle_command(queue, rsp);
779 }
780
781 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
782 {
783 if (!ndev->srq)
784 return;
785
786 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
787 ib_destroy_srq(ndev->srq);
788 }
789
790 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
791 {
792 struct ib_srq_init_attr srq_attr = { NULL, };
793 struct ib_srq *srq;
794 size_t srq_size;
795 int ret, i;
796
797 srq_size = 4095; /* XXX: tune */
798
799 srq_attr.attr.max_wr = srq_size;
800 srq_attr.attr.max_sge = 2;
801 srq_attr.attr.srq_limit = 0;
802 srq_attr.srq_type = IB_SRQT_BASIC;
803 srq = ib_create_srq(ndev->pd, &srq_attr);
804 if (IS_ERR(srq)) {
805 /*
806 * If SRQs aren't supported we just go ahead and use normal
807 * non-shared receive queues.
808 */
809 pr_info("SRQ requested but not supported.\n");
810 return 0;
811 }
812
813 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
814 if (IS_ERR(ndev->srq_cmds)) {
815 ret = PTR_ERR(ndev->srq_cmds);
816 goto out_destroy_srq;
817 }
818
819 ndev->srq = srq;
820 ndev->srq_size = srq_size;
821
822 for (i = 0; i < srq_size; i++)
823 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
824
825 return 0;
826
827 out_destroy_srq:
828 ib_destroy_srq(srq);
829 return ret;
830 }
831
832 static void nvmet_rdma_free_dev(struct kref *ref)
833 {
834 struct nvmet_rdma_device *ndev =
835 container_of(ref, struct nvmet_rdma_device, ref);
836
837 mutex_lock(&device_list_mutex);
838 list_del(&ndev->entry);
839 mutex_unlock(&device_list_mutex);
840
841 nvmet_rdma_destroy_srq(ndev);
842 ib_dealloc_pd(ndev->pd);
843
844 kfree(ndev);
845 }
846
847 static struct nvmet_rdma_device *
848 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
849 {
850 struct nvmet_rdma_device *ndev;
851 int ret;
852
853 mutex_lock(&device_list_mutex);
854 list_for_each_entry(ndev, &device_list, entry) {
855 if (ndev->device->node_guid == cm_id->device->node_guid &&
856 kref_get_unless_zero(&ndev->ref))
857 goto out_unlock;
858 }
859
860 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
861 if (!ndev)
862 goto out_err;
863
864 ndev->device = cm_id->device;
865 kref_init(&ndev->ref);
866
867 ndev->pd = ib_alloc_pd(ndev->device, 0);
868 if (IS_ERR(ndev->pd))
869 goto out_free_dev;
870
871 if (nvmet_rdma_use_srq) {
872 ret = nvmet_rdma_init_srq(ndev);
873 if (ret)
874 goto out_free_pd;
875 }
876
877 list_add(&ndev->entry, &device_list);
878 out_unlock:
879 mutex_unlock(&device_list_mutex);
880 pr_debug("added %s.\n", ndev->device->name);
881 return ndev;
882
883 out_free_pd:
884 ib_dealloc_pd(ndev->pd);
885 out_free_dev:
886 kfree(ndev);
887 out_err:
888 mutex_unlock(&device_list_mutex);
889 return NULL;
890 }
891
892 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
893 {
894 struct ib_qp_init_attr qp_attr;
895 struct nvmet_rdma_device *ndev = queue->dev;
896 int comp_vector, nr_cqe, ret, i;
897
898 /*
899 * Spread the io queues across completion vectors,
900 * but still keep all admin queues on vector 0.
901 */
902 comp_vector = !queue->host_qid ? 0 :
903 queue->idx % ndev->device->num_comp_vectors;
904
905 /*
906 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
907 */
908 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
909
910 queue->cq = ib_alloc_cq(ndev->device, queue,
911 nr_cqe + 1, comp_vector,
912 IB_POLL_WORKQUEUE);
913 if (IS_ERR(queue->cq)) {
914 ret = PTR_ERR(queue->cq);
915 pr_err("failed to create CQ cqe= %d ret= %d\n",
916 nr_cqe + 1, ret);
917 goto out;
918 }
919
920 memset(&qp_attr, 0, sizeof(qp_attr));
921 qp_attr.qp_context = queue;
922 qp_attr.event_handler = nvmet_rdma_qp_event;
923 qp_attr.send_cq = queue->cq;
924 qp_attr.recv_cq = queue->cq;
925 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
926 qp_attr.qp_type = IB_QPT_RC;
927 /* +1 for drain */
928 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
929 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
930 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
931 ndev->device->attrs.max_sge);
932
933 if (ndev->srq) {
934 qp_attr.srq = ndev->srq;
935 } else {
936 /* +1 for drain */
937 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
938 qp_attr.cap.max_recv_sge = 2;
939 }
940
941 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
942 if (ret) {
943 pr_err("failed to create_qp ret= %d\n", ret);
944 goto err_destroy_cq;
945 }
946
947 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
948
949 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
950 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
951 qp_attr.cap.max_send_wr, queue->cm_id);
952
953 if (!ndev->srq) {
954 for (i = 0; i < queue->recv_queue_size; i++) {
955 queue->cmds[i].queue = queue;
956 nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
957 }
958 }
959
960 out:
961 return ret;
962
963 err_destroy_cq:
964 ib_free_cq(queue->cq);
965 goto out;
966 }
967
968 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
969 {
970 ib_drain_qp(queue->cm_id->qp);
971 rdma_destroy_qp(queue->cm_id);
972 ib_free_cq(queue->cq);
973 }
974
975 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
976 {
977 pr_info("freeing queue %d\n", queue->idx);
978
979 nvmet_sq_destroy(&queue->nvme_sq);
980
981 nvmet_rdma_destroy_queue_ib(queue);
982 if (!queue->dev->srq) {
983 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
984 queue->recv_queue_size,
985 !queue->host_qid);
986 }
987 nvmet_rdma_free_rsps(queue);
988 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
989 kfree(queue);
990 }
991
992 static void nvmet_rdma_release_queue_work(struct work_struct *w)
993 {
994 struct nvmet_rdma_queue *queue =
995 container_of(w, struct nvmet_rdma_queue, release_work);
996 struct rdma_cm_id *cm_id = queue->cm_id;
997 struct nvmet_rdma_device *dev = queue->dev;
998 enum nvmet_rdma_queue_state state = queue->state;
999
1000 nvmet_rdma_free_queue(queue);
1001
1002 if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
1003 rdma_destroy_id(cm_id);
1004
1005 kref_put(&dev->ref, nvmet_rdma_free_dev);
1006 }
1007
1008 static int
1009 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1010 struct nvmet_rdma_queue *queue)
1011 {
1012 struct nvme_rdma_cm_req *req;
1013
1014 req = (struct nvme_rdma_cm_req *)conn->private_data;
1015 if (!req || conn->private_data_len == 0)
1016 return NVME_RDMA_CM_INVALID_LEN;
1017
1018 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1019 return NVME_RDMA_CM_INVALID_RECFMT;
1020
1021 queue->host_qid = le16_to_cpu(req->qid);
1022
1023 /*
1024 * req->hsqsize corresponds to our recv queue size plus 1
1025 * req->hrqsize corresponds to our send queue size
1026 */
1027 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1028 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1029
1030 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1031 return NVME_RDMA_CM_INVALID_HSQSIZE;
1032
1033 /* XXX: Should we enforce some kind of max for IO queues? */
1034
1035 return 0;
1036 }
1037
1038 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1039 enum nvme_rdma_cm_status status)
1040 {
1041 struct nvme_rdma_cm_rej rej;
1042
1043 pr_debug("rejecting connect request: status %d (%s)\n",
1044 status, nvme_rdma_cm_msg(status));
1045
1046 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1047 rej.sts = cpu_to_le16(status);
1048
1049 return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1050 }
1051
1052 static struct nvmet_rdma_queue *
1053 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1054 struct rdma_cm_id *cm_id,
1055 struct rdma_cm_event *event)
1056 {
1057 struct nvmet_rdma_queue *queue;
1058 int ret;
1059
1060 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1061 if (!queue) {
1062 ret = NVME_RDMA_CM_NO_RSC;
1063 goto out_reject;
1064 }
1065
1066 ret = nvmet_sq_init(&queue->nvme_sq);
1067 if (ret) {
1068 ret = NVME_RDMA_CM_NO_RSC;
1069 goto out_free_queue;
1070 }
1071
1072 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1073 if (ret)
1074 goto out_destroy_sq;
1075
1076 /*
1077 * Schedules the actual release because calling rdma_destroy_id from
1078 * inside a CM callback would trigger a deadlock. (great API design..)
1079 */
1080 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1081 queue->dev = ndev;
1082 queue->cm_id = cm_id;
1083
1084 spin_lock_init(&queue->state_lock);
1085 queue->state = NVMET_RDMA_Q_CONNECTING;
1086 INIT_LIST_HEAD(&queue->rsp_wait_list);
1087 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1088 spin_lock_init(&queue->rsp_wr_wait_lock);
1089 INIT_LIST_HEAD(&queue->free_rsps);
1090 spin_lock_init(&queue->rsps_lock);
1091 INIT_LIST_HEAD(&queue->queue_list);
1092
1093 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1094 if (queue->idx < 0) {
1095 ret = NVME_RDMA_CM_NO_RSC;
1096 goto out_destroy_sq;
1097 }
1098
1099 ret = nvmet_rdma_alloc_rsps(queue);
1100 if (ret) {
1101 ret = NVME_RDMA_CM_NO_RSC;
1102 goto out_ida_remove;
1103 }
1104
1105 if (!ndev->srq) {
1106 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1107 queue->recv_queue_size,
1108 !queue->host_qid);
1109 if (IS_ERR(queue->cmds)) {
1110 ret = NVME_RDMA_CM_NO_RSC;
1111 goto out_free_responses;
1112 }
1113 }
1114
1115 ret = nvmet_rdma_create_queue_ib(queue);
1116 if (ret) {
1117 pr_err("%s: creating RDMA queue failed (%d).\n",
1118 __func__, ret);
1119 ret = NVME_RDMA_CM_NO_RSC;
1120 goto out_free_cmds;
1121 }
1122
1123 return queue;
1124
1125 out_free_cmds:
1126 if (!ndev->srq) {
1127 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1128 queue->recv_queue_size,
1129 !queue->host_qid);
1130 }
1131 out_free_responses:
1132 nvmet_rdma_free_rsps(queue);
1133 out_ida_remove:
1134 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1135 out_destroy_sq:
1136 nvmet_sq_destroy(&queue->nvme_sq);
1137 out_free_queue:
1138 kfree(queue);
1139 out_reject:
1140 nvmet_rdma_cm_reject(cm_id, ret);
1141 return NULL;
1142 }
1143
1144 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1145 {
1146 struct nvmet_rdma_queue *queue = priv;
1147
1148 switch (event->event) {
1149 case IB_EVENT_COMM_EST:
1150 rdma_notify(queue->cm_id, event->event);
1151 break;
1152 default:
1153 pr_err("received IB QP event: %s (%d)\n",
1154 ib_event_msg(event->event), event->event);
1155 break;
1156 }
1157 }
1158
1159 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1160 struct nvmet_rdma_queue *queue,
1161 struct rdma_conn_param *p)
1162 {
1163 struct rdma_conn_param param = { };
1164 struct nvme_rdma_cm_rep priv = { };
1165 int ret = -ENOMEM;
1166
1167 param.rnr_retry_count = 7;
1168 param.flow_control = 1;
1169 param.initiator_depth = min_t(u8, p->initiator_depth,
1170 queue->dev->device->attrs.max_qp_init_rd_atom);
1171 param.private_data = &priv;
1172 param.private_data_len = sizeof(priv);
1173 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1174 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1175
1176 ret = rdma_accept(cm_id, &param);
1177 if (ret)
1178 pr_err("rdma_accept failed (error code = %d)\n", ret);
1179
1180 return ret;
1181 }
1182
1183 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1184 struct rdma_cm_event *event)
1185 {
1186 struct nvmet_rdma_device *ndev;
1187 struct nvmet_rdma_queue *queue;
1188 int ret = -EINVAL;
1189
1190 ndev = nvmet_rdma_find_get_device(cm_id);
1191 if (!ndev) {
1192 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1193 return -ECONNREFUSED;
1194 }
1195
1196 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1197 if (!queue) {
1198 ret = -ENOMEM;
1199 goto put_device;
1200 }
1201 queue->port = cm_id->context;
1202
1203 if (queue->host_qid == 0) {
1204 /* Let inflight controller teardown complete */
1205 flush_scheduled_work();
1206 }
1207
1208 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1209 if (ret)
1210 goto release_queue;
1211
1212 mutex_lock(&nvmet_rdma_queue_mutex);
1213 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1214 mutex_unlock(&nvmet_rdma_queue_mutex);
1215
1216 return 0;
1217
1218 release_queue:
1219 nvmet_rdma_free_queue(queue);
1220 put_device:
1221 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1222
1223 return ret;
1224 }
1225
1226 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1227 {
1228 unsigned long flags;
1229
1230 spin_lock_irqsave(&queue->state_lock, flags);
1231 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1232 pr_warn("trying to establish a connected queue\n");
1233 goto out_unlock;
1234 }
1235 queue->state = NVMET_RDMA_Q_LIVE;
1236
1237 while (!list_empty(&queue->rsp_wait_list)) {
1238 struct nvmet_rdma_rsp *cmd;
1239
1240 cmd = list_first_entry(&queue->rsp_wait_list,
1241 struct nvmet_rdma_rsp, wait_list);
1242 list_del(&cmd->wait_list);
1243
1244 spin_unlock_irqrestore(&queue->state_lock, flags);
1245 nvmet_rdma_handle_command(queue, cmd);
1246 spin_lock_irqsave(&queue->state_lock, flags);
1247 }
1248
1249 out_unlock:
1250 spin_unlock_irqrestore(&queue->state_lock, flags);
1251 }
1252
1253 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1254 {
1255 bool disconnect = false;
1256 unsigned long flags;
1257
1258 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1259
1260 spin_lock_irqsave(&queue->state_lock, flags);
1261 switch (queue->state) {
1262 case NVMET_RDMA_Q_CONNECTING:
1263 case NVMET_RDMA_Q_LIVE:
1264 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1265 case NVMET_RDMA_IN_DEVICE_REMOVAL:
1266 disconnect = true;
1267 break;
1268 case NVMET_RDMA_Q_DISCONNECTING:
1269 break;
1270 }
1271 spin_unlock_irqrestore(&queue->state_lock, flags);
1272
1273 if (disconnect) {
1274 rdma_disconnect(queue->cm_id);
1275 schedule_work(&queue->release_work);
1276 }
1277 }
1278
1279 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1280 {
1281 bool disconnect = false;
1282
1283 mutex_lock(&nvmet_rdma_queue_mutex);
1284 if (!list_empty(&queue->queue_list)) {
1285 list_del_init(&queue->queue_list);
1286 disconnect = true;
1287 }
1288 mutex_unlock(&nvmet_rdma_queue_mutex);
1289
1290 if (disconnect)
1291 __nvmet_rdma_queue_disconnect(queue);
1292 }
1293
1294 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1295 struct nvmet_rdma_queue *queue)
1296 {
1297 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1298
1299 mutex_lock(&nvmet_rdma_queue_mutex);
1300 if (!list_empty(&queue->queue_list))
1301 list_del_init(&queue->queue_list);
1302 mutex_unlock(&nvmet_rdma_queue_mutex);
1303
1304 pr_err("failed to connect queue %d\n", queue->idx);
1305 schedule_work(&queue->release_work);
1306 }
1307
1308 /**
1309 * nvme_rdma_device_removal() - Handle RDMA device removal
1310 * @cm_id: rdma_cm id, used for nvmet port
1311 * @queue: nvmet rdma queue (cm id qp_context)
1312 *
1313 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1314 * to unplug. Note that this event can be generated on a normal
1315 * queue cm_id and/or a device bound listener cm_id (where in this
1316 * case queue will be null).
1317 *
1318 * We registered an ib_client to handle device removal for queues,
1319 * so we only need to handle the listening port cm_ids. In this case
1320 * we nullify the priv to prevent double cm_id destruction and destroying
1321 * the cm_id implicitely by returning a non-zero rc to the callout.
1322 */
1323 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1324 struct nvmet_rdma_queue *queue)
1325 {
1326 struct nvmet_port *port;
1327
1328 if (queue) {
1329 /*
1330 * This is a queue cm_id. we have registered
1331 * an ib_client to handle queues removal
1332 * so don't interfear and just return.
1333 */
1334 return 0;
1335 }
1336
1337 port = cm_id->context;
1338
1339 /*
1340 * This is a listener cm_id. Make sure that
1341 * future remove_port won't invoke a double
1342 * cm_id destroy. use atomic xchg to make sure
1343 * we don't compete with remove_port.
1344 */
1345 if (xchg(&port->priv, NULL) != cm_id)
1346 return 0;
1347
1348 /*
1349 * We need to return 1 so that the core will destroy
1350 * it's own ID. What a great API design..
1351 */
1352 return 1;
1353 }
1354
1355 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1356 struct rdma_cm_event *event)
1357 {
1358 struct nvmet_rdma_queue *queue = NULL;
1359 int ret = 0;
1360
1361 if (cm_id->qp)
1362 queue = cm_id->qp->qp_context;
1363
1364 pr_debug("%s (%d): status %d id %p\n",
1365 rdma_event_msg(event->event), event->event,
1366 event->status, cm_id);
1367
1368 switch (event->event) {
1369 case RDMA_CM_EVENT_CONNECT_REQUEST:
1370 ret = nvmet_rdma_queue_connect(cm_id, event);
1371 break;
1372 case RDMA_CM_EVENT_ESTABLISHED:
1373 nvmet_rdma_queue_established(queue);
1374 break;
1375 case RDMA_CM_EVENT_ADDR_CHANGE:
1376 case RDMA_CM_EVENT_DISCONNECTED:
1377 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1378 /*
1379 * We might end up here when we already freed the qp
1380 * which means queue release sequence is in progress,
1381 * so don't get in the way...
1382 */
1383 if (queue)
1384 nvmet_rdma_queue_disconnect(queue);
1385 break;
1386 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1387 ret = nvmet_rdma_device_removal(cm_id, queue);
1388 break;
1389 case RDMA_CM_EVENT_REJECTED:
1390 pr_debug("Connection rejected: %s\n",
1391 rdma_reject_msg(cm_id, event->status));
1392 /* FALLTHROUGH */
1393 case RDMA_CM_EVENT_UNREACHABLE:
1394 case RDMA_CM_EVENT_CONNECT_ERROR:
1395 nvmet_rdma_queue_connect_fail(cm_id, queue);
1396 break;
1397 default:
1398 pr_err("received unrecognized RDMA CM event %d\n",
1399 event->event);
1400 break;
1401 }
1402
1403 return ret;
1404 }
1405
1406 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1407 {
1408 struct nvmet_rdma_queue *queue;
1409
1410 restart:
1411 mutex_lock(&nvmet_rdma_queue_mutex);
1412 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1413 if (queue->nvme_sq.ctrl == ctrl) {
1414 list_del_init(&queue->queue_list);
1415 mutex_unlock(&nvmet_rdma_queue_mutex);
1416
1417 __nvmet_rdma_queue_disconnect(queue);
1418 goto restart;
1419 }
1420 }
1421 mutex_unlock(&nvmet_rdma_queue_mutex);
1422 }
1423
1424 static int nvmet_rdma_add_port(struct nvmet_port *port)
1425 {
1426 struct rdma_cm_id *cm_id;
1427 struct sockaddr_storage addr = { };
1428 __kernel_sa_family_t af;
1429 int ret;
1430
1431 switch (port->disc_addr.adrfam) {
1432 case NVMF_ADDR_FAMILY_IP4:
1433 af = AF_INET;
1434 break;
1435 case NVMF_ADDR_FAMILY_IP6:
1436 af = AF_INET6;
1437 break;
1438 default:
1439 pr_err("address family %d not supported\n",
1440 port->disc_addr.adrfam);
1441 return -EINVAL;
1442 }
1443
1444 ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1445 port->disc_addr.trsvcid, &addr);
1446 if (ret) {
1447 pr_err("malformed ip/port passed: %s:%s\n",
1448 port->disc_addr.traddr, port->disc_addr.trsvcid);
1449 return ret;
1450 }
1451
1452 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1453 RDMA_PS_TCP, IB_QPT_RC);
1454 if (IS_ERR(cm_id)) {
1455 pr_err("CM ID creation failed\n");
1456 return PTR_ERR(cm_id);
1457 }
1458
1459 /*
1460 * Allow both IPv4 and IPv6 sockets to bind a single port
1461 * at the same time.
1462 */
1463 ret = rdma_set_afonly(cm_id, 1);
1464 if (ret) {
1465 pr_err("rdma_set_afonly failed (%d)\n", ret);
1466 goto out_destroy_id;
1467 }
1468
1469 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1470 if (ret) {
1471 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1472 (struct sockaddr *)&addr, ret);
1473 goto out_destroy_id;
1474 }
1475
1476 ret = rdma_listen(cm_id, 128);
1477 if (ret) {
1478 pr_err("listening to %pISpcs failed (%d)\n",
1479 (struct sockaddr *)&addr, ret);
1480 goto out_destroy_id;
1481 }
1482
1483 pr_info("enabling port %d (%pISpcs)\n",
1484 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1485 port->priv = cm_id;
1486 return 0;
1487
1488 out_destroy_id:
1489 rdma_destroy_id(cm_id);
1490 return ret;
1491 }
1492
1493 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1494 {
1495 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1496
1497 if (cm_id)
1498 rdma_destroy_id(cm_id);
1499 }
1500
1501 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1502 .owner = THIS_MODULE,
1503 .type = NVMF_TRTYPE_RDMA,
1504 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE,
1505 .msdbd = 1,
1506 .has_keyed_sgls = 1,
1507 .add_port = nvmet_rdma_add_port,
1508 .remove_port = nvmet_rdma_remove_port,
1509 .queue_response = nvmet_rdma_queue_response,
1510 .delete_ctrl = nvmet_rdma_delete_ctrl,
1511 };
1512
1513 static void nvmet_rdma_add_one(struct ib_device *ib_device)
1514 {
1515 }
1516
1517 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1518 {
1519 struct nvmet_rdma_queue *queue;
1520
1521 /* Device is being removed, delete all queues using this device */
1522 mutex_lock(&nvmet_rdma_queue_mutex);
1523 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1524 if (queue->dev->device != ib_device)
1525 continue;
1526
1527 pr_info("Removing queue %d\n", queue->idx);
1528 __nvmet_rdma_queue_disconnect(queue);
1529 }
1530 mutex_unlock(&nvmet_rdma_queue_mutex);
1531
1532 flush_scheduled_work();
1533 }
1534
1535 static struct ib_client nvmet_rdma_ib_client = {
1536 .name = "nvmet_rdma",
1537 .add = nvmet_rdma_add_one,
1538 .remove = nvmet_rdma_remove_one
1539 };
1540
1541 static int __init nvmet_rdma_init(void)
1542 {
1543 int ret;
1544
1545 ret = ib_register_client(&nvmet_rdma_ib_client);
1546 if (ret)
1547 return ret;
1548
1549 ret = nvmet_register_transport(&nvmet_rdma_ops);
1550 if (ret)
1551 goto err_ib_client;
1552
1553 return 0;
1554
1555 err_ib_client:
1556 ib_unregister_client(&nvmet_rdma_ib_client);
1557 return ret;
1558 }
1559
1560 static void __exit nvmet_rdma_exit(void)
1561 {
1562 struct nvmet_rdma_queue *queue;
1563
1564 nvmet_unregister_transport(&nvmet_rdma_ops);
1565
1566 flush_scheduled_work();
1567
1568 mutex_lock(&nvmet_rdma_queue_mutex);
1569 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1570 struct nvmet_rdma_queue, queue_list))) {
1571 list_del_init(&queue->queue_list);
1572
1573 mutex_unlock(&nvmet_rdma_queue_mutex);
1574 __nvmet_rdma_queue_disconnect(queue);
1575 mutex_lock(&nvmet_rdma_queue_mutex);
1576 }
1577 mutex_unlock(&nvmet_rdma_queue_mutex);
1578
1579 flush_scheduled_work();
1580 ib_unregister_client(&nvmet_rdma_ib_client);
1581 ida_destroy(&nvmet_rdma_queue_ida);
1582 }
1583
1584 module_init(nvmet_rdma_init);
1585 module_exit(nvmet_rdma_exit);
1586
1587 MODULE_LICENSE("GPL v2");
1588 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */