]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/target/rdma.c
Merge branch 'stable-4.10' of git://git.infradead.org/users/pcmoore/audit
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / target / rdma.c
1 /*
2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34
35 /*
36 * We allow up to a page of inline data to go with the SQE
37 */
38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE
39
40 struct nvmet_rdma_cmd {
41 struct ib_sge sge[2];
42 struct ib_cqe cqe;
43 struct ib_recv_wr wr;
44 struct scatterlist inline_sg;
45 struct page *inline_page;
46 struct nvme_command *nvme_cmd;
47 struct nvmet_rdma_queue *queue;
48 };
49
50 enum {
51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
53 };
54
55 struct nvmet_rdma_rsp {
56 struct ib_sge send_sge;
57 struct ib_cqe send_cqe;
58 struct ib_send_wr send_wr;
59
60 struct nvmet_rdma_cmd *cmd;
61 struct nvmet_rdma_queue *queue;
62
63 struct ib_cqe read_cqe;
64 struct rdma_rw_ctx rw;
65
66 struct nvmet_req req;
67
68 u8 n_rdma;
69 u32 flags;
70 u32 invalidate_rkey;
71
72 struct list_head wait_list;
73 struct list_head free_list;
74 };
75
76 enum nvmet_rdma_queue_state {
77 NVMET_RDMA_Q_CONNECTING,
78 NVMET_RDMA_Q_LIVE,
79 NVMET_RDMA_Q_DISCONNECTING,
80 NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82
83 struct nvmet_rdma_queue {
84 struct rdma_cm_id *cm_id;
85 struct nvmet_port *port;
86 struct ib_cq *cq;
87 atomic_t sq_wr_avail;
88 struct nvmet_rdma_device *dev;
89 spinlock_t state_lock;
90 enum nvmet_rdma_queue_state state;
91 struct nvmet_cq nvme_cq;
92 struct nvmet_sq nvme_sq;
93
94 struct nvmet_rdma_rsp *rsps;
95 struct list_head free_rsps;
96 spinlock_t rsps_lock;
97 struct nvmet_rdma_cmd *cmds;
98
99 struct work_struct release_work;
100 struct list_head rsp_wait_list;
101 struct list_head rsp_wr_wait_list;
102 spinlock_t rsp_wr_wait_lock;
103
104 int idx;
105 int host_qid;
106 int recv_queue_size;
107 int send_queue_size;
108
109 struct list_head queue_list;
110 };
111
112 struct nvmet_rdma_device {
113 struct ib_device *device;
114 struct ib_pd *pd;
115 struct ib_srq *srq;
116 struct nvmet_rdma_cmd *srq_cmds;
117 size_t srq_size;
118 struct kref ref;
119 struct list_head entry;
120 };
121
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141
142 /* XXX: really should move to a generic header sooner or later.. */
143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147
148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150 return nvme_is_write(rsp->req.cmd) &&
151 rsp->req.data_len &&
152 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154
155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157 return !nvme_is_write(rsp->req.cmd) &&
158 rsp->req.data_len &&
159 !rsp->req.rsp->status &&
160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162
163 static inline struct nvmet_rdma_rsp *
164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166 struct nvmet_rdma_rsp *rsp;
167 unsigned long flags;
168
169 spin_lock_irqsave(&queue->rsps_lock, flags);
170 rsp = list_first_entry(&queue->free_rsps,
171 struct nvmet_rdma_rsp, free_list);
172 list_del(&rsp->free_list);
173 spin_unlock_irqrestore(&queue->rsps_lock, flags);
174
175 return rsp;
176 }
177
178 static inline void
179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181 unsigned long flags;
182
183 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187
188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190 struct scatterlist *sg;
191 int count;
192
193 if (!sgl || !nents)
194 return;
195
196 for_each_sg(sgl, sg, nents, count)
197 __free_page(sg_page(sg));
198 kfree(sgl);
199 }
200
201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202 u32 length)
203 {
204 struct scatterlist *sg;
205 struct page *page;
206 unsigned int nent;
207 int i = 0;
208
209 nent = DIV_ROUND_UP(length, PAGE_SIZE);
210 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211 if (!sg)
212 goto out;
213
214 sg_init_table(sg, nent);
215
216 while (length) {
217 u32 page_len = min_t(u32, length, PAGE_SIZE);
218
219 page = alloc_page(GFP_KERNEL);
220 if (!page)
221 goto out_free_pages;
222
223 sg_set_page(&sg[i], page, page_len, 0);
224 length -= page_len;
225 i++;
226 }
227 *sgl = sg;
228 *nents = nent;
229 return 0;
230
231 out_free_pages:
232 while (i > 0) {
233 i--;
234 __free_page(sg_page(&sg[i]));
235 }
236 kfree(sg);
237 out:
238 return NVME_SC_INTERNAL;
239 }
240
241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242 struct nvmet_rdma_cmd *c, bool admin)
243 {
244 /* NVMe command / RDMA RECV */
245 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246 if (!c->nvme_cmd)
247 goto out;
248
249 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252 goto out_free_cmd;
253
254 c->sge[0].length = sizeof(*c->nvme_cmd);
255 c->sge[0].lkey = ndev->pd->local_dma_lkey;
256
257 if (!admin) {
258 c->inline_page = alloc_pages(GFP_KERNEL,
259 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260 if (!c->inline_page)
261 goto out_unmap_cmd;
262 c->sge[1].addr = ib_dma_map_page(ndev->device,
263 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264 DMA_FROM_DEVICE);
265 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266 goto out_free_inline_page;
267 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268 c->sge[1].lkey = ndev->pd->local_dma_lkey;
269 }
270
271 c->cqe.done = nvmet_rdma_recv_done;
272
273 c->wr.wr_cqe = &c->cqe;
274 c->wr.sg_list = c->sge;
275 c->wr.num_sge = admin ? 1 : 2;
276
277 return 0;
278
279 out_free_inline_page:
280 if (!admin) {
281 __free_pages(c->inline_page,
282 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283 }
284 out_unmap_cmd:
285 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288 kfree(c->nvme_cmd);
289
290 out:
291 return -ENOMEM;
292 }
293
294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295 struct nvmet_rdma_cmd *c, bool admin)
296 {
297 if (!admin) {
298 ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300 __free_pages(c->inline_page,
301 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302 }
303 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305 kfree(c->nvme_cmd);
306 }
307
308 static struct nvmet_rdma_cmd *
309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310 int nr_cmds, bool admin)
311 {
312 struct nvmet_rdma_cmd *cmds;
313 int ret = -EINVAL, i;
314
315 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316 if (!cmds)
317 goto out;
318
319 for (i = 0; i < nr_cmds; i++) {
320 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321 if (ret)
322 goto out_free;
323 }
324
325 return cmds;
326
327 out_free:
328 while (--i >= 0)
329 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330 kfree(cmds);
331 out:
332 return ERR_PTR(ret);
333 }
334
335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338 int i;
339
340 for (i = 0; i < nr_cmds; i++)
341 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342 kfree(cmds);
343 }
344
345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346 struct nvmet_rdma_rsp *r)
347 {
348 /* NVMe CQE / RDMA SEND */
349 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350 if (!r->req.rsp)
351 goto out;
352
353 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354 sizeof(*r->req.rsp), DMA_TO_DEVICE);
355 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356 goto out_free_rsp;
357
358 r->send_sge.length = sizeof(*r->req.rsp);
359 r->send_sge.lkey = ndev->pd->local_dma_lkey;
360
361 r->send_cqe.done = nvmet_rdma_send_done;
362
363 r->send_wr.wr_cqe = &r->send_cqe;
364 r->send_wr.sg_list = &r->send_sge;
365 r->send_wr.num_sge = 1;
366 r->send_wr.send_flags = IB_SEND_SIGNALED;
367
368 /* Data In / RDMA READ */
369 r->read_cqe.done = nvmet_rdma_read_data_done;
370 return 0;
371
372 out_free_rsp:
373 kfree(r->req.rsp);
374 out:
375 return -ENOMEM;
376 }
377
378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379 struct nvmet_rdma_rsp *r)
380 {
381 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382 sizeof(*r->req.rsp), DMA_TO_DEVICE);
383 kfree(r->req.rsp);
384 }
385
386 static int
387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389 struct nvmet_rdma_device *ndev = queue->dev;
390 int nr_rsps = queue->recv_queue_size * 2;
391 int ret = -EINVAL, i;
392
393 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394 GFP_KERNEL);
395 if (!queue->rsps)
396 goto out;
397
398 for (i = 0; i < nr_rsps; i++) {
399 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400
401 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402 if (ret)
403 goto out_free;
404
405 list_add_tail(&rsp->free_list, &queue->free_rsps);
406 }
407
408 return 0;
409
410 out_free:
411 while (--i >= 0) {
412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413
414 list_del(&rsp->free_list);
415 nvmet_rdma_free_rsp(ndev, rsp);
416 }
417 kfree(queue->rsps);
418 out:
419 return ret;
420 }
421
422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424 struct nvmet_rdma_device *ndev = queue->dev;
425 int i, nr_rsps = queue->recv_queue_size * 2;
426
427 for (i = 0; i < nr_rsps; i++) {
428 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429
430 list_del(&rsp->free_list);
431 nvmet_rdma_free_rsp(ndev, rsp);
432 }
433 kfree(queue->rsps);
434 }
435
436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437 struct nvmet_rdma_cmd *cmd)
438 {
439 struct ib_recv_wr *bad_wr;
440
441 if (ndev->srq)
442 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
443 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
444 }
445
446 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
447 {
448 spin_lock(&queue->rsp_wr_wait_lock);
449 while (!list_empty(&queue->rsp_wr_wait_list)) {
450 struct nvmet_rdma_rsp *rsp;
451 bool ret;
452
453 rsp = list_entry(queue->rsp_wr_wait_list.next,
454 struct nvmet_rdma_rsp, wait_list);
455 list_del(&rsp->wait_list);
456
457 spin_unlock(&queue->rsp_wr_wait_lock);
458 ret = nvmet_rdma_execute_command(rsp);
459 spin_lock(&queue->rsp_wr_wait_lock);
460
461 if (!ret) {
462 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
463 break;
464 }
465 }
466 spin_unlock(&queue->rsp_wr_wait_lock);
467 }
468
469
470 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
471 {
472 struct nvmet_rdma_queue *queue = rsp->queue;
473
474 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
475
476 if (rsp->n_rdma) {
477 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
478 queue->cm_id->port_num, rsp->req.sg,
479 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
480 }
481
482 if (rsp->req.sg != &rsp->cmd->inline_sg)
483 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
484
485 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
486 nvmet_rdma_process_wr_wait_list(queue);
487
488 nvmet_rdma_put_rsp(rsp);
489 }
490
491 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
492 {
493 if (queue->nvme_sq.ctrl) {
494 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
495 } else {
496 /*
497 * we didn't setup the controller yet in case
498 * of admin connect error, just disconnect and
499 * cleanup the queue
500 */
501 nvmet_rdma_queue_disconnect(queue);
502 }
503 }
504
505 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
506 {
507 struct nvmet_rdma_rsp *rsp =
508 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
509
510 nvmet_rdma_release_rsp(rsp);
511
512 if (unlikely(wc->status != IB_WC_SUCCESS &&
513 wc->status != IB_WC_WR_FLUSH_ERR)) {
514 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
515 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
516 nvmet_rdma_error_comp(rsp->queue);
517 }
518 }
519
520 static void nvmet_rdma_queue_response(struct nvmet_req *req)
521 {
522 struct nvmet_rdma_rsp *rsp =
523 container_of(req, struct nvmet_rdma_rsp, req);
524 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
525 struct ib_send_wr *first_wr, *bad_wr;
526
527 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
528 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
529 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
530 } else {
531 rsp->send_wr.opcode = IB_WR_SEND;
532 }
533
534 if (nvmet_rdma_need_data_out(rsp))
535 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
536 cm_id->port_num, NULL, &rsp->send_wr);
537 else
538 first_wr = &rsp->send_wr;
539
540 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
541 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
542 pr_err("sending cmd response failed\n");
543 nvmet_rdma_release_rsp(rsp);
544 }
545 }
546
547 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
548 {
549 struct nvmet_rdma_rsp *rsp =
550 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
551 struct nvmet_rdma_queue *queue = cq->cq_context;
552
553 WARN_ON(rsp->n_rdma <= 0);
554 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
555 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
556 queue->cm_id->port_num, rsp->req.sg,
557 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
558 rsp->n_rdma = 0;
559
560 if (unlikely(wc->status != IB_WC_SUCCESS)) {
561 nvmet_rdma_release_rsp(rsp);
562 if (wc->status != IB_WC_WR_FLUSH_ERR) {
563 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
564 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
565 nvmet_rdma_error_comp(queue);
566 }
567 return;
568 }
569
570 rsp->req.execute(&rsp->req);
571 }
572
573 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
574 u64 off)
575 {
576 sg_init_table(&rsp->cmd->inline_sg, 1);
577 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
578 rsp->req.sg = &rsp->cmd->inline_sg;
579 rsp->req.sg_cnt = 1;
580 }
581
582 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
583 {
584 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
585 u64 off = le64_to_cpu(sgl->addr);
586 u32 len = le32_to_cpu(sgl->length);
587
588 if (!nvme_is_write(rsp->req.cmd))
589 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
590
591 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
592 pr_err("invalid inline data offset!\n");
593 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
594 }
595
596 /* no data command? */
597 if (!len)
598 return 0;
599
600 nvmet_rdma_use_inline_sg(rsp, len, off);
601 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
602 return 0;
603 }
604
605 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
606 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
607 {
608 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
609 u64 addr = le64_to_cpu(sgl->addr);
610 u32 len = get_unaligned_le24(sgl->length);
611 u32 key = get_unaligned_le32(sgl->key);
612 int ret;
613 u16 status;
614
615 /* no data command? */
616 if (!len)
617 return 0;
618
619 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
620 len);
621 if (status)
622 return status;
623
624 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
625 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
626 nvmet_data_dir(&rsp->req));
627 if (ret < 0)
628 return NVME_SC_INTERNAL;
629 rsp->n_rdma += ret;
630
631 if (invalidate) {
632 rsp->invalidate_rkey = key;
633 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
634 }
635
636 return 0;
637 }
638
639 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
640 {
641 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
642
643 switch (sgl->type >> 4) {
644 case NVME_SGL_FMT_DATA_DESC:
645 switch (sgl->type & 0xf) {
646 case NVME_SGL_FMT_OFFSET:
647 return nvmet_rdma_map_sgl_inline(rsp);
648 default:
649 pr_err("invalid SGL subtype: %#x\n", sgl->type);
650 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
651 }
652 case NVME_KEY_SGL_FMT_DATA_DESC:
653 switch (sgl->type & 0xf) {
654 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
655 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
656 case NVME_SGL_FMT_ADDRESS:
657 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
658 default:
659 pr_err("invalid SGL subtype: %#x\n", sgl->type);
660 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
661 }
662 default:
663 pr_err("invalid SGL type: %#x\n", sgl->type);
664 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
665 }
666 }
667
668 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
669 {
670 struct nvmet_rdma_queue *queue = rsp->queue;
671
672 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
673 &queue->sq_wr_avail) < 0)) {
674 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
675 1 + rsp->n_rdma, queue->idx,
676 queue->nvme_sq.ctrl->cntlid);
677 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
678 return false;
679 }
680
681 if (nvmet_rdma_need_data_in(rsp)) {
682 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
683 queue->cm_id->port_num, &rsp->read_cqe, NULL))
684 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
685 } else {
686 rsp->req.execute(&rsp->req);
687 }
688
689 return true;
690 }
691
692 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
693 struct nvmet_rdma_rsp *cmd)
694 {
695 u16 status;
696
697 cmd->queue = queue;
698 cmd->n_rdma = 0;
699 cmd->req.port = queue->port;
700
701 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
702 &queue->nvme_sq, &nvmet_rdma_ops))
703 return;
704
705 status = nvmet_rdma_map_sgl(cmd);
706 if (status)
707 goto out_err;
708
709 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
710 spin_lock(&queue->rsp_wr_wait_lock);
711 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
712 spin_unlock(&queue->rsp_wr_wait_lock);
713 }
714
715 return;
716
717 out_err:
718 nvmet_req_complete(&cmd->req, status);
719 }
720
721 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
722 {
723 struct nvmet_rdma_cmd *cmd =
724 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
725 struct nvmet_rdma_queue *queue = cq->cq_context;
726 struct nvmet_rdma_rsp *rsp;
727
728 if (unlikely(wc->status != IB_WC_SUCCESS)) {
729 if (wc->status != IB_WC_WR_FLUSH_ERR) {
730 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
731 wc->wr_cqe, ib_wc_status_msg(wc->status),
732 wc->status);
733 nvmet_rdma_error_comp(queue);
734 }
735 return;
736 }
737
738 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
739 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
740 nvmet_rdma_error_comp(queue);
741 return;
742 }
743
744 cmd->queue = queue;
745 rsp = nvmet_rdma_get_rsp(queue);
746 rsp->cmd = cmd;
747 rsp->flags = 0;
748 rsp->req.cmd = cmd->nvme_cmd;
749
750 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
751 unsigned long flags;
752
753 spin_lock_irqsave(&queue->state_lock, flags);
754 if (queue->state == NVMET_RDMA_Q_CONNECTING)
755 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
756 else
757 nvmet_rdma_put_rsp(rsp);
758 spin_unlock_irqrestore(&queue->state_lock, flags);
759 return;
760 }
761
762 nvmet_rdma_handle_command(queue, rsp);
763 }
764
765 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
766 {
767 if (!ndev->srq)
768 return;
769
770 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
771 ib_destroy_srq(ndev->srq);
772 }
773
774 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
775 {
776 struct ib_srq_init_attr srq_attr = { NULL, };
777 struct ib_srq *srq;
778 size_t srq_size;
779 int ret, i;
780
781 srq_size = 4095; /* XXX: tune */
782
783 srq_attr.attr.max_wr = srq_size;
784 srq_attr.attr.max_sge = 2;
785 srq_attr.attr.srq_limit = 0;
786 srq_attr.srq_type = IB_SRQT_BASIC;
787 srq = ib_create_srq(ndev->pd, &srq_attr);
788 if (IS_ERR(srq)) {
789 /*
790 * If SRQs aren't supported we just go ahead and use normal
791 * non-shared receive queues.
792 */
793 pr_info("SRQ requested but not supported.\n");
794 return 0;
795 }
796
797 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
798 if (IS_ERR(ndev->srq_cmds)) {
799 ret = PTR_ERR(ndev->srq_cmds);
800 goto out_destroy_srq;
801 }
802
803 ndev->srq = srq;
804 ndev->srq_size = srq_size;
805
806 for (i = 0; i < srq_size; i++)
807 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
808
809 return 0;
810
811 out_destroy_srq:
812 ib_destroy_srq(srq);
813 return ret;
814 }
815
816 static void nvmet_rdma_free_dev(struct kref *ref)
817 {
818 struct nvmet_rdma_device *ndev =
819 container_of(ref, struct nvmet_rdma_device, ref);
820
821 mutex_lock(&device_list_mutex);
822 list_del(&ndev->entry);
823 mutex_unlock(&device_list_mutex);
824
825 nvmet_rdma_destroy_srq(ndev);
826 ib_dealloc_pd(ndev->pd);
827
828 kfree(ndev);
829 }
830
831 static struct nvmet_rdma_device *
832 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
833 {
834 struct nvmet_rdma_device *ndev;
835 int ret;
836
837 mutex_lock(&device_list_mutex);
838 list_for_each_entry(ndev, &device_list, entry) {
839 if (ndev->device->node_guid == cm_id->device->node_guid &&
840 kref_get_unless_zero(&ndev->ref))
841 goto out_unlock;
842 }
843
844 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
845 if (!ndev)
846 goto out_err;
847
848 ndev->device = cm_id->device;
849 kref_init(&ndev->ref);
850
851 ndev->pd = ib_alloc_pd(ndev->device, 0);
852 if (IS_ERR(ndev->pd))
853 goto out_free_dev;
854
855 if (nvmet_rdma_use_srq) {
856 ret = nvmet_rdma_init_srq(ndev);
857 if (ret)
858 goto out_free_pd;
859 }
860
861 list_add(&ndev->entry, &device_list);
862 out_unlock:
863 mutex_unlock(&device_list_mutex);
864 pr_debug("added %s.\n", ndev->device->name);
865 return ndev;
866
867 out_free_pd:
868 ib_dealloc_pd(ndev->pd);
869 out_free_dev:
870 kfree(ndev);
871 out_err:
872 mutex_unlock(&device_list_mutex);
873 return NULL;
874 }
875
876 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
877 {
878 struct ib_qp_init_attr qp_attr;
879 struct nvmet_rdma_device *ndev = queue->dev;
880 int comp_vector, nr_cqe, ret, i;
881
882 /*
883 * Spread the io queues across completion vectors,
884 * but still keep all admin queues on vector 0.
885 */
886 comp_vector = !queue->host_qid ? 0 :
887 queue->idx % ndev->device->num_comp_vectors;
888
889 /*
890 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
891 */
892 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
893
894 queue->cq = ib_alloc_cq(ndev->device, queue,
895 nr_cqe + 1, comp_vector,
896 IB_POLL_WORKQUEUE);
897 if (IS_ERR(queue->cq)) {
898 ret = PTR_ERR(queue->cq);
899 pr_err("failed to create CQ cqe= %d ret= %d\n",
900 nr_cqe + 1, ret);
901 goto out;
902 }
903
904 memset(&qp_attr, 0, sizeof(qp_attr));
905 qp_attr.qp_context = queue;
906 qp_attr.event_handler = nvmet_rdma_qp_event;
907 qp_attr.send_cq = queue->cq;
908 qp_attr.recv_cq = queue->cq;
909 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
910 qp_attr.qp_type = IB_QPT_RC;
911 /* +1 for drain */
912 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
913 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
914 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
915 ndev->device->attrs.max_sge);
916
917 if (ndev->srq) {
918 qp_attr.srq = ndev->srq;
919 } else {
920 /* +1 for drain */
921 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
922 qp_attr.cap.max_recv_sge = 2;
923 }
924
925 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
926 if (ret) {
927 pr_err("failed to create_qp ret= %d\n", ret);
928 goto err_destroy_cq;
929 }
930
931 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
932
933 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
934 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
935 qp_attr.cap.max_send_wr, queue->cm_id);
936
937 if (!ndev->srq) {
938 for (i = 0; i < queue->recv_queue_size; i++) {
939 queue->cmds[i].queue = queue;
940 nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
941 }
942 }
943
944 out:
945 return ret;
946
947 err_destroy_cq:
948 ib_free_cq(queue->cq);
949 goto out;
950 }
951
952 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
953 {
954 ib_drain_qp(queue->cm_id->qp);
955 rdma_destroy_qp(queue->cm_id);
956 ib_free_cq(queue->cq);
957 }
958
959 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
960 {
961 pr_info("freeing queue %d\n", queue->idx);
962
963 nvmet_sq_destroy(&queue->nvme_sq);
964
965 nvmet_rdma_destroy_queue_ib(queue);
966 if (!queue->dev->srq) {
967 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
968 queue->recv_queue_size,
969 !queue->host_qid);
970 }
971 nvmet_rdma_free_rsps(queue);
972 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
973 kfree(queue);
974 }
975
976 static void nvmet_rdma_release_queue_work(struct work_struct *w)
977 {
978 struct nvmet_rdma_queue *queue =
979 container_of(w, struct nvmet_rdma_queue, release_work);
980 struct rdma_cm_id *cm_id = queue->cm_id;
981 struct nvmet_rdma_device *dev = queue->dev;
982 enum nvmet_rdma_queue_state state = queue->state;
983
984 nvmet_rdma_free_queue(queue);
985
986 if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
987 rdma_destroy_id(cm_id);
988
989 kref_put(&dev->ref, nvmet_rdma_free_dev);
990 }
991
992 static int
993 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
994 struct nvmet_rdma_queue *queue)
995 {
996 struct nvme_rdma_cm_req *req;
997
998 req = (struct nvme_rdma_cm_req *)conn->private_data;
999 if (!req || conn->private_data_len == 0)
1000 return NVME_RDMA_CM_INVALID_LEN;
1001
1002 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1003 return NVME_RDMA_CM_INVALID_RECFMT;
1004
1005 queue->host_qid = le16_to_cpu(req->qid);
1006
1007 /*
1008 * req->hsqsize corresponds to our recv queue size plus 1
1009 * req->hrqsize corresponds to our send queue size
1010 */
1011 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1012 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1013
1014 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1015 return NVME_RDMA_CM_INVALID_HSQSIZE;
1016
1017 /* XXX: Should we enforce some kind of max for IO queues? */
1018
1019 return 0;
1020 }
1021
1022 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1023 enum nvme_rdma_cm_status status)
1024 {
1025 struct nvme_rdma_cm_rej rej;
1026
1027 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1028 rej.sts = cpu_to_le16(status);
1029
1030 return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1031 }
1032
1033 static struct nvmet_rdma_queue *
1034 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1035 struct rdma_cm_id *cm_id,
1036 struct rdma_cm_event *event)
1037 {
1038 struct nvmet_rdma_queue *queue;
1039 int ret;
1040
1041 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1042 if (!queue) {
1043 ret = NVME_RDMA_CM_NO_RSC;
1044 goto out_reject;
1045 }
1046
1047 ret = nvmet_sq_init(&queue->nvme_sq);
1048 if (ret) {
1049 ret = NVME_RDMA_CM_NO_RSC;
1050 goto out_free_queue;
1051 }
1052
1053 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1054 if (ret)
1055 goto out_destroy_sq;
1056
1057 /*
1058 * Schedules the actual release because calling rdma_destroy_id from
1059 * inside a CM callback would trigger a deadlock. (great API design..)
1060 */
1061 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1062 queue->dev = ndev;
1063 queue->cm_id = cm_id;
1064
1065 spin_lock_init(&queue->state_lock);
1066 queue->state = NVMET_RDMA_Q_CONNECTING;
1067 INIT_LIST_HEAD(&queue->rsp_wait_list);
1068 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1069 spin_lock_init(&queue->rsp_wr_wait_lock);
1070 INIT_LIST_HEAD(&queue->free_rsps);
1071 spin_lock_init(&queue->rsps_lock);
1072 INIT_LIST_HEAD(&queue->queue_list);
1073
1074 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1075 if (queue->idx < 0) {
1076 ret = NVME_RDMA_CM_NO_RSC;
1077 goto out_free_queue;
1078 }
1079
1080 ret = nvmet_rdma_alloc_rsps(queue);
1081 if (ret) {
1082 ret = NVME_RDMA_CM_NO_RSC;
1083 goto out_ida_remove;
1084 }
1085
1086 if (!ndev->srq) {
1087 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1088 queue->recv_queue_size,
1089 !queue->host_qid);
1090 if (IS_ERR(queue->cmds)) {
1091 ret = NVME_RDMA_CM_NO_RSC;
1092 goto out_free_responses;
1093 }
1094 }
1095
1096 ret = nvmet_rdma_create_queue_ib(queue);
1097 if (ret) {
1098 pr_err("%s: creating RDMA queue failed (%d).\n",
1099 __func__, ret);
1100 ret = NVME_RDMA_CM_NO_RSC;
1101 goto out_free_cmds;
1102 }
1103
1104 return queue;
1105
1106 out_free_cmds:
1107 if (!ndev->srq) {
1108 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1109 queue->recv_queue_size,
1110 !queue->host_qid);
1111 }
1112 out_free_responses:
1113 nvmet_rdma_free_rsps(queue);
1114 out_ida_remove:
1115 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1116 out_destroy_sq:
1117 nvmet_sq_destroy(&queue->nvme_sq);
1118 out_free_queue:
1119 kfree(queue);
1120 out_reject:
1121 pr_debug("rejecting connect request with status code %d\n", ret);
1122 nvmet_rdma_cm_reject(cm_id, ret);
1123 return NULL;
1124 }
1125
1126 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1127 {
1128 struct nvmet_rdma_queue *queue = priv;
1129
1130 switch (event->event) {
1131 case IB_EVENT_COMM_EST:
1132 rdma_notify(queue->cm_id, event->event);
1133 break;
1134 default:
1135 pr_err("received IB QP event: %s (%d)\n",
1136 ib_event_msg(event->event), event->event);
1137 break;
1138 }
1139 }
1140
1141 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1142 struct nvmet_rdma_queue *queue,
1143 struct rdma_conn_param *p)
1144 {
1145 struct rdma_conn_param param = { };
1146 struct nvme_rdma_cm_rep priv = { };
1147 int ret = -ENOMEM;
1148
1149 param.rnr_retry_count = 7;
1150 param.flow_control = 1;
1151 param.initiator_depth = min_t(u8, p->initiator_depth,
1152 queue->dev->device->attrs.max_qp_init_rd_atom);
1153 param.private_data = &priv;
1154 param.private_data_len = sizeof(priv);
1155 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1156 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1157
1158 ret = rdma_accept(cm_id, &param);
1159 if (ret)
1160 pr_err("rdma_accept failed (error code = %d)\n", ret);
1161
1162 return ret;
1163 }
1164
1165 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1166 struct rdma_cm_event *event)
1167 {
1168 struct nvmet_rdma_device *ndev;
1169 struct nvmet_rdma_queue *queue;
1170 int ret = -EINVAL;
1171
1172 ndev = nvmet_rdma_find_get_device(cm_id);
1173 if (!ndev) {
1174 pr_err("no client data!\n");
1175 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1176 return -ECONNREFUSED;
1177 }
1178
1179 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1180 if (!queue) {
1181 ret = -ENOMEM;
1182 goto put_device;
1183 }
1184 queue->port = cm_id->context;
1185
1186 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1187 if (ret)
1188 goto release_queue;
1189
1190 mutex_lock(&nvmet_rdma_queue_mutex);
1191 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1192 mutex_unlock(&nvmet_rdma_queue_mutex);
1193
1194 return 0;
1195
1196 release_queue:
1197 nvmet_rdma_free_queue(queue);
1198 put_device:
1199 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1200
1201 return ret;
1202 }
1203
1204 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1205 {
1206 unsigned long flags;
1207
1208 spin_lock_irqsave(&queue->state_lock, flags);
1209 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1210 pr_warn("trying to establish a connected queue\n");
1211 goto out_unlock;
1212 }
1213 queue->state = NVMET_RDMA_Q_LIVE;
1214
1215 while (!list_empty(&queue->rsp_wait_list)) {
1216 struct nvmet_rdma_rsp *cmd;
1217
1218 cmd = list_first_entry(&queue->rsp_wait_list,
1219 struct nvmet_rdma_rsp, wait_list);
1220 list_del(&cmd->wait_list);
1221
1222 spin_unlock_irqrestore(&queue->state_lock, flags);
1223 nvmet_rdma_handle_command(queue, cmd);
1224 spin_lock_irqsave(&queue->state_lock, flags);
1225 }
1226
1227 out_unlock:
1228 spin_unlock_irqrestore(&queue->state_lock, flags);
1229 }
1230
1231 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1232 {
1233 bool disconnect = false;
1234 unsigned long flags;
1235
1236 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1237
1238 spin_lock_irqsave(&queue->state_lock, flags);
1239 switch (queue->state) {
1240 case NVMET_RDMA_Q_CONNECTING:
1241 case NVMET_RDMA_Q_LIVE:
1242 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1243 case NVMET_RDMA_IN_DEVICE_REMOVAL:
1244 disconnect = true;
1245 break;
1246 case NVMET_RDMA_Q_DISCONNECTING:
1247 break;
1248 }
1249 spin_unlock_irqrestore(&queue->state_lock, flags);
1250
1251 if (disconnect) {
1252 rdma_disconnect(queue->cm_id);
1253 schedule_work(&queue->release_work);
1254 }
1255 }
1256
1257 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1258 {
1259 bool disconnect = false;
1260
1261 mutex_lock(&nvmet_rdma_queue_mutex);
1262 if (!list_empty(&queue->queue_list)) {
1263 list_del_init(&queue->queue_list);
1264 disconnect = true;
1265 }
1266 mutex_unlock(&nvmet_rdma_queue_mutex);
1267
1268 if (disconnect)
1269 __nvmet_rdma_queue_disconnect(queue);
1270 }
1271
1272 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1273 struct nvmet_rdma_queue *queue)
1274 {
1275 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1276
1277 mutex_lock(&nvmet_rdma_queue_mutex);
1278 if (!list_empty(&queue->queue_list))
1279 list_del_init(&queue->queue_list);
1280 mutex_unlock(&nvmet_rdma_queue_mutex);
1281
1282 pr_err("failed to connect queue %d\n", queue->idx);
1283 schedule_work(&queue->release_work);
1284 }
1285
1286 /**
1287 * nvme_rdma_device_removal() - Handle RDMA device removal
1288 * @queue: nvmet rdma queue (cm id qp_context)
1289 * @addr: nvmet address (cm_id context)
1290 *
1291 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1292 * to unplug so we should take care of destroying our RDMA resources.
1293 * This event will be generated for each allocated cm_id.
1294 *
1295 * Note that this event can be generated on a normal queue cm_id
1296 * and/or a device bound listener cm_id (where in this case
1297 * queue will be null).
1298 *
1299 * we claim ownership on destroying the cm_id. For queues we move
1300 * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port
1301 * we nullify the priv to prevent double cm_id destruction and destroying
1302 * the cm_id implicitely by returning a non-zero rc to the callout.
1303 */
1304 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1305 struct nvmet_rdma_queue *queue)
1306 {
1307 unsigned long flags;
1308
1309 if (!queue) {
1310 struct nvmet_port *port = cm_id->context;
1311
1312 /*
1313 * This is a listener cm_id. Make sure that
1314 * future remove_port won't invoke a double
1315 * cm_id destroy. use atomic xchg to make sure
1316 * we don't compete with remove_port.
1317 */
1318 if (xchg(&port->priv, NULL) != cm_id)
1319 return 0;
1320 } else {
1321 /*
1322 * This is a queue cm_id. Make sure that
1323 * release queue will not destroy the cm_id
1324 * and schedule all ctrl queues removal (only
1325 * if the queue is not disconnecting already).
1326 */
1327 spin_lock_irqsave(&queue->state_lock, flags);
1328 if (queue->state != NVMET_RDMA_Q_DISCONNECTING)
1329 queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL;
1330 spin_unlock_irqrestore(&queue->state_lock, flags);
1331 nvmet_rdma_queue_disconnect(queue);
1332 flush_scheduled_work();
1333 }
1334
1335 /*
1336 * We need to return 1 so that the core will destroy
1337 * it's own ID. What a great API design..
1338 */
1339 return 1;
1340 }
1341
1342 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1343 struct rdma_cm_event *event)
1344 {
1345 struct nvmet_rdma_queue *queue = NULL;
1346 int ret = 0;
1347
1348 if (cm_id->qp)
1349 queue = cm_id->qp->qp_context;
1350
1351 pr_debug("%s (%d): status %d id %p\n",
1352 rdma_event_msg(event->event), event->event,
1353 event->status, cm_id);
1354
1355 switch (event->event) {
1356 case RDMA_CM_EVENT_CONNECT_REQUEST:
1357 ret = nvmet_rdma_queue_connect(cm_id, event);
1358 break;
1359 case RDMA_CM_EVENT_ESTABLISHED:
1360 nvmet_rdma_queue_established(queue);
1361 break;
1362 case RDMA_CM_EVENT_ADDR_CHANGE:
1363 case RDMA_CM_EVENT_DISCONNECTED:
1364 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1365 /*
1366 * We might end up here when we already freed the qp
1367 * which means queue release sequence is in progress,
1368 * so don't get in the way...
1369 */
1370 if (queue)
1371 nvmet_rdma_queue_disconnect(queue);
1372 break;
1373 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1374 ret = nvmet_rdma_device_removal(cm_id, queue);
1375 break;
1376 case RDMA_CM_EVENT_REJECTED:
1377 case RDMA_CM_EVENT_UNREACHABLE:
1378 case RDMA_CM_EVENT_CONNECT_ERROR:
1379 nvmet_rdma_queue_connect_fail(cm_id, queue);
1380 break;
1381 default:
1382 pr_err("received unrecognized RDMA CM event %d\n",
1383 event->event);
1384 break;
1385 }
1386
1387 return ret;
1388 }
1389
1390 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1391 {
1392 struct nvmet_rdma_queue *queue;
1393
1394 restart:
1395 mutex_lock(&nvmet_rdma_queue_mutex);
1396 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1397 if (queue->nvme_sq.ctrl == ctrl) {
1398 list_del_init(&queue->queue_list);
1399 mutex_unlock(&nvmet_rdma_queue_mutex);
1400
1401 __nvmet_rdma_queue_disconnect(queue);
1402 goto restart;
1403 }
1404 }
1405 mutex_unlock(&nvmet_rdma_queue_mutex);
1406 }
1407
1408 static int nvmet_rdma_add_port(struct nvmet_port *port)
1409 {
1410 struct rdma_cm_id *cm_id;
1411 struct sockaddr_in addr_in;
1412 u16 port_in;
1413 int ret;
1414
1415 switch (port->disc_addr.adrfam) {
1416 case NVMF_ADDR_FAMILY_IP4:
1417 break;
1418 default:
1419 pr_err("address family %d not supported\n",
1420 port->disc_addr.adrfam);
1421 return -EINVAL;
1422 }
1423
1424 ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in);
1425 if (ret)
1426 return ret;
1427
1428 addr_in.sin_family = AF_INET;
1429 addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr);
1430 addr_in.sin_port = htons(port_in);
1431
1432 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1433 RDMA_PS_TCP, IB_QPT_RC);
1434 if (IS_ERR(cm_id)) {
1435 pr_err("CM ID creation failed\n");
1436 return PTR_ERR(cm_id);
1437 }
1438
1439 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in);
1440 if (ret) {
1441 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret);
1442 goto out_destroy_id;
1443 }
1444
1445 ret = rdma_listen(cm_id, 128);
1446 if (ret) {
1447 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret);
1448 goto out_destroy_id;
1449 }
1450
1451 pr_info("enabling port %d (%pISpc)\n",
1452 le16_to_cpu(port->disc_addr.portid), &addr_in);
1453 port->priv = cm_id;
1454 return 0;
1455
1456 out_destroy_id:
1457 rdma_destroy_id(cm_id);
1458 return ret;
1459 }
1460
1461 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1462 {
1463 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1464
1465 if (cm_id)
1466 rdma_destroy_id(cm_id);
1467 }
1468
1469 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1470 .owner = THIS_MODULE,
1471 .type = NVMF_TRTYPE_RDMA,
1472 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE,
1473 .msdbd = 1,
1474 .has_keyed_sgls = 1,
1475 .add_port = nvmet_rdma_add_port,
1476 .remove_port = nvmet_rdma_remove_port,
1477 .queue_response = nvmet_rdma_queue_response,
1478 .delete_ctrl = nvmet_rdma_delete_ctrl,
1479 };
1480
1481 static int __init nvmet_rdma_init(void)
1482 {
1483 return nvmet_register_transport(&nvmet_rdma_ops);
1484 }
1485
1486 static void __exit nvmet_rdma_exit(void)
1487 {
1488 struct nvmet_rdma_queue *queue;
1489
1490 nvmet_unregister_transport(&nvmet_rdma_ops);
1491
1492 flush_scheduled_work();
1493
1494 mutex_lock(&nvmet_rdma_queue_mutex);
1495 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1496 struct nvmet_rdma_queue, queue_list))) {
1497 list_del_init(&queue->queue_list);
1498
1499 mutex_unlock(&nvmet_rdma_queue_mutex);
1500 __nvmet_rdma_queue_disconnect(queue);
1501 mutex_lock(&nvmet_rdma_queue_mutex);
1502 }
1503 mutex_unlock(&nvmet_rdma_queue_mutex);
1504
1505 flush_scheduled_work();
1506 ida_destroy(&nvmet_rdma_queue_ida);
1507 }
1508
1509 module_init(nvmet_rdma_init);
1510 module_exit(nvmet_rdma_exit);
1511
1512 MODULE_LICENSE("GPL v2");
1513 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */