]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvmem/core.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / drivers / nvmem / core.c
1 /*
2 * nvmem framework core.
3 *
4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27
28 struct nvmem_device {
29 const char *name;
30 struct module *owner;
31 struct device dev;
32 int stride;
33 int word_size;
34 int ncells;
35 int id;
36 int users;
37 size_t size;
38 bool read_only;
39 int flags;
40 struct bin_attribute eeprom;
41 struct device *base_dev;
42 nvmem_reg_read_t reg_read;
43 nvmem_reg_write_t reg_write;
44 void *priv;
45 };
46
47 #define FLAG_COMPAT BIT(0)
48
49 struct nvmem_cell {
50 const char *name;
51 int offset;
52 int bytes;
53 int bit_offset;
54 int nbits;
55 struct nvmem_device *nvmem;
56 struct list_head node;
57 };
58
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 void *val, size_t bytes)
72 {
73 if (nvmem->reg_read)
74 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75
76 return -EINVAL;
77 }
78
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 void *val, size_t bytes)
81 {
82 if (nvmem->reg_write)
83 return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84
85 return -EINVAL;
86 }
87
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 struct bin_attribute *attr,
90 char *buf, loff_t pos, size_t count)
91 {
92 struct device *dev;
93 struct nvmem_device *nvmem;
94 int rc;
95
96 if (attr->private)
97 dev = attr->private;
98 else
99 dev = container_of(kobj, struct device, kobj);
100 nvmem = to_nvmem_device(dev);
101
102 /* Stop the user from reading */
103 if (pos >= nvmem->size)
104 return 0;
105
106 if (count < nvmem->word_size)
107 return -EINVAL;
108
109 if (pos + count > nvmem->size)
110 count = nvmem->size - pos;
111
112 count = round_down(count, nvmem->word_size);
113
114 rc = nvmem_reg_read(nvmem, pos, buf, count);
115
116 if (rc)
117 return rc;
118
119 return count;
120 }
121
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 struct bin_attribute *attr,
124 char *buf, loff_t pos, size_t count)
125 {
126 struct device *dev;
127 struct nvmem_device *nvmem;
128 int rc;
129
130 if (attr->private)
131 dev = attr->private;
132 else
133 dev = container_of(kobj, struct device, kobj);
134 nvmem = to_nvmem_device(dev);
135
136 /* Stop the user from writing */
137 if (pos >= nvmem->size)
138 return 0;
139
140 if (count < nvmem->word_size)
141 return -EINVAL;
142
143 if (pos + count > nvmem->size)
144 count = nvmem->size - pos;
145
146 count = round_down(count, nvmem->word_size);
147
148 rc = nvmem_reg_write(nvmem, pos, buf, count);
149
150 if (rc)
151 return rc;
152
153 return count;
154 }
155
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 .attr = {
159 .name = "nvmem",
160 .mode = S_IWUSR | S_IRUGO,
161 },
162 .read = bin_attr_nvmem_read,
163 .write = bin_attr_nvmem_write,
164 };
165
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 &bin_attr_rw_nvmem,
168 NULL,
169 };
170
171 static const struct attribute_group nvmem_bin_rw_group = {
172 .bin_attrs = nvmem_bin_rw_attributes,
173 };
174
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 &nvmem_bin_rw_group,
177 NULL,
178 };
179
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 .attr = {
183 .name = "nvmem",
184 .mode = S_IRUGO,
185 },
186 .read = bin_attr_nvmem_read,
187 };
188
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 &bin_attr_ro_nvmem,
191 NULL,
192 };
193
194 static const struct attribute_group nvmem_bin_ro_group = {
195 .bin_attrs = nvmem_bin_ro_attributes,
196 };
197
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 &nvmem_bin_ro_group,
200 NULL,
201 };
202
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 .attr = {
206 .name = "nvmem",
207 .mode = S_IWUSR | S_IRUSR,
208 },
209 .read = bin_attr_nvmem_read,
210 .write = bin_attr_nvmem_write,
211 };
212
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 &bin_attr_rw_root_nvmem,
215 NULL,
216 };
217
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 .bin_attrs = nvmem_bin_rw_root_attributes,
220 };
221
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 &nvmem_bin_rw_root_group,
224 NULL,
225 };
226
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 .attr = {
230 .name = "nvmem",
231 .mode = S_IRUSR,
232 },
233 .read = bin_attr_nvmem_read,
234 };
235
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 &bin_attr_ro_root_nvmem,
238 NULL,
239 };
240
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 .bin_attrs = nvmem_bin_ro_root_attributes,
243 };
244
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 &nvmem_bin_ro_root_group,
247 NULL,
248 };
249
250 static void nvmem_release(struct device *dev)
251 {
252 struct nvmem_device *nvmem = to_nvmem_device(dev);
253
254 ida_simple_remove(&nvmem_ida, nvmem->id);
255 kfree(nvmem);
256 }
257
258 static const struct device_type nvmem_provider_type = {
259 .release = nvmem_release,
260 };
261
262 static struct bus_type nvmem_bus_type = {
263 .name = "nvmem",
264 };
265
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 return dev->of_node == nvmem_np;
269 }
270
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 struct device *d;
274
275 if (!nvmem_np)
276 return NULL;
277
278 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279
280 if (!d)
281 return NULL;
282
283 return to_nvmem_device(d);
284 }
285
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 struct nvmem_cell *p;
289
290 mutex_lock(&nvmem_cells_mutex);
291
292 list_for_each_entry(p, &nvmem_cells, node)
293 if (p && !strcmp(p->name, cell_id)) {
294 mutex_unlock(&nvmem_cells_mutex);
295 return p;
296 }
297
298 mutex_unlock(&nvmem_cells_mutex);
299
300 return NULL;
301 }
302
303 static void nvmem_cell_drop(struct nvmem_cell *cell)
304 {
305 mutex_lock(&nvmem_cells_mutex);
306 list_del(&cell->node);
307 mutex_unlock(&nvmem_cells_mutex);
308 kfree(cell);
309 }
310
311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
312 {
313 struct nvmem_cell *cell;
314 struct list_head *p, *n;
315
316 list_for_each_safe(p, n, &nvmem_cells) {
317 cell = list_entry(p, struct nvmem_cell, node);
318 if (cell->nvmem == nvmem)
319 nvmem_cell_drop(cell);
320 }
321 }
322
323 static void nvmem_cell_add(struct nvmem_cell *cell)
324 {
325 mutex_lock(&nvmem_cells_mutex);
326 list_add_tail(&cell->node, &nvmem_cells);
327 mutex_unlock(&nvmem_cells_mutex);
328 }
329
330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
331 const struct nvmem_cell_info *info,
332 struct nvmem_cell *cell)
333 {
334 cell->nvmem = nvmem;
335 cell->offset = info->offset;
336 cell->bytes = info->bytes;
337 cell->name = info->name;
338
339 cell->bit_offset = info->bit_offset;
340 cell->nbits = info->nbits;
341
342 if (cell->nbits)
343 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
344 BITS_PER_BYTE);
345
346 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
347 dev_err(&nvmem->dev,
348 "cell %s unaligned to nvmem stride %d\n",
349 cell->name, nvmem->stride);
350 return -EINVAL;
351 }
352
353 return 0;
354 }
355
356 static int nvmem_add_cells(struct nvmem_device *nvmem,
357 const struct nvmem_config *cfg)
358 {
359 struct nvmem_cell **cells;
360 const struct nvmem_cell_info *info = cfg->cells;
361 int i, rval;
362
363 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
364 if (!cells)
365 return -ENOMEM;
366
367 for (i = 0; i < cfg->ncells; i++) {
368 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
369 if (!cells[i]) {
370 rval = -ENOMEM;
371 goto err;
372 }
373
374 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
375 if (rval) {
376 kfree(cells[i]);
377 goto err;
378 }
379
380 nvmem_cell_add(cells[i]);
381 }
382
383 nvmem->ncells = cfg->ncells;
384 /* remove tmp array */
385 kfree(cells);
386
387 return 0;
388 err:
389 while (i--)
390 nvmem_cell_drop(cells[i]);
391
392 kfree(cells);
393
394 return rval;
395 }
396
397 /*
398 * nvmem_setup_compat() - Create an additional binary entry in
399 * drivers sys directory, to be backwards compatible with the older
400 * drivers/misc/eeprom drivers.
401 */
402 static int nvmem_setup_compat(struct nvmem_device *nvmem,
403 const struct nvmem_config *config)
404 {
405 int rval;
406
407 if (!config->base_dev)
408 return -EINVAL;
409
410 if (nvmem->read_only)
411 nvmem->eeprom = bin_attr_ro_root_nvmem;
412 else
413 nvmem->eeprom = bin_attr_rw_root_nvmem;
414 nvmem->eeprom.attr.name = "eeprom";
415 nvmem->eeprom.size = nvmem->size;
416 #ifdef CONFIG_DEBUG_LOCK_ALLOC
417 nvmem->eeprom.attr.key = &eeprom_lock_key;
418 #endif
419 nvmem->eeprom.private = &nvmem->dev;
420 nvmem->base_dev = config->base_dev;
421
422 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
423 if (rval) {
424 dev_err(&nvmem->dev,
425 "Failed to create eeprom binary file %d\n", rval);
426 return rval;
427 }
428
429 nvmem->flags |= FLAG_COMPAT;
430
431 return 0;
432 }
433
434 /**
435 * nvmem_register() - Register a nvmem device for given nvmem_config.
436 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
437 *
438 * @config: nvmem device configuration with which nvmem device is created.
439 *
440 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
441 * on success.
442 */
443
444 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
445 {
446 struct nvmem_device *nvmem;
447 struct device_node *np;
448 int rval;
449
450 if (!config->dev)
451 return ERR_PTR(-EINVAL);
452
453 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
454 if (!nvmem)
455 return ERR_PTR(-ENOMEM);
456
457 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
458 if (rval < 0) {
459 kfree(nvmem);
460 return ERR_PTR(rval);
461 }
462
463 nvmem->id = rval;
464 nvmem->owner = config->owner;
465 nvmem->stride = config->stride;
466 nvmem->word_size = config->word_size;
467 nvmem->size = config->size;
468 nvmem->dev.type = &nvmem_provider_type;
469 nvmem->dev.bus = &nvmem_bus_type;
470 nvmem->dev.parent = config->dev;
471 nvmem->priv = config->priv;
472 nvmem->reg_read = config->reg_read;
473 nvmem->reg_write = config->reg_write;
474 np = config->dev->of_node;
475 nvmem->dev.of_node = np;
476 dev_set_name(&nvmem->dev, "%s%d",
477 config->name ? : "nvmem",
478 config->name ? config->id : nvmem->id);
479
480 nvmem->read_only = of_property_read_bool(np, "read-only") |
481 config->read_only;
482
483 if (config->root_only)
484 nvmem->dev.groups = nvmem->read_only ?
485 nvmem_ro_root_dev_groups :
486 nvmem_rw_root_dev_groups;
487 else
488 nvmem->dev.groups = nvmem->read_only ?
489 nvmem_ro_dev_groups :
490 nvmem_rw_dev_groups;
491
492 device_initialize(&nvmem->dev);
493
494 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
495
496 rval = device_add(&nvmem->dev);
497 if (rval)
498 goto err_put_device;
499
500 if (config->compat) {
501 rval = nvmem_setup_compat(nvmem, config);
502 if (rval)
503 goto err_device_del;
504 }
505
506 if (config->cells)
507 nvmem_add_cells(nvmem, config);
508
509 return nvmem;
510
511 err_device_del:
512 device_del(&nvmem->dev);
513 err_put_device:
514 put_device(&nvmem->dev);
515
516 return ERR_PTR(rval);
517 }
518 EXPORT_SYMBOL_GPL(nvmem_register);
519
520 /**
521 * nvmem_unregister() - Unregister previously registered nvmem device
522 *
523 * @nvmem: Pointer to previously registered nvmem device.
524 *
525 * Return: Will be an negative on error or a zero on success.
526 */
527 int nvmem_unregister(struct nvmem_device *nvmem)
528 {
529 mutex_lock(&nvmem_mutex);
530 if (nvmem->users) {
531 mutex_unlock(&nvmem_mutex);
532 return -EBUSY;
533 }
534 mutex_unlock(&nvmem_mutex);
535
536 if (nvmem->flags & FLAG_COMPAT)
537 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
538
539 nvmem_device_remove_all_cells(nvmem);
540 device_del(&nvmem->dev);
541 put_device(&nvmem->dev);
542
543 return 0;
544 }
545 EXPORT_SYMBOL_GPL(nvmem_unregister);
546
547 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
548 struct nvmem_cell **cellp,
549 const char *cell_id)
550 {
551 struct nvmem_device *nvmem = NULL;
552
553 mutex_lock(&nvmem_mutex);
554
555 if (np) {
556 nvmem = of_nvmem_find(np);
557 if (!nvmem) {
558 mutex_unlock(&nvmem_mutex);
559 return ERR_PTR(-EPROBE_DEFER);
560 }
561 } else {
562 struct nvmem_cell *cell = nvmem_find_cell(cell_id);
563
564 if (cell) {
565 nvmem = cell->nvmem;
566 *cellp = cell;
567 }
568
569 if (!nvmem) {
570 mutex_unlock(&nvmem_mutex);
571 return ERR_PTR(-ENOENT);
572 }
573 }
574
575 nvmem->users++;
576 mutex_unlock(&nvmem_mutex);
577
578 if (!try_module_get(nvmem->owner)) {
579 dev_err(&nvmem->dev,
580 "could not increase module refcount for cell %s\n",
581 nvmem->name);
582
583 mutex_lock(&nvmem_mutex);
584 nvmem->users--;
585 mutex_unlock(&nvmem_mutex);
586
587 return ERR_PTR(-EINVAL);
588 }
589
590 return nvmem;
591 }
592
593 static void __nvmem_device_put(struct nvmem_device *nvmem)
594 {
595 module_put(nvmem->owner);
596 mutex_lock(&nvmem_mutex);
597 nvmem->users--;
598 mutex_unlock(&nvmem_mutex);
599 }
600
601 static int nvmem_match(struct device *dev, void *data)
602 {
603 return !strcmp(dev_name(dev), data);
604 }
605
606 static struct nvmem_device *nvmem_find(const char *name)
607 {
608 struct device *d;
609
610 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
611
612 if (!d)
613 return NULL;
614
615 return to_nvmem_device(d);
616 }
617
618 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
619 /**
620 * of_nvmem_device_get() - Get nvmem device from a given id
621 *
622 * @np: Device tree node that uses the nvmem device.
623 * @id: nvmem name from nvmem-names property.
624 *
625 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
626 * on success.
627 */
628 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
629 {
630
631 struct device_node *nvmem_np;
632 int index;
633
634 index = of_property_match_string(np, "nvmem-names", id);
635
636 nvmem_np = of_parse_phandle(np, "nvmem", index);
637 if (!nvmem_np)
638 return ERR_PTR(-EINVAL);
639
640 return __nvmem_device_get(nvmem_np, NULL, NULL);
641 }
642 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
643 #endif
644
645 /**
646 * nvmem_device_get() - Get nvmem device from a given id
647 *
648 * @dev: Device that uses the nvmem device.
649 * @dev_name: name of the requested nvmem device.
650 *
651 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
652 * on success.
653 */
654 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
655 {
656 if (dev->of_node) { /* try dt first */
657 struct nvmem_device *nvmem;
658
659 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
660
661 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
662 return nvmem;
663
664 }
665
666 return nvmem_find(dev_name);
667 }
668 EXPORT_SYMBOL_GPL(nvmem_device_get);
669
670 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
671 {
672 struct nvmem_device **nvmem = res;
673
674 if (WARN_ON(!nvmem || !*nvmem))
675 return 0;
676
677 return *nvmem == data;
678 }
679
680 static void devm_nvmem_device_release(struct device *dev, void *res)
681 {
682 nvmem_device_put(*(struct nvmem_device **)res);
683 }
684
685 /**
686 * devm_nvmem_device_put() - put alredy got nvmem device
687 *
688 * @dev: Device that uses the nvmem device.
689 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
690 * that needs to be released.
691 */
692 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
693 {
694 int ret;
695
696 ret = devres_release(dev, devm_nvmem_device_release,
697 devm_nvmem_device_match, nvmem);
698
699 WARN_ON(ret);
700 }
701 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
702
703 /**
704 * nvmem_device_put() - put alredy got nvmem device
705 *
706 * @nvmem: pointer to nvmem device that needs to be released.
707 */
708 void nvmem_device_put(struct nvmem_device *nvmem)
709 {
710 __nvmem_device_put(nvmem);
711 }
712 EXPORT_SYMBOL_GPL(nvmem_device_put);
713
714 /**
715 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
716 *
717 * @dev: Device that requests the nvmem device.
718 * @id: name id for the requested nvmem device.
719 *
720 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
721 * on success. The nvmem_cell will be freed by the automatically once the
722 * device is freed.
723 */
724 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
725 {
726 struct nvmem_device **ptr, *nvmem;
727
728 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
729 if (!ptr)
730 return ERR_PTR(-ENOMEM);
731
732 nvmem = nvmem_device_get(dev, id);
733 if (!IS_ERR(nvmem)) {
734 *ptr = nvmem;
735 devres_add(dev, ptr);
736 } else {
737 devres_free(ptr);
738 }
739
740 return nvmem;
741 }
742 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
743
744 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
745 {
746 struct nvmem_cell *cell = NULL;
747 struct nvmem_device *nvmem;
748
749 nvmem = __nvmem_device_get(NULL, &cell, cell_id);
750 if (IS_ERR(nvmem))
751 return ERR_CAST(nvmem);
752
753 return cell;
754 }
755
756 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
757 /**
758 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
759 *
760 * @np: Device tree node that uses the nvmem cell.
761 * @name: nvmem cell name from nvmem-cell-names property, or NULL
762 * for the cell at index 0 (the lone cell with no accompanying
763 * nvmem-cell-names property).
764 *
765 * Return: Will be an ERR_PTR() on error or a valid pointer
766 * to a struct nvmem_cell. The nvmem_cell will be freed by the
767 * nvmem_cell_put().
768 */
769 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
770 const char *name)
771 {
772 struct device_node *cell_np, *nvmem_np;
773 struct nvmem_cell *cell;
774 struct nvmem_device *nvmem;
775 const __be32 *addr;
776 int rval, len;
777 int index = 0;
778
779 /* if cell name exists, find index to the name */
780 if (name)
781 index = of_property_match_string(np, "nvmem-cell-names", name);
782
783 cell_np = of_parse_phandle(np, "nvmem-cells", index);
784 if (!cell_np)
785 return ERR_PTR(-EINVAL);
786
787 nvmem_np = of_get_next_parent(cell_np);
788 if (!nvmem_np)
789 return ERR_PTR(-EINVAL);
790
791 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
792 if (IS_ERR(nvmem))
793 return ERR_CAST(nvmem);
794
795 addr = of_get_property(cell_np, "reg", &len);
796 if (!addr || (len < 2 * sizeof(u32))) {
797 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
798 cell_np->full_name);
799 rval = -EINVAL;
800 goto err_mem;
801 }
802
803 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
804 if (!cell) {
805 rval = -ENOMEM;
806 goto err_mem;
807 }
808
809 cell->nvmem = nvmem;
810 cell->offset = be32_to_cpup(addr++);
811 cell->bytes = be32_to_cpup(addr);
812 cell->name = cell_np->name;
813
814 addr = of_get_property(cell_np, "bits", &len);
815 if (addr && len == (2 * sizeof(u32))) {
816 cell->bit_offset = be32_to_cpup(addr++);
817 cell->nbits = be32_to_cpup(addr);
818 }
819
820 if (cell->nbits)
821 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
822 BITS_PER_BYTE);
823
824 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
825 dev_err(&nvmem->dev,
826 "cell %s unaligned to nvmem stride %d\n",
827 cell->name, nvmem->stride);
828 rval = -EINVAL;
829 goto err_sanity;
830 }
831
832 nvmem_cell_add(cell);
833
834 return cell;
835
836 err_sanity:
837 kfree(cell);
838
839 err_mem:
840 __nvmem_device_put(nvmem);
841
842 return ERR_PTR(rval);
843 }
844 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
845 #endif
846
847 /**
848 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
849 *
850 * @dev: Device that requests the nvmem cell.
851 * @cell_id: nvmem cell name to get.
852 *
853 * Return: Will be an ERR_PTR() on error or a valid pointer
854 * to a struct nvmem_cell. The nvmem_cell will be freed by the
855 * nvmem_cell_put().
856 */
857 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
858 {
859 struct nvmem_cell *cell;
860
861 if (dev->of_node) { /* try dt first */
862 cell = of_nvmem_cell_get(dev->of_node, cell_id);
863 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
864 return cell;
865 }
866
867 return nvmem_cell_get_from_list(cell_id);
868 }
869 EXPORT_SYMBOL_GPL(nvmem_cell_get);
870
871 static void devm_nvmem_cell_release(struct device *dev, void *res)
872 {
873 nvmem_cell_put(*(struct nvmem_cell **)res);
874 }
875
876 /**
877 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
878 *
879 * @dev: Device that requests the nvmem cell.
880 * @id: nvmem cell name id to get.
881 *
882 * Return: Will be an ERR_PTR() on error or a valid pointer
883 * to a struct nvmem_cell. The nvmem_cell will be freed by the
884 * automatically once the device is freed.
885 */
886 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
887 {
888 struct nvmem_cell **ptr, *cell;
889
890 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
891 if (!ptr)
892 return ERR_PTR(-ENOMEM);
893
894 cell = nvmem_cell_get(dev, id);
895 if (!IS_ERR(cell)) {
896 *ptr = cell;
897 devres_add(dev, ptr);
898 } else {
899 devres_free(ptr);
900 }
901
902 return cell;
903 }
904 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
905
906 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
907 {
908 struct nvmem_cell **c = res;
909
910 if (WARN_ON(!c || !*c))
911 return 0;
912
913 return *c == data;
914 }
915
916 /**
917 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
918 * from devm_nvmem_cell_get.
919 *
920 * @dev: Device that requests the nvmem cell.
921 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
922 */
923 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
924 {
925 int ret;
926
927 ret = devres_release(dev, devm_nvmem_cell_release,
928 devm_nvmem_cell_match, cell);
929
930 WARN_ON(ret);
931 }
932 EXPORT_SYMBOL(devm_nvmem_cell_put);
933
934 /**
935 * nvmem_cell_put() - Release previously allocated nvmem cell.
936 *
937 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
938 */
939 void nvmem_cell_put(struct nvmem_cell *cell)
940 {
941 struct nvmem_device *nvmem = cell->nvmem;
942
943 __nvmem_device_put(nvmem);
944 nvmem_cell_drop(cell);
945 }
946 EXPORT_SYMBOL_GPL(nvmem_cell_put);
947
948 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
949 void *buf)
950 {
951 u8 *p, *b;
952 int i, bit_offset = cell->bit_offset;
953
954 p = b = buf;
955 if (bit_offset) {
956 /* First shift */
957 *b++ >>= bit_offset;
958
959 /* setup rest of the bytes if any */
960 for (i = 1; i < cell->bytes; i++) {
961 /* Get bits from next byte and shift them towards msb */
962 *p |= *b << (BITS_PER_BYTE - bit_offset);
963
964 p = b;
965 *b++ >>= bit_offset;
966 }
967
968 /* result fits in less bytes */
969 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
970 *p-- = 0;
971 }
972 /* clear msb bits if any leftover in the last byte */
973 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
974 }
975
976 static int __nvmem_cell_read(struct nvmem_device *nvmem,
977 struct nvmem_cell *cell,
978 void *buf, size_t *len)
979 {
980 int rc;
981
982 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
983
984 if (rc)
985 return rc;
986
987 /* shift bits in-place */
988 if (cell->bit_offset || cell->nbits)
989 nvmem_shift_read_buffer_in_place(cell, buf);
990
991 if (len)
992 *len = cell->bytes;
993
994 return 0;
995 }
996
997 /**
998 * nvmem_cell_read() - Read a given nvmem cell
999 *
1000 * @cell: nvmem cell to be read.
1001 * @len: pointer to length of cell which will be populated on successful read;
1002 * can be NULL.
1003 *
1004 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1005 * buffer should be freed by the consumer with a kfree().
1006 */
1007 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1008 {
1009 struct nvmem_device *nvmem = cell->nvmem;
1010 u8 *buf;
1011 int rc;
1012
1013 if (!nvmem)
1014 return ERR_PTR(-EINVAL);
1015
1016 buf = kzalloc(cell->bytes, GFP_KERNEL);
1017 if (!buf)
1018 return ERR_PTR(-ENOMEM);
1019
1020 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1021 if (rc) {
1022 kfree(buf);
1023 return ERR_PTR(rc);
1024 }
1025
1026 return buf;
1027 }
1028 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1029
1030 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1031 u8 *_buf, int len)
1032 {
1033 struct nvmem_device *nvmem = cell->nvmem;
1034 int i, rc, nbits, bit_offset = cell->bit_offset;
1035 u8 v, *p, *buf, *b, pbyte, pbits;
1036
1037 nbits = cell->nbits;
1038 buf = kzalloc(cell->bytes, GFP_KERNEL);
1039 if (!buf)
1040 return ERR_PTR(-ENOMEM);
1041
1042 memcpy(buf, _buf, len);
1043 p = b = buf;
1044
1045 if (bit_offset) {
1046 pbyte = *b;
1047 *b <<= bit_offset;
1048
1049 /* setup the first byte with lsb bits from nvmem */
1050 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1051 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1052
1053 /* setup rest of the byte if any */
1054 for (i = 1; i < cell->bytes; i++) {
1055 /* Get last byte bits and shift them towards lsb */
1056 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1057 pbyte = *b;
1058 p = b;
1059 *b <<= bit_offset;
1060 *b++ |= pbits;
1061 }
1062 }
1063
1064 /* if it's not end on byte boundary */
1065 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1066 /* setup the last byte with msb bits from nvmem */
1067 rc = nvmem_reg_read(nvmem,
1068 cell->offset + cell->bytes - 1, &v, 1);
1069 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1070
1071 }
1072
1073 return buf;
1074 }
1075
1076 /**
1077 * nvmem_cell_write() - Write to a given nvmem cell
1078 *
1079 * @cell: nvmem cell to be written.
1080 * @buf: Buffer to be written.
1081 * @len: length of buffer to be written to nvmem cell.
1082 *
1083 * Return: length of bytes written or negative on failure.
1084 */
1085 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1086 {
1087 struct nvmem_device *nvmem = cell->nvmem;
1088 int rc;
1089
1090 if (!nvmem || nvmem->read_only ||
1091 (cell->bit_offset == 0 && len != cell->bytes))
1092 return -EINVAL;
1093
1094 if (cell->bit_offset || cell->nbits) {
1095 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1096 if (IS_ERR(buf))
1097 return PTR_ERR(buf);
1098 }
1099
1100 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1101
1102 /* free the tmp buffer */
1103 if (cell->bit_offset || cell->nbits)
1104 kfree(buf);
1105
1106 if (rc)
1107 return rc;
1108
1109 return len;
1110 }
1111 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1112
1113 /**
1114 * nvmem_device_cell_read() - Read a given nvmem device and cell
1115 *
1116 * @nvmem: nvmem device to read from.
1117 * @info: nvmem cell info to be read.
1118 * @buf: buffer pointer which will be populated on successful read.
1119 *
1120 * Return: length of successful bytes read on success and negative
1121 * error code on error.
1122 */
1123 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1124 struct nvmem_cell_info *info, void *buf)
1125 {
1126 struct nvmem_cell cell;
1127 int rc;
1128 ssize_t len;
1129
1130 if (!nvmem)
1131 return -EINVAL;
1132
1133 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1134 if (rc)
1135 return rc;
1136
1137 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1138 if (rc)
1139 return rc;
1140
1141 return len;
1142 }
1143 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1144
1145 /**
1146 * nvmem_device_cell_write() - Write cell to a given nvmem device
1147 *
1148 * @nvmem: nvmem device to be written to.
1149 * @info: nvmem cell info to be written.
1150 * @buf: buffer to be written to cell.
1151 *
1152 * Return: length of bytes written or negative error code on failure.
1153 * */
1154 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1155 struct nvmem_cell_info *info, void *buf)
1156 {
1157 struct nvmem_cell cell;
1158 int rc;
1159
1160 if (!nvmem)
1161 return -EINVAL;
1162
1163 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1164 if (rc)
1165 return rc;
1166
1167 return nvmem_cell_write(&cell, buf, cell.bytes);
1168 }
1169 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1170
1171 /**
1172 * nvmem_device_read() - Read from a given nvmem device
1173 *
1174 * @nvmem: nvmem device to read from.
1175 * @offset: offset in nvmem device.
1176 * @bytes: number of bytes to read.
1177 * @buf: buffer pointer which will be populated on successful read.
1178 *
1179 * Return: length of successful bytes read on success and negative
1180 * error code on error.
1181 */
1182 int nvmem_device_read(struct nvmem_device *nvmem,
1183 unsigned int offset,
1184 size_t bytes, void *buf)
1185 {
1186 int rc;
1187
1188 if (!nvmem)
1189 return -EINVAL;
1190
1191 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1192
1193 if (rc)
1194 return rc;
1195
1196 return bytes;
1197 }
1198 EXPORT_SYMBOL_GPL(nvmem_device_read);
1199
1200 /**
1201 * nvmem_device_write() - Write cell to a given nvmem device
1202 *
1203 * @nvmem: nvmem device to be written to.
1204 * @offset: offset in nvmem device.
1205 * @bytes: number of bytes to write.
1206 * @buf: buffer to be written.
1207 *
1208 * Return: length of bytes written or negative error code on failure.
1209 * */
1210 int nvmem_device_write(struct nvmem_device *nvmem,
1211 unsigned int offset,
1212 size_t bytes, void *buf)
1213 {
1214 int rc;
1215
1216 if (!nvmem)
1217 return -EINVAL;
1218
1219 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1220
1221 if (rc)
1222 return rc;
1223
1224
1225 return bytes;
1226 }
1227 EXPORT_SYMBOL_GPL(nvmem_device_write);
1228
1229 static int __init nvmem_init(void)
1230 {
1231 return bus_register(&nvmem_bus_type);
1232 }
1233
1234 static void __exit nvmem_exit(void)
1235 {
1236 bus_unregister(&nvmem_bus_type);
1237 }
1238
1239 subsys_initcall(nvmem_init);
1240 module_exit(nvmem_exit);
1241
1242 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1243 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1244 MODULE_DESCRIPTION("nvmem Driver Core");
1245 MODULE_LICENSE("GPL v2");