]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvmem/core.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[mirror_ubuntu-artful-kernel.git] / drivers / nvmem / core.c
1 /*
2 * nvmem framework core.
3 *
4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27
28 struct nvmem_device {
29 const char *name;
30 struct module *owner;
31 struct device dev;
32 int stride;
33 int word_size;
34 int ncells;
35 int id;
36 int users;
37 size_t size;
38 bool read_only;
39 int flags;
40 struct bin_attribute eeprom;
41 struct device *base_dev;
42 nvmem_reg_read_t reg_read;
43 nvmem_reg_write_t reg_write;
44 void *priv;
45 };
46
47 #define FLAG_COMPAT BIT(0)
48
49 struct nvmem_cell {
50 const char *name;
51 int offset;
52 int bytes;
53 int bit_offset;
54 int nbits;
55 struct nvmem_device *nvmem;
56 struct list_head node;
57 };
58
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 void *val, size_t bytes)
72 {
73 if (nvmem->reg_read)
74 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75
76 return -EINVAL;
77 }
78
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 void *val, size_t bytes)
81 {
82 if (nvmem->reg_write)
83 return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84
85 return -EINVAL;
86 }
87
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 struct bin_attribute *attr,
90 char *buf, loff_t pos, size_t count)
91 {
92 struct device *dev;
93 struct nvmem_device *nvmem;
94 int rc;
95
96 if (attr->private)
97 dev = attr->private;
98 else
99 dev = container_of(kobj, struct device, kobj);
100 nvmem = to_nvmem_device(dev);
101
102 /* Stop the user from reading */
103 if (pos >= nvmem->size)
104 return 0;
105
106 if (count < nvmem->word_size)
107 return -EINVAL;
108
109 if (pos + count > nvmem->size)
110 count = nvmem->size - pos;
111
112 count = round_down(count, nvmem->word_size);
113
114 rc = nvmem_reg_read(nvmem, pos, buf, count);
115
116 if (rc)
117 return rc;
118
119 return count;
120 }
121
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 struct bin_attribute *attr,
124 char *buf, loff_t pos, size_t count)
125 {
126 struct device *dev;
127 struct nvmem_device *nvmem;
128 int rc;
129
130 if (attr->private)
131 dev = attr->private;
132 else
133 dev = container_of(kobj, struct device, kobj);
134 nvmem = to_nvmem_device(dev);
135
136 /* Stop the user from writing */
137 if (pos >= nvmem->size)
138 return 0;
139
140 if (count < nvmem->word_size)
141 return -EINVAL;
142
143 if (pos + count > nvmem->size)
144 count = nvmem->size - pos;
145
146 count = round_down(count, nvmem->word_size);
147
148 rc = nvmem_reg_write(nvmem, pos, buf, count);
149
150 if (rc)
151 return rc;
152
153 return count;
154 }
155
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 .attr = {
159 .name = "nvmem",
160 .mode = S_IWUSR | S_IRUGO,
161 },
162 .read = bin_attr_nvmem_read,
163 .write = bin_attr_nvmem_write,
164 };
165
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 &bin_attr_rw_nvmem,
168 NULL,
169 };
170
171 static const struct attribute_group nvmem_bin_rw_group = {
172 .bin_attrs = nvmem_bin_rw_attributes,
173 };
174
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 &nvmem_bin_rw_group,
177 NULL,
178 };
179
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 .attr = {
183 .name = "nvmem",
184 .mode = S_IRUGO,
185 },
186 .read = bin_attr_nvmem_read,
187 };
188
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 &bin_attr_ro_nvmem,
191 NULL,
192 };
193
194 static const struct attribute_group nvmem_bin_ro_group = {
195 .bin_attrs = nvmem_bin_ro_attributes,
196 };
197
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 &nvmem_bin_ro_group,
200 NULL,
201 };
202
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 .attr = {
206 .name = "nvmem",
207 .mode = S_IWUSR | S_IRUSR,
208 },
209 .read = bin_attr_nvmem_read,
210 .write = bin_attr_nvmem_write,
211 };
212
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 &bin_attr_rw_root_nvmem,
215 NULL,
216 };
217
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 .bin_attrs = nvmem_bin_rw_root_attributes,
220 };
221
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 &nvmem_bin_rw_root_group,
224 NULL,
225 };
226
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 .attr = {
230 .name = "nvmem",
231 .mode = S_IRUSR,
232 },
233 .read = bin_attr_nvmem_read,
234 };
235
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 &bin_attr_ro_root_nvmem,
238 NULL,
239 };
240
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 .bin_attrs = nvmem_bin_ro_root_attributes,
243 };
244
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 &nvmem_bin_ro_root_group,
247 NULL,
248 };
249
250 static void nvmem_release(struct device *dev)
251 {
252 struct nvmem_device *nvmem = to_nvmem_device(dev);
253
254 ida_simple_remove(&nvmem_ida, nvmem->id);
255 kfree(nvmem);
256 }
257
258 static const struct device_type nvmem_provider_type = {
259 .release = nvmem_release,
260 };
261
262 static struct bus_type nvmem_bus_type = {
263 .name = "nvmem",
264 };
265
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 return dev->of_node == nvmem_np;
269 }
270
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 struct device *d;
274
275 if (!nvmem_np)
276 return NULL;
277
278 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279
280 if (!d)
281 return NULL;
282
283 return to_nvmem_device(d);
284 }
285
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 struct nvmem_cell *p;
289
290 list_for_each_entry(p, &nvmem_cells, node)
291 if (p && !strcmp(p->name, cell_id))
292 return p;
293
294 return NULL;
295 }
296
297 static void nvmem_cell_drop(struct nvmem_cell *cell)
298 {
299 mutex_lock(&nvmem_cells_mutex);
300 list_del(&cell->node);
301 mutex_unlock(&nvmem_cells_mutex);
302 kfree(cell);
303 }
304
305 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
306 {
307 struct nvmem_cell *cell;
308 struct list_head *p, *n;
309
310 list_for_each_safe(p, n, &nvmem_cells) {
311 cell = list_entry(p, struct nvmem_cell, node);
312 if (cell->nvmem == nvmem)
313 nvmem_cell_drop(cell);
314 }
315 }
316
317 static void nvmem_cell_add(struct nvmem_cell *cell)
318 {
319 mutex_lock(&nvmem_cells_mutex);
320 list_add_tail(&cell->node, &nvmem_cells);
321 mutex_unlock(&nvmem_cells_mutex);
322 }
323
324 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
325 const struct nvmem_cell_info *info,
326 struct nvmem_cell *cell)
327 {
328 cell->nvmem = nvmem;
329 cell->offset = info->offset;
330 cell->bytes = info->bytes;
331 cell->name = info->name;
332
333 cell->bit_offset = info->bit_offset;
334 cell->nbits = info->nbits;
335
336 if (cell->nbits)
337 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
338 BITS_PER_BYTE);
339
340 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
341 dev_err(&nvmem->dev,
342 "cell %s unaligned to nvmem stride %d\n",
343 cell->name, nvmem->stride);
344 return -EINVAL;
345 }
346
347 return 0;
348 }
349
350 static int nvmem_add_cells(struct nvmem_device *nvmem,
351 const struct nvmem_config *cfg)
352 {
353 struct nvmem_cell **cells;
354 const struct nvmem_cell_info *info = cfg->cells;
355 int i, rval;
356
357 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
358 if (!cells)
359 return -ENOMEM;
360
361 for (i = 0; i < cfg->ncells; i++) {
362 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
363 if (!cells[i]) {
364 rval = -ENOMEM;
365 goto err;
366 }
367
368 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
369 if (rval) {
370 kfree(cells[i]);
371 goto err;
372 }
373
374 nvmem_cell_add(cells[i]);
375 }
376
377 nvmem->ncells = cfg->ncells;
378 /* remove tmp array */
379 kfree(cells);
380
381 return 0;
382 err:
383 while (i--)
384 nvmem_cell_drop(cells[i]);
385
386 kfree(cells);
387
388 return rval;
389 }
390
391 /*
392 * nvmem_setup_compat() - Create an additional binary entry in
393 * drivers sys directory, to be backwards compatible with the older
394 * drivers/misc/eeprom drivers.
395 */
396 static int nvmem_setup_compat(struct nvmem_device *nvmem,
397 const struct nvmem_config *config)
398 {
399 int rval;
400
401 if (!config->base_dev)
402 return -EINVAL;
403
404 if (nvmem->read_only)
405 nvmem->eeprom = bin_attr_ro_root_nvmem;
406 else
407 nvmem->eeprom = bin_attr_rw_root_nvmem;
408 nvmem->eeprom.attr.name = "eeprom";
409 nvmem->eeprom.size = nvmem->size;
410 #ifdef CONFIG_DEBUG_LOCK_ALLOC
411 nvmem->eeprom.attr.key = &eeprom_lock_key;
412 #endif
413 nvmem->eeprom.private = &nvmem->dev;
414 nvmem->base_dev = config->base_dev;
415
416 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
417 if (rval) {
418 dev_err(&nvmem->dev,
419 "Failed to create eeprom binary file %d\n", rval);
420 return rval;
421 }
422
423 nvmem->flags |= FLAG_COMPAT;
424
425 return 0;
426 }
427
428 /**
429 * nvmem_register() - Register a nvmem device for given nvmem_config.
430 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
431 *
432 * @config: nvmem device configuration with which nvmem device is created.
433 *
434 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
435 * on success.
436 */
437
438 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
439 {
440 struct nvmem_device *nvmem;
441 struct device_node *np;
442 int rval;
443
444 if (!config->dev)
445 return ERR_PTR(-EINVAL);
446
447 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
448 if (!nvmem)
449 return ERR_PTR(-ENOMEM);
450
451 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
452 if (rval < 0) {
453 kfree(nvmem);
454 return ERR_PTR(rval);
455 }
456
457 nvmem->id = rval;
458 nvmem->owner = config->owner;
459 nvmem->stride = config->stride;
460 nvmem->word_size = config->word_size;
461 nvmem->size = config->size;
462 nvmem->dev.type = &nvmem_provider_type;
463 nvmem->dev.bus = &nvmem_bus_type;
464 nvmem->dev.parent = config->dev;
465 nvmem->priv = config->priv;
466 nvmem->reg_read = config->reg_read;
467 nvmem->reg_write = config->reg_write;
468 np = config->dev->of_node;
469 nvmem->dev.of_node = np;
470 dev_set_name(&nvmem->dev, "%s%d",
471 config->name ? : "nvmem",
472 config->name ? config->id : nvmem->id);
473
474 nvmem->read_only = of_property_read_bool(np, "read-only") |
475 config->read_only;
476
477 if (config->root_only)
478 nvmem->dev.groups = nvmem->read_only ?
479 nvmem_ro_root_dev_groups :
480 nvmem_rw_root_dev_groups;
481 else
482 nvmem->dev.groups = nvmem->read_only ?
483 nvmem_ro_dev_groups :
484 nvmem_rw_dev_groups;
485
486 device_initialize(&nvmem->dev);
487
488 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
489
490 rval = device_add(&nvmem->dev);
491 if (rval)
492 goto out;
493
494 if (config->compat) {
495 rval = nvmem_setup_compat(nvmem, config);
496 if (rval)
497 goto out;
498 }
499
500 if (config->cells)
501 nvmem_add_cells(nvmem, config);
502
503 return nvmem;
504 out:
505 ida_simple_remove(&nvmem_ida, nvmem->id);
506 kfree(nvmem);
507 return ERR_PTR(rval);
508 }
509 EXPORT_SYMBOL_GPL(nvmem_register);
510
511 /**
512 * nvmem_unregister() - Unregister previously registered nvmem device
513 *
514 * @nvmem: Pointer to previously registered nvmem device.
515 *
516 * Return: Will be an negative on error or a zero on success.
517 */
518 int nvmem_unregister(struct nvmem_device *nvmem)
519 {
520 mutex_lock(&nvmem_mutex);
521 if (nvmem->users) {
522 mutex_unlock(&nvmem_mutex);
523 return -EBUSY;
524 }
525 mutex_unlock(&nvmem_mutex);
526
527 if (nvmem->flags & FLAG_COMPAT)
528 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
529
530 nvmem_device_remove_all_cells(nvmem);
531 device_del(&nvmem->dev);
532
533 return 0;
534 }
535 EXPORT_SYMBOL_GPL(nvmem_unregister);
536
537 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
538 struct nvmem_cell **cellp,
539 const char *cell_id)
540 {
541 struct nvmem_device *nvmem = NULL;
542
543 mutex_lock(&nvmem_mutex);
544
545 if (np) {
546 nvmem = of_nvmem_find(np);
547 if (!nvmem) {
548 mutex_unlock(&nvmem_mutex);
549 return ERR_PTR(-EPROBE_DEFER);
550 }
551 } else {
552 struct nvmem_cell *cell = nvmem_find_cell(cell_id);
553
554 if (cell) {
555 nvmem = cell->nvmem;
556 *cellp = cell;
557 }
558
559 if (!nvmem) {
560 mutex_unlock(&nvmem_mutex);
561 return ERR_PTR(-ENOENT);
562 }
563 }
564
565 nvmem->users++;
566 mutex_unlock(&nvmem_mutex);
567
568 if (!try_module_get(nvmem->owner)) {
569 dev_err(&nvmem->dev,
570 "could not increase module refcount for cell %s\n",
571 nvmem->name);
572
573 mutex_lock(&nvmem_mutex);
574 nvmem->users--;
575 mutex_unlock(&nvmem_mutex);
576
577 return ERR_PTR(-EINVAL);
578 }
579
580 return nvmem;
581 }
582
583 static void __nvmem_device_put(struct nvmem_device *nvmem)
584 {
585 module_put(nvmem->owner);
586 mutex_lock(&nvmem_mutex);
587 nvmem->users--;
588 mutex_unlock(&nvmem_mutex);
589 }
590
591 static int nvmem_match(struct device *dev, void *data)
592 {
593 return !strcmp(dev_name(dev), data);
594 }
595
596 static struct nvmem_device *nvmem_find(const char *name)
597 {
598 struct device *d;
599
600 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
601
602 if (!d)
603 return NULL;
604
605 return to_nvmem_device(d);
606 }
607
608 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
609 /**
610 * of_nvmem_device_get() - Get nvmem device from a given id
611 *
612 * @np: Device tree node that uses the nvmem device.
613 * @id: nvmem name from nvmem-names property.
614 *
615 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
616 * on success.
617 */
618 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
619 {
620
621 struct device_node *nvmem_np;
622 int index;
623
624 index = of_property_match_string(np, "nvmem-names", id);
625
626 nvmem_np = of_parse_phandle(np, "nvmem", index);
627 if (!nvmem_np)
628 return ERR_PTR(-EINVAL);
629
630 return __nvmem_device_get(nvmem_np, NULL, NULL);
631 }
632 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
633 #endif
634
635 /**
636 * nvmem_device_get() - Get nvmem device from a given id
637 *
638 * @dev: Device that uses the nvmem device.
639 * @dev_name: name of the requested nvmem device.
640 *
641 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
642 * on success.
643 */
644 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
645 {
646 if (dev->of_node) { /* try dt first */
647 struct nvmem_device *nvmem;
648
649 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
650
651 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
652 return nvmem;
653
654 }
655
656 return nvmem_find(dev_name);
657 }
658 EXPORT_SYMBOL_GPL(nvmem_device_get);
659
660 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
661 {
662 struct nvmem_device **nvmem = res;
663
664 if (WARN_ON(!nvmem || !*nvmem))
665 return 0;
666
667 return *nvmem == data;
668 }
669
670 static void devm_nvmem_device_release(struct device *dev, void *res)
671 {
672 nvmem_device_put(*(struct nvmem_device **)res);
673 }
674
675 /**
676 * devm_nvmem_device_put() - put alredy got nvmem device
677 *
678 * @dev: Device that uses the nvmem device.
679 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
680 * that needs to be released.
681 */
682 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
683 {
684 int ret;
685
686 ret = devres_release(dev, devm_nvmem_device_release,
687 devm_nvmem_device_match, nvmem);
688
689 WARN_ON(ret);
690 }
691 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
692
693 /**
694 * nvmem_device_put() - put alredy got nvmem device
695 *
696 * @nvmem: pointer to nvmem device that needs to be released.
697 */
698 void nvmem_device_put(struct nvmem_device *nvmem)
699 {
700 __nvmem_device_put(nvmem);
701 }
702 EXPORT_SYMBOL_GPL(nvmem_device_put);
703
704 /**
705 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
706 *
707 * @dev: Device that requests the nvmem device.
708 * @id: name id for the requested nvmem device.
709 *
710 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
711 * on success. The nvmem_cell will be freed by the automatically once the
712 * device is freed.
713 */
714 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
715 {
716 struct nvmem_device **ptr, *nvmem;
717
718 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
719 if (!ptr)
720 return ERR_PTR(-ENOMEM);
721
722 nvmem = nvmem_device_get(dev, id);
723 if (!IS_ERR(nvmem)) {
724 *ptr = nvmem;
725 devres_add(dev, ptr);
726 } else {
727 devres_free(ptr);
728 }
729
730 return nvmem;
731 }
732 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
733
734 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
735 {
736 struct nvmem_cell *cell = NULL;
737 struct nvmem_device *nvmem;
738
739 nvmem = __nvmem_device_get(NULL, &cell, cell_id);
740 if (IS_ERR(nvmem))
741 return ERR_CAST(nvmem);
742
743 return cell;
744 }
745
746 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
747 /**
748 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
749 *
750 * @np: Device tree node that uses the nvmem cell.
751 * @name: nvmem cell name from nvmem-cell-names property, or NULL
752 * for the cell at index 0 (the lone cell with no accompanying
753 * nvmem-cell-names property).
754 *
755 * Return: Will be an ERR_PTR() on error or a valid pointer
756 * to a struct nvmem_cell. The nvmem_cell will be freed by the
757 * nvmem_cell_put().
758 */
759 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
760 const char *name)
761 {
762 struct device_node *cell_np, *nvmem_np;
763 struct nvmem_cell *cell;
764 struct nvmem_device *nvmem;
765 const __be32 *addr;
766 int rval, len;
767 int index = 0;
768
769 /* if cell name exists, find index to the name */
770 if (name)
771 index = of_property_match_string(np, "nvmem-cell-names", name);
772
773 cell_np = of_parse_phandle(np, "nvmem-cells", index);
774 if (!cell_np)
775 return ERR_PTR(-EINVAL);
776
777 nvmem_np = of_get_next_parent(cell_np);
778 if (!nvmem_np)
779 return ERR_PTR(-EINVAL);
780
781 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
782 if (IS_ERR(nvmem))
783 return ERR_CAST(nvmem);
784
785 addr = of_get_property(cell_np, "reg", &len);
786 if (!addr || (len < 2 * sizeof(u32))) {
787 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
788 cell_np->full_name);
789 rval = -EINVAL;
790 goto err_mem;
791 }
792
793 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
794 if (!cell) {
795 rval = -ENOMEM;
796 goto err_mem;
797 }
798
799 cell->nvmem = nvmem;
800 cell->offset = be32_to_cpup(addr++);
801 cell->bytes = be32_to_cpup(addr);
802 cell->name = cell_np->name;
803
804 addr = of_get_property(cell_np, "bits", &len);
805 if (addr && len == (2 * sizeof(u32))) {
806 cell->bit_offset = be32_to_cpup(addr++);
807 cell->nbits = be32_to_cpup(addr);
808 }
809
810 if (cell->nbits)
811 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
812 BITS_PER_BYTE);
813
814 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
815 dev_err(&nvmem->dev,
816 "cell %s unaligned to nvmem stride %d\n",
817 cell->name, nvmem->stride);
818 rval = -EINVAL;
819 goto err_sanity;
820 }
821
822 nvmem_cell_add(cell);
823
824 return cell;
825
826 err_sanity:
827 kfree(cell);
828
829 err_mem:
830 __nvmem_device_put(nvmem);
831
832 return ERR_PTR(rval);
833 }
834 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
835 #endif
836
837 /**
838 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
839 *
840 * @dev: Device that requests the nvmem cell.
841 * @cell_id: nvmem cell name to get.
842 *
843 * Return: Will be an ERR_PTR() on error or a valid pointer
844 * to a struct nvmem_cell. The nvmem_cell will be freed by the
845 * nvmem_cell_put().
846 */
847 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
848 {
849 struct nvmem_cell *cell;
850
851 if (dev->of_node) { /* try dt first */
852 cell = of_nvmem_cell_get(dev->of_node, cell_id);
853 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
854 return cell;
855 }
856
857 return nvmem_cell_get_from_list(cell_id);
858 }
859 EXPORT_SYMBOL_GPL(nvmem_cell_get);
860
861 static void devm_nvmem_cell_release(struct device *dev, void *res)
862 {
863 nvmem_cell_put(*(struct nvmem_cell **)res);
864 }
865
866 /**
867 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
868 *
869 * @dev: Device that requests the nvmem cell.
870 * @id: nvmem cell name id to get.
871 *
872 * Return: Will be an ERR_PTR() on error or a valid pointer
873 * to a struct nvmem_cell. The nvmem_cell will be freed by the
874 * automatically once the device is freed.
875 */
876 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
877 {
878 struct nvmem_cell **ptr, *cell;
879
880 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
881 if (!ptr)
882 return ERR_PTR(-ENOMEM);
883
884 cell = nvmem_cell_get(dev, id);
885 if (!IS_ERR(cell)) {
886 *ptr = cell;
887 devres_add(dev, ptr);
888 } else {
889 devres_free(ptr);
890 }
891
892 return cell;
893 }
894 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
895
896 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
897 {
898 struct nvmem_cell **c = res;
899
900 if (WARN_ON(!c || !*c))
901 return 0;
902
903 return *c == data;
904 }
905
906 /**
907 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
908 * from devm_nvmem_cell_get.
909 *
910 * @dev: Device that requests the nvmem cell.
911 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
912 */
913 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
914 {
915 int ret;
916
917 ret = devres_release(dev, devm_nvmem_cell_release,
918 devm_nvmem_cell_match, cell);
919
920 WARN_ON(ret);
921 }
922 EXPORT_SYMBOL(devm_nvmem_cell_put);
923
924 /**
925 * nvmem_cell_put() - Release previously allocated nvmem cell.
926 *
927 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
928 */
929 void nvmem_cell_put(struct nvmem_cell *cell)
930 {
931 struct nvmem_device *nvmem = cell->nvmem;
932
933 __nvmem_device_put(nvmem);
934 nvmem_cell_drop(cell);
935 }
936 EXPORT_SYMBOL_GPL(nvmem_cell_put);
937
938 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
939 void *buf)
940 {
941 u8 *p, *b;
942 int i, bit_offset = cell->bit_offset;
943
944 p = b = buf;
945 if (bit_offset) {
946 /* First shift */
947 *b++ >>= bit_offset;
948
949 /* setup rest of the bytes if any */
950 for (i = 1; i < cell->bytes; i++) {
951 /* Get bits from next byte and shift them towards msb */
952 *p |= *b << (BITS_PER_BYTE - bit_offset);
953
954 p = b;
955 *b++ >>= bit_offset;
956 }
957
958 /* result fits in less bytes */
959 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
960 *p-- = 0;
961 }
962 /* clear msb bits if any leftover in the last byte */
963 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
964 }
965
966 static int __nvmem_cell_read(struct nvmem_device *nvmem,
967 struct nvmem_cell *cell,
968 void *buf, size_t *len)
969 {
970 int rc;
971
972 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
973
974 if (rc)
975 return rc;
976
977 /* shift bits in-place */
978 if (cell->bit_offset || cell->nbits)
979 nvmem_shift_read_buffer_in_place(cell, buf);
980
981 if (len)
982 *len = cell->bytes;
983
984 return 0;
985 }
986
987 /**
988 * nvmem_cell_read() - Read a given nvmem cell
989 *
990 * @cell: nvmem cell to be read.
991 * @len: pointer to length of cell which will be populated on successful read;
992 * can be NULL.
993 *
994 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
995 * buffer should be freed by the consumer with a kfree().
996 */
997 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
998 {
999 struct nvmem_device *nvmem = cell->nvmem;
1000 u8 *buf;
1001 int rc;
1002
1003 if (!nvmem)
1004 return ERR_PTR(-EINVAL);
1005
1006 buf = kzalloc(cell->bytes, GFP_KERNEL);
1007 if (!buf)
1008 return ERR_PTR(-ENOMEM);
1009
1010 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1011 if (rc) {
1012 kfree(buf);
1013 return ERR_PTR(rc);
1014 }
1015
1016 return buf;
1017 }
1018 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1019
1020 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1021 u8 *_buf, int len)
1022 {
1023 struct nvmem_device *nvmem = cell->nvmem;
1024 int i, rc, nbits, bit_offset = cell->bit_offset;
1025 u8 v, *p, *buf, *b, pbyte, pbits;
1026
1027 nbits = cell->nbits;
1028 buf = kzalloc(cell->bytes, GFP_KERNEL);
1029 if (!buf)
1030 return ERR_PTR(-ENOMEM);
1031
1032 memcpy(buf, _buf, len);
1033 p = b = buf;
1034
1035 if (bit_offset) {
1036 pbyte = *b;
1037 *b <<= bit_offset;
1038
1039 /* setup the first byte with lsb bits from nvmem */
1040 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1041 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1042
1043 /* setup rest of the byte if any */
1044 for (i = 1; i < cell->bytes; i++) {
1045 /* Get last byte bits and shift them towards lsb */
1046 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1047 pbyte = *b;
1048 p = b;
1049 *b <<= bit_offset;
1050 *b++ |= pbits;
1051 }
1052 }
1053
1054 /* if it's not end on byte boundary */
1055 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1056 /* setup the last byte with msb bits from nvmem */
1057 rc = nvmem_reg_read(nvmem,
1058 cell->offset + cell->bytes - 1, &v, 1);
1059 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1060
1061 }
1062
1063 return buf;
1064 }
1065
1066 /**
1067 * nvmem_cell_write() - Write to a given nvmem cell
1068 *
1069 * @cell: nvmem cell to be written.
1070 * @buf: Buffer to be written.
1071 * @len: length of buffer to be written to nvmem cell.
1072 *
1073 * Return: length of bytes written or negative on failure.
1074 */
1075 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1076 {
1077 struct nvmem_device *nvmem = cell->nvmem;
1078 int rc;
1079
1080 if (!nvmem || nvmem->read_only ||
1081 (cell->bit_offset == 0 && len != cell->bytes))
1082 return -EINVAL;
1083
1084 if (cell->bit_offset || cell->nbits) {
1085 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1086 if (IS_ERR(buf))
1087 return PTR_ERR(buf);
1088 }
1089
1090 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1091
1092 /* free the tmp buffer */
1093 if (cell->bit_offset || cell->nbits)
1094 kfree(buf);
1095
1096 if (rc)
1097 return rc;
1098
1099 return len;
1100 }
1101 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1102
1103 /**
1104 * nvmem_device_cell_read() - Read a given nvmem device and cell
1105 *
1106 * @nvmem: nvmem device to read from.
1107 * @info: nvmem cell info to be read.
1108 * @buf: buffer pointer which will be populated on successful read.
1109 *
1110 * Return: length of successful bytes read on success and negative
1111 * error code on error.
1112 */
1113 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1114 struct nvmem_cell_info *info, void *buf)
1115 {
1116 struct nvmem_cell cell;
1117 int rc;
1118 ssize_t len;
1119
1120 if (!nvmem)
1121 return -EINVAL;
1122
1123 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1124 if (rc)
1125 return rc;
1126
1127 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1128 if (rc)
1129 return rc;
1130
1131 return len;
1132 }
1133 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1134
1135 /**
1136 * nvmem_device_cell_write() - Write cell to a given nvmem device
1137 *
1138 * @nvmem: nvmem device to be written to.
1139 * @info: nvmem cell info to be written.
1140 * @buf: buffer to be written to cell.
1141 *
1142 * Return: length of bytes written or negative error code on failure.
1143 * */
1144 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1145 struct nvmem_cell_info *info, void *buf)
1146 {
1147 struct nvmem_cell cell;
1148 int rc;
1149
1150 if (!nvmem)
1151 return -EINVAL;
1152
1153 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1154 if (rc)
1155 return rc;
1156
1157 return nvmem_cell_write(&cell, buf, cell.bytes);
1158 }
1159 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1160
1161 /**
1162 * nvmem_device_read() - Read from a given nvmem device
1163 *
1164 * @nvmem: nvmem device to read from.
1165 * @offset: offset in nvmem device.
1166 * @bytes: number of bytes to read.
1167 * @buf: buffer pointer which will be populated on successful read.
1168 *
1169 * Return: length of successful bytes read on success and negative
1170 * error code on error.
1171 */
1172 int nvmem_device_read(struct nvmem_device *nvmem,
1173 unsigned int offset,
1174 size_t bytes, void *buf)
1175 {
1176 int rc;
1177
1178 if (!nvmem)
1179 return -EINVAL;
1180
1181 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1182
1183 if (rc)
1184 return rc;
1185
1186 return bytes;
1187 }
1188 EXPORT_SYMBOL_GPL(nvmem_device_read);
1189
1190 /**
1191 * nvmem_device_write() - Write cell to a given nvmem device
1192 *
1193 * @nvmem: nvmem device to be written to.
1194 * @offset: offset in nvmem device.
1195 * @bytes: number of bytes to write.
1196 * @buf: buffer to be written.
1197 *
1198 * Return: length of bytes written or negative error code on failure.
1199 * */
1200 int nvmem_device_write(struct nvmem_device *nvmem,
1201 unsigned int offset,
1202 size_t bytes, void *buf)
1203 {
1204 int rc;
1205
1206 if (!nvmem)
1207 return -EINVAL;
1208
1209 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1210
1211 if (rc)
1212 return rc;
1213
1214
1215 return bytes;
1216 }
1217 EXPORT_SYMBOL_GPL(nvmem_device_write);
1218
1219 static int __init nvmem_init(void)
1220 {
1221 return bus_register(&nvmem_bus_type);
1222 }
1223
1224 static void __exit nvmem_exit(void)
1225 {
1226 bus_unregister(&nvmem_bus_type);
1227 }
1228
1229 subsys_initcall(nvmem_init);
1230 module_exit(nvmem_exit);
1231
1232 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1233 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1234 MODULE_DESCRIPTION("nvmem Driver Core");
1235 MODULE_LICENSE("GPL v2");