]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/of/address.c
bnxt_en: Add GRO logic for BCM5731X chips.
[mirror_ubuntu-bionic-kernel.git] / drivers / of / address.c
1
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci.h>
8 #include <linux/pci_regs.h>
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11 #include <linux/string.h>
12
13 /* Max address size we deal with */
14 #define OF_MAX_ADDR_CELLS 4
15 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
16 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
17
18 static struct of_bus *of_match_bus(struct device_node *np);
19 static int __of_address_to_resource(struct device_node *dev,
20 const __be32 *addrp, u64 size, unsigned int flags,
21 const char *name, struct resource *r);
22
23 /* Debug utility */
24 #ifdef DEBUG
25 static void of_dump_addr(const char *s, const __be32 *addr, int na)
26 {
27 printk(KERN_DEBUG "%s", s);
28 while (na--)
29 printk(" %08x", be32_to_cpu(*(addr++)));
30 printk("\n");
31 }
32 #else
33 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
34 #endif
35
36 /* Callbacks for bus specific translators */
37 struct of_bus {
38 const char *name;
39 const char *addresses;
40 int (*match)(struct device_node *parent);
41 void (*count_cells)(struct device_node *child,
42 int *addrc, int *sizec);
43 u64 (*map)(__be32 *addr, const __be32 *range,
44 int na, int ns, int pna);
45 int (*translate)(__be32 *addr, u64 offset, int na);
46 unsigned int (*get_flags)(const __be32 *addr);
47 };
48
49 /*
50 * Default translator (generic bus)
51 */
52
53 static void of_bus_default_count_cells(struct device_node *dev,
54 int *addrc, int *sizec)
55 {
56 if (addrc)
57 *addrc = of_n_addr_cells(dev);
58 if (sizec)
59 *sizec = of_n_size_cells(dev);
60 }
61
62 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
63 int na, int ns, int pna)
64 {
65 u64 cp, s, da;
66
67 cp = of_read_number(range, na);
68 s = of_read_number(range + na + pna, ns);
69 da = of_read_number(addr, na);
70
71 pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
72 (unsigned long long)cp, (unsigned long long)s,
73 (unsigned long long)da);
74
75 if (da < cp || da >= (cp + s))
76 return OF_BAD_ADDR;
77 return da - cp;
78 }
79
80 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
81 {
82 u64 a = of_read_number(addr, na);
83 memset(addr, 0, na * 4);
84 a += offset;
85 if (na > 1)
86 addr[na - 2] = cpu_to_be32(a >> 32);
87 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
88
89 return 0;
90 }
91
92 static unsigned int of_bus_default_get_flags(const __be32 *addr)
93 {
94 return IORESOURCE_MEM;
95 }
96
97 #ifdef CONFIG_OF_ADDRESS_PCI
98 /*
99 * PCI bus specific translator
100 */
101
102 static int of_bus_pci_match(struct device_node *np)
103 {
104 /*
105 * "pciex" is PCI Express
106 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
107 * "ht" is hypertransport
108 */
109 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
110 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
111 }
112
113 static void of_bus_pci_count_cells(struct device_node *np,
114 int *addrc, int *sizec)
115 {
116 if (addrc)
117 *addrc = 3;
118 if (sizec)
119 *sizec = 2;
120 }
121
122 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
123 {
124 unsigned int flags = 0;
125 u32 w = be32_to_cpup(addr);
126
127 switch((w >> 24) & 0x03) {
128 case 0x01:
129 flags |= IORESOURCE_IO;
130 break;
131 case 0x02: /* 32 bits */
132 case 0x03: /* 64 bits */
133 flags |= IORESOURCE_MEM;
134 break;
135 }
136 if (w & 0x40000000)
137 flags |= IORESOURCE_PREFETCH;
138 return flags;
139 }
140
141 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
142 int pna)
143 {
144 u64 cp, s, da;
145 unsigned int af, rf;
146
147 af = of_bus_pci_get_flags(addr);
148 rf = of_bus_pci_get_flags(range);
149
150 /* Check address type match */
151 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
152 return OF_BAD_ADDR;
153
154 /* Read address values, skipping high cell */
155 cp = of_read_number(range + 1, na - 1);
156 s = of_read_number(range + na + pna, ns);
157 da = of_read_number(addr + 1, na - 1);
158
159 pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
160 (unsigned long long)cp, (unsigned long long)s,
161 (unsigned long long)da);
162
163 if (da < cp || da >= (cp + s))
164 return OF_BAD_ADDR;
165 return da - cp;
166 }
167
168 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
169 {
170 return of_bus_default_translate(addr + 1, offset, na - 1);
171 }
172 #endif /* CONFIG_OF_ADDRESS_PCI */
173
174 #ifdef CONFIG_PCI
175 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
176 unsigned int *flags)
177 {
178 const __be32 *prop;
179 unsigned int psize;
180 struct device_node *parent;
181 struct of_bus *bus;
182 int onesize, i, na, ns;
183
184 /* Get parent & match bus type */
185 parent = of_get_parent(dev);
186 if (parent == NULL)
187 return NULL;
188 bus = of_match_bus(parent);
189 if (strcmp(bus->name, "pci")) {
190 of_node_put(parent);
191 return NULL;
192 }
193 bus->count_cells(dev, &na, &ns);
194 of_node_put(parent);
195 if (!OF_CHECK_ADDR_COUNT(na))
196 return NULL;
197
198 /* Get "reg" or "assigned-addresses" property */
199 prop = of_get_property(dev, bus->addresses, &psize);
200 if (prop == NULL)
201 return NULL;
202 psize /= 4;
203
204 onesize = na + ns;
205 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
206 u32 val = be32_to_cpu(prop[0]);
207 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
208 if (size)
209 *size = of_read_number(prop + na, ns);
210 if (flags)
211 *flags = bus->get_flags(prop);
212 return prop;
213 }
214 }
215 return NULL;
216 }
217 EXPORT_SYMBOL(of_get_pci_address);
218
219 int of_pci_address_to_resource(struct device_node *dev, int bar,
220 struct resource *r)
221 {
222 const __be32 *addrp;
223 u64 size;
224 unsigned int flags;
225
226 addrp = of_get_pci_address(dev, bar, &size, &flags);
227 if (addrp == NULL)
228 return -EINVAL;
229 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
230 }
231 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
232
233 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
234 struct device_node *node)
235 {
236 const int na = 3, ns = 2;
237 int rlen;
238
239 parser->node = node;
240 parser->pna = of_n_addr_cells(node);
241 parser->np = parser->pna + na + ns;
242
243 parser->range = of_get_property(node, "ranges", &rlen);
244 if (parser->range == NULL)
245 return -ENOENT;
246
247 parser->end = parser->range + rlen / sizeof(__be32);
248
249 return 0;
250 }
251 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
252
253 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
254 struct of_pci_range *range)
255 {
256 const int na = 3, ns = 2;
257
258 if (!range)
259 return NULL;
260
261 if (!parser->range || parser->range + parser->np > parser->end)
262 return NULL;
263
264 range->pci_space = parser->range[0];
265 range->flags = of_bus_pci_get_flags(parser->range);
266 range->pci_addr = of_read_number(parser->range + 1, ns);
267 range->cpu_addr = of_translate_address(parser->node,
268 parser->range + na);
269 range->size = of_read_number(parser->range + parser->pna + na, ns);
270
271 parser->range += parser->np;
272
273 /* Now consume following elements while they are contiguous */
274 while (parser->range + parser->np <= parser->end) {
275 u32 flags, pci_space;
276 u64 pci_addr, cpu_addr, size;
277
278 pci_space = be32_to_cpup(parser->range);
279 flags = of_bus_pci_get_flags(parser->range);
280 pci_addr = of_read_number(parser->range + 1, ns);
281 cpu_addr = of_translate_address(parser->node,
282 parser->range + na);
283 size = of_read_number(parser->range + parser->pna + na, ns);
284
285 if (flags != range->flags)
286 break;
287 if (pci_addr != range->pci_addr + range->size ||
288 cpu_addr != range->cpu_addr + range->size)
289 break;
290
291 range->size += size;
292 parser->range += parser->np;
293 }
294
295 return range;
296 }
297 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
298
299 /*
300 * of_pci_range_to_resource - Create a resource from an of_pci_range
301 * @range: the PCI range that describes the resource
302 * @np: device node where the range belongs to
303 * @res: pointer to a valid resource that will be updated to
304 * reflect the values contained in the range.
305 *
306 * Returns EINVAL if the range cannot be converted to resource.
307 *
308 * Note that if the range is an IO range, the resource will be converted
309 * using pci_address_to_pio() which can fail if it is called too early or
310 * if the range cannot be matched to any host bridge IO space (our case here).
311 * To guard against that we try to register the IO range first.
312 * If that fails we know that pci_address_to_pio() will do too.
313 */
314 int of_pci_range_to_resource(struct of_pci_range *range,
315 struct device_node *np, struct resource *res)
316 {
317 int err;
318 res->flags = range->flags;
319 res->parent = res->child = res->sibling = NULL;
320 res->name = np->full_name;
321
322 if (res->flags & IORESOURCE_IO) {
323 unsigned long port;
324 err = pci_register_io_range(range->cpu_addr, range->size);
325 if (err)
326 goto invalid_range;
327 port = pci_address_to_pio(range->cpu_addr);
328 if (port == (unsigned long)-1) {
329 err = -EINVAL;
330 goto invalid_range;
331 }
332 res->start = port;
333 } else {
334 if ((sizeof(resource_size_t) < 8) &&
335 upper_32_bits(range->cpu_addr)) {
336 err = -EINVAL;
337 goto invalid_range;
338 }
339
340 res->start = range->cpu_addr;
341 }
342 res->end = res->start + range->size - 1;
343 return 0;
344
345 invalid_range:
346 res->start = (resource_size_t)OF_BAD_ADDR;
347 res->end = (resource_size_t)OF_BAD_ADDR;
348 return err;
349 }
350 #endif /* CONFIG_PCI */
351
352 /*
353 * ISA bus specific translator
354 */
355
356 static int of_bus_isa_match(struct device_node *np)
357 {
358 return !strcmp(np->name, "isa");
359 }
360
361 static void of_bus_isa_count_cells(struct device_node *child,
362 int *addrc, int *sizec)
363 {
364 if (addrc)
365 *addrc = 2;
366 if (sizec)
367 *sizec = 1;
368 }
369
370 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
371 int pna)
372 {
373 u64 cp, s, da;
374
375 /* Check address type match */
376 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
377 return OF_BAD_ADDR;
378
379 /* Read address values, skipping high cell */
380 cp = of_read_number(range + 1, na - 1);
381 s = of_read_number(range + na + pna, ns);
382 da = of_read_number(addr + 1, na - 1);
383
384 pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
385 (unsigned long long)cp, (unsigned long long)s,
386 (unsigned long long)da);
387
388 if (da < cp || da >= (cp + s))
389 return OF_BAD_ADDR;
390 return da - cp;
391 }
392
393 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
394 {
395 return of_bus_default_translate(addr + 1, offset, na - 1);
396 }
397
398 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
399 {
400 unsigned int flags = 0;
401 u32 w = be32_to_cpup(addr);
402
403 if (w & 1)
404 flags |= IORESOURCE_IO;
405 else
406 flags |= IORESOURCE_MEM;
407 return flags;
408 }
409
410 /*
411 * Array of bus specific translators
412 */
413
414 static struct of_bus of_busses[] = {
415 #ifdef CONFIG_OF_ADDRESS_PCI
416 /* PCI */
417 {
418 .name = "pci",
419 .addresses = "assigned-addresses",
420 .match = of_bus_pci_match,
421 .count_cells = of_bus_pci_count_cells,
422 .map = of_bus_pci_map,
423 .translate = of_bus_pci_translate,
424 .get_flags = of_bus_pci_get_flags,
425 },
426 #endif /* CONFIG_OF_ADDRESS_PCI */
427 /* ISA */
428 {
429 .name = "isa",
430 .addresses = "reg",
431 .match = of_bus_isa_match,
432 .count_cells = of_bus_isa_count_cells,
433 .map = of_bus_isa_map,
434 .translate = of_bus_isa_translate,
435 .get_flags = of_bus_isa_get_flags,
436 },
437 /* Default */
438 {
439 .name = "default",
440 .addresses = "reg",
441 .match = NULL,
442 .count_cells = of_bus_default_count_cells,
443 .map = of_bus_default_map,
444 .translate = of_bus_default_translate,
445 .get_flags = of_bus_default_get_flags,
446 },
447 };
448
449 static struct of_bus *of_match_bus(struct device_node *np)
450 {
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
454 if (!of_busses[i].match || of_busses[i].match(np))
455 return &of_busses[i];
456 BUG();
457 return NULL;
458 }
459
460 static int of_empty_ranges_quirk(struct device_node *np)
461 {
462 if (IS_ENABLED(CONFIG_PPC)) {
463 /* To save cycles, we cache the result for global "Mac" setting */
464 static int quirk_state = -1;
465
466 /* PA-SEMI sdc DT bug */
467 if (of_device_is_compatible(np, "1682m-sdc"))
468 return true;
469
470 /* Make quirk cached */
471 if (quirk_state < 0)
472 quirk_state =
473 of_machine_is_compatible("Power Macintosh") ||
474 of_machine_is_compatible("MacRISC");
475 return quirk_state;
476 }
477 return false;
478 }
479
480 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
481 struct of_bus *pbus, __be32 *addr,
482 int na, int ns, int pna, const char *rprop)
483 {
484 const __be32 *ranges;
485 unsigned int rlen;
486 int rone;
487 u64 offset = OF_BAD_ADDR;
488
489 /*
490 * Normally, an absence of a "ranges" property means we are
491 * crossing a non-translatable boundary, and thus the addresses
492 * below the current cannot be converted to CPU physical ones.
493 * Unfortunately, while this is very clear in the spec, it's not
494 * what Apple understood, and they do have things like /uni-n or
495 * /ht nodes with no "ranges" property and a lot of perfectly
496 * useable mapped devices below them. Thus we treat the absence of
497 * "ranges" as equivalent to an empty "ranges" property which means
498 * a 1:1 translation at that level. It's up to the caller not to try
499 * to translate addresses that aren't supposed to be translated in
500 * the first place. --BenH.
501 *
502 * As far as we know, this damage only exists on Apple machines, so
503 * This code is only enabled on powerpc. --gcl
504 */
505 ranges = of_get_property(parent, rprop, &rlen);
506 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
507 pr_debug("OF: no ranges; cannot translate\n");
508 return 1;
509 }
510 if (ranges == NULL || rlen == 0) {
511 offset = of_read_number(addr, na);
512 memset(addr, 0, pna * 4);
513 pr_debug("OF: empty ranges; 1:1 translation\n");
514 goto finish;
515 }
516
517 pr_debug("OF: walking ranges...\n");
518
519 /* Now walk through the ranges */
520 rlen /= 4;
521 rone = na + pna + ns;
522 for (; rlen >= rone; rlen -= rone, ranges += rone) {
523 offset = bus->map(addr, ranges, na, ns, pna);
524 if (offset != OF_BAD_ADDR)
525 break;
526 }
527 if (offset == OF_BAD_ADDR) {
528 pr_debug("OF: not found !\n");
529 return 1;
530 }
531 memcpy(addr, ranges + na, 4 * pna);
532
533 finish:
534 of_dump_addr("OF: parent translation for:", addr, pna);
535 pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
536
537 /* Translate it into parent bus space */
538 return pbus->translate(addr, offset, pna);
539 }
540
541 /*
542 * Translate an address from the device-tree into a CPU physical address,
543 * this walks up the tree and applies the various bus mappings on the
544 * way.
545 *
546 * Note: We consider that crossing any level with #size-cells == 0 to mean
547 * that translation is impossible (that is we are not dealing with a value
548 * that can be mapped to a cpu physical address). This is not really specified
549 * that way, but this is traditionally the way IBM at least do things
550 */
551 static u64 __of_translate_address(struct device_node *dev,
552 const __be32 *in_addr, const char *rprop)
553 {
554 struct device_node *parent = NULL;
555 struct of_bus *bus, *pbus;
556 __be32 addr[OF_MAX_ADDR_CELLS];
557 int na, ns, pna, pns;
558 u64 result = OF_BAD_ADDR;
559
560 pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
561
562 /* Increase refcount at current level */
563 of_node_get(dev);
564
565 /* Get parent & match bus type */
566 parent = of_get_parent(dev);
567 if (parent == NULL)
568 goto bail;
569 bus = of_match_bus(parent);
570
571 /* Count address cells & copy address locally */
572 bus->count_cells(dev, &na, &ns);
573 if (!OF_CHECK_COUNTS(na, ns)) {
574 pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
575 goto bail;
576 }
577 memcpy(addr, in_addr, na * 4);
578
579 pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
580 bus->name, na, ns, of_node_full_name(parent));
581 of_dump_addr("OF: translating address:", addr, na);
582
583 /* Translate */
584 for (;;) {
585 /* Switch to parent bus */
586 of_node_put(dev);
587 dev = parent;
588 parent = of_get_parent(dev);
589
590 /* If root, we have finished */
591 if (parent == NULL) {
592 pr_debug("OF: reached root node\n");
593 result = of_read_number(addr, na);
594 break;
595 }
596
597 /* Get new parent bus and counts */
598 pbus = of_match_bus(parent);
599 pbus->count_cells(dev, &pna, &pns);
600 if (!OF_CHECK_COUNTS(pna, pns)) {
601 pr_err("prom_parse: Bad cell count for %s\n",
602 of_node_full_name(dev));
603 break;
604 }
605
606 pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
607 pbus->name, pna, pns, of_node_full_name(parent));
608
609 /* Apply bus translation */
610 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
611 break;
612
613 /* Complete the move up one level */
614 na = pna;
615 ns = pns;
616 bus = pbus;
617
618 of_dump_addr("OF: one level translation:", addr, na);
619 }
620 bail:
621 of_node_put(parent);
622 of_node_put(dev);
623
624 return result;
625 }
626
627 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
628 {
629 return __of_translate_address(dev, in_addr, "ranges");
630 }
631 EXPORT_SYMBOL(of_translate_address);
632
633 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
634 {
635 return __of_translate_address(dev, in_addr, "dma-ranges");
636 }
637 EXPORT_SYMBOL(of_translate_dma_address);
638
639 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
640 unsigned int *flags)
641 {
642 const __be32 *prop;
643 unsigned int psize;
644 struct device_node *parent;
645 struct of_bus *bus;
646 int onesize, i, na, ns;
647
648 /* Get parent & match bus type */
649 parent = of_get_parent(dev);
650 if (parent == NULL)
651 return NULL;
652 bus = of_match_bus(parent);
653 bus->count_cells(dev, &na, &ns);
654 of_node_put(parent);
655 if (!OF_CHECK_ADDR_COUNT(na))
656 return NULL;
657
658 /* Get "reg" or "assigned-addresses" property */
659 prop = of_get_property(dev, bus->addresses, &psize);
660 if (prop == NULL)
661 return NULL;
662 psize /= 4;
663
664 onesize = na + ns;
665 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
666 if (i == index) {
667 if (size)
668 *size = of_read_number(prop + na, ns);
669 if (flags)
670 *flags = bus->get_flags(prop);
671 return prop;
672 }
673 return NULL;
674 }
675 EXPORT_SYMBOL(of_get_address);
676
677 static int __of_address_to_resource(struct device_node *dev,
678 const __be32 *addrp, u64 size, unsigned int flags,
679 const char *name, struct resource *r)
680 {
681 u64 taddr;
682
683 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
684 return -EINVAL;
685 taddr = of_translate_address(dev, addrp);
686 if (taddr == OF_BAD_ADDR)
687 return -EINVAL;
688 memset(r, 0, sizeof(struct resource));
689 if (flags & IORESOURCE_IO) {
690 unsigned long port;
691 port = pci_address_to_pio(taddr);
692 if (port == (unsigned long)-1)
693 return -EINVAL;
694 r->start = port;
695 r->end = port + size - 1;
696 } else {
697 r->start = taddr;
698 r->end = taddr + size - 1;
699 }
700 r->flags = flags;
701 r->name = name ? name : dev->full_name;
702
703 return 0;
704 }
705
706 /**
707 * of_address_to_resource - Translate device tree address and return as resource
708 *
709 * Note that if your address is a PIO address, the conversion will fail if
710 * the physical address can't be internally converted to an IO token with
711 * pci_address_to_pio(), that is because it's either called to early or it
712 * can't be matched to any host bridge IO space
713 */
714 int of_address_to_resource(struct device_node *dev, int index,
715 struct resource *r)
716 {
717 const __be32 *addrp;
718 u64 size;
719 unsigned int flags;
720 const char *name = NULL;
721
722 addrp = of_get_address(dev, index, &size, &flags);
723 if (addrp == NULL)
724 return -EINVAL;
725
726 /* Get optional "reg-names" property to add a name to a resource */
727 of_property_read_string_index(dev, "reg-names", index, &name);
728
729 return __of_address_to_resource(dev, addrp, size, flags, name, r);
730 }
731 EXPORT_SYMBOL_GPL(of_address_to_resource);
732
733 struct device_node *of_find_matching_node_by_address(struct device_node *from,
734 const struct of_device_id *matches,
735 u64 base_address)
736 {
737 struct device_node *dn = of_find_matching_node(from, matches);
738 struct resource res;
739
740 while (dn) {
741 if (!of_address_to_resource(dn, 0, &res) &&
742 res.start == base_address)
743 return dn;
744
745 dn = of_find_matching_node(dn, matches);
746 }
747
748 return NULL;
749 }
750
751
752 /**
753 * of_iomap - Maps the memory mapped IO for a given device_node
754 * @device: the device whose io range will be mapped
755 * @index: index of the io range
756 *
757 * Returns a pointer to the mapped memory
758 */
759 void __iomem *of_iomap(struct device_node *np, int index)
760 {
761 struct resource res;
762
763 if (of_address_to_resource(np, index, &res))
764 return NULL;
765
766 return ioremap(res.start, resource_size(&res));
767 }
768 EXPORT_SYMBOL(of_iomap);
769
770 /*
771 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
772 * for a given device_node
773 * @device: the device whose io range will be mapped
774 * @index: index of the io range
775 * @name: name of the resource
776 *
777 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
778 * error code on failure. Usage example:
779 *
780 * base = of_io_request_and_map(node, 0, "foo");
781 * if (IS_ERR(base))
782 * return PTR_ERR(base);
783 */
784 void __iomem *of_io_request_and_map(struct device_node *np, int index,
785 const char *name)
786 {
787 struct resource res;
788 void __iomem *mem;
789
790 if (of_address_to_resource(np, index, &res))
791 return IOMEM_ERR_PTR(-EINVAL);
792
793 if (!request_mem_region(res.start, resource_size(&res), name))
794 return IOMEM_ERR_PTR(-EBUSY);
795
796 mem = ioremap(res.start, resource_size(&res));
797 if (!mem) {
798 release_mem_region(res.start, resource_size(&res));
799 return IOMEM_ERR_PTR(-ENOMEM);
800 }
801
802 return mem;
803 }
804 EXPORT_SYMBOL(of_io_request_and_map);
805
806 /**
807 * of_dma_get_range - Get DMA range info
808 * @np: device node to get DMA range info
809 * @dma_addr: pointer to store initial DMA address of DMA range
810 * @paddr: pointer to store initial CPU address of DMA range
811 * @size: pointer to store size of DMA range
812 *
813 * Look in bottom up direction for the first "dma-ranges" property
814 * and parse it.
815 * dma-ranges format:
816 * DMA addr (dma_addr) : naddr cells
817 * CPU addr (phys_addr_t) : pna cells
818 * size : nsize cells
819 *
820 * It returns -ENODEV if "dma-ranges" property was not found
821 * for this device in DT.
822 */
823 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
824 {
825 struct device_node *node = of_node_get(np);
826 const __be32 *ranges = NULL;
827 int len, naddr, nsize, pna;
828 int ret = 0;
829 u64 dmaaddr;
830
831 if (!node)
832 return -EINVAL;
833
834 while (1) {
835 naddr = of_n_addr_cells(node);
836 nsize = of_n_size_cells(node);
837 node = of_get_next_parent(node);
838 if (!node)
839 break;
840
841 ranges = of_get_property(node, "dma-ranges", &len);
842
843 /* Ignore empty ranges, they imply no translation required */
844 if (ranges && len > 0)
845 break;
846
847 /*
848 * At least empty ranges has to be defined for parent node if
849 * DMA is supported
850 */
851 if (!ranges)
852 break;
853 }
854
855 if (!ranges) {
856 pr_debug("%s: no dma-ranges found for node(%s)\n",
857 __func__, np->full_name);
858 ret = -ENODEV;
859 goto out;
860 }
861
862 len /= sizeof(u32);
863
864 pna = of_n_addr_cells(node);
865
866 /* dma-ranges format:
867 * DMA addr : naddr cells
868 * CPU addr : pna cells
869 * size : nsize cells
870 */
871 dmaaddr = of_read_number(ranges, naddr);
872 *paddr = of_translate_dma_address(np, ranges);
873 if (*paddr == OF_BAD_ADDR) {
874 pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
875 __func__, dma_addr, np->full_name);
876 ret = -EINVAL;
877 goto out;
878 }
879 *dma_addr = dmaaddr;
880
881 *size = of_read_number(ranges + naddr + pna, nsize);
882
883 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
884 *dma_addr, *paddr, *size);
885
886 out:
887 of_node_put(node);
888
889 return ret;
890 }
891 EXPORT_SYMBOL_GPL(of_dma_get_range);
892
893 /**
894 * of_dma_is_coherent - Check if device is coherent
895 * @np: device node
896 *
897 * It returns true if "dma-coherent" property was found
898 * for this device in DT.
899 */
900 bool of_dma_is_coherent(struct device_node *np)
901 {
902 struct device_node *node = of_node_get(np);
903
904 while (node) {
905 if (of_property_read_bool(node, "dma-coherent")) {
906 of_node_put(node);
907 return true;
908 }
909 node = of_get_next_parent(node);
910 }
911 of_node_put(node);
912 return false;
913 }
914 EXPORT_SYMBOL_GPL(of_dma_is_coherent);