]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/of/base.c
UBUNTU: [Config] CONFIG_TEE=m
[mirror_ubuntu-artful-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
61 int of_n_addr_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#address-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #address-cells property for the root node */
73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_addr_cells);
76
77 int of_n_size_cells(struct device_node *np)
78 {
79 const __be32 *ip;
80
81 do {
82 if (np->parent)
83 np = np->parent;
84 ip = of_get_property(np, "#size-cells", NULL);
85 if (ip)
86 return be32_to_cpup(ip);
87 } while (np->parent);
88 /* No #size-cells property for the root node */
89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 }
91 EXPORT_SYMBOL(of_n_size_cells);
92
93 #ifdef CONFIG_NUMA
94 int __weak of_node_to_nid(struct device_node *np)
95 {
96 return NUMA_NO_NODE;
97 }
98 #endif
99
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
102 {
103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 }
105 #endif /* CONFIG_OF_DYNAMIC */
106
107 struct kobj_type of_node_ktype = {
108 .release = of_node_release,
109 };
110
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 struct bin_attribute *bin_attr, char *buf,
113 loff_t offset, size_t count)
114 {
115 struct property *pp = container_of(bin_attr, struct property, attr);
116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
117 }
118
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 {
122 const char *name = orig_name;
123 struct kernfs_node *kn;
124 int i = 0;
125
126 /* don't be a hero. After 16 tries give up */
127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
128 sysfs_put(kn);
129 if (name != orig_name)
130 kfree(name);
131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
132 }
133
134 if (name == orig_name) {
135 name = kstrdup(orig_name, GFP_KERNEL);
136 } else {
137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 kobject_name(kobj), name);
139 }
140 return name;
141 }
142
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 {
145 int rc;
146
147 /* Important: Don't leak passwords */
148 bool secure = strncmp(pp->name, "security-", 9) == 0;
149
150 if (!IS_ENABLED(CONFIG_SYSFS))
151 return 0;
152
153 if (!of_kset || !of_node_is_attached(np))
154 return 0;
155
156 sysfs_bin_attr_init(&pp->attr);
157 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 pp->attr.attr.mode = secure ? 0400 : 0444;
159 pp->attr.size = secure ? 0 : pp->length;
160 pp->attr.read = of_node_property_read;
161
162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
164 return rc;
165 }
166
167 int __of_attach_node_sysfs(struct device_node *np)
168 {
169 const char *name;
170 struct kobject *parent;
171 struct property *pp;
172 int rc;
173
174 if (!IS_ENABLED(CONFIG_SYSFS))
175 return 0;
176
177 if (!of_kset)
178 return 0;
179
180 np->kobj.kset = of_kset;
181 if (!np->parent) {
182 /* Nodes without parents are new top level trees */
183 name = safe_name(&of_kset->kobj, "base");
184 parent = NULL;
185 } else {
186 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 parent = &np->parent->kobj;
188 }
189 if (!name)
190 return -ENOMEM;
191 rc = kobject_add(&np->kobj, parent, "%s", name);
192 kfree(name);
193 if (rc)
194 return rc;
195
196 for_each_property_of_node(np, pp)
197 __of_add_property_sysfs(np, pp);
198
199 return 0;
200 }
201
202 void __init of_core_init(void)
203 {
204 struct device_node *np;
205
206 /* Create the kset, and register existing nodes */
207 mutex_lock(&of_mutex);
208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
209 if (!of_kset) {
210 mutex_unlock(&of_mutex);
211 pr_err("failed to register existing nodes\n");
212 return;
213 }
214 for_each_of_allnodes(np)
215 __of_attach_node_sysfs(np);
216 mutex_unlock(&of_mutex);
217
218 /* Symlink in /proc as required by userspace ABI */
219 if (of_root)
220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
221 }
222
223 static struct property *__of_find_property(const struct device_node *np,
224 const char *name, int *lenp)
225 {
226 struct property *pp;
227
228 if (!np)
229 return NULL;
230
231 for (pp = np->properties; pp; pp = pp->next) {
232 if (of_prop_cmp(pp->name, name) == 0) {
233 if (lenp)
234 *lenp = pp->length;
235 break;
236 }
237 }
238
239 return pp;
240 }
241
242 struct property *of_find_property(const struct device_node *np,
243 const char *name,
244 int *lenp)
245 {
246 struct property *pp;
247 unsigned long flags;
248
249 raw_spin_lock_irqsave(&devtree_lock, flags);
250 pp = __of_find_property(np, name, lenp);
251 raw_spin_unlock_irqrestore(&devtree_lock, flags);
252
253 return pp;
254 }
255 EXPORT_SYMBOL(of_find_property);
256
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
258 {
259 struct device_node *np;
260 if (!prev) {
261 np = of_root;
262 } else if (prev->child) {
263 np = prev->child;
264 } else {
265 /* Walk back up looking for a sibling, or the end of the structure */
266 np = prev;
267 while (np->parent && !np->sibling)
268 np = np->parent;
269 np = np->sibling; /* Might be null at the end of the tree */
270 }
271 return np;
272 }
273
274 /**
275 * of_find_all_nodes - Get next node in global list
276 * @prev: Previous node or NULL to start iteration
277 * of_node_put() will be called on it
278 *
279 * Returns a node pointer with refcount incremented, use
280 * of_node_put() on it when done.
281 */
282 struct device_node *of_find_all_nodes(struct device_node *prev)
283 {
284 struct device_node *np;
285 unsigned long flags;
286
287 raw_spin_lock_irqsave(&devtree_lock, flags);
288 np = __of_find_all_nodes(prev);
289 of_node_get(np);
290 of_node_put(prev);
291 raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 return np;
293 }
294 EXPORT_SYMBOL(of_find_all_nodes);
295
296 /*
297 * Find a property with a given name for a given node
298 * and return the value.
299 */
300 const void *__of_get_property(const struct device_node *np,
301 const char *name, int *lenp)
302 {
303 struct property *pp = __of_find_property(np, name, lenp);
304
305 return pp ? pp->value : NULL;
306 }
307
308 /*
309 * Find a property with a given name for a given node
310 * and return the value.
311 */
312 const void *of_get_property(const struct device_node *np, const char *name,
313 int *lenp)
314 {
315 struct property *pp = of_find_property(np, name, lenp);
316
317 return pp ? pp->value : NULL;
318 }
319 EXPORT_SYMBOL(of_get_property);
320
321 /*
322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
323 *
324 * @cpu: logical cpu index of a core/thread
325 * @phys_id: physical identifier of a core/thread
326 *
327 * CPU logical to physical index mapping is architecture specific.
328 * However this __weak function provides a default match of physical
329 * id to logical cpu index. phys_id provided here is usually values read
330 * from the device tree which must match the hardware internal registers.
331 *
332 * Returns true if the physical identifier and the logical cpu index
333 * correspond to the same core/thread, false otherwise.
334 */
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
336 {
337 return (u32)phys_id == cpu;
338 }
339
340 /**
341 * Checks if the given "prop_name" property holds the physical id of the
342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343 * NULL, local thread number within the core is returned in it.
344 */
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 const char *prop_name, int cpu, unsigned int *thread)
347 {
348 const __be32 *cell;
349 int ac, prop_len, tid;
350 u64 hwid;
351
352 ac = of_n_addr_cells(cpun);
353 cell = of_get_property(cpun, prop_name, &prop_len);
354 if (!cell || !ac)
355 return false;
356 prop_len /= sizeof(*cell) * ac;
357 for (tid = 0; tid < prop_len; tid++) {
358 hwid = of_read_number(cell, ac);
359 if (arch_match_cpu_phys_id(cpu, hwid)) {
360 if (thread)
361 *thread = tid;
362 return true;
363 }
364 cell += ac;
365 }
366 return false;
367 }
368
369 /*
370 * arch_find_n_match_cpu_physical_id - See if the given device node is
371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
372 * else false. If 'thread' is non-NULL, the local thread number within the
373 * core is returned in it.
374 */
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 int cpu, unsigned int *thread)
377 {
378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 * for thread ids on PowerPC. If it doesn't exist fallback to
380 * standard "reg" property.
381 */
382 if (IS_ENABLED(CONFIG_PPC) &&
383 __of_find_n_match_cpu_property(cpun,
384 "ibm,ppc-interrupt-server#s",
385 cpu, thread))
386 return true;
387
388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 }
390
391 /**
392 * of_get_cpu_node - Get device node associated with the given logical CPU
393 *
394 * @cpu: CPU number(logical index) for which device node is required
395 * @thread: if not NULL, local thread number within the physical core is
396 * returned
397 *
398 * The main purpose of this function is to retrieve the device node for the
399 * given logical CPU index. It should be used to initialize the of_node in
400 * cpu device. Once of_node in cpu device is populated, all the further
401 * references can use that instead.
402 *
403 * CPU logical to physical index mapping is architecture specific and is built
404 * before booting secondary cores. This function uses arch_match_cpu_phys_id
405 * which can be overridden by architecture specific implementation.
406 *
407 * Returns a node pointer for the logical cpu with refcount incremented, use
408 * of_node_put() on it when done. Returns NULL if not found.
409 */
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
411 {
412 struct device_node *cpun;
413
414 for_each_node_by_type(cpun, "cpu") {
415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 return cpun;
417 }
418 return NULL;
419 }
420 EXPORT_SYMBOL(of_get_cpu_node);
421
422 /**
423 * __of_device_is_compatible() - Check if the node matches given constraints
424 * @device: pointer to node
425 * @compat: required compatible string, NULL or "" for any match
426 * @type: required device_type value, NULL or "" for any match
427 * @name: required node name, NULL or "" for any match
428 *
429 * Checks if the given @compat, @type and @name strings match the
430 * properties of the given @device. A constraints can be skipped by
431 * passing NULL or an empty string as the constraint.
432 *
433 * Returns 0 for no match, and a positive integer on match. The return
434 * value is a relative score with larger values indicating better
435 * matches. The score is weighted for the most specific compatible value
436 * to get the highest score. Matching type is next, followed by matching
437 * name. Practically speaking, this results in the following priority
438 * order for matches:
439 *
440 * 1. specific compatible && type && name
441 * 2. specific compatible && type
442 * 3. specific compatible && name
443 * 4. specific compatible
444 * 5. general compatible && type && name
445 * 6. general compatible && type
446 * 7. general compatible && name
447 * 8. general compatible
448 * 9. type && name
449 * 10. type
450 * 11. name
451 */
452 static int __of_device_is_compatible(const struct device_node *device,
453 const char *compat, const char *type, const char *name)
454 {
455 struct property *prop;
456 const char *cp;
457 int index = 0, score = 0;
458
459 /* Compatible match has highest priority */
460 if (compat && compat[0]) {
461 prop = __of_find_property(device, "compatible", NULL);
462 for (cp = of_prop_next_string(prop, NULL); cp;
463 cp = of_prop_next_string(prop, cp), index++) {
464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 score = INT_MAX/2 - (index << 2);
466 break;
467 }
468 }
469 if (!score)
470 return 0;
471 }
472
473 /* Matching type is better than matching name */
474 if (type && type[0]) {
475 if (!device->type || of_node_cmp(type, device->type))
476 return 0;
477 score += 2;
478 }
479
480 /* Matching name is a bit better than not */
481 if (name && name[0]) {
482 if (!device->name || of_node_cmp(name, device->name))
483 return 0;
484 score++;
485 }
486
487 return score;
488 }
489
490 /** Checks if the given "compat" string matches one of the strings in
491 * the device's "compatible" property
492 */
493 int of_device_is_compatible(const struct device_node *device,
494 const char *compat)
495 {
496 unsigned long flags;
497 int res;
498
499 raw_spin_lock_irqsave(&devtree_lock, flags);
500 res = __of_device_is_compatible(device, compat, NULL, NULL);
501 raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 return res;
503 }
504 EXPORT_SYMBOL(of_device_is_compatible);
505
506 /** Checks if the device is compatible with any of the entries in
507 * a NULL terminated array of strings. Returns the best match
508 * score or 0.
509 */
510 int of_device_compatible_match(struct device_node *device,
511 const char *const *compat)
512 {
513 unsigned int tmp, score = 0;
514
515 if (!compat)
516 return 0;
517
518 while (*compat) {
519 tmp = of_device_is_compatible(device, *compat);
520 if (tmp > score)
521 score = tmp;
522 compat++;
523 }
524
525 return score;
526 }
527
528 /**
529 * of_machine_is_compatible - Test root of device tree for a given compatible value
530 * @compat: compatible string to look for in root node's compatible property.
531 *
532 * Returns a positive integer if the root node has the given value in its
533 * compatible property.
534 */
535 int of_machine_is_compatible(const char *compat)
536 {
537 struct device_node *root;
538 int rc = 0;
539
540 root = of_find_node_by_path("/");
541 if (root) {
542 rc = of_device_is_compatible(root, compat);
543 of_node_put(root);
544 }
545 return rc;
546 }
547 EXPORT_SYMBOL(of_machine_is_compatible);
548
549 /**
550 * __of_device_is_available - check if a device is available for use
551 *
552 * @device: Node to check for availability, with locks already held
553 *
554 * Returns true if the status property is absent or set to "okay" or "ok",
555 * false otherwise
556 */
557 static bool __of_device_is_available(const struct device_node *device)
558 {
559 const char *status;
560 int statlen;
561
562 if (!device)
563 return false;
564
565 status = __of_get_property(device, "status", &statlen);
566 if (status == NULL)
567 return true;
568
569 if (statlen > 0) {
570 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571 return true;
572 }
573
574 return false;
575 }
576
577 /**
578 * of_device_is_available - check if a device is available for use
579 *
580 * @device: Node to check for availability
581 *
582 * Returns true if the status property is absent or set to "okay" or "ok",
583 * false otherwise
584 */
585 bool of_device_is_available(const struct device_node *device)
586 {
587 unsigned long flags;
588 bool res;
589
590 raw_spin_lock_irqsave(&devtree_lock, flags);
591 res = __of_device_is_available(device);
592 raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 return res;
594
595 }
596 EXPORT_SYMBOL(of_device_is_available);
597
598 /**
599 * of_device_is_big_endian - check if a device has BE registers
600 *
601 * @device: Node to check for endianness
602 *
603 * Returns true if the device has a "big-endian" property, or if the kernel
604 * was compiled for BE *and* the device has a "native-endian" property.
605 * Returns false otherwise.
606 *
607 * Callers would nominally use ioread32be/iowrite32be if
608 * of_device_is_big_endian() == true, or readl/writel otherwise.
609 */
610 bool of_device_is_big_endian(const struct device_node *device)
611 {
612 if (of_property_read_bool(device, "big-endian"))
613 return true;
614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 of_property_read_bool(device, "native-endian"))
616 return true;
617 return false;
618 }
619 EXPORT_SYMBOL(of_device_is_big_endian);
620
621 /**
622 * of_get_parent - Get a node's parent if any
623 * @node: Node to get parent
624 *
625 * Returns a node pointer with refcount incremented, use
626 * of_node_put() on it when done.
627 */
628 struct device_node *of_get_parent(const struct device_node *node)
629 {
630 struct device_node *np;
631 unsigned long flags;
632
633 if (!node)
634 return NULL;
635
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 np = of_node_get(node->parent);
638 raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 return np;
640 }
641 EXPORT_SYMBOL(of_get_parent);
642
643 /**
644 * of_get_next_parent - Iterate to a node's parent
645 * @node: Node to get parent of
646 *
647 * This is like of_get_parent() except that it drops the
648 * refcount on the passed node, making it suitable for iterating
649 * through a node's parents.
650 *
651 * Returns a node pointer with refcount incremented, use
652 * of_node_put() on it when done.
653 */
654 struct device_node *of_get_next_parent(struct device_node *node)
655 {
656 struct device_node *parent;
657 unsigned long flags;
658
659 if (!node)
660 return NULL;
661
662 raw_spin_lock_irqsave(&devtree_lock, flags);
663 parent = of_node_get(node->parent);
664 of_node_put(node);
665 raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 return parent;
667 }
668 EXPORT_SYMBOL(of_get_next_parent);
669
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 struct device_node *prev)
672 {
673 struct device_node *next;
674
675 if (!node)
676 return NULL;
677
678 next = prev ? prev->sibling : node->child;
679 for (; next; next = next->sibling)
680 if (of_node_get(next))
681 break;
682 of_node_put(prev);
683 return next;
684 }
685 #define __for_each_child_of_node(parent, child) \
686 for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 child = __of_get_next_child(parent, child))
688
689 /**
690 * of_get_next_child - Iterate a node childs
691 * @node: parent node
692 * @prev: previous child of the parent node, or NULL to get first
693 *
694 * Returns a node pointer with refcount incremented, use of_node_put() on
695 * it when done. Returns NULL when prev is the last child. Decrements the
696 * refcount of prev.
697 */
698 struct device_node *of_get_next_child(const struct device_node *node,
699 struct device_node *prev)
700 {
701 struct device_node *next;
702 unsigned long flags;
703
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 next = __of_get_next_child(node, prev);
706 raw_spin_unlock_irqrestore(&devtree_lock, flags);
707 return next;
708 }
709 EXPORT_SYMBOL(of_get_next_child);
710
711 /**
712 * of_get_next_available_child - Find the next available child node
713 * @node: parent node
714 * @prev: previous child of the parent node, or NULL to get first
715 *
716 * This function is like of_get_next_child(), except that it
717 * automatically skips any disabled nodes (i.e. status = "disabled").
718 */
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 struct device_node *prev)
721 {
722 struct device_node *next;
723 unsigned long flags;
724
725 if (!node)
726 return NULL;
727
728 raw_spin_lock_irqsave(&devtree_lock, flags);
729 next = prev ? prev->sibling : node->child;
730 for (; next; next = next->sibling) {
731 if (!__of_device_is_available(next))
732 continue;
733 if (of_node_get(next))
734 break;
735 }
736 of_node_put(prev);
737 raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 return next;
739 }
740 EXPORT_SYMBOL(of_get_next_available_child);
741
742 /**
743 * of_get_child_by_name - Find the child node by name for a given parent
744 * @node: parent node
745 * @name: child name to look for.
746 *
747 * This function looks for child node for given matching name
748 *
749 * Returns a node pointer if found, with refcount incremented, use
750 * of_node_put() on it when done.
751 * Returns NULL if node is not found.
752 */
753 struct device_node *of_get_child_by_name(const struct device_node *node,
754 const char *name)
755 {
756 struct device_node *child;
757
758 for_each_child_of_node(node, child)
759 if (child->name && (of_node_cmp(child->name, name) == 0))
760 break;
761 return child;
762 }
763 EXPORT_SYMBOL(of_get_child_by_name);
764
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
766 const char *path)
767 {
768 struct device_node *child;
769 int len;
770
771 len = strcspn(path, "/:");
772 if (!len)
773 return NULL;
774
775 __for_each_child_of_node(parent, child) {
776 const char *name = kbasename(child->full_name);
777 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
778 return child;
779 }
780 return NULL;
781 }
782
783 struct device_node *__of_find_node_by_full_path(struct device_node *node,
784 const char *path)
785 {
786 const char *separator = strchr(path, ':');
787
788 while (node && *path == '/') {
789 struct device_node *tmp = node;
790
791 path++; /* Increment past '/' delimiter */
792 node = __of_find_node_by_path(node, path);
793 of_node_put(tmp);
794 path = strchrnul(path, '/');
795 if (separator && separator < path)
796 break;
797 }
798 return node;
799 }
800
801 /**
802 * of_find_node_opts_by_path - Find a node matching a full OF path
803 * @path: Either the full path to match, or if the path does not
804 * start with '/', the name of a property of the /aliases
805 * node (an alias). In the case of an alias, the node
806 * matching the alias' value will be returned.
807 * @opts: Address of a pointer into which to store the start of
808 * an options string appended to the end of the path with
809 * a ':' separator.
810 *
811 * Valid paths:
812 * /foo/bar Full path
813 * foo Valid alias
814 * foo/bar Valid alias + relative path
815 *
816 * Returns a node pointer with refcount incremented, use
817 * of_node_put() on it when done.
818 */
819 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
820 {
821 struct device_node *np = NULL;
822 struct property *pp;
823 unsigned long flags;
824 const char *separator = strchr(path, ':');
825
826 if (opts)
827 *opts = separator ? separator + 1 : NULL;
828
829 if (strcmp(path, "/") == 0)
830 return of_node_get(of_root);
831
832 /* The path could begin with an alias */
833 if (*path != '/') {
834 int len;
835 const char *p = separator;
836
837 if (!p)
838 p = strchrnul(path, '/');
839 len = p - path;
840
841 /* of_aliases must not be NULL */
842 if (!of_aliases)
843 return NULL;
844
845 for_each_property_of_node(of_aliases, pp) {
846 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
847 np = of_find_node_by_path(pp->value);
848 break;
849 }
850 }
851 if (!np)
852 return NULL;
853 path = p;
854 }
855
856 /* Step down the tree matching path components */
857 raw_spin_lock_irqsave(&devtree_lock, flags);
858 if (!np)
859 np = of_node_get(of_root);
860 np = __of_find_node_by_full_path(np, path);
861 raw_spin_unlock_irqrestore(&devtree_lock, flags);
862 return np;
863 }
864 EXPORT_SYMBOL(of_find_node_opts_by_path);
865
866 /**
867 * of_find_node_by_name - Find a node by its "name" property
868 * @from: The node to start searching from or NULL, the node
869 * you pass will not be searched, only the next one
870 * will; typically, you pass what the previous call
871 * returned. of_node_put() will be called on it
872 * @name: The name string to match against
873 *
874 * Returns a node pointer with refcount incremented, use
875 * of_node_put() on it when done.
876 */
877 struct device_node *of_find_node_by_name(struct device_node *from,
878 const char *name)
879 {
880 struct device_node *np;
881 unsigned long flags;
882
883 raw_spin_lock_irqsave(&devtree_lock, flags);
884 for_each_of_allnodes_from(from, np)
885 if (np->name && (of_node_cmp(np->name, name) == 0)
886 && of_node_get(np))
887 break;
888 of_node_put(from);
889 raw_spin_unlock_irqrestore(&devtree_lock, flags);
890 return np;
891 }
892 EXPORT_SYMBOL(of_find_node_by_name);
893
894 /**
895 * of_find_node_by_type - Find a node by its "device_type" property
896 * @from: The node to start searching from, or NULL to start searching
897 * the entire device tree. The node you pass will not be
898 * searched, only the next one will; typically, you pass
899 * what the previous call returned. of_node_put() will be
900 * called on from for you.
901 * @type: The type string to match against
902 *
903 * Returns a node pointer with refcount incremented, use
904 * of_node_put() on it when done.
905 */
906 struct device_node *of_find_node_by_type(struct device_node *from,
907 const char *type)
908 {
909 struct device_node *np;
910 unsigned long flags;
911
912 raw_spin_lock_irqsave(&devtree_lock, flags);
913 for_each_of_allnodes_from(from, np)
914 if (np->type && (of_node_cmp(np->type, type) == 0)
915 && of_node_get(np))
916 break;
917 of_node_put(from);
918 raw_spin_unlock_irqrestore(&devtree_lock, flags);
919 return np;
920 }
921 EXPORT_SYMBOL(of_find_node_by_type);
922
923 /**
924 * of_find_compatible_node - Find a node based on type and one of the
925 * tokens in its "compatible" property
926 * @from: The node to start searching from or NULL, the node
927 * you pass will not be searched, only the next one
928 * will; typically, you pass what the previous call
929 * returned. of_node_put() will be called on it
930 * @type: The type string to match "device_type" or NULL to ignore
931 * @compatible: The string to match to one of the tokens in the device
932 * "compatible" list.
933 *
934 * Returns a node pointer with refcount incremented, use
935 * of_node_put() on it when done.
936 */
937 struct device_node *of_find_compatible_node(struct device_node *from,
938 const char *type, const char *compatible)
939 {
940 struct device_node *np;
941 unsigned long flags;
942
943 raw_spin_lock_irqsave(&devtree_lock, flags);
944 for_each_of_allnodes_from(from, np)
945 if (__of_device_is_compatible(np, compatible, type, NULL) &&
946 of_node_get(np))
947 break;
948 of_node_put(from);
949 raw_spin_unlock_irqrestore(&devtree_lock, flags);
950 return np;
951 }
952 EXPORT_SYMBOL(of_find_compatible_node);
953
954 /**
955 * of_find_node_with_property - Find a node which has a property with
956 * the given name.
957 * @from: The node to start searching from or NULL, the node
958 * you pass will not be searched, only the next one
959 * will; typically, you pass what the previous call
960 * returned. of_node_put() will be called on it
961 * @prop_name: The name of the property to look for.
962 *
963 * Returns a node pointer with refcount incremented, use
964 * of_node_put() on it when done.
965 */
966 struct device_node *of_find_node_with_property(struct device_node *from,
967 const char *prop_name)
968 {
969 struct device_node *np;
970 struct property *pp;
971 unsigned long flags;
972
973 raw_spin_lock_irqsave(&devtree_lock, flags);
974 for_each_of_allnodes_from(from, np) {
975 for (pp = np->properties; pp; pp = pp->next) {
976 if (of_prop_cmp(pp->name, prop_name) == 0) {
977 of_node_get(np);
978 goto out;
979 }
980 }
981 }
982 out:
983 of_node_put(from);
984 raw_spin_unlock_irqrestore(&devtree_lock, flags);
985 return np;
986 }
987 EXPORT_SYMBOL(of_find_node_with_property);
988
989 static
990 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
991 const struct device_node *node)
992 {
993 const struct of_device_id *best_match = NULL;
994 int score, best_score = 0;
995
996 if (!matches)
997 return NULL;
998
999 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1000 score = __of_device_is_compatible(node, matches->compatible,
1001 matches->type, matches->name);
1002 if (score > best_score) {
1003 best_match = matches;
1004 best_score = score;
1005 }
1006 }
1007
1008 return best_match;
1009 }
1010
1011 /**
1012 * of_match_node - Tell if a device_node has a matching of_match structure
1013 * @matches: array of of device match structures to search in
1014 * @node: the of device structure to match against
1015 *
1016 * Low level utility function used by device matching.
1017 */
1018 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1019 const struct device_node *node)
1020 {
1021 const struct of_device_id *match;
1022 unsigned long flags;
1023
1024 raw_spin_lock_irqsave(&devtree_lock, flags);
1025 match = __of_match_node(matches, node);
1026 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1027 return match;
1028 }
1029 EXPORT_SYMBOL(of_match_node);
1030
1031 /**
1032 * of_find_matching_node_and_match - Find a node based on an of_device_id
1033 * match table.
1034 * @from: The node to start searching from or NULL, the node
1035 * you pass will not be searched, only the next one
1036 * will; typically, you pass what the previous call
1037 * returned. of_node_put() will be called on it
1038 * @matches: array of of device match structures to search in
1039 * @match Updated to point at the matches entry which matched
1040 *
1041 * Returns a node pointer with refcount incremented, use
1042 * of_node_put() on it when done.
1043 */
1044 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1045 const struct of_device_id *matches,
1046 const struct of_device_id **match)
1047 {
1048 struct device_node *np;
1049 const struct of_device_id *m;
1050 unsigned long flags;
1051
1052 if (match)
1053 *match = NULL;
1054
1055 raw_spin_lock_irqsave(&devtree_lock, flags);
1056 for_each_of_allnodes_from(from, np) {
1057 m = __of_match_node(matches, np);
1058 if (m && of_node_get(np)) {
1059 if (match)
1060 *match = m;
1061 break;
1062 }
1063 }
1064 of_node_put(from);
1065 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1066 return np;
1067 }
1068 EXPORT_SYMBOL(of_find_matching_node_and_match);
1069
1070 /**
1071 * of_modalias_node - Lookup appropriate modalias for a device node
1072 * @node: pointer to a device tree node
1073 * @modalias: Pointer to buffer that modalias value will be copied into
1074 * @len: Length of modalias value
1075 *
1076 * Based on the value of the compatible property, this routine will attempt
1077 * to choose an appropriate modalias value for a particular device tree node.
1078 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1079 * from the first entry in the compatible list property.
1080 *
1081 * This routine returns 0 on success, <0 on failure.
1082 */
1083 int of_modalias_node(struct device_node *node, char *modalias, int len)
1084 {
1085 const char *compatible, *p;
1086 int cplen;
1087
1088 compatible = of_get_property(node, "compatible", &cplen);
1089 if (!compatible || strlen(compatible) > cplen)
1090 return -ENODEV;
1091 p = strchr(compatible, ',');
1092 strlcpy(modalias, p ? p + 1 : compatible, len);
1093 return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(of_modalias_node);
1096
1097 /**
1098 * of_find_node_by_phandle - Find a node given a phandle
1099 * @handle: phandle of the node to find
1100 *
1101 * Returns a node pointer with refcount incremented, use
1102 * of_node_put() on it when done.
1103 */
1104 struct device_node *of_find_node_by_phandle(phandle handle)
1105 {
1106 struct device_node *np;
1107 unsigned long flags;
1108
1109 if (!handle)
1110 return NULL;
1111
1112 raw_spin_lock_irqsave(&devtree_lock, flags);
1113 for_each_of_allnodes(np)
1114 if (np->phandle == handle)
1115 break;
1116 of_node_get(np);
1117 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1118 return np;
1119 }
1120 EXPORT_SYMBOL(of_find_node_by_phandle);
1121
1122 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1123 {
1124 int i;
1125 printk("%s %s", msg, of_node_full_name(args->np));
1126 for (i = 0; i < args->args_count; i++) {
1127 const char delim = i ? ',' : ':';
1128
1129 pr_cont("%c%08x", delim, args->args[i]);
1130 }
1131 pr_cont("\n");
1132 }
1133
1134 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1135 const struct device_node *np,
1136 const char *list_name,
1137 const char *cells_name,
1138 int cell_count)
1139 {
1140 const __be32 *list;
1141 int size;
1142
1143 memset(it, 0, sizeof(*it));
1144
1145 list = of_get_property(np, list_name, &size);
1146 if (!list)
1147 return -ENOENT;
1148
1149 it->cells_name = cells_name;
1150 it->cell_count = cell_count;
1151 it->parent = np;
1152 it->list_end = list + size / sizeof(*list);
1153 it->phandle_end = list;
1154 it->cur = list;
1155
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1159
1160 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1161 {
1162 uint32_t count = 0;
1163
1164 if (it->node) {
1165 of_node_put(it->node);
1166 it->node = NULL;
1167 }
1168
1169 if (!it->cur || it->phandle_end >= it->list_end)
1170 return -ENOENT;
1171
1172 it->cur = it->phandle_end;
1173
1174 /* If phandle is 0, then it is an empty entry with no arguments. */
1175 it->phandle = be32_to_cpup(it->cur++);
1176
1177 if (it->phandle) {
1178
1179 /*
1180 * Find the provider node and parse the #*-cells property to
1181 * determine the argument length.
1182 */
1183 it->node = of_find_node_by_phandle(it->phandle);
1184
1185 if (it->cells_name) {
1186 if (!it->node) {
1187 pr_err("%s: could not find phandle\n",
1188 it->parent->full_name);
1189 goto err;
1190 }
1191
1192 if (of_property_read_u32(it->node, it->cells_name,
1193 &count)) {
1194 pr_err("%s: could not get %s for %s\n",
1195 it->parent->full_name,
1196 it->cells_name,
1197 it->node->full_name);
1198 goto err;
1199 }
1200 } else {
1201 count = it->cell_count;
1202 }
1203
1204 /*
1205 * Make sure that the arguments actually fit in the remaining
1206 * property data length
1207 */
1208 if (it->cur + count > it->list_end) {
1209 pr_err("%s: arguments longer than property\n",
1210 it->parent->full_name);
1211 goto err;
1212 }
1213 }
1214
1215 it->phandle_end = it->cur + count;
1216 it->cur_count = count;
1217
1218 return 0;
1219
1220 err:
1221 if (it->node) {
1222 of_node_put(it->node);
1223 it->node = NULL;
1224 }
1225
1226 return -EINVAL;
1227 }
1228 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1229
1230 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1231 uint32_t *args,
1232 int size)
1233 {
1234 int i, count;
1235
1236 count = it->cur_count;
1237
1238 if (WARN_ON(size < count))
1239 count = size;
1240
1241 for (i = 0; i < count; i++)
1242 args[i] = be32_to_cpup(it->cur++);
1243
1244 return count;
1245 }
1246
1247 static int __of_parse_phandle_with_args(const struct device_node *np,
1248 const char *list_name,
1249 const char *cells_name,
1250 int cell_count, int index,
1251 struct of_phandle_args *out_args)
1252 {
1253 struct of_phandle_iterator it;
1254 int rc, cur_index = 0;
1255
1256 /* Loop over the phandles until all the requested entry is found */
1257 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1258 /*
1259 * All of the error cases bail out of the loop, so at
1260 * this point, the parsing is successful. If the requested
1261 * index matches, then fill the out_args structure and return,
1262 * or return -ENOENT for an empty entry.
1263 */
1264 rc = -ENOENT;
1265 if (cur_index == index) {
1266 if (!it.phandle)
1267 goto err;
1268
1269 if (out_args) {
1270 int c;
1271
1272 c = of_phandle_iterator_args(&it,
1273 out_args->args,
1274 MAX_PHANDLE_ARGS);
1275 out_args->np = it.node;
1276 out_args->args_count = c;
1277 } else {
1278 of_node_put(it.node);
1279 }
1280
1281 /* Found it! return success */
1282 return 0;
1283 }
1284
1285 cur_index++;
1286 }
1287
1288 /*
1289 * Unlock node before returning result; will be one of:
1290 * -ENOENT : index is for empty phandle
1291 * -EINVAL : parsing error on data
1292 */
1293
1294 err:
1295 of_node_put(it.node);
1296 return rc;
1297 }
1298
1299 /**
1300 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1301 * @np: Pointer to device node holding phandle property
1302 * @phandle_name: Name of property holding a phandle value
1303 * @index: For properties holding a table of phandles, this is the index into
1304 * the table
1305 *
1306 * Returns the device_node pointer with refcount incremented. Use
1307 * of_node_put() on it when done.
1308 */
1309 struct device_node *of_parse_phandle(const struct device_node *np,
1310 const char *phandle_name, int index)
1311 {
1312 struct of_phandle_args args;
1313
1314 if (index < 0)
1315 return NULL;
1316
1317 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1318 index, &args))
1319 return NULL;
1320
1321 return args.np;
1322 }
1323 EXPORT_SYMBOL(of_parse_phandle);
1324
1325 /**
1326 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1327 * @np: pointer to a device tree node containing a list
1328 * @list_name: property name that contains a list
1329 * @cells_name: property name that specifies phandles' arguments count
1330 * @index: index of a phandle to parse out
1331 * @out_args: optional pointer to output arguments structure (will be filled)
1332 *
1333 * This function is useful to parse lists of phandles and their arguments.
1334 * Returns 0 on success and fills out_args, on error returns appropriate
1335 * errno value.
1336 *
1337 * Caller is responsible to call of_node_put() on the returned out_args->np
1338 * pointer.
1339 *
1340 * Example:
1341 *
1342 * phandle1: node1 {
1343 * #list-cells = <2>;
1344 * }
1345 *
1346 * phandle2: node2 {
1347 * #list-cells = <1>;
1348 * }
1349 *
1350 * node3 {
1351 * list = <&phandle1 1 2 &phandle2 3>;
1352 * }
1353 *
1354 * To get a device_node of the `node2' node you may call this:
1355 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1356 */
1357 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1358 const char *cells_name, int index,
1359 struct of_phandle_args *out_args)
1360 {
1361 if (index < 0)
1362 return -EINVAL;
1363 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1364 index, out_args);
1365 }
1366 EXPORT_SYMBOL(of_parse_phandle_with_args);
1367
1368 /**
1369 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1370 * @np: pointer to a device tree node containing a list
1371 * @list_name: property name that contains a list
1372 * @cell_count: number of argument cells following the phandle
1373 * @index: index of a phandle to parse out
1374 * @out_args: optional pointer to output arguments structure (will be filled)
1375 *
1376 * This function is useful to parse lists of phandles and their arguments.
1377 * Returns 0 on success and fills out_args, on error returns appropriate
1378 * errno value.
1379 *
1380 * Caller is responsible to call of_node_put() on the returned out_args->np
1381 * pointer.
1382 *
1383 * Example:
1384 *
1385 * phandle1: node1 {
1386 * }
1387 *
1388 * phandle2: node2 {
1389 * }
1390 *
1391 * node3 {
1392 * list = <&phandle1 0 2 &phandle2 2 3>;
1393 * }
1394 *
1395 * To get a device_node of the `node2' node you may call this:
1396 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1397 */
1398 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1399 const char *list_name, int cell_count,
1400 int index, struct of_phandle_args *out_args)
1401 {
1402 if (index < 0)
1403 return -EINVAL;
1404 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1405 index, out_args);
1406 }
1407 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1408
1409 /**
1410 * of_count_phandle_with_args() - Find the number of phandles references in a property
1411 * @np: pointer to a device tree node containing a list
1412 * @list_name: property name that contains a list
1413 * @cells_name: property name that specifies phandles' arguments count
1414 *
1415 * Returns the number of phandle + argument tuples within a property. It
1416 * is a typical pattern to encode a list of phandle and variable
1417 * arguments into a single property. The number of arguments is encoded
1418 * by a property in the phandle-target node. For example, a gpios
1419 * property would contain a list of GPIO specifies consisting of a
1420 * phandle and 1 or more arguments. The number of arguments are
1421 * determined by the #gpio-cells property in the node pointed to by the
1422 * phandle.
1423 */
1424 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1425 const char *cells_name)
1426 {
1427 struct of_phandle_iterator it;
1428 int rc, cur_index = 0;
1429
1430 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1431 if (rc)
1432 return rc;
1433
1434 while ((rc = of_phandle_iterator_next(&it)) == 0)
1435 cur_index += 1;
1436
1437 if (rc != -ENOENT)
1438 return rc;
1439
1440 return cur_index;
1441 }
1442 EXPORT_SYMBOL(of_count_phandle_with_args);
1443
1444 /**
1445 * __of_add_property - Add a property to a node without lock operations
1446 */
1447 int __of_add_property(struct device_node *np, struct property *prop)
1448 {
1449 struct property **next;
1450
1451 prop->next = NULL;
1452 next = &np->properties;
1453 while (*next) {
1454 if (strcmp(prop->name, (*next)->name) == 0)
1455 /* duplicate ! don't insert it */
1456 return -EEXIST;
1457
1458 next = &(*next)->next;
1459 }
1460 *next = prop;
1461
1462 return 0;
1463 }
1464
1465 /**
1466 * of_add_property - Add a property to a node
1467 */
1468 int of_add_property(struct device_node *np, struct property *prop)
1469 {
1470 unsigned long flags;
1471 int rc;
1472
1473 mutex_lock(&of_mutex);
1474
1475 raw_spin_lock_irqsave(&devtree_lock, flags);
1476 rc = __of_add_property(np, prop);
1477 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1478
1479 if (!rc)
1480 __of_add_property_sysfs(np, prop);
1481
1482 mutex_unlock(&of_mutex);
1483
1484 if (!rc)
1485 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1486
1487 return rc;
1488 }
1489
1490 int __of_remove_property(struct device_node *np, struct property *prop)
1491 {
1492 struct property **next;
1493
1494 for (next = &np->properties; *next; next = &(*next)->next) {
1495 if (*next == prop)
1496 break;
1497 }
1498 if (*next == NULL)
1499 return -ENODEV;
1500
1501 /* found the node */
1502 *next = prop->next;
1503 prop->next = np->deadprops;
1504 np->deadprops = prop;
1505
1506 return 0;
1507 }
1508
1509 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1510 {
1511 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1512 kfree(prop->attr.attr.name);
1513 }
1514
1515 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1516 {
1517 if (!IS_ENABLED(CONFIG_SYSFS))
1518 return;
1519
1520 /* at early boot, bail here and defer setup to of_init() */
1521 if (of_kset && of_node_is_attached(np))
1522 __of_sysfs_remove_bin_file(np, prop);
1523 }
1524
1525 /**
1526 * of_remove_property - Remove a property from a node.
1527 *
1528 * Note that we don't actually remove it, since we have given out
1529 * who-knows-how-many pointers to the data using get-property.
1530 * Instead we just move the property to the "dead properties"
1531 * list, so it won't be found any more.
1532 */
1533 int of_remove_property(struct device_node *np, struct property *prop)
1534 {
1535 unsigned long flags;
1536 int rc;
1537
1538 if (!prop)
1539 return -ENODEV;
1540
1541 mutex_lock(&of_mutex);
1542
1543 raw_spin_lock_irqsave(&devtree_lock, flags);
1544 rc = __of_remove_property(np, prop);
1545 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1546
1547 if (!rc)
1548 __of_remove_property_sysfs(np, prop);
1549
1550 mutex_unlock(&of_mutex);
1551
1552 if (!rc)
1553 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1554
1555 return rc;
1556 }
1557
1558 int __of_update_property(struct device_node *np, struct property *newprop,
1559 struct property **oldpropp)
1560 {
1561 struct property **next, *oldprop;
1562
1563 for (next = &np->properties; *next; next = &(*next)->next) {
1564 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1565 break;
1566 }
1567 *oldpropp = oldprop = *next;
1568
1569 if (oldprop) {
1570 /* replace the node */
1571 newprop->next = oldprop->next;
1572 *next = newprop;
1573 oldprop->next = np->deadprops;
1574 np->deadprops = oldprop;
1575 } else {
1576 /* new node */
1577 newprop->next = NULL;
1578 *next = newprop;
1579 }
1580
1581 return 0;
1582 }
1583
1584 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1585 struct property *oldprop)
1586 {
1587 if (!IS_ENABLED(CONFIG_SYSFS))
1588 return;
1589
1590 /* At early boot, bail out and defer setup to of_init() */
1591 if (!of_kset)
1592 return;
1593
1594 if (oldprop)
1595 __of_sysfs_remove_bin_file(np, oldprop);
1596 __of_add_property_sysfs(np, newprop);
1597 }
1598
1599 /*
1600 * of_update_property - Update a property in a node, if the property does
1601 * not exist, add it.
1602 *
1603 * Note that we don't actually remove it, since we have given out
1604 * who-knows-how-many pointers to the data using get-property.
1605 * Instead we just move the property to the "dead properties" list,
1606 * and add the new property to the property list
1607 */
1608 int of_update_property(struct device_node *np, struct property *newprop)
1609 {
1610 struct property *oldprop;
1611 unsigned long flags;
1612 int rc;
1613
1614 if (!newprop->name)
1615 return -EINVAL;
1616
1617 mutex_lock(&of_mutex);
1618
1619 raw_spin_lock_irqsave(&devtree_lock, flags);
1620 rc = __of_update_property(np, newprop, &oldprop);
1621 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1622
1623 if (!rc)
1624 __of_update_property_sysfs(np, newprop, oldprop);
1625
1626 mutex_unlock(&of_mutex);
1627
1628 if (!rc)
1629 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1630
1631 return rc;
1632 }
1633
1634 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1635 int id, const char *stem, int stem_len)
1636 {
1637 ap->np = np;
1638 ap->id = id;
1639 strncpy(ap->stem, stem, stem_len);
1640 ap->stem[stem_len] = 0;
1641 list_add_tail(&ap->link, &aliases_lookup);
1642 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1643 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1644 }
1645
1646 /**
1647 * of_alias_scan - Scan all properties of the 'aliases' node
1648 *
1649 * The function scans all the properties of the 'aliases' node and populates
1650 * the global lookup table with the properties. It returns the
1651 * number of alias properties found, or an error code in case of failure.
1652 *
1653 * @dt_alloc: An allocator that provides a virtual address to memory
1654 * for storing the resulting tree
1655 */
1656 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1657 {
1658 struct property *pp;
1659
1660 of_aliases = of_find_node_by_path("/aliases");
1661 of_chosen = of_find_node_by_path("/chosen");
1662 if (of_chosen == NULL)
1663 of_chosen = of_find_node_by_path("/chosen@0");
1664
1665 if (of_chosen) {
1666 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1667 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1668 if (!name)
1669 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1670 if (IS_ENABLED(CONFIG_PPC) && !name)
1671 name = of_get_property(of_aliases, "stdout", NULL);
1672 if (name)
1673 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1674 }
1675
1676 if (!of_aliases)
1677 return;
1678
1679 for_each_property_of_node(of_aliases, pp) {
1680 const char *start = pp->name;
1681 const char *end = start + strlen(start);
1682 struct device_node *np;
1683 struct alias_prop *ap;
1684 int id, len;
1685
1686 /* Skip those we do not want to proceed */
1687 if (!strcmp(pp->name, "name") ||
1688 !strcmp(pp->name, "phandle") ||
1689 !strcmp(pp->name, "linux,phandle"))
1690 continue;
1691
1692 np = of_find_node_by_path(pp->value);
1693 if (!np)
1694 continue;
1695
1696 /* walk the alias backwards to extract the id and work out
1697 * the 'stem' string */
1698 while (isdigit(*(end-1)) && end > start)
1699 end--;
1700 len = end - start;
1701
1702 if (kstrtoint(end, 10, &id) < 0)
1703 continue;
1704
1705 /* Allocate an alias_prop with enough space for the stem */
1706 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1707 if (!ap)
1708 continue;
1709 memset(ap, 0, sizeof(*ap) + len + 1);
1710 ap->alias = start;
1711 of_alias_add(ap, np, id, start, len);
1712 }
1713 }
1714
1715 /**
1716 * of_alias_get_id - Get alias id for the given device_node
1717 * @np: Pointer to the given device_node
1718 * @stem: Alias stem of the given device_node
1719 *
1720 * The function travels the lookup table to get the alias id for the given
1721 * device_node and alias stem. It returns the alias id if found.
1722 */
1723 int of_alias_get_id(struct device_node *np, const char *stem)
1724 {
1725 struct alias_prop *app;
1726 int id = -ENODEV;
1727
1728 mutex_lock(&of_mutex);
1729 list_for_each_entry(app, &aliases_lookup, link) {
1730 if (strcmp(app->stem, stem) != 0)
1731 continue;
1732
1733 if (np == app->np) {
1734 id = app->id;
1735 break;
1736 }
1737 }
1738 mutex_unlock(&of_mutex);
1739
1740 return id;
1741 }
1742 EXPORT_SYMBOL_GPL(of_alias_get_id);
1743
1744 /**
1745 * of_alias_get_highest_id - Get highest alias id for the given stem
1746 * @stem: Alias stem to be examined
1747 *
1748 * The function travels the lookup table to get the highest alias id for the
1749 * given alias stem. It returns the alias id if found.
1750 */
1751 int of_alias_get_highest_id(const char *stem)
1752 {
1753 struct alias_prop *app;
1754 int id = -ENODEV;
1755
1756 mutex_lock(&of_mutex);
1757 list_for_each_entry(app, &aliases_lookup, link) {
1758 if (strcmp(app->stem, stem) != 0)
1759 continue;
1760
1761 if (app->id > id)
1762 id = app->id;
1763 }
1764 mutex_unlock(&of_mutex);
1765
1766 return id;
1767 }
1768 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1769
1770 /**
1771 * of_console_check() - Test and setup console for DT setup
1772 * @dn - Pointer to device node
1773 * @name - Name to use for preferred console without index. ex. "ttyS"
1774 * @index - Index to use for preferred console.
1775 *
1776 * Check if the given device node matches the stdout-path property in the
1777 * /chosen node. If it does then register it as the preferred console and return
1778 * TRUE. Otherwise return FALSE.
1779 */
1780 bool of_console_check(struct device_node *dn, char *name, int index)
1781 {
1782 if (!dn || dn != of_stdout || console_set_on_cmdline)
1783 return false;
1784 return !add_preferred_console(name, index,
1785 kstrdup(of_stdout_options, GFP_KERNEL));
1786 }
1787 EXPORT_SYMBOL_GPL(of_console_check);
1788
1789 /**
1790 * of_find_next_cache_node - Find a node's subsidiary cache
1791 * @np: node of type "cpu" or "cache"
1792 *
1793 * Returns a node pointer with refcount incremented, use
1794 * of_node_put() on it when done. Caller should hold a reference
1795 * to np.
1796 */
1797 struct device_node *of_find_next_cache_node(const struct device_node *np)
1798 {
1799 struct device_node *child, *cache_node;
1800
1801 cache_node = of_parse_phandle(np, "l2-cache", 0);
1802 if (!cache_node)
1803 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1804
1805 if (cache_node)
1806 return cache_node;
1807
1808 /* OF on pmac has nodes instead of properties named "l2-cache"
1809 * beneath CPU nodes.
1810 */
1811 if (!strcmp(np->type, "cpu"))
1812 for_each_child_of_node(np, child)
1813 if (!strcmp(child->type, "cache"))
1814 return child;
1815
1816 return NULL;
1817 }
1818
1819 /**
1820 * of_find_last_cache_level - Find the level at which the last cache is
1821 * present for the given logical cpu
1822 *
1823 * @cpu: cpu number(logical index) for which the last cache level is needed
1824 *
1825 * Returns the the level at which the last cache is present. It is exactly
1826 * same as the total number of cache levels for the given logical cpu.
1827 */
1828 int of_find_last_cache_level(unsigned int cpu)
1829 {
1830 u32 cache_level = 0;
1831 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1832
1833 while (np) {
1834 prev = np;
1835 of_node_put(np);
1836 np = of_find_next_cache_node(np);
1837 }
1838
1839 of_property_read_u32(prev, "cache-level", &cache_level);
1840
1841 return cache_level;
1842 }