]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/of/base.c
Merge tag 'asoc-v3.15-rc5-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_graph.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/proc_fs.h>
29
30 #include "of_private.h"
31
32 LIST_HEAD(aliases_lookup);
33
34 struct device_node *of_allnodes;
35 EXPORT_SYMBOL(of_allnodes);
36 struct device_node *of_chosen;
37 struct device_node *of_aliases;
38 static struct device_node *of_stdout;
39
40 static struct kset *of_kset;
41
42 /*
43 * Used to protect the of_aliases; but also overloaded to hold off addition of
44 * nodes to sysfs
45 */
46 DEFINE_MUTEX(of_aliases_mutex);
47
48 /* use when traversing tree through the allnext, child, sibling,
49 * or parent members of struct device_node.
50 */
51 DEFINE_RAW_SPINLOCK(devtree_lock);
52
53 int of_n_addr_cells(struct device_node *np)
54 {
55 const __be32 *ip;
56
57 do {
58 if (np->parent)
59 np = np->parent;
60 ip = of_get_property(np, "#address-cells", NULL);
61 if (ip)
62 return be32_to_cpup(ip);
63 } while (np->parent);
64 /* No #address-cells property for the root node */
65 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
66 }
67 EXPORT_SYMBOL(of_n_addr_cells);
68
69 int of_n_size_cells(struct device_node *np)
70 {
71 const __be32 *ip;
72
73 do {
74 if (np->parent)
75 np = np->parent;
76 ip = of_get_property(np, "#size-cells", NULL);
77 if (ip)
78 return be32_to_cpup(ip);
79 } while (np->parent);
80 /* No #size-cells property for the root node */
81 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
82 }
83 EXPORT_SYMBOL(of_n_size_cells);
84
85 #ifdef CONFIG_NUMA
86 int __weak of_node_to_nid(struct device_node *np)
87 {
88 return numa_node_id();
89 }
90 #endif
91
92 #if defined(CONFIG_OF_DYNAMIC)
93 /**
94 * of_node_get - Increment refcount of a node
95 * @node: Node to inc refcount, NULL is supported to
96 * simplify writing of callers
97 *
98 * Returns node.
99 */
100 struct device_node *of_node_get(struct device_node *node)
101 {
102 if (node)
103 kobject_get(&node->kobj);
104 return node;
105 }
106 EXPORT_SYMBOL(of_node_get);
107
108 static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
109 {
110 return container_of(kobj, struct device_node, kobj);
111 }
112
113 /**
114 * of_node_release - release a dynamically allocated node
115 * @kref: kref element of the node to be released
116 *
117 * In of_node_put() this function is passed to kref_put()
118 * as the destructor.
119 */
120 static void of_node_release(struct kobject *kobj)
121 {
122 struct device_node *node = kobj_to_device_node(kobj);
123 struct property *prop = node->properties;
124
125 /* We should never be releasing nodes that haven't been detached. */
126 if (!of_node_check_flag(node, OF_DETACHED)) {
127 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
128 dump_stack();
129 return;
130 }
131
132 if (!of_node_check_flag(node, OF_DYNAMIC))
133 return;
134
135 while (prop) {
136 struct property *next = prop->next;
137 kfree(prop->name);
138 kfree(prop->value);
139 kfree(prop);
140 prop = next;
141
142 if (!prop) {
143 prop = node->deadprops;
144 node->deadprops = NULL;
145 }
146 }
147 kfree(node->full_name);
148 kfree(node->data);
149 kfree(node);
150 }
151
152 /**
153 * of_node_put - Decrement refcount of a node
154 * @node: Node to dec refcount, NULL is supported to
155 * simplify writing of callers
156 *
157 */
158 void of_node_put(struct device_node *node)
159 {
160 if (node)
161 kobject_put(&node->kobj);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #else
165 static void of_node_release(struct kobject *kobj)
166 {
167 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
168 }
169 #endif /* CONFIG_OF_DYNAMIC */
170
171 struct kobj_type of_node_ktype = {
172 .release = of_node_release,
173 };
174
175 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
176 struct bin_attribute *bin_attr, char *buf,
177 loff_t offset, size_t count)
178 {
179 struct property *pp = container_of(bin_attr, struct property, attr);
180 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
181 }
182
183 static const char *safe_name(struct kobject *kobj, const char *orig_name)
184 {
185 const char *name = orig_name;
186 struct kernfs_node *kn;
187 int i = 0;
188
189 /* don't be a hero. After 16 tries give up */
190 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
191 sysfs_put(kn);
192 if (name != orig_name)
193 kfree(name);
194 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
195 }
196
197 if (name != orig_name)
198 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
199 kobject_name(kobj), name);
200 return name;
201 }
202
203 static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
204 {
205 int rc;
206
207 /* Important: Don't leak passwords */
208 bool secure = strncmp(pp->name, "security-", 9) == 0;
209
210 sysfs_bin_attr_init(&pp->attr);
211 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
212 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
213 pp->attr.size = secure ? 0 : pp->length;
214 pp->attr.read = of_node_property_read;
215
216 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
217 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
218 return rc;
219 }
220
221 static int __of_node_add(struct device_node *np)
222 {
223 const char *name;
224 struct property *pp;
225 int rc;
226
227 np->kobj.kset = of_kset;
228 if (!np->parent) {
229 /* Nodes without parents are new top level trees */
230 rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base"));
231 } else {
232 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
233 if (!name || !name[0])
234 return -EINVAL;
235
236 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
237 }
238 if (rc)
239 return rc;
240
241 for_each_property_of_node(np, pp)
242 __of_add_property_sysfs(np, pp);
243
244 return 0;
245 }
246
247 int of_node_add(struct device_node *np)
248 {
249 int rc = 0;
250
251 BUG_ON(!of_node_is_initialized(np));
252
253 /*
254 * Grab the mutex here so that in a race condition between of_init() and
255 * of_node_add(), node addition will still be consistent.
256 */
257 mutex_lock(&of_aliases_mutex);
258 if (of_kset)
259 rc = __of_node_add(np);
260 else
261 /* This scenario may be perfectly valid, but report it anyway */
262 pr_info("of_node_add(%s) before of_init()\n", np->full_name);
263 mutex_unlock(&of_aliases_mutex);
264 return rc;
265 }
266
267 #if defined(CONFIG_OF_DYNAMIC)
268 static void of_node_remove(struct device_node *np)
269 {
270 struct property *pp;
271
272 BUG_ON(!of_node_is_initialized(np));
273
274 /* only remove properties if on sysfs */
275 if (of_node_is_attached(np)) {
276 for_each_property_of_node(np, pp)
277 sysfs_remove_bin_file(&np->kobj, &pp->attr);
278 kobject_del(&np->kobj);
279 }
280
281 /* finally remove the kobj_init ref */
282 of_node_put(np);
283 }
284 #endif
285
286 static int __init of_init(void)
287 {
288 struct device_node *np;
289
290 /* Create the kset, and register existing nodes */
291 mutex_lock(&of_aliases_mutex);
292 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
293 if (!of_kset) {
294 mutex_unlock(&of_aliases_mutex);
295 return -ENOMEM;
296 }
297 for_each_of_allnodes(np)
298 __of_node_add(np);
299 mutex_unlock(&of_aliases_mutex);
300
301 /* Symlink in /proc as required by userspace ABI */
302 if (of_allnodes)
303 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
304
305 return 0;
306 }
307 core_initcall(of_init);
308
309 static struct property *__of_find_property(const struct device_node *np,
310 const char *name, int *lenp)
311 {
312 struct property *pp;
313
314 if (!np)
315 return NULL;
316
317 for (pp = np->properties; pp; pp = pp->next) {
318 if (of_prop_cmp(pp->name, name) == 0) {
319 if (lenp)
320 *lenp = pp->length;
321 break;
322 }
323 }
324
325 return pp;
326 }
327
328 struct property *of_find_property(const struct device_node *np,
329 const char *name,
330 int *lenp)
331 {
332 struct property *pp;
333 unsigned long flags;
334
335 raw_spin_lock_irqsave(&devtree_lock, flags);
336 pp = __of_find_property(np, name, lenp);
337 raw_spin_unlock_irqrestore(&devtree_lock, flags);
338
339 return pp;
340 }
341 EXPORT_SYMBOL(of_find_property);
342
343 /**
344 * of_find_all_nodes - Get next node in global list
345 * @prev: Previous node or NULL to start iteration
346 * of_node_put() will be called on it
347 *
348 * Returns a node pointer with refcount incremented, use
349 * of_node_put() on it when done.
350 */
351 struct device_node *of_find_all_nodes(struct device_node *prev)
352 {
353 struct device_node *np;
354 unsigned long flags;
355
356 raw_spin_lock_irqsave(&devtree_lock, flags);
357 np = prev ? prev->allnext : of_allnodes;
358 for (; np != NULL; np = np->allnext)
359 if (of_node_get(np))
360 break;
361 of_node_put(prev);
362 raw_spin_unlock_irqrestore(&devtree_lock, flags);
363 return np;
364 }
365 EXPORT_SYMBOL(of_find_all_nodes);
366
367 /*
368 * Find a property with a given name for a given node
369 * and return the value.
370 */
371 static const void *__of_get_property(const struct device_node *np,
372 const char *name, int *lenp)
373 {
374 struct property *pp = __of_find_property(np, name, lenp);
375
376 return pp ? pp->value : NULL;
377 }
378
379 /*
380 * Find a property with a given name for a given node
381 * and return the value.
382 */
383 const void *of_get_property(const struct device_node *np, const char *name,
384 int *lenp)
385 {
386 struct property *pp = of_find_property(np, name, lenp);
387
388 return pp ? pp->value : NULL;
389 }
390 EXPORT_SYMBOL(of_get_property);
391
392 /*
393 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
394 *
395 * @cpu: logical cpu index of a core/thread
396 * @phys_id: physical identifier of a core/thread
397 *
398 * CPU logical to physical index mapping is architecture specific.
399 * However this __weak function provides a default match of physical
400 * id to logical cpu index. phys_id provided here is usually values read
401 * from the device tree which must match the hardware internal registers.
402 *
403 * Returns true if the physical identifier and the logical cpu index
404 * correspond to the same core/thread, false otherwise.
405 */
406 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
407 {
408 return (u32)phys_id == cpu;
409 }
410
411 /**
412 * Checks if the given "prop_name" property holds the physical id of the
413 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
414 * NULL, local thread number within the core is returned in it.
415 */
416 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
417 const char *prop_name, int cpu, unsigned int *thread)
418 {
419 const __be32 *cell;
420 int ac, prop_len, tid;
421 u64 hwid;
422
423 ac = of_n_addr_cells(cpun);
424 cell = of_get_property(cpun, prop_name, &prop_len);
425 if (!cell || !ac)
426 return false;
427 prop_len /= sizeof(*cell) * ac;
428 for (tid = 0; tid < prop_len; tid++) {
429 hwid = of_read_number(cell, ac);
430 if (arch_match_cpu_phys_id(cpu, hwid)) {
431 if (thread)
432 *thread = tid;
433 return true;
434 }
435 cell += ac;
436 }
437 return false;
438 }
439
440 /*
441 * arch_find_n_match_cpu_physical_id - See if the given device node is
442 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
443 * else false. If 'thread' is non-NULL, the local thread number within the
444 * core is returned in it.
445 */
446 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
447 int cpu, unsigned int *thread)
448 {
449 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
450 * for thread ids on PowerPC. If it doesn't exist fallback to
451 * standard "reg" property.
452 */
453 if (IS_ENABLED(CONFIG_PPC) &&
454 __of_find_n_match_cpu_property(cpun,
455 "ibm,ppc-interrupt-server#s",
456 cpu, thread))
457 return true;
458
459 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
460 return true;
461
462 return false;
463 }
464
465 /**
466 * of_get_cpu_node - Get device node associated with the given logical CPU
467 *
468 * @cpu: CPU number(logical index) for which device node is required
469 * @thread: if not NULL, local thread number within the physical core is
470 * returned
471 *
472 * The main purpose of this function is to retrieve the device node for the
473 * given logical CPU index. It should be used to initialize the of_node in
474 * cpu device. Once of_node in cpu device is populated, all the further
475 * references can use that instead.
476 *
477 * CPU logical to physical index mapping is architecture specific and is built
478 * before booting secondary cores. This function uses arch_match_cpu_phys_id
479 * which can be overridden by architecture specific implementation.
480 *
481 * Returns a node pointer for the logical cpu if found, else NULL.
482 */
483 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
484 {
485 struct device_node *cpun;
486
487 for_each_node_by_type(cpun, "cpu") {
488 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
489 return cpun;
490 }
491 return NULL;
492 }
493 EXPORT_SYMBOL(of_get_cpu_node);
494
495 /**
496 * __of_device_is_compatible() - Check if the node matches given constraints
497 * @device: pointer to node
498 * @compat: required compatible string, NULL or "" for any match
499 * @type: required device_type value, NULL or "" for any match
500 * @name: required node name, NULL or "" for any match
501 *
502 * Checks if the given @compat, @type and @name strings match the
503 * properties of the given @device. A constraints can be skipped by
504 * passing NULL or an empty string as the constraint.
505 *
506 * Returns 0 for no match, and a positive integer on match. The return
507 * value is a relative score with larger values indicating better
508 * matches. The score is weighted for the most specific compatible value
509 * to get the highest score. Matching type is next, followed by matching
510 * name. Practically speaking, this results in the following priority
511 * order for matches:
512 *
513 * 1. specific compatible && type && name
514 * 2. specific compatible && type
515 * 3. specific compatible && name
516 * 4. specific compatible
517 * 5. general compatible && type && name
518 * 6. general compatible && type
519 * 7. general compatible && name
520 * 8. general compatible
521 * 9. type && name
522 * 10. type
523 * 11. name
524 */
525 static int __of_device_is_compatible(const struct device_node *device,
526 const char *compat, const char *type, const char *name)
527 {
528 struct property *prop;
529 const char *cp;
530 int index = 0, score = 0;
531
532 /* Compatible match has highest priority */
533 if (compat && compat[0]) {
534 prop = __of_find_property(device, "compatible", NULL);
535 for (cp = of_prop_next_string(prop, NULL); cp;
536 cp = of_prop_next_string(prop, cp), index++) {
537 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
538 score = INT_MAX/2 - (index << 2);
539 break;
540 }
541 }
542 if (!score)
543 return 0;
544 }
545
546 /* Matching type is better than matching name */
547 if (type && type[0]) {
548 if (!device->type || of_node_cmp(type, device->type))
549 return 0;
550 score += 2;
551 }
552
553 /* Matching name is a bit better than not */
554 if (name && name[0]) {
555 if (!device->name || of_node_cmp(name, device->name))
556 return 0;
557 score++;
558 }
559
560 return score;
561 }
562
563 /** Checks if the given "compat" string matches one of the strings in
564 * the device's "compatible" property
565 */
566 int of_device_is_compatible(const struct device_node *device,
567 const char *compat)
568 {
569 unsigned long flags;
570 int res;
571
572 raw_spin_lock_irqsave(&devtree_lock, flags);
573 res = __of_device_is_compatible(device, compat, NULL, NULL);
574 raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 return res;
576 }
577 EXPORT_SYMBOL(of_device_is_compatible);
578
579 /**
580 * of_machine_is_compatible - Test root of device tree for a given compatible value
581 * @compat: compatible string to look for in root node's compatible property.
582 *
583 * Returns true if the root node has the given value in its
584 * compatible property.
585 */
586 int of_machine_is_compatible(const char *compat)
587 {
588 struct device_node *root;
589 int rc = 0;
590
591 root = of_find_node_by_path("/");
592 if (root) {
593 rc = of_device_is_compatible(root, compat);
594 of_node_put(root);
595 }
596 return rc;
597 }
598 EXPORT_SYMBOL(of_machine_is_compatible);
599
600 /**
601 * __of_device_is_available - check if a device is available for use
602 *
603 * @device: Node to check for availability, with locks already held
604 *
605 * Returns 1 if the status property is absent or set to "okay" or "ok",
606 * 0 otherwise
607 */
608 static int __of_device_is_available(const struct device_node *device)
609 {
610 const char *status;
611 int statlen;
612
613 if (!device)
614 return 0;
615
616 status = __of_get_property(device, "status", &statlen);
617 if (status == NULL)
618 return 1;
619
620 if (statlen > 0) {
621 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
622 return 1;
623 }
624
625 return 0;
626 }
627
628 /**
629 * of_device_is_available - check if a device is available for use
630 *
631 * @device: Node to check for availability
632 *
633 * Returns 1 if the status property is absent or set to "okay" or "ok",
634 * 0 otherwise
635 */
636 int of_device_is_available(const struct device_node *device)
637 {
638 unsigned long flags;
639 int res;
640
641 raw_spin_lock_irqsave(&devtree_lock, flags);
642 res = __of_device_is_available(device);
643 raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 return res;
645
646 }
647 EXPORT_SYMBOL(of_device_is_available);
648
649 /**
650 * of_get_parent - Get a node's parent if any
651 * @node: Node to get parent
652 *
653 * Returns a node pointer with refcount incremented, use
654 * of_node_put() on it when done.
655 */
656 struct device_node *of_get_parent(const struct device_node *node)
657 {
658 struct device_node *np;
659 unsigned long flags;
660
661 if (!node)
662 return NULL;
663
664 raw_spin_lock_irqsave(&devtree_lock, flags);
665 np = of_node_get(node->parent);
666 raw_spin_unlock_irqrestore(&devtree_lock, flags);
667 return np;
668 }
669 EXPORT_SYMBOL(of_get_parent);
670
671 /**
672 * of_get_next_parent - Iterate to a node's parent
673 * @node: Node to get parent of
674 *
675 * This is like of_get_parent() except that it drops the
676 * refcount on the passed node, making it suitable for iterating
677 * through a node's parents.
678 *
679 * Returns a node pointer with refcount incremented, use
680 * of_node_put() on it when done.
681 */
682 struct device_node *of_get_next_parent(struct device_node *node)
683 {
684 struct device_node *parent;
685 unsigned long flags;
686
687 if (!node)
688 return NULL;
689
690 raw_spin_lock_irqsave(&devtree_lock, flags);
691 parent = of_node_get(node->parent);
692 of_node_put(node);
693 raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 return parent;
695 }
696 EXPORT_SYMBOL(of_get_next_parent);
697
698 /**
699 * of_get_next_child - Iterate a node childs
700 * @node: parent node
701 * @prev: previous child of the parent node, or NULL to get first
702 *
703 * Returns a node pointer with refcount incremented, use
704 * of_node_put() on it when done.
705 */
706 struct device_node *of_get_next_child(const struct device_node *node,
707 struct device_node *prev)
708 {
709 struct device_node *next;
710 unsigned long flags;
711
712 raw_spin_lock_irqsave(&devtree_lock, flags);
713 next = prev ? prev->sibling : node->child;
714 for (; next; next = next->sibling)
715 if (of_node_get(next))
716 break;
717 of_node_put(prev);
718 raw_spin_unlock_irqrestore(&devtree_lock, flags);
719 return next;
720 }
721 EXPORT_SYMBOL(of_get_next_child);
722
723 /**
724 * of_get_next_available_child - Find the next available child node
725 * @node: parent node
726 * @prev: previous child of the parent node, or NULL to get first
727 *
728 * This function is like of_get_next_child(), except that it
729 * automatically skips any disabled nodes (i.e. status = "disabled").
730 */
731 struct device_node *of_get_next_available_child(const struct device_node *node,
732 struct device_node *prev)
733 {
734 struct device_node *next;
735 unsigned long flags;
736
737 raw_spin_lock_irqsave(&devtree_lock, flags);
738 next = prev ? prev->sibling : node->child;
739 for (; next; next = next->sibling) {
740 if (!__of_device_is_available(next))
741 continue;
742 if (of_node_get(next))
743 break;
744 }
745 of_node_put(prev);
746 raw_spin_unlock_irqrestore(&devtree_lock, flags);
747 return next;
748 }
749 EXPORT_SYMBOL(of_get_next_available_child);
750
751 /**
752 * of_get_child_by_name - Find the child node by name for a given parent
753 * @node: parent node
754 * @name: child name to look for.
755 *
756 * This function looks for child node for given matching name
757 *
758 * Returns a node pointer if found, with refcount incremented, use
759 * of_node_put() on it when done.
760 * Returns NULL if node is not found.
761 */
762 struct device_node *of_get_child_by_name(const struct device_node *node,
763 const char *name)
764 {
765 struct device_node *child;
766
767 for_each_child_of_node(node, child)
768 if (child->name && (of_node_cmp(child->name, name) == 0))
769 break;
770 return child;
771 }
772 EXPORT_SYMBOL(of_get_child_by_name);
773
774 /**
775 * of_find_node_by_path - Find a node matching a full OF path
776 * @path: The full path to match
777 *
778 * Returns a node pointer with refcount incremented, use
779 * of_node_put() on it when done.
780 */
781 struct device_node *of_find_node_by_path(const char *path)
782 {
783 struct device_node *np = of_allnodes;
784 unsigned long flags;
785
786 raw_spin_lock_irqsave(&devtree_lock, flags);
787 for (; np; np = np->allnext) {
788 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
789 && of_node_get(np))
790 break;
791 }
792 raw_spin_unlock_irqrestore(&devtree_lock, flags);
793 return np;
794 }
795 EXPORT_SYMBOL(of_find_node_by_path);
796
797 /**
798 * of_find_node_by_name - Find a node by its "name" property
799 * @from: The node to start searching from or NULL, the node
800 * you pass will not be searched, only the next one
801 * will; typically, you pass what the previous call
802 * returned. of_node_put() will be called on it
803 * @name: The name string to match against
804 *
805 * Returns a node pointer with refcount incremented, use
806 * of_node_put() on it when done.
807 */
808 struct device_node *of_find_node_by_name(struct device_node *from,
809 const char *name)
810 {
811 struct device_node *np;
812 unsigned long flags;
813
814 raw_spin_lock_irqsave(&devtree_lock, flags);
815 np = from ? from->allnext : of_allnodes;
816 for (; np; np = np->allnext)
817 if (np->name && (of_node_cmp(np->name, name) == 0)
818 && of_node_get(np))
819 break;
820 of_node_put(from);
821 raw_spin_unlock_irqrestore(&devtree_lock, flags);
822 return np;
823 }
824 EXPORT_SYMBOL(of_find_node_by_name);
825
826 /**
827 * of_find_node_by_type - Find a node by its "device_type" property
828 * @from: The node to start searching from, or NULL to start searching
829 * the entire device tree. The node you pass will not be
830 * searched, only the next one will; typically, you pass
831 * what the previous call returned. of_node_put() will be
832 * called on from for you.
833 * @type: The type string to match against
834 *
835 * Returns a node pointer with refcount incremented, use
836 * of_node_put() on it when done.
837 */
838 struct device_node *of_find_node_by_type(struct device_node *from,
839 const char *type)
840 {
841 struct device_node *np;
842 unsigned long flags;
843
844 raw_spin_lock_irqsave(&devtree_lock, flags);
845 np = from ? from->allnext : of_allnodes;
846 for (; np; np = np->allnext)
847 if (np->type && (of_node_cmp(np->type, type) == 0)
848 && of_node_get(np))
849 break;
850 of_node_put(from);
851 raw_spin_unlock_irqrestore(&devtree_lock, flags);
852 return np;
853 }
854 EXPORT_SYMBOL(of_find_node_by_type);
855
856 /**
857 * of_find_compatible_node - Find a node based on type and one of the
858 * tokens in its "compatible" property
859 * @from: The node to start searching from or NULL, the node
860 * you pass will not be searched, only the next one
861 * will; typically, you pass what the previous call
862 * returned. of_node_put() will be called on it
863 * @type: The type string to match "device_type" or NULL to ignore
864 * @compatible: The string to match to one of the tokens in the device
865 * "compatible" list.
866 *
867 * Returns a node pointer with refcount incremented, use
868 * of_node_put() on it when done.
869 */
870 struct device_node *of_find_compatible_node(struct device_node *from,
871 const char *type, const char *compatible)
872 {
873 struct device_node *np;
874 unsigned long flags;
875
876 raw_spin_lock_irqsave(&devtree_lock, flags);
877 np = from ? from->allnext : of_allnodes;
878 for (; np; np = np->allnext) {
879 if (__of_device_is_compatible(np, compatible, type, NULL) &&
880 of_node_get(np))
881 break;
882 }
883 of_node_put(from);
884 raw_spin_unlock_irqrestore(&devtree_lock, flags);
885 return np;
886 }
887 EXPORT_SYMBOL(of_find_compatible_node);
888
889 /**
890 * of_find_node_with_property - Find a node which has a property with
891 * the given name.
892 * @from: The node to start searching from or NULL, the node
893 * you pass will not be searched, only the next one
894 * will; typically, you pass what the previous call
895 * returned. of_node_put() will be called on it
896 * @prop_name: The name of the property to look for.
897 *
898 * Returns a node pointer with refcount incremented, use
899 * of_node_put() on it when done.
900 */
901 struct device_node *of_find_node_with_property(struct device_node *from,
902 const char *prop_name)
903 {
904 struct device_node *np;
905 struct property *pp;
906 unsigned long flags;
907
908 raw_spin_lock_irqsave(&devtree_lock, flags);
909 np = from ? from->allnext : of_allnodes;
910 for (; np; np = np->allnext) {
911 for (pp = np->properties; pp; pp = pp->next) {
912 if (of_prop_cmp(pp->name, prop_name) == 0) {
913 of_node_get(np);
914 goto out;
915 }
916 }
917 }
918 out:
919 of_node_put(from);
920 raw_spin_unlock_irqrestore(&devtree_lock, flags);
921 return np;
922 }
923 EXPORT_SYMBOL(of_find_node_with_property);
924
925 static
926 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
927 const struct device_node *node)
928 {
929 const struct of_device_id *best_match = NULL;
930 int score, best_score = 0;
931
932 if (!matches)
933 return NULL;
934
935 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
936 score = __of_device_is_compatible(node, matches->compatible,
937 matches->type, matches->name);
938 if (score > best_score) {
939 best_match = matches;
940 best_score = score;
941 }
942 }
943
944 return best_match;
945 }
946
947 /**
948 * of_match_node - Tell if an device_node has a matching of_match structure
949 * @matches: array of of device match structures to search in
950 * @node: the of device structure to match against
951 *
952 * Low level utility function used by device matching.
953 */
954 const struct of_device_id *of_match_node(const struct of_device_id *matches,
955 const struct device_node *node)
956 {
957 const struct of_device_id *match;
958 unsigned long flags;
959
960 raw_spin_lock_irqsave(&devtree_lock, flags);
961 match = __of_match_node(matches, node);
962 raw_spin_unlock_irqrestore(&devtree_lock, flags);
963 return match;
964 }
965 EXPORT_SYMBOL(of_match_node);
966
967 /**
968 * of_find_matching_node_and_match - Find a node based on an of_device_id
969 * match table.
970 * @from: The node to start searching from or NULL, the node
971 * you pass will not be searched, only the next one
972 * will; typically, you pass what the previous call
973 * returned. of_node_put() will be called on it
974 * @matches: array of of device match structures to search in
975 * @match Updated to point at the matches entry which matched
976 *
977 * Returns a node pointer with refcount incremented, use
978 * of_node_put() on it when done.
979 */
980 struct device_node *of_find_matching_node_and_match(struct device_node *from,
981 const struct of_device_id *matches,
982 const struct of_device_id **match)
983 {
984 struct device_node *np;
985 const struct of_device_id *m;
986 unsigned long flags;
987
988 if (match)
989 *match = NULL;
990
991 raw_spin_lock_irqsave(&devtree_lock, flags);
992 np = from ? from->allnext : of_allnodes;
993 for (; np; np = np->allnext) {
994 m = __of_match_node(matches, np);
995 if (m && of_node_get(np)) {
996 if (match)
997 *match = m;
998 break;
999 }
1000 }
1001 of_node_put(from);
1002 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1003 return np;
1004 }
1005 EXPORT_SYMBOL(of_find_matching_node_and_match);
1006
1007 /**
1008 * of_modalias_node - Lookup appropriate modalias for a device node
1009 * @node: pointer to a device tree node
1010 * @modalias: Pointer to buffer that modalias value will be copied into
1011 * @len: Length of modalias value
1012 *
1013 * Based on the value of the compatible property, this routine will attempt
1014 * to choose an appropriate modalias value for a particular device tree node.
1015 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1016 * from the first entry in the compatible list property.
1017 *
1018 * This routine returns 0 on success, <0 on failure.
1019 */
1020 int of_modalias_node(struct device_node *node, char *modalias, int len)
1021 {
1022 const char *compatible, *p;
1023 int cplen;
1024
1025 compatible = of_get_property(node, "compatible", &cplen);
1026 if (!compatible || strlen(compatible) > cplen)
1027 return -ENODEV;
1028 p = strchr(compatible, ',');
1029 strlcpy(modalias, p ? p + 1 : compatible, len);
1030 return 0;
1031 }
1032 EXPORT_SYMBOL_GPL(of_modalias_node);
1033
1034 /**
1035 * of_find_node_by_phandle - Find a node given a phandle
1036 * @handle: phandle of the node to find
1037 *
1038 * Returns a node pointer with refcount incremented, use
1039 * of_node_put() on it when done.
1040 */
1041 struct device_node *of_find_node_by_phandle(phandle handle)
1042 {
1043 struct device_node *np;
1044 unsigned long flags;
1045
1046 raw_spin_lock_irqsave(&devtree_lock, flags);
1047 for (np = of_allnodes; np; np = np->allnext)
1048 if (np->phandle == handle)
1049 break;
1050 of_node_get(np);
1051 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1052 return np;
1053 }
1054 EXPORT_SYMBOL(of_find_node_by_phandle);
1055
1056 /**
1057 * of_property_count_elems_of_size - Count the number of elements in a property
1058 *
1059 * @np: device node from which the property value is to be read.
1060 * @propname: name of the property to be searched.
1061 * @elem_size: size of the individual element
1062 *
1063 * Search for a property in a device node and count the number of elements of
1064 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1065 * property does not exist or its length does not match a multiple of elem_size
1066 * and -ENODATA if the property does not have a value.
1067 */
1068 int of_property_count_elems_of_size(const struct device_node *np,
1069 const char *propname, int elem_size)
1070 {
1071 struct property *prop = of_find_property(np, propname, NULL);
1072
1073 if (!prop)
1074 return -EINVAL;
1075 if (!prop->value)
1076 return -ENODATA;
1077
1078 if (prop->length % elem_size != 0) {
1079 pr_err("size of %s in node %s is not a multiple of %d\n",
1080 propname, np->full_name, elem_size);
1081 return -EINVAL;
1082 }
1083
1084 return prop->length / elem_size;
1085 }
1086 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1087
1088 /**
1089 * of_find_property_value_of_size
1090 *
1091 * @np: device node from which the property value is to be read.
1092 * @propname: name of the property to be searched.
1093 * @len: requested length of property value
1094 *
1095 * Search for a property in a device node and valid the requested size.
1096 * Returns the property value on success, -EINVAL if the property does not
1097 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1098 * property data isn't large enough.
1099 *
1100 */
1101 static void *of_find_property_value_of_size(const struct device_node *np,
1102 const char *propname, u32 len)
1103 {
1104 struct property *prop = of_find_property(np, propname, NULL);
1105
1106 if (!prop)
1107 return ERR_PTR(-EINVAL);
1108 if (!prop->value)
1109 return ERR_PTR(-ENODATA);
1110 if (len > prop->length)
1111 return ERR_PTR(-EOVERFLOW);
1112
1113 return prop->value;
1114 }
1115
1116 /**
1117 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1118 *
1119 * @np: device node from which the property value is to be read.
1120 * @propname: name of the property to be searched.
1121 * @index: index of the u32 in the list of values
1122 * @out_value: pointer to return value, modified only if no error.
1123 *
1124 * Search for a property in a device node and read nth 32-bit value from
1125 * it. Returns 0 on success, -EINVAL if the property does not exist,
1126 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1127 * property data isn't large enough.
1128 *
1129 * The out_value is modified only if a valid u32 value can be decoded.
1130 */
1131 int of_property_read_u32_index(const struct device_node *np,
1132 const char *propname,
1133 u32 index, u32 *out_value)
1134 {
1135 const u32 *val = of_find_property_value_of_size(np, propname,
1136 ((index + 1) * sizeof(*out_value)));
1137
1138 if (IS_ERR(val))
1139 return PTR_ERR(val);
1140
1141 *out_value = be32_to_cpup(((__be32 *)val) + index);
1142 return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1145
1146 /**
1147 * of_property_read_u8_array - Find and read an array of u8 from a property.
1148 *
1149 * @np: device node from which the property value is to be read.
1150 * @propname: name of the property to be searched.
1151 * @out_values: pointer to return value, modified only if return value is 0.
1152 * @sz: number of array elements to read
1153 *
1154 * Search for a property in a device node and read 8-bit value(s) from
1155 * it. Returns 0 on success, -EINVAL if the property does not exist,
1156 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1157 * property data isn't large enough.
1158 *
1159 * dts entry of array should be like:
1160 * property = /bits/ 8 <0x50 0x60 0x70>;
1161 *
1162 * The out_values is modified only if a valid u8 value can be decoded.
1163 */
1164 int of_property_read_u8_array(const struct device_node *np,
1165 const char *propname, u8 *out_values, size_t sz)
1166 {
1167 const u8 *val = of_find_property_value_of_size(np, propname,
1168 (sz * sizeof(*out_values)));
1169
1170 if (IS_ERR(val))
1171 return PTR_ERR(val);
1172
1173 while (sz--)
1174 *out_values++ = *val++;
1175 return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1178
1179 /**
1180 * of_property_read_u16_array - Find and read an array of u16 from a property.
1181 *
1182 * @np: device node from which the property value is to be read.
1183 * @propname: name of the property to be searched.
1184 * @out_values: pointer to return value, modified only if return value is 0.
1185 * @sz: number of array elements to read
1186 *
1187 * Search for a property in a device node and read 16-bit value(s) from
1188 * it. Returns 0 on success, -EINVAL if the property does not exist,
1189 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1190 * property data isn't large enough.
1191 *
1192 * dts entry of array should be like:
1193 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1194 *
1195 * The out_values is modified only if a valid u16 value can be decoded.
1196 */
1197 int of_property_read_u16_array(const struct device_node *np,
1198 const char *propname, u16 *out_values, size_t sz)
1199 {
1200 const __be16 *val = of_find_property_value_of_size(np, propname,
1201 (sz * sizeof(*out_values)));
1202
1203 if (IS_ERR(val))
1204 return PTR_ERR(val);
1205
1206 while (sz--)
1207 *out_values++ = be16_to_cpup(val++);
1208 return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1211
1212 /**
1213 * of_property_read_u32_array - Find and read an array of 32 bit integers
1214 * from a property.
1215 *
1216 * @np: device node from which the property value is to be read.
1217 * @propname: name of the property to be searched.
1218 * @out_values: pointer to return value, modified only if return value is 0.
1219 * @sz: number of array elements to read
1220 *
1221 * Search for a property in a device node and read 32-bit value(s) from
1222 * it. Returns 0 on success, -EINVAL if the property does not exist,
1223 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1224 * property data isn't large enough.
1225 *
1226 * The out_values is modified only if a valid u32 value can be decoded.
1227 */
1228 int of_property_read_u32_array(const struct device_node *np,
1229 const char *propname, u32 *out_values,
1230 size_t sz)
1231 {
1232 const __be32 *val = of_find_property_value_of_size(np, propname,
1233 (sz * sizeof(*out_values)));
1234
1235 if (IS_ERR(val))
1236 return PTR_ERR(val);
1237
1238 while (sz--)
1239 *out_values++ = be32_to_cpup(val++);
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1243
1244 /**
1245 * of_property_read_u64 - Find and read a 64 bit integer from a property
1246 * @np: device node from which the property value is to be read.
1247 * @propname: name of the property to be searched.
1248 * @out_value: pointer to return value, modified only if return value is 0.
1249 *
1250 * Search for a property in a device node and read a 64-bit value from
1251 * it. Returns 0 on success, -EINVAL if the property does not exist,
1252 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1253 * property data isn't large enough.
1254 *
1255 * The out_value is modified only if a valid u64 value can be decoded.
1256 */
1257 int of_property_read_u64(const struct device_node *np, const char *propname,
1258 u64 *out_value)
1259 {
1260 const __be32 *val = of_find_property_value_of_size(np, propname,
1261 sizeof(*out_value));
1262
1263 if (IS_ERR(val))
1264 return PTR_ERR(val);
1265
1266 *out_value = of_read_number(val, 2);
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(of_property_read_u64);
1270
1271 /**
1272 * of_property_read_string - Find and read a string from a property
1273 * @np: device node from which the property value is to be read.
1274 * @propname: name of the property to be searched.
1275 * @out_string: pointer to null terminated return string, modified only if
1276 * return value is 0.
1277 *
1278 * Search for a property in a device tree node and retrieve a null
1279 * terminated string value (pointer to data, not a copy). Returns 0 on
1280 * success, -EINVAL if the property does not exist, -ENODATA if property
1281 * does not have a value, and -EILSEQ if the string is not null-terminated
1282 * within the length of the property data.
1283 *
1284 * The out_string pointer is modified only if a valid string can be decoded.
1285 */
1286 int of_property_read_string(struct device_node *np, const char *propname,
1287 const char **out_string)
1288 {
1289 struct property *prop = of_find_property(np, propname, NULL);
1290 if (!prop)
1291 return -EINVAL;
1292 if (!prop->value)
1293 return -ENODATA;
1294 if (strnlen(prop->value, prop->length) >= prop->length)
1295 return -EILSEQ;
1296 *out_string = prop->value;
1297 return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(of_property_read_string);
1300
1301 /**
1302 * of_property_read_string_index - Find and read a string from a multiple
1303 * strings property.
1304 * @np: device node from which the property value is to be read.
1305 * @propname: name of the property to be searched.
1306 * @index: index of the string in the list of strings
1307 * @out_string: pointer to null terminated return string, modified only if
1308 * return value is 0.
1309 *
1310 * Search for a property in a device tree node and retrieve a null
1311 * terminated string value (pointer to data, not a copy) in the list of strings
1312 * contained in that property.
1313 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1314 * property does not have a value, and -EILSEQ if the string is not
1315 * null-terminated within the length of the property data.
1316 *
1317 * The out_string pointer is modified only if a valid string can be decoded.
1318 */
1319 int of_property_read_string_index(struct device_node *np, const char *propname,
1320 int index, const char **output)
1321 {
1322 struct property *prop = of_find_property(np, propname, NULL);
1323 int i = 0;
1324 size_t l = 0, total = 0;
1325 const char *p;
1326
1327 if (!prop)
1328 return -EINVAL;
1329 if (!prop->value)
1330 return -ENODATA;
1331 if (strnlen(prop->value, prop->length) >= prop->length)
1332 return -EILSEQ;
1333
1334 p = prop->value;
1335
1336 for (i = 0; total < prop->length; total += l, p += l) {
1337 l = strlen(p) + 1;
1338 if (i++ == index) {
1339 *output = p;
1340 return 0;
1341 }
1342 }
1343 return -ENODATA;
1344 }
1345 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1346
1347 /**
1348 * of_property_match_string() - Find string in a list and return index
1349 * @np: pointer to node containing string list property
1350 * @propname: string list property name
1351 * @string: pointer to string to search for in string list
1352 *
1353 * This function searches a string list property and returns the index
1354 * of a specific string value.
1355 */
1356 int of_property_match_string(struct device_node *np, const char *propname,
1357 const char *string)
1358 {
1359 struct property *prop = of_find_property(np, propname, NULL);
1360 size_t l;
1361 int i;
1362 const char *p, *end;
1363
1364 if (!prop)
1365 return -EINVAL;
1366 if (!prop->value)
1367 return -ENODATA;
1368
1369 p = prop->value;
1370 end = p + prop->length;
1371
1372 for (i = 0; p < end; i++, p += l) {
1373 l = strlen(p) + 1;
1374 if (p + l > end)
1375 return -EILSEQ;
1376 pr_debug("comparing %s with %s\n", string, p);
1377 if (strcmp(string, p) == 0)
1378 return i; /* Found it; return index */
1379 }
1380 return -ENODATA;
1381 }
1382 EXPORT_SYMBOL_GPL(of_property_match_string);
1383
1384 /**
1385 * of_property_count_strings - Find and return the number of strings from a
1386 * multiple strings property.
1387 * @np: device node from which the property value is to be read.
1388 * @propname: name of the property to be searched.
1389 *
1390 * Search for a property in a device tree node and retrieve the number of null
1391 * terminated string contain in it. Returns the number of strings on
1392 * success, -EINVAL if the property does not exist, -ENODATA if property
1393 * does not have a value, and -EILSEQ if the string is not null-terminated
1394 * within the length of the property data.
1395 */
1396 int of_property_count_strings(struct device_node *np, const char *propname)
1397 {
1398 struct property *prop = of_find_property(np, propname, NULL);
1399 int i = 0;
1400 size_t l = 0, total = 0;
1401 const char *p;
1402
1403 if (!prop)
1404 return -EINVAL;
1405 if (!prop->value)
1406 return -ENODATA;
1407 if (strnlen(prop->value, prop->length) >= prop->length)
1408 return -EILSEQ;
1409
1410 p = prop->value;
1411
1412 for (i = 0; total < prop->length; total += l, p += l, i++)
1413 l = strlen(p) + 1;
1414
1415 return i;
1416 }
1417 EXPORT_SYMBOL_GPL(of_property_count_strings);
1418
1419 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1420 {
1421 int i;
1422 printk("%s %s", msg, of_node_full_name(args->np));
1423 for (i = 0; i < args->args_count; i++)
1424 printk(i ? ",%08x" : ":%08x", args->args[i]);
1425 printk("\n");
1426 }
1427
1428 static int __of_parse_phandle_with_args(const struct device_node *np,
1429 const char *list_name,
1430 const char *cells_name,
1431 int cell_count, int index,
1432 struct of_phandle_args *out_args)
1433 {
1434 const __be32 *list, *list_end;
1435 int rc = 0, size, cur_index = 0;
1436 uint32_t count = 0;
1437 struct device_node *node = NULL;
1438 phandle phandle;
1439
1440 /* Retrieve the phandle list property */
1441 list = of_get_property(np, list_name, &size);
1442 if (!list)
1443 return -ENOENT;
1444 list_end = list + size / sizeof(*list);
1445
1446 /* Loop over the phandles until all the requested entry is found */
1447 while (list < list_end) {
1448 rc = -EINVAL;
1449 count = 0;
1450
1451 /*
1452 * If phandle is 0, then it is an empty entry with no
1453 * arguments. Skip forward to the next entry.
1454 */
1455 phandle = be32_to_cpup(list++);
1456 if (phandle) {
1457 /*
1458 * Find the provider node and parse the #*-cells
1459 * property to determine the argument length.
1460 *
1461 * This is not needed if the cell count is hard-coded
1462 * (i.e. cells_name not set, but cell_count is set),
1463 * except when we're going to return the found node
1464 * below.
1465 */
1466 if (cells_name || cur_index == index) {
1467 node = of_find_node_by_phandle(phandle);
1468 if (!node) {
1469 pr_err("%s: could not find phandle\n",
1470 np->full_name);
1471 goto err;
1472 }
1473 }
1474
1475 if (cells_name) {
1476 if (of_property_read_u32(node, cells_name,
1477 &count)) {
1478 pr_err("%s: could not get %s for %s\n",
1479 np->full_name, cells_name,
1480 node->full_name);
1481 goto err;
1482 }
1483 } else {
1484 count = cell_count;
1485 }
1486
1487 /*
1488 * Make sure that the arguments actually fit in the
1489 * remaining property data length
1490 */
1491 if (list + count > list_end) {
1492 pr_err("%s: arguments longer than property\n",
1493 np->full_name);
1494 goto err;
1495 }
1496 }
1497
1498 /*
1499 * All of the error cases above bail out of the loop, so at
1500 * this point, the parsing is successful. If the requested
1501 * index matches, then fill the out_args structure and return,
1502 * or return -ENOENT for an empty entry.
1503 */
1504 rc = -ENOENT;
1505 if (cur_index == index) {
1506 if (!phandle)
1507 goto err;
1508
1509 if (out_args) {
1510 int i;
1511 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1512 count = MAX_PHANDLE_ARGS;
1513 out_args->np = node;
1514 out_args->args_count = count;
1515 for (i = 0; i < count; i++)
1516 out_args->args[i] = be32_to_cpup(list++);
1517 } else {
1518 of_node_put(node);
1519 }
1520
1521 /* Found it! return success */
1522 return 0;
1523 }
1524
1525 of_node_put(node);
1526 node = NULL;
1527 list += count;
1528 cur_index++;
1529 }
1530
1531 /*
1532 * Unlock node before returning result; will be one of:
1533 * -ENOENT : index is for empty phandle
1534 * -EINVAL : parsing error on data
1535 * [1..n] : Number of phandle (count mode; when index = -1)
1536 */
1537 rc = index < 0 ? cur_index : -ENOENT;
1538 err:
1539 if (node)
1540 of_node_put(node);
1541 return rc;
1542 }
1543
1544 /**
1545 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1546 * @np: Pointer to device node holding phandle property
1547 * @phandle_name: Name of property holding a phandle value
1548 * @index: For properties holding a table of phandles, this is the index into
1549 * the table
1550 *
1551 * Returns the device_node pointer with refcount incremented. Use
1552 * of_node_put() on it when done.
1553 */
1554 struct device_node *of_parse_phandle(const struct device_node *np,
1555 const char *phandle_name, int index)
1556 {
1557 struct of_phandle_args args;
1558
1559 if (index < 0)
1560 return NULL;
1561
1562 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1563 index, &args))
1564 return NULL;
1565
1566 return args.np;
1567 }
1568 EXPORT_SYMBOL(of_parse_phandle);
1569
1570 /**
1571 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1572 * @np: pointer to a device tree node containing a list
1573 * @list_name: property name that contains a list
1574 * @cells_name: property name that specifies phandles' arguments count
1575 * @index: index of a phandle to parse out
1576 * @out_args: optional pointer to output arguments structure (will be filled)
1577 *
1578 * This function is useful to parse lists of phandles and their arguments.
1579 * Returns 0 on success and fills out_args, on error returns appropriate
1580 * errno value.
1581 *
1582 * Caller is responsible to call of_node_put() on the returned out_args->node
1583 * pointer.
1584 *
1585 * Example:
1586 *
1587 * phandle1: node1 {
1588 * #list-cells = <2>;
1589 * }
1590 *
1591 * phandle2: node2 {
1592 * #list-cells = <1>;
1593 * }
1594 *
1595 * node3 {
1596 * list = <&phandle1 1 2 &phandle2 3>;
1597 * }
1598 *
1599 * To get a device_node of the `node2' node you may call this:
1600 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1601 */
1602 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1603 const char *cells_name, int index,
1604 struct of_phandle_args *out_args)
1605 {
1606 if (index < 0)
1607 return -EINVAL;
1608 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1609 index, out_args);
1610 }
1611 EXPORT_SYMBOL(of_parse_phandle_with_args);
1612
1613 /**
1614 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1615 * @np: pointer to a device tree node containing a list
1616 * @list_name: property name that contains a list
1617 * @cell_count: number of argument cells following the phandle
1618 * @index: index of a phandle to parse out
1619 * @out_args: optional pointer to output arguments structure (will be filled)
1620 *
1621 * This function is useful to parse lists of phandles and their arguments.
1622 * Returns 0 on success and fills out_args, on error returns appropriate
1623 * errno value.
1624 *
1625 * Caller is responsible to call of_node_put() on the returned out_args->node
1626 * pointer.
1627 *
1628 * Example:
1629 *
1630 * phandle1: node1 {
1631 * }
1632 *
1633 * phandle2: node2 {
1634 * }
1635 *
1636 * node3 {
1637 * list = <&phandle1 0 2 &phandle2 2 3>;
1638 * }
1639 *
1640 * To get a device_node of the `node2' node you may call this:
1641 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1642 */
1643 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1644 const char *list_name, int cell_count,
1645 int index, struct of_phandle_args *out_args)
1646 {
1647 if (index < 0)
1648 return -EINVAL;
1649 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1650 index, out_args);
1651 }
1652 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1653
1654 /**
1655 * of_count_phandle_with_args() - Find the number of phandles references in a property
1656 * @np: pointer to a device tree node containing a list
1657 * @list_name: property name that contains a list
1658 * @cells_name: property name that specifies phandles' arguments count
1659 *
1660 * Returns the number of phandle + argument tuples within a property. It
1661 * is a typical pattern to encode a list of phandle and variable
1662 * arguments into a single property. The number of arguments is encoded
1663 * by a property in the phandle-target node. For example, a gpios
1664 * property would contain a list of GPIO specifies consisting of a
1665 * phandle and 1 or more arguments. The number of arguments are
1666 * determined by the #gpio-cells property in the node pointed to by the
1667 * phandle.
1668 */
1669 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1670 const char *cells_name)
1671 {
1672 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1673 NULL);
1674 }
1675 EXPORT_SYMBOL(of_count_phandle_with_args);
1676
1677 #if defined(CONFIG_OF_DYNAMIC)
1678 static int of_property_notify(int action, struct device_node *np,
1679 struct property *prop)
1680 {
1681 struct of_prop_reconfig pr;
1682
1683 /* only call notifiers if the node is attached */
1684 if (!of_node_is_attached(np))
1685 return 0;
1686
1687 pr.dn = np;
1688 pr.prop = prop;
1689 return of_reconfig_notify(action, &pr);
1690 }
1691 #else
1692 static int of_property_notify(int action, struct device_node *np,
1693 struct property *prop)
1694 {
1695 return 0;
1696 }
1697 #endif
1698
1699 /**
1700 * __of_add_property - Add a property to a node without lock operations
1701 */
1702 static int __of_add_property(struct device_node *np, struct property *prop)
1703 {
1704 struct property **next;
1705
1706 prop->next = NULL;
1707 next = &np->properties;
1708 while (*next) {
1709 if (strcmp(prop->name, (*next)->name) == 0)
1710 /* duplicate ! don't insert it */
1711 return -EEXIST;
1712
1713 next = &(*next)->next;
1714 }
1715 *next = prop;
1716
1717 return 0;
1718 }
1719
1720 /**
1721 * of_add_property - Add a property to a node
1722 */
1723 int of_add_property(struct device_node *np, struct property *prop)
1724 {
1725 unsigned long flags;
1726 int rc;
1727
1728 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1729 if (rc)
1730 return rc;
1731
1732 raw_spin_lock_irqsave(&devtree_lock, flags);
1733 rc = __of_add_property(np, prop);
1734 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735 if (rc)
1736 return rc;
1737
1738 if (of_node_is_attached(np))
1739 __of_add_property_sysfs(np, prop);
1740
1741 return rc;
1742 }
1743
1744 /**
1745 * of_remove_property - Remove a property from a node.
1746 *
1747 * Note that we don't actually remove it, since we have given out
1748 * who-knows-how-many pointers to the data using get-property.
1749 * Instead we just move the property to the "dead properties"
1750 * list, so it won't be found any more.
1751 */
1752 int of_remove_property(struct device_node *np, struct property *prop)
1753 {
1754 struct property **next;
1755 unsigned long flags;
1756 int found = 0;
1757 int rc;
1758
1759 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1760 if (rc)
1761 return rc;
1762
1763 raw_spin_lock_irqsave(&devtree_lock, flags);
1764 next = &np->properties;
1765 while (*next) {
1766 if (*next == prop) {
1767 /* found the node */
1768 *next = prop->next;
1769 prop->next = np->deadprops;
1770 np->deadprops = prop;
1771 found = 1;
1772 break;
1773 }
1774 next = &(*next)->next;
1775 }
1776 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1777
1778 if (!found)
1779 return -ENODEV;
1780
1781 /* at early boot, bail hear and defer setup to of_init() */
1782 if (!of_kset)
1783 return 0;
1784
1785 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1786
1787 return 0;
1788 }
1789
1790 /*
1791 * of_update_property - Update a property in a node, if the property does
1792 * not exist, add it.
1793 *
1794 * Note that we don't actually remove it, since we have given out
1795 * who-knows-how-many pointers to the data using get-property.
1796 * Instead we just move the property to the "dead properties" list,
1797 * and add the new property to the property list
1798 */
1799 int of_update_property(struct device_node *np, struct property *newprop)
1800 {
1801 struct property **next, *oldprop;
1802 unsigned long flags;
1803 int rc, found = 0;
1804
1805 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1806 if (rc)
1807 return rc;
1808
1809 if (!newprop->name)
1810 return -EINVAL;
1811
1812 oldprop = of_find_property(np, newprop->name, NULL);
1813 if (!oldprop)
1814 return of_add_property(np, newprop);
1815
1816 raw_spin_lock_irqsave(&devtree_lock, flags);
1817 next = &np->properties;
1818 while (*next) {
1819 if (*next == oldprop) {
1820 /* found the node */
1821 newprop->next = oldprop->next;
1822 *next = newprop;
1823 oldprop->next = np->deadprops;
1824 np->deadprops = oldprop;
1825 found = 1;
1826 break;
1827 }
1828 next = &(*next)->next;
1829 }
1830 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1831 if (!found)
1832 return -ENODEV;
1833
1834 /* Update the sysfs attribute */
1835 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1836 __of_add_property_sysfs(np, newprop);
1837
1838 return 0;
1839 }
1840
1841 #if defined(CONFIG_OF_DYNAMIC)
1842 /*
1843 * Support for dynamic device trees.
1844 *
1845 * On some platforms, the device tree can be manipulated at runtime.
1846 * The routines in this section support adding, removing and changing
1847 * device tree nodes.
1848 */
1849
1850 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1851
1852 int of_reconfig_notifier_register(struct notifier_block *nb)
1853 {
1854 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1855 }
1856 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1857
1858 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1859 {
1860 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1861 }
1862 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1863
1864 int of_reconfig_notify(unsigned long action, void *p)
1865 {
1866 int rc;
1867
1868 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1869 return notifier_to_errno(rc);
1870 }
1871
1872 /**
1873 * of_attach_node - Plug a device node into the tree and global list.
1874 */
1875 int of_attach_node(struct device_node *np)
1876 {
1877 unsigned long flags;
1878 int rc;
1879
1880 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1881 if (rc)
1882 return rc;
1883
1884 raw_spin_lock_irqsave(&devtree_lock, flags);
1885 np->sibling = np->parent->child;
1886 np->allnext = of_allnodes;
1887 np->parent->child = np;
1888 of_allnodes = np;
1889 of_node_clear_flag(np, OF_DETACHED);
1890 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1891
1892 of_node_add(np);
1893 return 0;
1894 }
1895
1896 /**
1897 * of_detach_node - "Unplug" a node from the device tree.
1898 *
1899 * The caller must hold a reference to the node. The memory associated with
1900 * the node is not freed until its refcount goes to zero.
1901 */
1902 int of_detach_node(struct device_node *np)
1903 {
1904 struct device_node *parent;
1905 unsigned long flags;
1906 int rc = 0;
1907
1908 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1909 if (rc)
1910 return rc;
1911
1912 raw_spin_lock_irqsave(&devtree_lock, flags);
1913
1914 if (of_node_check_flag(np, OF_DETACHED)) {
1915 /* someone already detached it */
1916 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1917 return rc;
1918 }
1919
1920 parent = np->parent;
1921 if (!parent) {
1922 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1923 return rc;
1924 }
1925
1926 if (of_allnodes == np)
1927 of_allnodes = np->allnext;
1928 else {
1929 struct device_node *prev;
1930 for (prev = of_allnodes;
1931 prev->allnext != np;
1932 prev = prev->allnext)
1933 ;
1934 prev->allnext = np->allnext;
1935 }
1936
1937 if (parent->child == np)
1938 parent->child = np->sibling;
1939 else {
1940 struct device_node *prevsib;
1941 for (prevsib = np->parent->child;
1942 prevsib->sibling != np;
1943 prevsib = prevsib->sibling)
1944 ;
1945 prevsib->sibling = np->sibling;
1946 }
1947
1948 of_node_set_flag(np, OF_DETACHED);
1949 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1950
1951 of_node_remove(np);
1952 return rc;
1953 }
1954 #endif /* defined(CONFIG_OF_DYNAMIC) */
1955
1956 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1957 int id, const char *stem, int stem_len)
1958 {
1959 ap->np = np;
1960 ap->id = id;
1961 strncpy(ap->stem, stem, stem_len);
1962 ap->stem[stem_len] = 0;
1963 list_add_tail(&ap->link, &aliases_lookup);
1964 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1965 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1966 }
1967
1968 /**
1969 * of_alias_scan - Scan all properties of 'aliases' node
1970 *
1971 * The function scans all the properties of 'aliases' node and populate
1972 * the the global lookup table with the properties. It returns the
1973 * number of alias_prop found, or error code in error case.
1974 *
1975 * @dt_alloc: An allocator that provides a virtual address to memory
1976 * for the resulting tree
1977 */
1978 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1979 {
1980 struct property *pp;
1981
1982 of_chosen = of_find_node_by_path("/chosen");
1983 if (of_chosen == NULL)
1984 of_chosen = of_find_node_by_path("/chosen@0");
1985
1986 if (of_chosen) {
1987 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1988 if (!name)
1989 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1990 if (name)
1991 of_stdout = of_find_node_by_path(name);
1992 }
1993
1994 of_aliases = of_find_node_by_path("/aliases");
1995 if (!of_aliases)
1996 return;
1997
1998 for_each_property_of_node(of_aliases, pp) {
1999 const char *start = pp->name;
2000 const char *end = start + strlen(start);
2001 struct device_node *np;
2002 struct alias_prop *ap;
2003 int id, len;
2004
2005 /* Skip those we do not want to proceed */
2006 if (!strcmp(pp->name, "name") ||
2007 !strcmp(pp->name, "phandle") ||
2008 !strcmp(pp->name, "linux,phandle"))
2009 continue;
2010
2011 np = of_find_node_by_path(pp->value);
2012 if (!np)
2013 continue;
2014
2015 /* walk the alias backwards to extract the id and work out
2016 * the 'stem' string */
2017 while (isdigit(*(end-1)) && end > start)
2018 end--;
2019 len = end - start;
2020
2021 if (kstrtoint(end, 10, &id) < 0)
2022 continue;
2023
2024 /* Allocate an alias_prop with enough space for the stem */
2025 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2026 if (!ap)
2027 continue;
2028 memset(ap, 0, sizeof(*ap) + len + 1);
2029 ap->alias = start;
2030 of_alias_add(ap, np, id, start, len);
2031 }
2032 }
2033
2034 /**
2035 * of_alias_get_id - Get alias id for the given device_node
2036 * @np: Pointer to the given device_node
2037 * @stem: Alias stem of the given device_node
2038 *
2039 * The function travels the lookup table to get alias id for the given
2040 * device_node and alias stem. It returns the alias id if find it.
2041 */
2042 int of_alias_get_id(struct device_node *np, const char *stem)
2043 {
2044 struct alias_prop *app;
2045 int id = -ENODEV;
2046
2047 mutex_lock(&of_aliases_mutex);
2048 list_for_each_entry(app, &aliases_lookup, link) {
2049 if (strcmp(app->stem, stem) != 0)
2050 continue;
2051
2052 if (np == app->np) {
2053 id = app->id;
2054 break;
2055 }
2056 }
2057 mutex_unlock(&of_aliases_mutex);
2058
2059 return id;
2060 }
2061 EXPORT_SYMBOL_GPL(of_alias_get_id);
2062
2063 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2064 u32 *pu)
2065 {
2066 const void *curv = cur;
2067
2068 if (!prop)
2069 return NULL;
2070
2071 if (!cur) {
2072 curv = prop->value;
2073 goto out_val;
2074 }
2075
2076 curv += sizeof(*cur);
2077 if (curv >= prop->value + prop->length)
2078 return NULL;
2079
2080 out_val:
2081 *pu = be32_to_cpup(curv);
2082 return curv;
2083 }
2084 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2085
2086 const char *of_prop_next_string(struct property *prop, const char *cur)
2087 {
2088 const void *curv = cur;
2089
2090 if (!prop)
2091 return NULL;
2092
2093 if (!cur)
2094 return prop->value;
2095
2096 curv += strlen(cur) + 1;
2097 if (curv >= prop->value + prop->length)
2098 return NULL;
2099
2100 return curv;
2101 }
2102 EXPORT_SYMBOL_GPL(of_prop_next_string);
2103
2104 /**
2105 * of_device_is_stdout_path - check if a device node matches the
2106 * linux,stdout-path property
2107 *
2108 * Check if this device node matches the linux,stdout-path property
2109 * in the chosen node. return true if yes, false otherwise.
2110 */
2111 int of_device_is_stdout_path(struct device_node *dn)
2112 {
2113 if (!of_stdout)
2114 return false;
2115
2116 return of_stdout == dn;
2117 }
2118 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2119
2120 /**
2121 * of_find_next_cache_node - Find a node's subsidiary cache
2122 * @np: node of type "cpu" or "cache"
2123 *
2124 * Returns a node pointer with refcount incremented, use
2125 * of_node_put() on it when done. Caller should hold a reference
2126 * to np.
2127 */
2128 struct device_node *of_find_next_cache_node(const struct device_node *np)
2129 {
2130 struct device_node *child;
2131 const phandle *handle;
2132
2133 handle = of_get_property(np, "l2-cache", NULL);
2134 if (!handle)
2135 handle = of_get_property(np, "next-level-cache", NULL);
2136
2137 if (handle)
2138 return of_find_node_by_phandle(be32_to_cpup(handle));
2139
2140 /* OF on pmac has nodes instead of properties named "l2-cache"
2141 * beneath CPU nodes.
2142 */
2143 if (!strcmp(np->type, "cpu"))
2144 for_each_child_of_node(np, child)
2145 if (!strcmp(child->type, "cache"))
2146 return child;
2147
2148 return NULL;
2149 }
2150
2151 /**
2152 * of_graph_parse_endpoint() - parse common endpoint node properties
2153 * @node: pointer to endpoint device_node
2154 * @endpoint: pointer to the OF endpoint data structure
2155 *
2156 * The caller should hold a reference to @node.
2157 */
2158 int of_graph_parse_endpoint(const struct device_node *node,
2159 struct of_endpoint *endpoint)
2160 {
2161 struct device_node *port_node = of_get_parent(node);
2162
2163 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2164 __func__, node->full_name);
2165
2166 memset(endpoint, 0, sizeof(*endpoint));
2167
2168 endpoint->local_node = node;
2169 /*
2170 * It doesn't matter whether the two calls below succeed.
2171 * If they don't then the default value 0 is used.
2172 */
2173 of_property_read_u32(port_node, "reg", &endpoint->port);
2174 of_property_read_u32(node, "reg", &endpoint->id);
2175
2176 of_node_put(port_node);
2177
2178 return 0;
2179 }
2180 EXPORT_SYMBOL(of_graph_parse_endpoint);
2181
2182 /**
2183 * of_graph_get_next_endpoint() - get next endpoint node
2184 * @parent: pointer to the parent device node
2185 * @prev: previous endpoint node, or NULL to get first
2186 *
2187 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2188 * of the passed @prev node is not decremented, the caller have to use
2189 * of_node_put() on it when done.
2190 */
2191 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2192 struct device_node *prev)
2193 {
2194 struct device_node *endpoint;
2195 struct device_node *port;
2196
2197 if (!parent)
2198 return NULL;
2199
2200 /*
2201 * Start by locating the port node. If no previous endpoint is specified
2202 * search for the first port node, otherwise get the previous endpoint
2203 * parent port node.
2204 */
2205 if (!prev) {
2206 struct device_node *node;
2207
2208 node = of_get_child_by_name(parent, "ports");
2209 if (node)
2210 parent = node;
2211
2212 port = of_get_child_by_name(parent, "port");
2213 of_node_put(node);
2214
2215 if (!port) {
2216 pr_err("%s(): no port node found in %s\n",
2217 __func__, parent->full_name);
2218 return NULL;
2219 }
2220 } else {
2221 port = of_get_parent(prev);
2222 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2223 __func__, prev->full_name))
2224 return NULL;
2225
2226 /*
2227 * Avoid dropping prev node refcount to 0 when getting the next
2228 * child below.
2229 */
2230 of_node_get(prev);
2231 }
2232
2233 while (1) {
2234 /*
2235 * Now that we have a port node, get the next endpoint by
2236 * getting the next child. If the previous endpoint is NULL this
2237 * will return the first child.
2238 */
2239 endpoint = of_get_next_child(port, prev);
2240 if (endpoint) {
2241 of_node_put(port);
2242 return endpoint;
2243 }
2244
2245 /* No more endpoints under this port, try the next one. */
2246 prev = NULL;
2247
2248 do {
2249 port = of_get_next_child(parent, port);
2250 if (!port)
2251 return NULL;
2252 } while (of_node_cmp(port->name, "port"));
2253 }
2254 }
2255 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2256
2257 /**
2258 * of_graph_get_remote_port_parent() - get remote port's parent node
2259 * @node: pointer to a local endpoint device_node
2260 *
2261 * Return: Remote device node associated with remote endpoint node linked
2262 * to @node. Use of_node_put() on it when done.
2263 */
2264 struct device_node *of_graph_get_remote_port_parent(
2265 const struct device_node *node)
2266 {
2267 struct device_node *np;
2268 unsigned int depth;
2269
2270 /* Get remote endpoint node. */
2271 np = of_parse_phandle(node, "remote-endpoint", 0);
2272
2273 /* Walk 3 levels up only if there is 'ports' node. */
2274 for (depth = 3; depth && np; depth--) {
2275 np = of_get_next_parent(np);
2276 if (depth == 2 && of_node_cmp(np->name, "ports"))
2277 break;
2278 }
2279 return np;
2280 }
2281 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2282
2283 /**
2284 * of_graph_get_remote_port() - get remote port node
2285 * @node: pointer to a local endpoint device_node
2286 *
2287 * Return: Remote port node associated with remote endpoint node linked
2288 * to @node. Use of_node_put() on it when done.
2289 */
2290 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2291 {
2292 struct device_node *np;
2293
2294 /* Get remote endpoint node. */
2295 np = of_parse_phandle(node, "remote-endpoint", 0);
2296 if (!np)
2297 return NULL;
2298 return of_get_next_parent(np);
2299 }
2300 EXPORT_SYMBOL(of_graph_get_remote_port);