]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/of/base.c
Merge tag 'sound-3.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-zesty-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27
28 #include "of_private.h"
29
30 LIST_HEAD(aliases_lookup);
31
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37
38 DEFINE_MUTEX(of_aliases_mutex);
39
40 /* use when traversing tree through the allnext, child, sibling,
41 * or parent members of struct device_node.
42 */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44
45 int of_n_addr_cells(struct device_node *np)
46 {
47 const __be32 *ip;
48
49 do {
50 if (np->parent)
51 np = np->parent;
52 ip = of_get_property(np, "#address-cells", NULL);
53 if (ip)
54 return be32_to_cpup(ip);
55 } while (np->parent);
56 /* No #address-cells property for the root node */
57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60
61 int of_n_size_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#size-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #size-cells property for the root node */
73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76
77 #ifdef CONFIG_NUMA
78 int __weak of_node_to_nid(struct device_node *np)
79 {
80 return numa_node_id();
81 }
82 #endif
83
84 #if defined(CONFIG_OF_DYNAMIC)
85 /**
86 * of_node_get - Increment refcount of a node
87 * @node: Node to inc refcount, NULL is supported to
88 * simplify writing of callers
89 *
90 * Returns node.
91 */
92 struct device_node *of_node_get(struct device_node *node)
93 {
94 if (node)
95 kref_get(&node->kref);
96 return node;
97 }
98 EXPORT_SYMBOL(of_node_get);
99
100 static inline struct device_node *kref_to_device_node(struct kref *kref)
101 {
102 return container_of(kref, struct device_node, kref);
103 }
104
105 /**
106 * of_node_release - release a dynamically allocated node
107 * @kref: kref element of the node to be released
108 *
109 * In of_node_put() this function is passed to kref_put()
110 * as the destructor.
111 */
112 static void of_node_release(struct kref *kref)
113 {
114 struct device_node *node = kref_to_device_node(kref);
115 struct property *prop = node->properties;
116
117 /* We should never be releasing nodes that haven't been detached. */
118 if (!of_node_check_flag(node, OF_DETACHED)) {
119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 dump_stack();
121 kref_init(&node->kref);
122 return;
123 }
124
125 if (!of_node_check_flag(node, OF_DYNAMIC))
126 return;
127
128 while (prop) {
129 struct property *next = prop->next;
130 kfree(prop->name);
131 kfree(prop->value);
132 kfree(prop);
133 prop = next;
134
135 if (!prop) {
136 prop = node->deadprops;
137 node->deadprops = NULL;
138 }
139 }
140 kfree(node->full_name);
141 kfree(node->data);
142 kfree(node);
143 }
144
145 /**
146 * of_node_put - Decrement refcount of a node
147 * @node: Node to dec refcount, NULL is supported to
148 * simplify writing of callers
149 *
150 */
151 void of_node_put(struct device_node *node)
152 {
153 if (node)
154 kref_put(&node->kref, of_node_release);
155 }
156 EXPORT_SYMBOL(of_node_put);
157 #endif /* CONFIG_OF_DYNAMIC */
158
159 static struct property *__of_find_property(const struct device_node *np,
160 const char *name, int *lenp)
161 {
162 struct property *pp;
163
164 if (!np)
165 return NULL;
166
167 for (pp = np->properties; pp; pp = pp->next) {
168 if (of_prop_cmp(pp->name, name) == 0) {
169 if (lenp)
170 *lenp = pp->length;
171 break;
172 }
173 }
174
175 return pp;
176 }
177
178 struct property *of_find_property(const struct device_node *np,
179 const char *name,
180 int *lenp)
181 {
182 struct property *pp;
183 unsigned long flags;
184
185 raw_spin_lock_irqsave(&devtree_lock, flags);
186 pp = __of_find_property(np, name, lenp);
187 raw_spin_unlock_irqrestore(&devtree_lock, flags);
188
189 return pp;
190 }
191 EXPORT_SYMBOL(of_find_property);
192
193 /**
194 * of_find_all_nodes - Get next node in global list
195 * @prev: Previous node or NULL to start iteration
196 * of_node_put() will be called on it
197 *
198 * Returns a node pointer with refcount incremented, use
199 * of_node_put() on it when done.
200 */
201 struct device_node *of_find_all_nodes(struct device_node *prev)
202 {
203 struct device_node *np;
204 unsigned long flags;
205
206 raw_spin_lock_irqsave(&devtree_lock, flags);
207 np = prev ? prev->allnext : of_allnodes;
208 for (; np != NULL; np = np->allnext)
209 if (of_node_get(np))
210 break;
211 of_node_put(prev);
212 raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 return np;
214 }
215 EXPORT_SYMBOL(of_find_all_nodes);
216
217 /*
218 * Find a property with a given name for a given node
219 * and return the value.
220 */
221 static const void *__of_get_property(const struct device_node *np,
222 const char *name, int *lenp)
223 {
224 struct property *pp = __of_find_property(np, name, lenp);
225
226 return pp ? pp->value : NULL;
227 }
228
229 /*
230 * Find a property with a given name for a given node
231 * and return the value.
232 */
233 const void *of_get_property(const struct device_node *np, const char *name,
234 int *lenp)
235 {
236 struct property *pp = of_find_property(np, name, lenp);
237
238 return pp ? pp->value : NULL;
239 }
240 EXPORT_SYMBOL(of_get_property);
241
242 /*
243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244 *
245 * @cpu: logical cpu index of a core/thread
246 * @phys_id: physical identifier of a core/thread
247 *
248 * CPU logical to physical index mapping is architecture specific.
249 * However this __weak function provides a default match of physical
250 * id to logical cpu index. phys_id provided here is usually values read
251 * from the device tree which must match the hardware internal registers.
252 *
253 * Returns true if the physical identifier and the logical cpu index
254 * correspond to the same core/thread, false otherwise.
255 */
256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257 {
258 return (u32)phys_id == cpu;
259 }
260
261 /**
262 * Checks if the given "prop_name" property holds the physical id of the
263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264 * NULL, local thread number within the core is returned in it.
265 */
266 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 const char *prop_name, int cpu, unsigned int *thread)
268 {
269 const __be32 *cell;
270 int ac, prop_len, tid;
271 u64 hwid;
272
273 ac = of_n_addr_cells(cpun);
274 cell = of_get_property(cpun, prop_name, &prop_len);
275 if (!cell || !ac)
276 return false;
277 prop_len /= sizeof(*cell) * ac;
278 for (tid = 0; tid < prop_len; tid++) {
279 hwid = of_read_number(cell, ac);
280 if (arch_match_cpu_phys_id(cpu, hwid)) {
281 if (thread)
282 *thread = tid;
283 return true;
284 }
285 cell += ac;
286 }
287 return false;
288 }
289
290 /*
291 * arch_find_n_match_cpu_physical_id - See if the given device node is
292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
293 * else false. If 'thread' is non-NULL, the local thread number within the
294 * core is returned in it.
295 */
296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 int cpu, unsigned int *thread)
298 {
299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 * for thread ids on PowerPC. If it doesn't exist fallback to
301 * standard "reg" property.
302 */
303 if (IS_ENABLED(CONFIG_PPC) &&
304 __of_find_n_match_cpu_property(cpun,
305 "ibm,ppc-interrupt-server#s",
306 cpu, thread))
307 return true;
308
309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 return true;
311
312 return false;
313 }
314
315 /**
316 * of_get_cpu_node - Get device node associated with the given logical CPU
317 *
318 * @cpu: CPU number(logical index) for which device node is required
319 * @thread: if not NULL, local thread number within the physical core is
320 * returned
321 *
322 * The main purpose of this function is to retrieve the device node for the
323 * given logical CPU index. It should be used to initialize the of_node in
324 * cpu device. Once of_node in cpu device is populated, all the further
325 * references can use that instead.
326 *
327 * CPU logical to physical index mapping is architecture specific and is built
328 * before booting secondary cores. This function uses arch_match_cpu_phys_id
329 * which can be overridden by architecture specific implementation.
330 *
331 * Returns a node pointer for the logical cpu if found, else NULL.
332 */
333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334 {
335 struct device_node *cpun;
336
337 for_each_node_by_type(cpun, "cpu") {
338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 return cpun;
340 }
341 return NULL;
342 }
343 EXPORT_SYMBOL(of_get_cpu_node);
344
345 /**
346 * __of_device_is_compatible() - Check if the node matches given constraints
347 * @device: pointer to node
348 * @compat: required compatible string, NULL or "" for any match
349 * @type: required device_type value, NULL or "" for any match
350 * @name: required node name, NULL or "" for any match
351 *
352 * Checks if the given @compat, @type and @name strings match the
353 * properties of the given @device. A constraints can be skipped by
354 * passing NULL or an empty string as the constraint.
355 *
356 * Returns 0 for no match, and a positive integer on match. The return
357 * value is a relative score with larger values indicating better
358 * matches. The score is weighted for the most specific compatible value
359 * to get the highest score. Matching type is next, followed by matching
360 * name. Practically speaking, this results in the following priority
361 * order for matches:
362 *
363 * 1. specific compatible && type && name
364 * 2. specific compatible && type
365 * 3. specific compatible && name
366 * 4. specific compatible
367 * 5. general compatible && type && name
368 * 6. general compatible && type
369 * 7. general compatible && name
370 * 8. general compatible
371 * 9. type && name
372 * 10. type
373 * 11. name
374 */
375 static int __of_device_is_compatible(const struct device_node *device,
376 const char *compat, const char *type, const char *name)
377 {
378 struct property *prop;
379 const char *cp;
380 int index = 0, score = 0;
381
382 /* Compatible match has highest priority */
383 if (compat && compat[0]) {
384 prop = __of_find_property(device, "compatible", NULL);
385 for (cp = of_prop_next_string(prop, NULL); cp;
386 cp = of_prop_next_string(prop, cp), index++) {
387 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
388 score = INT_MAX/2 - (index << 2);
389 break;
390 }
391 }
392 if (!score)
393 return 0;
394 }
395
396 /* Matching type is better than matching name */
397 if (type && type[0]) {
398 if (!device->type || of_node_cmp(type, device->type))
399 return 0;
400 score += 2;
401 }
402
403 /* Matching name is a bit better than not */
404 if (name && name[0]) {
405 if (!device->name || of_node_cmp(name, device->name))
406 return 0;
407 score++;
408 }
409
410 return score;
411 }
412
413 /** Checks if the given "compat" string matches one of the strings in
414 * the device's "compatible" property
415 */
416 int of_device_is_compatible(const struct device_node *device,
417 const char *compat)
418 {
419 unsigned long flags;
420 int res;
421
422 raw_spin_lock_irqsave(&devtree_lock, flags);
423 res = __of_device_is_compatible(device, compat, NULL, NULL);
424 raw_spin_unlock_irqrestore(&devtree_lock, flags);
425 return res;
426 }
427 EXPORT_SYMBOL(of_device_is_compatible);
428
429 /**
430 * of_machine_is_compatible - Test root of device tree for a given compatible value
431 * @compat: compatible string to look for in root node's compatible property.
432 *
433 * Returns true if the root node has the given value in its
434 * compatible property.
435 */
436 int of_machine_is_compatible(const char *compat)
437 {
438 struct device_node *root;
439 int rc = 0;
440
441 root = of_find_node_by_path("/");
442 if (root) {
443 rc = of_device_is_compatible(root, compat);
444 of_node_put(root);
445 }
446 return rc;
447 }
448 EXPORT_SYMBOL(of_machine_is_compatible);
449
450 /**
451 * __of_device_is_available - check if a device is available for use
452 *
453 * @device: Node to check for availability, with locks already held
454 *
455 * Returns 1 if the status property is absent or set to "okay" or "ok",
456 * 0 otherwise
457 */
458 static int __of_device_is_available(const struct device_node *device)
459 {
460 const char *status;
461 int statlen;
462
463 if (!device)
464 return 0;
465
466 status = __of_get_property(device, "status", &statlen);
467 if (status == NULL)
468 return 1;
469
470 if (statlen > 0) {
471 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
472 return 1;
473 }
474
475 return 0;
476 }
477
478 /**
479 * of_device_is_available - check if a device is available for use
480 *
481 * @device: Node to check for availability
482 *
483 * Returns 1 if the status property is absent or set to "okay" or "ok",
484 * 0 otherwise
485 */
486 int of_device_is_available(const struct device_node *device)
487 {
488 unsigned long flags;
489 int res;
490
491 raw_spin_lock_irqsave(&devtree_lock, flags);
492 res = __of_device_is_available(device);
493 raw_spin_unlock_irqrestore(&devtree_lock, flags);
494 return res;
495
496 }
497 EXPORT_SYMBOL(of_device_is_available);
498
499 /**
500 * of_get_parent - Get a node's parent if any
501 * @node: Node to get parent
502 *
503 * Returns a node pointer with refcount incremented, use
504 * of_node_put() on it when done.
505 */
506 struct device_node *of_get_parent(const struct device_node *node)
507 {
508 struct device_node *np;
509 unsigned long flags;
510
511 if (!node)
512 return NULL;
513
514 raw_spin_lock_irqsave(&devtree_lock, flags);
515 np = of_node_get(node->parent);
516 raw_spin_unlock_irqrestore(&devtree_lock, flags);
517 return np;
518 }
519 EXPORT_SYMBOL(of_get_parent);
520
521 /**
522 * of_get_next_parent - Iterate to a node's parent
523 * @node: Node to get parent of
524 *
525 * This is like of_get_parent() except that it drops the
526 * refcount on the passed node, making it suitable for iterating
527 * through a node's parents.
528 *
529 * Returns a node pointer with refcount incremented, use
530 * of_node_put() on it when done.
531 */
532 struct device_node *of_get_next_parent(struct device_node *node)
533 {
534 struct device_node *parent;
535 unsigned long flags;
536
537 if (!node)
538 return NULL;
539
540 raw_spin_lock_irqsave(&devtree_lock, flags);
541 parent = of_node_get(node->parent);
542 of_node_put(node);
543 raw_spin_unlock_irqrestore(&devtree_lock, flags);
544 return parent;
545 }
546 EXPORT_SYMBOL(of_get_next_parent);
547
548 /**
549 * of_get_next_child - Iterate a node childs
550 * @node: parent node
551 * @prev: previous child of the parent node, or NULL to get first
552 *
553 * Returns a node pointer with refcount incremented, use
554 * of_node_put() on it when done.
555 */
556 struct device_node *of_get_next_child(const struct device_node *node,
557 struct device_node *prev)
558 {
559 struct device_node *next;
560 unsigned long flags;
561
562 raw_spin_lock_irqsave(&devtree_lock, flags);
563 next = prev ? prev->sibling : node->child;
564 for (; next; next = next->sibling)
565 if (of_node_get(next))
566 break;
567 of_node_put(prev);
568 raw_spin_unlock_irqrestore(&devtree_lock, flags);
569 return next;
570 }
571 EXPORT_SYMBOL(of_get_next_child);
572
573 /**
574 * of_get_next_available_child - Find the next available child node
575 * @node: parent node
576 * @prev: previous child of the parent node, or NULL to get first
577 *
578 * This function is like of_get_next_child(), except that it
579 * automatically skips any disabled nodes (i.e. status = "disabled").
580 */
581 struct device_node *of_get_next_available_child(const struct device_node *node,
582 struct device_node *prev)
583 {
584 struct device_node *next;
585 unsigned long flags;
586
587 raw_spin_lock_irqsave(&devtree_lock, flags);
588 next = prev ? prev->sibling : node->child;
589 for (; next; next = next->sibling) {
590 if (!__of_device_is_available(next))
591 continue;
592 if (of_node_get(next))
593 break;
594 }
595 of_node_put(prev);
596 raw_spin_unlock_irqrestore(&devtree_lock, flags);
597 return next;
598 }
599 EXPORT_SYMBOL(of_get_next_available_child);
600
601 /**
602 * of_get_child_by_name - Find the child node by name for a given parent
603 * @node: parent node
604 * @name: child name to look for.
605 *
606 * This function looks for child node for given matching name
607 *
608 * Returns a node pointer if found, with refcount incremented, use
609 * of_node_put() on it when done.
610 * Returns NULL if node is not found.
611 */
612 struct device_node *of_get_child_by_name(const struct device_node *node,
613 const char *name)
614 {
615 struct device_node *child;
616
617 for_each_child_of_node(node, child)
618 if (child->name && (of_node_cmp(child->name, name) == 0))
619 break;
620 return child;
621 }
622 EXPORT_SYMBOL(of_get_child_by_name);
623
624 /**
625 * of_find_node_by_path - Find a node matching a full OF path
626 * @path: The full path to match
627 *
628 * Returns a node pointer with refcount incremented, use
629 * of_node_put() on it when done.
630 */
631 struct device_node *of_find_node_by_path(const char *path)
632 {
633 struct device_node *np = of_allnodes;
634 unsigned long flags;
635
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 for (; np; np = np->allnext) {
638 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
639 && of_node_get(np))
640 break;
641 }
642 raw_spin_unlock_irqrestore(&devtree_lock, flags);
643 return np;
644 }
645 EXPORT_SYMBOL(of_find_node_by_path);
646
647 /**
648 * of_find_node_by_name - Find a node by its "name" property
649 * @from: The node to start searching from or NULL, the node
650 * you pass will not be searched, only the next one
651 * will; typically, you pass what the previous call
652 * returned. of_node_put() will be called on it
653 * @name: The name string to match against
654 *
655 * Returns a node pointer with refcount incremented, use
656 * of_node_put() on it when done.
657 */
658 struct device_node *of_find_node_by_name(struct device_node *from,
659 const char *name)
660 {
661 struct device_node *np;
662 unsigned long flags;
663
664 raw_spin_lock_irqsave(&devtree_lock, flags);
665 np = from ? from->allnext : of_allnodes;
666 for (; np; np = np->allnext)
667 if (np->name && (of_node_cmp(np->name, name) == 0)
668 && of_node_get(np))
669 break;
670 of_node_put(from);
671 raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 return np;
673 }
674 EXPORT_SYMBOL(of_find_node_by_name);
675
676 /**
677 * of_find_node_by_type - Find a node by its "device_type" property
678 * @from: The node to start searching from, or NULL to start searching
679 * the entire device tree. The node you pass will not be
680 * searched, only the next one will; typically, you pass
681 * what the previous call returned. of_node_put() will be
682 * called on from for you.
683 * @type: The type string to match against
684 *
685 * Returns a node pointer with refcount incremented, use
686 * of_node_put() on it when done.
687 */
688 struct device_node *of_find_node_by_type(struct device_node *from,
689 const char *type)
690 {
691 struct device_node *np;
692 unsigned long flags;
693
694 raw_spin_lock_irqsave(&devtree_lock, flags);
695 np = from ? from->allnext : of_allnodes;
696 for (; np; np = np->allnext)
697 if (np->type && (of_node_cmp(np->type, type) == 0)
698 && of_node_get(np))
699 break;
700 of_node_put(from);
701 raw_spin_unlock_irqrestore(&devtree_lock, flags);
702 return np;
703 }
704 EXPORT_SYMBOL(of_find_node_by_type);
705
706 /**
707 * of_find_compatible_node - Find a node based on type and one of the
708 * tokens in its "compatible" property
709 * @from: The node to start searching from or NULL, the node
710 * you pass will not be searched, only the next one
711 * will; typically, you pass what the previous call
712 * returned. of_node_put() will be called on it
713 * @type: The type string to match "device_type" or NULL to ignore
714 * @compatible: The string to match to one of the tokens in the device
715 * "compatible" list.
716 *
717 * Returns a node pointer with refcount incremented, use
718 * of_node_put() on it when done.
719 */
720 struct device_node *of_find_compatible_node(struct device_node *from,
721 const char *type, const char *compatible)
722 {
723 struct device_node *np;
724 unsigned long flags;
725
726 raw_spin_lock_irqsave(&devtree_lock, flags);
727 np = from ? from->allnext : of_allnodes;
728 for (; np; np = np->allnext) {
729 if (__of_device_is_compatible(np, compatible, type, NULL) &&
730 of_node_get(np))
731 break;
732 }
733 of_node_put(from);
734 raw_spin_unlock_irqrestore(&devtree_lock, flags);
735 return np;
736 }
737 EXPORT_SYMBOL(of_find_compatible_node);
738
739 /**
740 * of_find_node_with_property - Find a node which has a property with
741 * the given name.
742 * @from: The node to start searching from or NULL, the node
743 * you pass will not be searched, only the next one
744 * will; typically, you pass what the previous call
745 * returned. of_node_put() will be called on it
746 * @prop_name: The name of the property to look for.
747 *
748 * Returns a node pointer with refcount incremented, use
749 * of_node_put() on it when done.
750 */
751 struct device_node *of_find_node_with_property(struct device_node *from,
752 const char *prop_name)
753 {
754 struct device_node *np;
755 struct property *pp;
756 unsigned long flags;
757
758 raw_spin_lock_irqsave(&devtree_lock, flags);
759 np = from ? from->allnext : of_allnodes;
760 for (; np; np = np->allnext) {
761 for (pp = np->properties; pp; pp = pp->next) {
762 if (of_prop_cmp(pp->name, prop_name) == 0) {
763 of_node_get(np);
764 goto out;
765 }
766 }
767 }
768 out:
769 of_node_put(from);
770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 return np;
772 }
773 EXPORT_SYMBOL(of_find_node_with_property);
774
775 static
776 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
777 const struct device_node *node)
778 {
779 const struct of_device_id *best_match = NULL;
780 int score, best_score = 0;
781
782 if (!matches)
783 return NULL;
784
785 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
786 score = __of_device_is_compatible(node, matches->compatible,
787 matches->type, matches->name);
788 if (score > best_score) {
789 best_match = matches;
790 best_score = score;
791 }
792 }
793
794 return best_match;
795 }
796
797 /**
798 * of_match_node - Tell if an device_node has a matching of_match structure
799 * @matches: array of of device match structures to search in
800 * @node: the of device structure to match against
801 *
802 * Low level utility function used by device matching.
803 */
804 const struct of_device_id *of_match_node(const struct of_device_id *matches,
805 const struct device_node *node)
806 {
807 const struct of_device_id *match;
808 unsigned long flags;
809
810 raw_spin_lock_irqsave(&devtree_lock, flags);
811 match = __of_match_node(matches, node);
812 raw_spin_unlock_irqrestore(&devtree_lock, flags);
813 return match;
814 }
815 EXPORT_SYMBOL(of_match_node);
816
817 /**
818 * of_find_matching_node_and_match - Find a node based on an of_device_id
819 * match table.
820 * @from: The node to start searching from or NULL, the node
821 * you pass will not be searched, only the next one
822 * will; typically, you pass what the previous call
823 * returned. of_node_put() will be called on it
824 * @matches: array of of device match structures to search in
825 * @match Updated to point at the matches entry which matched
826 *
827 * Returns a node pointer with refcount incremented, use
828 * of_node_put() on it when done.
829 */
830 struct device_node *of_find_matching_node_and_match(struct device_node *from,
831 const struct of_device_id *matches,
832 const struct of_device_id **match)
833 {
834 struct device_node *np;
835 const struct of_device_id *m;
836 unsigned long flags;
837
838 if (match)
839 *match = NULL;
840
841 raw_spin_lock_irqsave(&devtree_lock, flags);
842 np = from ? from->allnext : of_allnodes;
843 for (; np; np = np->allnext) {
844 m = __of_match_node(matches, np);
845 if (m && of_node_get(np)) {
846 if (match)
847 *match = m;
848 break;
849 }
850 }
851 of_node_put(from);
852 raw_spin_unlock_irqrestore(&devtree_lock, flags);
853 return np;
854 }
855 EXPORT_SYMBOL(of_find_matching_node_and_match);
856
857 /**
858 * of_modalias_node - Lookup appropriate modalias for a device node
859 * @node: pointer to a device tree node
860 * @modalias: Pointer to buffer that modalias value will be copied into
861 * @len: Length of modalias value
862 *
863 * Based on the value of the compatible property, this routine will attempt
864 * to choose an appropriate modalias value for a particular device tree node.
865 * It does this by stripping the manufacturer prefix (as delimited by a ',')
866 * from the first entry in the compatible list property.
867 *
868 * This routine returns 0 on success, <0 on failure.
869 */
870 int of_modalias_node(struct device_node *node, char *modalias, int len)
871 {
872 const char *compatible, *p;
873 int cplen;
874
875 compatible = of_get_property(node, "compatible", &cplen);
876 if (!compatible || strlen(compatible) > cplen)
877 return -ENODEV;
878 p = strchr(compatible, ',');
879 strlcpy(modalias, p ? p + 1 : compatible, len);
880 return 0;
881 }
882 EXPORT_SYMBOL_GPL(of_modalias_node);
883
884 /**
885 * of_find_node_by_phandle - Find a node given a phandle
886 * @handle: phandle of the node to find
887 *
888 * Returns a node pointer with refcount incremented, use
889 * of_node_put() on it when done.
890 */
891 struct device_node *of_find_node_by_phandle(phandle handle)
892 {
893 struct device_node *np;
894 unsigned long flags;
895
896 raw_spin_lock_irqsave(&devtree_lock, flags);
897 for (np = of_allnodes; np; np = np->allnext)
898 if (np->phandle == handle)
899 break;
900 of_node_get(np);
901 raw_spin_unlock_irqrestore(&devtree_lock, flags);
902 return np;
903 }
904 EXPORT_SYMBOL(of_find_node_by_phandle);
905
906 /**
907 * of_find_property_value_of_size
908 *
909 * @np: device node from which the property value is to be read.
910 * @propname: name of the property to be searched.
911 * @len: requested length of property value
912 *
913 * Search for a property in a device node and valid the requested size.
914 * Returns the property value on success, -EINVAL if the property does not
915 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
916 * property data isn't large enough.
917 *
918 */
919 static void *of_find_property_value_of_size(const struct device_node *np,
920 const char *propname, u32 len)
921 {
922 struct property *prop = of_find_property(np, propname, NULL);
923
924 if (!prop)
925 return ERR_PTR(-EINVAL);
926 if (!prop->value)
927 return ERR_PTR(-ENODATA);
928 if (len > prop->length)
929 return ERR_PTR(-EOVERFLOW);
930
931 return prop->value;
932 }
933
934 /**
935 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
936 *
937 * @np: device node from which the property value is to be read.
938 * @propname: name of the property to be searched.
939 * @index: index of the u32 in the list of values
940 * @out_value: pointer to return value, modified only if no error.
941 *
942 * Search for a property in a device node and read nth 32-bit value from
943 * it. Returns 0 on success, -EINVAL if the property does not exist,
944 * -ENODATA if property does not have a value, and -EOVERFLOW if the
945 * property data isn't large enough.
946 *
947 * The out_value is modified only if a valid u32 value can be decoded.
948 */
949 int of_property_read_u32_index(const struct device_node *np,
950 const char *propname,
951 u32 index, u32 *out_value)
952 {
953 const u32 *val = of_find_property_value_of_size(np, propname,
954 ((index + 1) * sizeof(*out_value)));
955
956 if (IS_ERR(val))
957 return PTR_ERR(val);
958
959 *out_value = be32_to_cpup(((__be32 *)val) + index);
960 return 0;
961 }
962 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
963
964 /**
965 * of_property_read_u8_array - Find and read an array of u8 from a property.
966 *
967 * @np: device node from which the property value is to be read.
968 * @propname: name of the property to be searched.
969 * @out_values: pointer to return value, modified only if return value is 0.
970 * @sz: number of array elements to read
971 *
972 * Search for a property in a device node and read 8-bit value(s) from
973 * it. Returns 0 on success, -EINVAL if the property does not exist,
974 * -ENODATA if property does not have a value, and -EOVERFLOW if the
975 * property data isn't large enough.
976 *
977 * dts entry of array should be like:
978 * property = /bits/ 8 <0x50 0x60 0x70>;
979 *
980 * The out_values is modified only if a valid u8 value can be decoded.
981 */
982 int of_property_read_u8_array(const struct device_node *np,
983 const char *propname, u8 *out_values, size_t sz)
984 {
985 const u8 *val = of_find_property_value_of_size(np, propname,
986 (sz * sizeof(*out_values)));
987
988 if (IS_ERR(val))
989 return PTR_ERR(val);
990
991 while (sz--)
992 *out_values++ = *val++;
993 return 0;
994 }
995 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
996
997 /**
998 * of_property_read_u16_array - Find and read an array of u16 from a property.
999 *
1000 * @np: device node from which the property value is to be read.
1001 * @propname: name of the property to be searched.
1002 * @out_values: pointer to return value, modified only if return value is 0.
1003 * @sz: number of array elements to read
1004 *
1005 * Search for a property in a device node and read 16-bit value(s) from
1006 * it. Returns 0 on success, -EINVAL if the property does not exist,
1007 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1008 * property data isn't large enough.
1009 *
1010 * dts entry of array should be like:
1011 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1012 *
1013 * The out_values is modified only if a valid u16 value can be decoded.
1014 */
1015 int of_property_read_u16_array(const struct device_node *np,
1016 const char *propname, u16 *out_values, size_t sz)
1017 {
1018 const __be16 *val = of_find_property_value_of_size(np, propname,
1019 (sz * sizeof(*out_values)));
1020
1021 if (IS_ERR(val))
1022 return PTR_ERR(val);
1023
1024 while (sz--)
1025 *out_values++ = be16_to_cpup(val++);
1026 return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1029
1030 /**
1031 * of_property_read_u32_array - Find and read an array of 32 bit integers
1032 * from a property.
1033 *
1034 * @np: device node from which the property value is to be read.
1035 * @propname: name of the property to be searched.
1036 * @out_values: pointer to return value, modified only if return value is 0.
1037 * @sz: number of array elements to read
1038 *
1039 * Search for a property in a device node and read 32-bit value(s) from
1040 * it. Returns 0 on success, -EINVAL if the property does not exist,
1041 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1042 * property data isn't large enough.
1043 *
1044 * The out_values is modified only if a valid u32 value can be decoded.
1045 */
1046 int of_property_read_u32_array(const struct device_node *np,
1047 const char *propname, u32 *out_values,
1048 size_t sz)
1049 {
1050 const __be32 *val = of_find_property_value_of_size(np, propname,
1051 (sz * sizeof(*out_values)));
1052
1053 if (IS_ERR(val))
1054 return PTR_ERR(val);
1055
1056 while (sz--)
1057 *out_values++ = be32_to_cpup(val++);
1058 return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1061
1062 /**
1063 * of_property_read_u64 - Find and read a 64 bit integer from a property
1064 * @np: device node from which the property value is to be read.
1065 * @propname: name of the property to be searched.
1066 * @out_value: pointer to return value, modified only if return value is 0.
1067 *
1068 * Search for a property in a device node and read a 64-bit value from
1069 * it. Returns 0 on success, -EINVAL if the property does not exist,
1070 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1071 * property data isn't large enough.
1072 *
1073 * The out_value is modified only if a valid u64 value can be decoded.
1074 */
1075 int of_property_read_u64(const struct device_node *np, const char *propname,
1076 u64 *out_value)
1077 {
1078 const __be32 *val = of_find_property_value_of_size(np, propname,
1079 sizeof(*out_value));
1080
1081 if (IS_ERR(val))
1082 return PTR_ERR(val);
1083
1084 *out_value = of_read_number(val, 2);
1085 return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(of_property_read_u64);
1088
1089 /**
1090 * of_property_read_string - Find and read a string from a property
1091 * @np: device node from which the property value is to be read.
1092 * @propname: name of the property to be searched.
1093 * @out_string: pointer to null terminated return string, modified only if
1094 * return value is 0.
1095 *
1096 * Search for a property in a device tree node and retrieve a null
1097 * terminated string value (pointer to data, not a copy). Returns 0 on
1098 * success, -EINVAL if the property does not exist, -ENODATA if property
1099 * does not have a value, and -EILSEQ if the string is not null-terminated
1100 * within the length of the property data.
1101 *
1102 * The out_string pointer is modified only if a valid string can be decoded.
1103 */
1104 int of_property_read_string(struct device_node *np, const char *propname,
1105 const char **out_string)
1106 {
1107 struct property *prop = of_find_property(np, propname, NULL);
1108 if (!prop)
1109 return -EINVAL;
1110 if (!prop->value)
1111 return -ENODATA;
1112 if (strnlen(prop->value, prop->length) >= prop->length)
1113 return -EILSEQ;
1114 *out_string = prop->value;
1115 return 0;
1116 }
1117 EXPORT_SYMBOL_GPL(of_property_read_string);
1118
1119 /**
1120 * of_property_read_string_index - Find and read a string from a multiple
1121 * strings property.
1122 * @np: device node from which the property value is to be read.
1123 * @propname: name of the property to be searched.
1124 * @index: index of the string in the list of strings
1125 * @out_string: pointer to null terminated return string, modified only if
1126 * return value is 0.
1127 *
1128 * Search for a property in a device tree node and retrieve a null
1129 * terminated string value (pointer to data, not a copy) in the list of strings
1130 * contained in that property.
1131 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1132 * property does not have a value, and -EILSEQ if the string is not
1133 * null-terminated within the length of the property data.
1134 *
1135 * The out_string pointer is modified only if a valid string can be decoded.
1136 */
1137 int of_property_read_string_index(struct device_node *np, const char *propname,
1138 int index, const char **output)
1139 {
1140 struct property *prop = of_find_property(np, propname, NULL);
1141 int i = 0;
1142 size_t l = 0, total = 0;
1143 const char *p;
1144
1145 if (!prop)
1146 return -EINVAL;
1147 if (!prop->value)
1148 return -ENODATA;
1149 if (strnlen(prop->value, prop->length) >= prop->length)
1150 return -EILSEQ;
1151
1152 p = prop->value;
1153
1154 for (i = 0; total < prop->length; total += l, p += l) {
1155 l = strlen(p) + 1;
1156 if (i++ == index) {
1157 *output = p;
1158 return 0;
1159 }
1160 }
1161 return -ENODATA;
1162 }
1163 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1164
1165 /**
1166 * of_property_match_string() - Find string in a list and return index
1167 * @np: pointer to node containing string list property
1168 * @propname: string list property name
1169 * @string: pointer to string to search for in string list
1170 *
1171 * This function searches a string list property and returns the index
1172 * of a specific string value.
1173 */
1174 int of_property_match_string(struct device_node *np, const char *propname,
1175 const char *string)
1176 {
1177 struct property *prop = of_find_property(np, propname, NULL);
1178 size_t l;
1179 int i;
1180 const char *p, *end;
1181
1182 if (!prop)
1183 return -EINVAL;
1184 if (!prop->value)
1185 return -ENODATA;
1186
1187 p = prop->value;
1188 end = p + prop->length;
1189
1190 for (i = 0; p < end; i++, p += l) {
1191 l = strlen(p) + 1;
1192 if (p + l > end)
1193 return -EILSEQ;
1194 pr_debug("comparing %s with %s\n", string, p);
1195 if (strcmp(string, p) == 0)
1196 return i; /* Found it; return index */
1197 }
1198 return -ENODATA;
1199 }
1200 EXPORT_SYMBOL_GPL(of_property_match_string);
1201
1202 /**
1203 * of_property_count_strings - Find and return the number of strings from a
1204 * multiple strings property.
1205 * @np: device node from which the property value is to be read.
1206 * @propname: name of the property to be searched.
1207 *
1208 * Search for a property in a device tree node and retrieve the number of null
1209 * terminated string contain in it. Returns the number of strings on
1210 * success, -EINVAL if the property does not exist, -ENODATA if property
1211 * does not have a value, and -EILSEQ if the string is not null-terminated
1212 * within the length of the property data.
1213 */
1214 int of_property_count_strings(struct device_node *np, const char *propname)
1215 {
1216 struct property *prop = of_find_property(np, propname, NULL);
1217 int i = 0;
1218 size_t l = 0, total = 0;
1219 const char *p;
1220
1221 if (!prop)
1222 return -EINVAL;
1223 if (!prop->value)
1224 return -ENODATA;
1225 if (strnlen(prop->value, prop->length) >= prop->length)
1226 return -EILSEQ;
1227
1228 p = prop->value;
1229
1230 for (i = 0; total < prop->length; total += l, p += l, i++)
1231 l = strlen(p) + 1;
1232
1233 return i;
1234 }
1235 EXPORT_SYMBOL_GPL(of_property_count_strings);
1236
1237 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1238 {
1239 int i;
1240 printk("%s %s", msg, of_node_full_name(args->np));
1241 for (i = 0; i < args->args_count; i++)
1242 printk(i ? ",%08x" : ":%08x", args->args[i]);
1243 printk("\n");
1244 }
1245
1246 static int __of_parse_phandle_with_args(const struct device_node *np,
1247 const char *list_name,
1248 const char *cells_name,
1249 int cell_count, int index,
1250 struct of_phandle_args *out_args)
1251 {
1252 const __be32 *list, *list_end;
1253 int rc = 0, size, cur_index = 0;
1254 uint32_t count = 0;
1255 struct device_node *node = NULL;
1256 phandle phandle;
1257
1258 /* Retrieve the phandle list property */
1259 list = of_get_property(np, list_name, &size);
1260 if (!list)
1261 return -ENOENT;
1262 list_end = list + size / sizeof(*list);
1263
1264 /* Loop over the phandles until all the requested entry is found */
1265 while (list < list_end) {
1266 rc = -EINVAL;
1267 count = 0;
1268
1269 /*
1270 * If phandle is 0, then it is an empty entry with no
1271 * arguments. Skip forward to the next entry.
1272 */
1273 phandle = be32_to_cpup(list++);
1274 if (phandle) {
1275 /*
1276 * Find the provider node and parse the #*-cells
1277 * property to determine the argument length.
1278 *
1279 * This is not needed if the cell count is hard-coded
1280 * (i.e. cells_name not set, but cell_count is set),
1281 * except when we're going to return the found node
1282 * below.
1283 */
1284 if (cells_name || cur_index == index) {
1285 node = of_find_node_by_phandle(phandle);
1286 if (!node) {
1287 pr_err("%s: could not find phandle\n",
1288 np->full_name);
1289 goto err;
1290 }
1291 }
1292
1293 if (cells_name) {
1294 if (of_property_read_u32(node, cells_name,
1295 &count)) {
1296 pr_err("%s: could not get %s for %s\n",
1297 np->full_name, cells_name,
1298 node->full_name);
1299 goto err;
1300 }
1301 } else {
1302 count = cell_count;
1303 }
1304
1305 /*
1306 * Make sure that the arguments actually fit in the
1307 * remaining property data length
1308 */
1309 if (list + count > list_end) {
1310 pr_err("%s: arguments longer than property\n",
1311 np->full_name);
1312 goto err;
1313 }
1314 }
1315
1316 /*
1317 * All of the error cases above bail out of the loop, so at
1318 * this point, the parsing is successful. If the requested
1319 * index matches, then fill the out_args structure and return,
1320 * or return -ENOENT for an empty entry.
1321 */
1322 rc = -ENOENT;
1323 if (cur_index == index) {
1324 if (!phandle)
1325 goto err;
1326
1327 if (out_args) {
1328 int i;
1329 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1330 count = MAX_PHANDLE_ARGS;
1331 out_args->np = node;
1332 out_args->args_count = count;
1333 for (i = 0; i < count; i++)
1334 out_args->args[i] = be32_to_cpup(list++);
1335 } else {
1336 of_node_put(node);
1337 }
1338
1339 /* Found it! return success */
1340 return 0;
1341 }
1342
1343 of_node_put(node);
1344 node = NULL;
1345 list += count;
1346 cur_index++;
1347 }
1348
1349 /*
1350 * Unlock node before returning result; will be one of:
1351 * -ENOENT : index is for empty phandle
1352 * -EINVAL : parsing error on data
1353 * [1..n] : Number of phandle (count mode; when index = -1)
1354 */
1355 rc = index < 0 ? cur_index : -ENOENT;
1356 err:
1357 if (node)
1358 of_node_put(node);
1359 return rc;
1360 }
1361
1362 /**
1363 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1364 * @np: Pointer to device node holding phandle property
1365 * @phandle_name: Name of property holding a phandle value
1366 * @index: For properties holding a table of phandles, this is the index into
1367 * the table
1368 *
1369 * Returns the device_node pointer with refcount incremented. Use
1370 * of_node_put() on it when done.
1371 */
1372 struct device_node *of_parse_phandle(const struct device_node *np,
1373 const char *phandle_name, int index)
1374 {
1375 struct of_phandle_args args;
1376
1377 if (index < 0)
1378 return NULL;
1379
1380 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1381 index, &args))
1382 return NULL;
1383
1384 return args.np;
1385 }
1386 EXPORT_SYMBOL(of_parse_phandle);
1387
1388 /**
1389 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1390 * @np: pointer to a device tree node containing a list
1391 * @list_name: property name that contains a list
1392 * @cells_name: property name that specifies phandles' arguments count
1393 * @index: index of a phandle to parse out
1394 * @out_args: optional pointer to output arguments structure (will be filled)
1395 *
1396 * This function is useful to parse lists of phandles and their arguments.
1397 * Returns 0 on success and fills out_args, on error returns appropriate
1398 * errno value.
1399 *
1400 * Caller is responsible to call of_node_put() on the returned out_args->node
1401 * pointer.
1402 *
1403 * Example:
1404 *
1405 * phandle1: node1 {
1406 * #list-cells = <2>;
1407 * }
1408 *
1409 * phandle2: node2 {
1410 * #list-cells = <1>;
1411 * }
1412 *
1413 * node3 {
1414 * list = <&phandle1 1 2 &phandle2 3>;
1415 * }
1416 *
1417 * To get a device_node of the `node2' node you may call this:
1418 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1419 */
1420 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1421 const char *cells_name, int index,
1422 struct of_phandle_args *out_args)
1423 {
1424 if (index < 0)
1425 return -EINVAL;
1426 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1427 index, out_args);
1428 }
1429 EXPORT_SYMBOL(of_parse_phandle_with_args);
1430
1431 /**
1432 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1433 * @np: pointer to a device tree node containing a list
1434 * @list_name: property name that contains a list
1435 * @cell_count: number of argument cells following the phandle
1436 * @index: index of a phandle to parse out
1437 * @out_args: optional pointer to output arguments structure (will be filled)
1438 *
1439 * This function is useful to parse lists of phandles and their arguments.
1440 * Returns 0 on success and fills out_args, on error returns appropriate
1441 * errno value.
1442 *
1443 * Caller is responsible to call of_node_put() on the returned out_args->node
1444 * pointer.
1445 *
1446 * Example:
1447 *
1448 * phandle1: node1 {
1449 * }
1450 *
1451 * phandle2: node2 {
1452 * }
1453 *
1454 * node3 {
1455 * list = <&phandle1 0 2 &phandle2 2 3>;
1456 * }
1457 *
1458 * To get a device_node of the `node2' node you may call this:
1459 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1460 */
1461 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1462 const char *list_name, int cell_count,
1463 int index, struct of_phandle_args *out_args)
1464 {
1465 if (index < 0)
1466 return -EINVAL;
1467 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1468 index, out_args);
1469 }
1470 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1471
1472 /**
1473 * of_count_phandle_with_args() - Find the number of phandles references in a property
1474 * @np: pointer to a device tree node containing a list
1475 * @list_name: property name that contains a list
1476 * @cells_name: property name that specifies phandles' arguments count
1477 *
1478 * Returns the number of phandle + argument tuples within a property. It
1479 * is a typical pattern to encode a list of phandle and variable
1480 * arguments into a single property. The number of arguments is encoded
1481 * by a property in the phandle-target node. For example, a gpios
1482 * property would contain a list of GPIO specifies consisting of a
1483 * phandle and 1 or more arguments. The number of arguments are
1484 * determined by the #gpio-cells property in the node pointed to by the
1485 * phandle.
1486 */
1487 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1488 const char *cells_name)
1489 {
1490 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1491 NULL);
1492 }
1493 EXPORT_SYMBOL(of_count_phandle_with_args);
1494
1495 #if defined(CONFIG_OF_DYNAMIC)
1496 static int of_property_notify(int action, struct device_node *np,
1497 struct property *prop)
1498 {
1499 struct of_prop_reconfig pr;
1500
1501 pr.dn = np;
1502 pr.prop = prop;
1503 return of_reconfig_notify(action, &pr);
1504 }
1505 #else
1506 static int of_property_notify(int action, struct device_node *np,
1507 struct property *prop)
1508 {
1509 return 0;
1510 }
1511 #endif
1512
1513 /**
1514 * of_add_property - Add a property to a node
1515 */
1516 int of_add_property(struct device_node *np, struct property *prop)
1517 {
1518 struct property **next;
1519 unsigned long flags;
1520 int rc;
1521
1522 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1523 if (rc)
1524 return rc;
1525
1526 prop->next = NULL;
1527 raw_spin_lock_irqsave(&devtree_lock, flags);
1528 next = &np->properties;
1529 while (*next) {
1530 if (strcmp(prop->name, (*next)->name) == 0) {
1531 /* duplicate ! don't insert it */
1532 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1533 return -1;
1534 }
1535 next = &(*next)->next;
1536 }
1537 *next = prop;
1538 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1539
1540 #ifdef CONFIG_PROC_DEVICETREE
1541 /* try to add to proc as well if it was initialized */
1542 if (np->pde)
1543 proc_device_tree_add_prop(np->pde, prop);
1544 #endif /* CONFIG_PROC_DEVICETREE */
1545
1546 return 0;
1547 }
1548
1549 /**
1550 * of_remove_property - Remove a property from a node.
1551 *
1552 * Note that we don't actually remove it, since we have given out
1553 * who-knows-how-many pointers to the data using get-property.
1554 * Instead we just move the property to the "dead properties"
1555 * list, so it won't be found any more.
1556 */
1557 int of_remove_property(struct device_node *np, struct property *prop)
1558 {
1559 struct property **next;
1560 unsigned long flags;
1561 int found = 0;
1562 int rc;
1563
1564 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1565 if (rc)
1566 return rc;
1567
1568 raw_spin_lock_irqsave(&devtree_lock, flags);
1569 next = &np->properties;
1570 while (*next) {
1571 if (*next == prop) {
1572 /* found the node */
1573 *next = prop->next;
1574 prop->next = np->deadprops;
1575 np->deadprops = prop;
1576 found = 1;
1577 break;
1578 }
1579 next = &(*next)->next;
1580 }
1581 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1582
1583 if (!found)
1584 return -ENODEV;
1585
1586 #ifdef CONFIG_PROC_DEVICETREE
1587 /* try to remove the proc node as well */
1588 if (np->pde)
1589 proc_device_tree_remove_prop(np->pde, prop);
1590 #endif /* CONFIG_PROC_DEVICETREE */
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * of_update_property - Update a property in a node, if the property does
1597 * not exist, add it.
1598 *
1599 * Note that we don't actually remove it, since we have given out
1600 * who-knows-how-many pointers to the data using get-property.
1601 * Instead we just move the property to the "dead properties" list,
1602 * and add the new property to the property list
1603 */
1604 int of_update_property(struct device_node *np, struct property *newprop)
1605 {
1606 struct property **next, *oldprop;
1607 unsigned long flags;
1608 int rc, found = 0;
1609
1610 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1611 if (rc)
1612 return rc;
1613
1614 if (!newprop->name)
1615 return -EINVAL;
1616
1617 oldprop = of_find_property(np, newprop->name, NULL);
1618 if (!oldprop)
1619 return of_add_property(np, newprop);
1620
1621 raw_spin_lock_irqsave(&devtree_lock, flags);
1622 next = &np->properties;
1623 while (*next) {
1624 if (*next == oldprop) {
1625 /* found the node */
1626 newprop->next = oldprop->next;
1627 *next = newprop;
1628 oldprop->next = np->deadprops;
1629 np->deadprops = oldprop;
1630 found = 1;
1631 break;
1632 }
1633 next = &(*next)->next;
1634 }
1635 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1636
1637 if (!found)
1638 return -ENODEV;
1639
1640 #ifdef CONFIG_PROC_DEVICETREE
1641 /* try to add to proc as well if it was initialized */
1642 if (np->pde)
1643 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1644 #endif /* CONFIG_PROC_DEVICETREE */
1645
1646 return 0;
1647 }
1648
1649 #if defined(CONFIG_OF_DYNAMIC)
1650 /*
1651 * Support for dynamic device trees.
1652 *
1653 * On some platforms, the device tree can be manipulated at runtime.
1654 * The routines in this section support adding, removing and changing
1655 * device tree nodes.
1656 */
1657
1658 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1659
1660 int of_reconfig_notifier_register(struct notifier_block *nb)
1661 {
1662 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1663 }
1664 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1665
1666 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1667 {
1668 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1669 }
1670 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1671
1672 int of_reconfig_notify(unsigned long action, void *p)
1673 {
1674 int rc;
1675
1676 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1677 return notifier_to_errno(rc);
1678 }
1679
1680 #ifdef CONFIG_PROC_DEVICETREE
1681 static void of_add_proc_dt_entry(struct device_node *dn)
1682 {
1683 struct proc_dir_entry *ent;
1684
1685 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1686 if (ent)
1687 proc_device_tree_add_node(dn, ent);
1688 }
1689 #else
1690 static void of_add_proc_dt_entry(struct device_node *dn)
1691 {
1692 return;
1693 }
1694 #endif
1695
1696 /**
1697 * of_attach_node - Plug a device node into the tree and global list.
1698 */
1699 int of_attach_node(struct device_node *np)
1700 {
1701 unsigned long flags;
1702 int rc;
1703
1704 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1705 if (rc)
1706 return rc;
1707
1708 raw_spin_lock_irqsave(&devtree_lock, flags);
1709 np->sibling = np->parent->child;
1710 np->allnext = of_allnodes;
1711 np->parent->child = np;
1712 of_allnodes = np;
1713 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1714
1715 of_add_proc_dt_entry(np);
1716 return 0;
1717 }
1718
1719 #ifdef CONFIG_PROC_DEVICETREE
1720 static void of_remove_proc_dt_entry(struct device_node *dn)
1721 {
1722 proc_remove(dn->pde);
1723 }
1724 #else
1725 static void of_remove_proc_dt_entry(struct device_node *dn)
1726 {
1727 return;
1728 }
1729 #endif
1730
1731 /**
1732 * of_detach_node - "Unplug" a node from the device tree.
1733 *
1734 * The caller must hold a reference to the node. The memory associated with
1735 * the node is not freed until its refcount goes to zero.
1736 */
1737 int of_detach_node(struct device_node *np)
1738 {
1739 struct device_node *parent;
1740 unsigned long flags;
1741 int rc = 0;
1742
1743 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1744 if (rc)
1745 return rc;
1746
1747 raw_spin_lock_irqsave(&devtree_lock, flags);
1748
1749 if (of_node_check_flag(np, OF_DETACHED)) {
1750 /* someone already detached it */
1751 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1752 return rc;
1753 }
1754
1755 parent = np->parent;
1756 if (!parent) {
1757 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1758 return rc;
1759 }
1760
1761 if (of_allnodes == np)
1762 of_allnodes = np->allnext;
1763 else {
1764 struct device_node *prev;
1765 for (prev = of_allnodes;
1766 prev->allnext != np;
1767 prev = prev->allnext)
1768 ;
1769 prev->allnext = np->allnext;
1770 }
1771
1772 if (parent->child == np)
1773 parent->child = np->sibling;
1774 else {
1775 struct device_node *prevsib;
1776 for (prevsib = np->parent->child;
1777 prevsib->sibling != np;
1778 prevsib = prevsib->sibling)
1779 ;
1780 prevsib->sibling = np->sibling;
1781 }
1782
1783 of_node_set_flag(np, OF_DETACHED);
1784 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1785
1786 of_remove_proc_dt_entry(np);
1787 return rc;
1788 }
1789 #endif /* defined(CONFIG_OF_DYNAMIC) */
1790
1791 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1792 int id, const char *stem, int stem_len)
1793 {
1794 ap->np = np;
1795 ap->id = id;
1796 strncpy(ap->stem, stem, stem_len);
1797 ap->stem[stem_len] = 0;
1798 list_add_tail(&ap->link, &aliases_lookup);
1799 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1800 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1801 }
1802
1803 /**
1804 * of_alias_scan - Scan all properties of 'aliases' node
1805 *
1806 * The function scans all the properties of 'aliases' node and populate
1807 * the the global lookup table with the properties. It returns the
1808 * number of alias_prop found, or error code in error case.
1809 *
1810 * @dt_alloc: An allocator that provides a virtual address to memory
1811 * for the resulting tree
1812 */
1813 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1814 {
1815 struct property *pp;
1816
1817 of_chosen = of_find_node_by_path("/chosen");
1818 if (of_chosen == NULL)
1819 of_chosen = of_find_node_by_path("/chosen@0");
1820
1821 if (of_chosen) {
1822 const char *name;
1823
1824 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1825 if (name)
1826 of_stdout = of_find_node_by_path(name);
1827 }
1828
1829 of_aliases = of_find_node_by_path("/aliases");
1830 if (!of_aliases)
1831 return;
1832
1833 for_each_property_of_node(of_aliases, pp) {
1834 const char *start = pp->name;
1835 const char *end = start + strlen(start);
1836 struct device_node *np;
1837 struct alias_prop *ap;
1838 int id, len;
1839
1840 /* Skip those we do not want to proceed */
1841 if (!strcmp(pp->name, "name") ||
1842 !strcmp(pp->name, "phandle") ||
1843 !strcmp(pp->name, "linux,phandle"))
1844 continue;
1845
1846 np = of_find_node_by_path(pp->value);
1847 if (!np)
1848 continue;
1849
1850 /* walk the alias backwards to extract the id and work out
1851 * the 'stem' string */
1852 while (isdigit(*(end-1)) && end > start)
1853 end--;
1854 len = end - start;
1855
1856 if (kstrtoint(end, 10, &id) < 0)
1857 continue;
1858
1859 /* Allocate an alias_prop with enough space for the stem */
1860 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1861 if (!ap)
1862 continue;
1863 memset(ap, 0, sizeof(*ap) + len + 1);
1864 ap->alias = start;
1865 of_alias_add(ap, np, id, start, len);
1866 }
1867 }
1868
1869 /**
1870 * of_alias_get_id - Get alias id for the given device_node
1871 * @np: Pointer to the given device_node
1872 * @stem: Alias stem of the given device_node
1873 *
1874 * The function travels the lookup table to get alias id for the given
1875 * device_node and alias stem. It returns the alias id if find it.
1876 */
1877 int of_alias_get_id(struct device_node *np, const char *stem)
1878 {
1879 struct alias_prop *app;
1880 int id = -ENODEV;
1881
1882 mutex_lock(&of_aliases_mutex);
1883 list_for_each_entry(app, &aliases_lookup, link) {
1884 if (strcmp(app->stem, stem) != 0)
1885 continue;
1886
1887 if (np == app->np) {
1888 id = app->id;
1889 break;
1890 }
1891 }
1892 mutex_unlock(&of_aliases_mutex);
1893
1894 return id;
1895 }
1896 EXPORT_SYMBOL_GPL(of_alias_get_id);
1897
1898 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1899 u32 *pu)
1900 {
1901 const void *curv = cur;
1902
1903 if (!prop)
1904 return NULL;
1905
1906 if (!cur) {
1907 curv = prop->value;
1908 goto out_val;
1909 }
1910
1911 curv += sizeof(*cur);
1912 if (curv >= prop->value + prop->length)
1913 return NULL;
1914
1915 out_val:
1916 *pu = be32_to_cpup(curv);
1917 return curv;
1918 }
1919 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1920
1921 const char *of_prop_next_string(struct property *prop, const char *cur)
1922 {
1923 const void *curv = cur;
1924
1925 if (!prop)
1926 return NULL;
1927
1928 if (!cur)
1929 return prop->value;
1930
1931 curv += strlen(cur) + 1;
1932 if (curv >= prop->value + prop->length)
1933 return NULL;
1934
1935 return curv;
1936 }
1937 EXPORT_SYMBOL_GPL(of_prop_next_string);
1938
1939 /**
1940 * of_device_is_stdout_path - check if a device node matches the
1941 * linux,stdout-path property
1942 *
1943 * Check if this device node matches the linux,stdout-path property
1944 * in the chosen node. return true if yes, false otherwise.
1945 */
1946 int of_device_is_stdout_path(struct device_node *dn)
1947 {
1948 if (!of_stdout)
1949 return false;
1950
1951 return of_stdout == dn;
1952 }
1953 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1954
1955 /**
1956 * of_find_next_cache_node - Find a node's subsidiary cache
1957 * @np: node of type "cpu" or "cache"
1958 *
1959 * Returns a node pointer with refcount incremented, use
1960 * of_node_put() on it when done. Caller should hold a reference
1961 * to np.
1962 */
1963 struct device_node *of_find_next_cache_node(const struct device_node *np)
1964 {
1965 struct device_node *child;
1966 const phandle *handle;
1967
1968 handle = of_get_property(np, "l2-cache", NULL);
1969 if (!handle)
1970 handle = of_get_property(np, "next-level-cache", NULL);
1971
1972 if (handle)
1973 return of_find_node_by_phandle(be32_to_cpup(handle));
1974
1975 /* OF on pmac has nodes instead of properties named "l2-cache"
1976 * beneath CPU nodes.
1977 */
1978 if (!strcmp(np->type, "cpu"))
1979 for_each_child_of_node(np, child)
1980 if (!strcmp(child->type, "cache"))
1981 return child;
1982
1983 return NULL;
1984 }