]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/of/base.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-bionic-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
61 int of_n_addr_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#address-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #address-cells property for the root node */
73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_addr_cells);
76
77 int of_n_size_cells(struct device_node *np)
78 {
79 const __be32 *ip;
80
81 do {
82 if (np->parent)
83 np = np->parent;
84 ip = of_get_property(np, "#size-cells", NULL);
85 if (ip)
86 return be32_to_cpup(ip);
87 } while (np->parent);
88 /* No #size-cells property for the root node */
89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 }
91 EXPORT_SYMBOL(of_n_size_cells);
92
93 #ifdef CONFIG_NUMA
94 int __weak of_node_to_nid(struct device_node *np)
95 {
96 return NUMA_NO_NODE;
97 }
98 #endif
99
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
102 {
103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 }
105 #endif /* CONFIG_OF_DYNAMIC */
106
107 struct kobj_type of_node_ktype = {
108 .release = of_node_release,
109 };
110
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 struct bin_attribute *bin_attr, char *buf,
113 loff_t offset, size_t count)
114 {
115 struct property *pp = container_of(bin_attr, struct property, attr);
116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
117 }
118
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 {
122 const char *name = orig_name;
123 struct kernfs_node *kn;
124 int i = 0;
125
126 /* don't be a hero. After 16 tries give up */
127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
128 sysfs_put(kn);
129 if (name != orig_name)
130 kfree(name);
131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
132 }
133
134 if (name == orig_name) {
135 name = kstrdup(orig_name, GFP_KERNEL);
136 } else {
137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 kobject_name(kobj), name);
139 }
140 return name;
141 }
142
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 {
145 int rc;
146
147 /* Important: Don't leak passwords */
148 bool secure = strncmp(pp->name, "security-", 9) == 0;
149
150 if (!IS_ENABLED(CONFIG_SYSFS))
151 return 0;
152
153 if (!of_kset || !of_node_is_attached(np))
154 return 0;
155
156 sysfs_bin_attr_init(&pp->attr);
157 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
159 pp->attr.size = secure ? 0 : pp->length;
160 pp->attr.read = of_node_property_read;
161
162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
164 return rc;
165 }
166
167 int __of_attach_node_sysfs(struct device_node *np)
168 {
169 const char *name;
170 struct kobject *parent;
171 struct property *pp;
172 int rc;
173
174 if (!IS_ENABLED(CONFIG_SYSFS))
175 return 0;
176
177 if (!of_kset)
178 return 0;
179
180 np->kobj.kset = of_kset;
181 if (!np->parent) {
182 /* Nodes without parents are new top level trees */
183 name = safe_name(&of_kset->kobj, "base");
184 parent = NULL;
185 } else {
186 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 parent = &np->parent->kobj;
188 }
189 if (!name)
190 return -ENOMEM;
191 rc = kobject_add(&np->kobj, parent, "%s", name);
192 kfree(name);
193 if (rc)
194 return rc;
195
196 for_each_property_of_node(np, pp)
197 __of_add_property_sysfs(np, pp);
198
199 return 0;
200 }
201
202 void __init of_core_init(void)
203 {
204 struct device_node *np;
205
206 /* Create the kset, and register existing nodes */
207 mutex_lock(&of_mutex);
208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
209 if (!of_kset) {
210 mutex_unlock(&of_mutex);
211 pr_err("failed to register existing nodes\n");
212 return;
213 }
214 for_each_of_allnodes(np)
215 __of_attach_node_sysfs(np);
216 mutex_unlock(&of_mutex);
217
218 /* Symlink in /proc as required by userspace ABI */
219 if (of_root)
220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
221 }
222
223 static struct property *__of_find_property(const struct device_node *np,
224 const char *name, int *lenp)
225 {
226 struct property *pp;
227
228 if (!np)
229 return NULL;
230
231 for (pp = np->properties; pp; pp = pp->next) {
232 if (of_prop_cmp(pp->name, name) == 0) {
233 if (lenp)
234 *lenp = pp->length;
235 break;
236 }
237 }
238
239 return pp;
240 }
241
242 struct property *of_find_property(const struct device_node *np,
243 const char *name,
244 int *lenp)
245 {
246 struct property *pp;
247 unsigned long flags;
248
249 raw_spin_lock_irqsave(&devtree_lock, flags);
250 pp = __of_find_property(np, name, lenp);
251 raw_spin_unlock_irqrestore(&devtree_lock, flags);
252
253 return pp;
254 }
255 EXPORT_SYMBOL(of_find_property);
256
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
258 {
259 struct device_node *np;
260 if (!prev) {
261 np = of_root;
262 } else if (prev->child) {
263 np = prev->child;
264 } else {
265 /* Walk back up looking for a sibling, or the end of the structure */
266 np = prev;
267 while (np->parent && !np->sibling)
268 np = np->parent;
269 np = np->sibling; /* Might be null at the end of the tree */
270 }
271 return np;
272 }
273
274 /**
275 * of_find_all_nodes - Get next node in global list
276 * @prev: Previous node or NULL to start iteration
277 * of_node_put() will be called on it
278 *
279 * Returns a node pointer with refcount incremented, use
280 * of_node_put() on it when done.
281 */
282 struct device_node *of_find_all_nodes(struct device_node *prev)
283 {
284 struct device_node *np;
285 unsigned long flags;
286
287 raw_spin_lock_irqsave(&devtree_lock, flags);
288 np = __of_find_all_nodes(prev);
289 of_node_get(np);
290 of_node_put(prev);
291 raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 return np;
293 }
294 EXPORT_SYMBOL(of_find_all_nodes);
295
296 /*
297 * Find a property with a given name for a given node
298 * and return the value.
299 */
300 const void *__of_get_property(const struct device_node *np,
301 const char *name, int *lenp)
302 {
303 struct property *pp = __of_find_property(np, name, lenp);
304
305 return pp ? pp->value : NULL;
306 }
307
308 /*
309 * Find a property with a given name for a given node
310 * and return the value.
311 */
312 const void *of_get_property(const struct device_node *np, const char *name,
313 int *lenp)
314 {
315 struct property *pp = of_find_property(np, name, lenp);
316
317 return pp ? pp->value : NULL;
318 }
319 EXPORT_SYMBOL(of_get_property);
320
321 /*
322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
323 *
324 * @cpu: logical cpu index of a core/thread
325 * @phys_id: physical identifier of a core/thread
326 *
327 * CPU logical to physical index mapping is architecture specific.
328 * However this __weak function provides a default match of physical
329 * id to logical cpu index. phys_id provided here is usually values read
330 * from the device tree which must match the hardware internal registers.
331 *
332 * Returns true if the physical identifier and the logical cpu index
333 * correspond to the same core/thread, false otherwise.
334 */
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
336 {
337 return (u32)phys_id == cpu;
338 }
339
340 /**
341 * Checks if the given "prop_name" property holds the physical id of the
342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343 * NULL, local thread number within the core is returned in it.
344 */
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 const char *prop_name, int cpu, unsigned int *thread)
347 {
348 const __be32 *cell;
349 int ac, prop_len, tid;
350 u64 hwid;
351
352 ac = of_n_addr_cells(cpun);
353 cell = of_get_property(cpun, prop_name, &prop_len);
354 if (!cell || !ac)
355 return false;
356 prop_len /= sizeof(*cell) * ac;
357 for (tid = 0; tid < prop_len; tid++) {
358 hwid = of_read_number(cell, ac);
359 if (arch_match_cpu_phys_id(cpu, hwid)) {
360 if (thread)
361 *thread = tid;
362 return true;
363 }
364 cell += ac;
365 }
366 return false;
367 }
368
369 /*
370 * arch_find_n_match_cpu_physical_id - See if the given device node is
371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
372 * else false. If 'thread' is non-NULL, the local thread number within the
373 * core is returned in it.
374 */
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 int cpu, unsigned int *thread)
377 {
378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 * for thread ids on PowerPC. If it doesn't exist fallback to
380 * standard "reg" property.
381 */
382 if (IS_ENABLED(CONFIG_PPC) &&
383 __of_find_n_match_cpu_property(cpun,
384 "ibm,ppc-interrupt-server#s",
385 cpu, thread))
386 return true;
387
388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 }
390
391 /**
392 * of_get_cpu_node - Get device node associated with the given logical CPU
393 *
394 * @cpu: CPU number(logical index) for which device node is required
395 * @thread: if not NULL, local thread number within the physical core is
396 * returned
397 *
398 * The main purpose of this function is to retrieve the device node for the
399 * given logical CPU index. It should be used to initialize the of_node in
400 * cpu device. Once of_node in cpu device is populated, all the further
401 * references can use that instead.
402 *
403 * CPU logical to physical index mapping is architecture specific and is built
404 * before booting secondary cores. This function uses arch_match_cpu_phys_id
405 * which can be overridden by architecture specific implementation.
406 *
407 * Returns a node pointer for the logical cpu with refcount incremented, use
408 * of_node_put() on it when done. Returns NULL if not found.
409 */
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
411 {
412 struct device_node *cpun;
413
414 for_each_node_by_type(cpun, "cpu") {
415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 return cpun;
417 }
418 return NULL;
419 }
420 EXPORT_SYMBOL(of_get_cpu_node);
421
422 /**
423 * __of_device_is_compatible() - Check if the node matches given constraints
424 * @device: pointer to node
425 * @compat: required compatible string, NULL or "" for any match
426 * @type: required device_type value, NULL or "" for any match
427 * @name: required node name, NULL or "" for any match
428 *
429 * Checks if the given @compat, @type and @name strings match the
430 * properties of the given @device. A constraints can be skipped by
431 * passing NULL or an empty string as the constraint.
432 *
433 * Returns 0 for no match, and a positive integer on match. The return
434 * value is a relative score with larger values indicating better
435 * matches. The score is weighted for the most specific compatible value
436 * to get the highest score. Matching type is next, followed by matching
437 * name. Practically speaking, this results in the following priority
438 * order for matches:
439 *
440 * 1. specific compatible && type && name
441 * 2. specific compatible && type
442 * 3. specific compatible && name
443 * 4. specific compatible
444 * 5. general compatible && type && name
445 * 6. general compatible && type
446 * 7. general compatible && name
447 * 8. general compatible
448 * 9. type && name
449 * 10. type
450 * 11. name
451 */
452 static int __of_device_is_compatible(const struct device_node *device,
453 const char *compat, const char *type, const char *name)
454 {
455 struct property *prop;
456 const char *cp;
457 int index = 0, score = 0;
458
459 /* Compatible match has highest priority */
460 if (compat && compat[0]) {
461 prop = __of_find_property(device, "compatible", NULL);
462 for (cp = of_prop_next_string(prop, NULL); cp;
463 cp = of_prop_next_string(prop, cp), index++) {
464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 score = INT_MAX/2 - (index << 2);
466 break;
467 }
468 }
469 if (!score)
470 return 0;
471 }
472
473 /* Matching type is better than matching name */
474 if (type && type[0]) {
475 if (!device->type || of_node_cmp(type, device->type))
476 return 0;
477 score += 2;
478 }
479
480 /* Matching name is a bit better than not */
481 if (name && name[0]) {
482 if (!device->name || of_node_cmp(name, device->name))
483 return 0;
484 score++;
485 }
486
487 return score;
488 }
489
490 /** Checks if the given "compat" string matches one of the strings in
491 * the device's "compatible" property
492 */
493 int of_device_is_compatible(const struct device_node *device,
494 const char *compat)
495 {
496 unsigned long flags;
497 int res;
498
499 raw_spin_lock_irqsave(&devtree_lock, flags);
500 res = __of_device_is_compatible(device, compat, NULL, NULL);
501 raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 return res;
503 }
504 EXPORT_SYMBOL(of_device_is_compatible);
505
506 /** Checks if the device is compatible with any of the entries in
507 * a NULL terminated array of strings. Returns the best match
508 * score or 0.
509 */
510 int of_device_compatible_match(struct device_node *device,
511 const char *const *compat)
512 {
513 unsigned int tmp, score = 0;
514
515 if (!compat)
516 return 0;
517
518 while (*compat) {
519 tmp = of_device_is_compatible(device, *compat);
520 if (tmp > score)
521 score = tmp;
522 compat++;
523 }
524
525 return score;
526 }
527
528 /**
529 * of_machine_is_compatible - Test root of device tree for a given compatible value
530 * @compat: compatible string to look for in root node's compatible property.
531 *
532 * Returns a positive integer if the root node has the given value in its
533 * compatible property.
534 */
535 int of_machine_is_compatible(const char *compat)
536 {
537 struct device_node *root;
538 int rc = 0;
539
540 root = of_find_node_by_path("/");
541 if (root) {
542 rc = of_device_is_compatible(root, compat);
543 of_node_put(root);
544 }
545 return rc;
546 }
547 EXPORT_SYMBOL(of_machine_is_compatible);
548
549 /**
550 * __of_device_is_available - check if a device is available for use
551 *
552 * @device: Node to check for availability, with locks already held
553 *
554 * Returns true if the status property is absent or set to "okay" or "ok",
555 * false otherwise
556 */
557 static bool __of_device_is_available(const struct device_node *device)
558 {
559 const char *status;
560 int statlen;
561
562 if (!device)
563 return false;
564
565 status = __of_get_property(device, "status", &statlen);
566 if (status == NULL)
567 return true;
568
569 if (statlen > 0) {
570 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571 return true;
572 }
573
574 return false;
575 }
576
577 /**
578 * of_device_is_available - check if a device is available for use
579 *
580 * @device: Node to check for availability
581 *
582 * Returns true if the status property is absent or set to "okay" or "ok",
583 * false otherwise
584 */
585 bool of_device_is_available(const struct device_node *device)
586 {
587 unsigned long flags;
588 bool res;
589
590 raw_spin_lock_irqsave(&devtree_lock, flags);
591 res = __of_device_is_available(device);
592 raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 return res;
594
595 }
596 EXPORT_SYMBOL(of_device_is_available);
597
598 /**
599 * of_device_is_big_endian - check if a device has BE registers
600 *
601 * @device: Node to check for endianness
602 *
603 * Returns true if the device has a "big-endian" property, or if the kernel
604 * was compiled for BE *and* the device has a "native-endian" property.
605 * Returns false otherwise.
606 *
607 * Callers would nominally use ioread32be/iowrite32be if
608 * of_device_is_big_endian() == true, or readl/writel otherwise.
609 */
610 bool of_device_is_big_endian(const struct device_node *device)
611 {
612 if (of_property_read_bool(device, "big-endian"))
613 return true;
614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 of_property_read_bool(device, "native-endian"))
616 return true;
617 return false;
618 }
619 EXPORT_SYMBOL(of_device_is_big_endian);
620
621 /**
622 * of_get_parent - Get a node's parent if any
623 * @node: Node to get parent
624 *
625 * Returns a node pointer with refcount incremented, use
626 * of_node_put() on it when done.
627 */
628 struct device_node *of_get_parent(const struct device_node *node)
629 {
630 struct device_node *np;
631 unsigned long flags;
632
633 if (!node)
634 return NULL;
635
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 np = of_node_get(node->parent);
638 raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 return np;
640 }
641 EXPORT_SYMBOL(of_get_parent);
642
643 /**
644 * of_get_next_parent - Iterate to a node's parent
645 * @node: Node to get parent of
646 *
647 * This is like of_get_parent() except that it drops the
648 * refcount on the passed node, making it suitable for iterating
649 * through a node's parents.
650 *
651 * Returns a node pointer with refcount incremented, use
652 * of_node_put() on it when done.
653 */
654 struct device_node *of_get_next_parent(struct device_node *node)
655 {
656 struct device_node *parent;
657 unsigned long flags;
658
659 if (!node)
660 return NULL;
661
662 raw_spin_lock_irqsave(&devtree_lock, flags);
663 parent = of_node_get(node->parent);
664 of_node_put(node);
665 raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 return parent;
667 }
668 EXPORT_SYMBOL(of_get_next_parent);
669
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 struct device_node *prev)
672 {
673 struct device_node *next;
674
675 if (!node)
676 return NULL;
677
678 next = prev ? prev->sibling : node->child;
679 for (; next; next = next->sibling)
680 if (of_node_get(next))
681 break;
682 of_node_put(prev);
683 return next;
684 }
685 #define __for_each_child_of_node(parent, child) \
686 for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 child = __of_get_next_child(parent, child))
688
689 /**
690 * of_get_next_child - Iterate a node childs
691 * @node: parent node
692 * @prev: previous child of the parent node, or NULL to get first
693 *
694 * Returns a node pointer with refcount incremented, use of_node_put() on
695 * it when done. Returns NULL when prev is the last child. Decrements the
696 * refcount of prev.
697 */
698 struct device_node *of_get_next_child(const struct device_node *node,
699 struct device_node *prev)
700 {
701 struct device_node *next;
702 unsigned long flags;
703
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 next = __of_get_next_child(node, prev);
706 raw_spin_unlock_irqrestore(&devtree_lock, flags);
707 return next;
708 }
709 EXPORT_SYMBOL(of_get_next_child);
710
711 /**
712 * of_get_next_available_child - Find the next available child node
713 * @node: parent node
714 * @prev: previous child of the parent node, or NULL to get first
715 *
716 * This function is like of_get_next_child(), except that it
717 * automatically skips any disabled nodes (i.e. status = "disabled").
718 */
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 struct device_node *prev)
721 {
722 struct device_node *next;
723 unsigned long flags;
724
725 if (!node)
726 return NULL;
727
728 raw_spin_lock_irqsave(&devtree_lock, flags);
729 next = prev ? prev->sibling : node->child;
730 for (; next; next = next->sibling) {
731 if (!__of_device_is_available(next))
732 continue;
733 if (of_node_get(next))
734 break;
735 }
736 of_node_put(prev);
737 raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 return next;
739 }
740 EXPORT_SYMBOL(of_get_next_available_child);
741
742 /**
743 * of_get_child_by_name - Find the child node by name for a given parent
744 * @node: parent node
745 * @name: child name to look for.
746 *
747 * This function looks for child node for given matching name
748 *
749 * Returns a node pointer if found, with refcount incremented, use
750 * of_node_put() on it when done.
751 * Returns NULL if node is not found.
752 */
753 struct device_node *of_get_child_by_name(const struct device_node *node,
754 const char *name)
755 {
756 struct device_node *child;
757
758 for_each_child_of_node(node, child)
759 if (child->name && (of_node_cmp(child->name, name) == 0))
760 break;
761 return child;
762 }
763 EXPORT_SYMBOL(of_get_child_by_name);
764
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
766 const char *path)
767 {
768 struct device_node *child;
769 int len;
770
771 len = strcspn(path, "/:");
772 if (!len)
773 return NULL;
774
775 __for_each_child_of_node(parent, child) {
776 const char *name = strrchr(child->full_name, '/');
777 if (WARN(!name, "malformed device_node %s\n", child->full_name))
778 continue;
779 name++;
780 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
781 return child;
782 }
783 return NULL;
784 }
785
786 /**
787 * of_find_node_opts_by_path - Find a node matching a full OF path
788 * @path: Either the full path to match, or if the path does not
789 * start with '/', the name of a property of the /aliases
790 * node (an alias). In the case of an alias, the node
791 * matching the alias' value will be returned.
792 * @opts: Address of a pointer into which to store the start of
793 * an options string appended to the end of the path with
794 * a ':' separator.
795 *
796 * Valid paths:
797 * /foo/bar Full path
798 * foo Valid alias
799 * foo/bar Valid alias + relative path
800 *
801 * Returns a node pointer with refcount incremented, use
802 * of_node_put() on it when done.
803 */
804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
805 {
806 struct device_node *np = NULL;
807 struct property *pp;
808 unsigned long flags;
809 const char *separator = strchr(path, ':');
810
811 if (opts)
812 *opts = separator ? separator + 1 : NULL;
813
814 if (strcmp(path, "/") == 0)
815 return of_node_get(of_root);
816
817 /* The path could begin with an alias */
818 if (*path != '/') {
819 int len;
820 const char *p = separator;
821
822 if (!p)
823 p = strchrnul(path, '/');
824 len = p - path;
825
826 /* of_aliases must not be NULL */
827 if (!of_aliases)
828 return NULL;
829
830 for_each_property_of_node(of_aliases, pp) {
831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
832 np = of_find_node_by_path(pp->value);
833 break;
834 }
835 }
836 if (!np)
837 return NULL;
838 path = p;
839 }
840
841 /* Step down the tree matching path components */
842 raw_spin_lock_irqsave(&devtree_lock, flags);
843 if (!np)
844 np = of_node_get(of_root);
845 while (np && *path == '/') {
846 path++; /* Increment past '/' delimiter */
847 np = __of_find_node_by_path(np, path);
848 path = strchrnul(path, '/');
849 if (separator && separator < path)
850 break;
851 }
852 raw_spin_unlock_irqrestore(&devtree_lock, flags);
853 return np;
854 }
855 EXPORT_SYMBOL(of_find_node_opts_by_path);
856
857 /**
858 * of_find_node_by_name - Find a node by its "name" property
859 * @from: The node to start searching from or NULL, the node
860 * you pass will not be searched, only the next one
861 * will; typically, you pass what the previous call
862 * returned. of_node_put() will be called on it
863 * @name: The name string to match against
864 *
865 * Returns a node pointer with refcount incremented, use
866 * of_node_put() on it when done.
867 */
868 struct device_node *of_find_node_by_name(struct device_node *from,
869 const char *name)
870 {
871 struct device_node *np;
872 unsigned long flags;
873
874 raw_spin_lock_irqsave(&devtree_lock, flags);
875 for_each_of_allnodes_from(from, np)
876 if (np->name && (of_node_cmp(np->name, name) == 0)
877 && of_node_get(np))
878 break;
879 of_node_put(from);
880 raw_spin_unlock_irqrestore(&devtree_lock, flags);
881 return np;
882 }
883 EXPORT_SYMBOL(of_find_node_by_name);
884
885 /**
886 * of_find_node_by_type - Find a node by its "device_type" property
887 * @from: The node to start searching from, or NULL to start searching
888 * the entire device tree. The node you pass will not be
889 * searched, only the next one will; typically, you pass
890 * what the previous call returned. of_node_put() will be
891 * called on from for you.
892 * @type: The type string to match against
893 *
894 * Returns a node pointer with refcount incremented, use
895 * of_node_put() on it when done.
896 */
897 struct device_node *of_find_node_by_type(struct device_node *from,
898 const char *type)
899 {
900 struct device_node *np;
901 unsigned long flags;
902
903 raw_spin_lock_irqsave(&devtree_lock, flags);
904 for_each_of_allnodes_from(from, np)
905 if (np->type && (of_node_cmp(np->type, type) == 0)
906 && of_node_get(np))
907 break;
908 of_node_put(from);
909 raw_spin_unlock_irqrestore(&devtree_lock, flags);
910 return np;
911 }
912 EXPORT_SYMBOL(of_find_node_by_type);
913
914 /**
915 * of_find_compatible_node - Find a node based on type and one of the
916 * tokens in its "compatible" property
917 * @from: The node to start searching from or NULL, the node
918 * you pass will not be searched, only the next one
919 * will; typically, you pass what the previous call
920 * returned. of_node_put() will be called on it
921 * @type: The type string to match "device_type" or NULL to ignore
922 * @compatible: The string to match to one of the tokens in the device
923 * "compatible" list.
924 *
925 * Returns a node pointer with refcount incremented, use
926 * of_node_put() on it when done.
927 */
928 struct device_node *of_find_compatible_node(struct device_node *from,
929 const char *type, const char *compatible)
930 {
931 struct device_node *np;
932 unsigned long flags;
933
934 raw_spin_lock_irqsave(&devtree_lock, flags);
935 for_each_of_allnodes_from(from, np)
936 if (__of_device_is_compatible(np, compatible, type, NULL) &&
937 of_node_get(np))
938 break;
939 of_node_put(from);
940 raw_spin_unlock_irqrestore(&devtree_lock, flags);
941 return np;
942 }
943 EXPORT_SYMBOL(of_find_compatible_node);
944
945 /**
946 * of_find_node_with_property - Find a node which has a property with
947 * the given name.
948 * @from: The node to start searching from or NULL, the node
949 * you pass will not be searched, only the next one
950 * will; typically, you pass what the previous call
951 * returned. of_node_put() will be called on it
952 * @prop_name: The name of the property to look for.
953 *
954 * Returns a node pointer with refcount incremented, use
955 * of_node_put() on it when done.
956 */
957 struct device_node *of_find_node_with_property(struct device_node *from,
958 const char *prop_name)
959 {
960 struct device_node *np;
961 struct property *pp;
962 unsigned long flags;
963
964 raw_spin_lock_irqsave(&devtree_lock, flags);
965 for_each_of_allnodes_from(from, np) {
966 for (pp = np->properties; pp; pp = pp->next) {
967 if (of_prop_cmp(pp->name, prop_name) == 0) {
968 of_node_get(np);
969 goto out;
970 }
971 }
972 }
973 out:
974 of_node_put(from);
975 raw_spin_unlock_irqrestore(&devtree_lock, flags);
976 return np;
977 }
978 EXPORT_SYMBOL(of_find_node_with_property);
979
980 static
981 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
982 const struct device_node *node)
983 {
984 const struct of_device_id *best_match = NULL;
985 int score, best_score = 0;
986
987 if (!matches)
988 return NULL;
989
990 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
991 score = __of_device_is_compatible(node, matches->compatible,
992 matches->type, matches->name);
993 if (score > best_score) {
994 best_match = matches;
995 best_score = score;
996 }
997 }
998
999 return best_match;
1000 }
1001
1002 /**
1003 * of_match_node - Tell if a device_node has a matching of_match structure
1004 * @matches: array of of device match structures to search in
1005 * @node: the of device structure to match against
1006 *
1007 * Low level utility function used by device matching.
1008 */
1009 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1010 const struct device_node *node)
1011 {
1012 const struct of_device_id *match;
1013 unsigned long flags;
1014
1015 raw_spin_lock_irqsave(&devtree_lock, flags);
1016 match = __of_match_node(matches, node);
1017 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1018 return match;
1019 }
1020 EXPORT_SYMBOL(of_match_node);
1021
1022 /**
1023 * of_find_matching_node_and_match - Find a node based on an of_device_id
1024 * match table.
1025 * @from: The node to start searching from or NULL, the node
1026 * you pass will not be searched, only the next one
1027 * will; typically, you pass what the previous call
1028 * returned. of_node_put() will be called on it
1029 * @matches: array of of device match structures to search in
1030 * @match Updated to point at the matches entry which matched
1031 *
1032 * Returns a node pointer with refcount incremented, use
1033 * of_node_put() on it when done.
1034 */
1035 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1036 const struct of_device_id *matches,
1037 const struct of_device_id **match)
1038 {
1039 struct device_node *np;
1040 const struct of_device_id *m;
1041 unsigned long flags;
1042
1043 if (match)
1044 *match = NULL;
1045
1046 raw_spin_lock_irqsave(&devtree_lock, flags);
1047 for_each_of_allnodes_from(from, np) {
1048 m = __of_match_node(matches, np);
1049 if (m && of_node_get(np)) {
1050 if (match)
1051 *match = m;
1052 break;
1053 }
1054 }
1055 of_node_put(from);
1056 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 return np;
1058 }
1059 EXPORT_SYMBOL(of_find_matching_node_and_match);
1060
1061 /**
1062 * of_modalias_node - Lookup appropriate modalias for a device node
1063 * @node: pointer to a device tree node
1064 * @modalias: Pointer to buffer that modalias value will be copied into
1065 * @len: Length of modalias value
1066 *
1067 * Based on the value of the compatible property, this routine will attempt
1068 * to choose an appropriate modalias value for a particular device tree node.
1069 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1070 * from the first entry in the compatible list property.
1071 *
1072 * This routine returns 0 on success, <0 on failure.
1073 */
1074 int of_modalias_node(struct device_node *node, char *modalias, int len)
1075 {
1076 const char *compatible, *p;
1077 int cplen;
1078
1079 compatible = of_get_property(node, "compatible", &cplen);
1080 if (!compatible || strlen(compatible) > cplen)
1081 return -ENODEV;
1082 p = strchr(compatible, ',');
1083 strlcpy(modalias, p ? p + 1 : compatible, len);
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(of_modalias_node);
1087
1088 /**
1089 * of_find_node_by_phandle - Find a node given a phandle
1090 * @handle: phandle of the node to find
1091 *
1092 * Returns a node pointer with refcount incremented, use
1093 * of_node_put() on it when done.
1094 */
1095 struct device_node *of_find_node_by_phandle(phandle handle)
1096 {
1097 struct device_node *np;
1098 unsigned long flags;
1099
1100 if (!handle)
1101 return NULL;
1102
1103 raw_spin_lock_irqsave(&devtree_lock, flags);
1104 for_each_of_allnodes(np)
1105 if (np->phandle == handle)
1106 break;
1107 of_node_get(np);
1108 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1109 return np;
1110 }
1111 EXPORT_SYMBOL(of_find_node_by_phandle);
1112
1113 /**
1114 * of_property_count_elems_of_size - Count the number of elements in a property
1115 *
1116 * @np: device node from which the property value is to be read.
1117 * @propname: name of the property to be searched.
1118 * @elem_size: size of the individual element
1119 *
1120 * Search for a property in a device node and count the number of elements of
1121 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1122 * property does not exist or its length does not match a multiple of elem_size
1123 * and -ENODATA if the property does not have a value.
1124 */
1125 int of_property_count_elems_of_size(const struct device_node *np,
1126 const char *propname, int elem_size)
1127 {
1128 struct property *prop = of_find_property(np, propname, NULL);
1129
1130 if (!prop)
1131 return -EINVAL;
1132 if (!prop->value)
1133 return -ENODATA;
1134
1135 if (prop->length % elem_size != 0) {
1136 pr_err("size of %s in node %s is not a multiple of %d\n",
1137 propname, np->full_name, elem_size);
1138 return -EINVAL;
1139 }
1140
1141 return prop->length / elem_size;
1142 }
1143 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1144
1145 /**
1146 * of_find_property_value_of_size
1147 *
1148 * @np: device node from which the property value is to be read.
1149 * @propname: name of the property to be searched.
1150 * @min: minimum allowed length of property value
1151 * @max: maximum allowed length of property value (0 means unlimited)
1152 * @len: if !=NULL, actual length is written to here
1153 *
1154 * Search for a property in a device node and valid the requested size.
1155 * Returns the property value on success, -EINVAL if the property does not
1156 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1157 * property data is too small or too large.
1158 *
1159 */
1160 static void *of_find_property_value_of_size(const struct device_node *np,
1161 const char *propname, u32 min, u32 max, size_t *len)
1162 {
1163 struct property *prop = of_find_property(np, propname, NULL);
1164
1165 if (!prop)
1166 return ERR_PTR(-EINVAL);
1167 if (!prop->value)
1168 return ERR_PTR(-ENODATA);
1169 if (prop->length < min)
1170 return ERR_PTR(-EOVERFLOW);
1171 if (max && prop->length > max)
1172 return ERR_PTR(-EOVERFLOW);
1173
1174 if (len)
1175 *len = prop->length;
1176
1177 return prop->value;
1178 }
1179
1180 /**
1181 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1182 *
1183 * @np: device node from which the property value is to be read.
1184 * @propname: name of the property to be searched.
1185 * @index: index of the u32 in the list of values
1186 * @out_value: pointer to return value, modified only if no error.
1187 *
1188 * Search for a property in a device node and read nth 32-bit value from
1189 * it. Returns 0 on success, -EINVAL if the property does not exist,
1190 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1191 * property data isn't large enough.
1192 *
1193 * The out_value is modified only if a valid u32 value can be decoded.
1194 */
1195 int of_property_read_u32_index(const struct device_node *np,
1196 const char *propname,
1197 u32 index, u32 *out_value)
1198 {
1199 const u32 *val = of_find_property_value_of_size(np, propname,
1200 ((index + 1) * sizeof(*out_value)),
1201 0,
1202 NULL);
1203
1204 if (IS_ERR(val))
1205 return PTR_ERR(val);
1206
1207 *out_value = be32_to_cpup(((__be32 *)val) + index);
1208 return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1211
1212 /**
1213 * of_property_read_variable_u8_array - Find and read an array of u8 from a
1214 * property, with bounds on the minimum and maximum array size.
1215 *
1216 * @np: device node from which the property value is to be read.
1217 * @propname: name of the property to be searched.
1218 * @out_values: pointer to return value, modified only if return value is 0.
1219 * @sz_min: minimum number of array elements to read
1220 * @sz_max: maximum number of array elements to read, if zero there is no
1221 * upper limit on the number of elements in the dts entry but only
1222 * sz_min will be read.
1223 *
1224 * Search for a property in a device node and read 8-bit value(s) from
1225 * it. Returns number of elements read on success, -EINVAL if the property
1226 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1227 * if the property data is smaller than sz_min or longer than sz_max.
1228 *
1229 * dts entry of array should be like:
1230 * property = /bits/ 8 <0x50 0x60 0x70>;
1231 *
1232 * The out_values is modified only if a valid u8 value can be decoded.
1233 */
1234 int of_property_read_variable_u8_array(const struct device_node *np,
1235 const char *propname, u8 *out_values,
1236 size_t sz_min, size_t sz_max)
1237 {
1238 size_t sz, count;
1239 const u8 *val = of_find_property_value_of_size(np, propname,
1240 (sz_min * sizeof(*out_values)),
1241 (sz_max * sizeof(*out_values)),
1242 &sz);
1243
1244 if (IS_ERR(val))
1245 return PTR_ERR(val);
1246
1247 if (!sz_max)
1248 sz = sz_min;
1249 else
1250 sz /= sizeof(*out_values);
1251
1252 count = sz;
1253 while (count--)
1254 *out_values++ = *val++;
1255
1256 return sz;
1257 }
1258 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1259
1260 /**
1261 * of_property_read_variable_u16_array - Find and read an array of u16 from a
1262 * property, with bounds on the minimum and maximum array size.
1263 *
1264 * @np: device node from which the property value is to be read.
1265 * @propname: name of the property to be searched.
1266 * @out_values: pointer to return value, modified only if return value is 0.
1267 * @sz_min: minimum number of array elements to read
1268 * @sz_max: maximum number of array elements to read, if zero there is no
1269 * upper limit on the number of elements in the dts entry but only
1270 * sz_min will be read.
1271 *
1272 * Search for a property in a device node and read 16-bit value(s) from
1273 * it. Returns number of elements read on success, -EINVAL if the property
1274 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1275 * if the property data is smaller than sz_min or longer than sz_max.
1276 *
1277 * dts entry of array should be like:
1278 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1279 *
1280 * The out_values is modified only if a valid u16 value can be decoded.
1281 */
1282 int of_property_read_variable_u16_array(const struct device_node *np,
1283 const char *propname, u16 *out_values,
1284 size_t sz_min, size_t sz_max)
1285 {
1286 size_t sz, count;
1287 const __be16 *val = of_find_property_value_of_size(np, propname,
1288 (sz_min * sizeof(*out_values)),
1289 (sz_max * sizeof(*out_values)),
1290 &sz);
1291
1292 if (IS_ERR(val))
1293 return PTR_ERR(val);
1294
1295 if (!sz_max)
1296 sz = sz_min;
1297 else
1298 sz /= sizeof(*out_values);
1299
1300 count = sz;
1301 while (count--)
1302 *out_values++ = be16_to_cpup(val++);
1303
1304 return sz;
1305 }
1306 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1307
1308 /**
1309 * of_property_read_variable_u32_array - Find and read an array of 32 bit
1310 * integers from a property, with bounds on the minimum and maximum array size.
1311 *
1312 * @np: device node from which the property value is to be read.
1313 * @propname: name of the property to be searched.
1314 * @out_values: pointer to return value, modified only if return value is 0.
1315 * @sz_min: minimum number of array elements to read
1316 * @sz_max: maximum number of array elements to read, if zero there is no
1317 * upper limit on the number of elements in the dts entry but only
1318 * sz_min will be read.
1319 *
1320 * Search for a property in a device node and read 32-bit value(s) from
1321 * it. Returns number of elements read on success, -EINVAL if the property
1322 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1323 * if the property data is smaller than sz_min or longer than sz_max.
1324 *
1325 * The out_values is modified only if a valid u32 value can be decoded.
1326 */
1327 int of_property_read_variable_u32_array(const struct device_node *np,
1328 const char *propname, u32 *out_values,
1329 size_t sz_min, size_t sz_max)
1330 {
1331 size_t sz, count;
1332 const __be32 *val = of_find_property_value_of_size(np, propname,
1333 (sz_min * sizeof(*out_values)),
1334 (sz_max * sizeof(*out_values)),
1335 &sz);
1336
1337 if (IS_ERR(val))
1338 return PTR_ERR(val);
1339
1340 if (!sz_max)
1341 sz = sz_min;
1342 else
1343 sz /= sizeof(*out_values);
1344
1345 count = sz;
1346 while (count--)
1347 *out_values++ = be32_to_cpup(val++);
1348
1349 return sz;
1350 }
1351 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1352
1353 /**
1354 * of_property_read_u64 - Find and read a 64 bit integer from a property
1355 * @np: device node from which the property value is to be read.
1356 * @propname: name of the property to be searched.
1357 * @out_value: pointer to return value, modified only if return value is 0.
1358 *
1359 * Search for a property in a device node and read a 64-bit value from
1360 * it. Returns 0 on success, -EINVAL if the property does not exist,
1361 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1362 * property data isn't large enough.
1363 *
1364 * The out_value is modified only if a valid u64 value can be decoded.
1365 */
1366 int of_property_read_u64(const struct device_node *np, const char *propname,
1367 u64 *out_value)
1368 {
1369 const __be32 *val = of_find_property_value_of_size(np, propname,
1370 sizeof(*out_value),
1371 0,
1372 NULL);
1373
1374 if (IS_ERR(val))
1375 return PTR_ERR(val);
1376
1377 *out_value = of_read_number(val, 2);
1378 return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(of_property_read_u64);
1381
1382 /**
1383 * of_property_read_variable_u64_array - Find and read an array of 64 bit
1384 * integers from a property, with bounds on the minimum and maximum array size.
1385 *
1386 * @np: device node from which the property value is to be read.
1387 * @propname: name of the property to be searched.
1388 * @out_values: pointer to return value, modified only if return value is 0.
1389 * @sz_min: minimum number of array elements to read
1390 * @sz_max: maximum number of array elements to read, if zero there is no
1391 * upper limit on the number of elements in the dts entry but only
1392 * sz_min will be read.
1393 *
1394 * Search for a property in a device node and read 64-bit value(s) from
1395 * it. Returns number of elements read on success, -EINVAL if the property
1396 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1397 * if the property data is smaller than sz_min or longer than sz_max.
1398 *
1399 * The out_values is modified only if a valid u64 value can be decoded.
1400 */
1401 int of_property_read_variable_u64_array(const struct device_node *np,
1402 const char *propname, u64 *out_values,
1403 size_t sz_min, size_t sz_max)
1404 {
1405 size_t sz, count;
1406 const __be32 *val = of_find_property_value_of_size(np, propname,
1407 (sz_min * sizeof(*out_values)),
1408 (sz_max * sizeof(*out_values)),
1409 &sz);
1410
1411 if (IS_ERR(val))
1412 return PTR_ERR(val);
1413
1414 if (!sz_max)
1415 sz = sz_min;
1416 else
1417 sz /= sizeof(*out_values);
1418
1419 count = sz;
1420 while (count--) {
1421 *out_values++ = of_read_number(val, 2);
1422 val += 2;
1423 }
1424
1425 return sz;
1426 }
1427 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1428
1429 /**
1430 * of_property_read_string - Find and read a string from a property
1431 * @np: device node from which the property value is to be read.
1432 * @propname: name of the property to be searched.
1433 * @out_string: pointer to null terminated return string, modified only if
1434 * return value is 0.
1435 *
1436 * Search for a property in a device tree node and retrieve a null
1437 * terminated string value (pointer to data, not a copy). Returns 0 on
1438 * success, -EINVAL if the property does not exist, -ENODATA if property
1439 * does not have a value, and -EILSEQ if the string is not null-terminated
1440 * within the length of the property data.
1441 *
1442 * The out_string pointer is modified only if a valid string can be decoded.
1443 */
1444 int of_property_read_string(const struct device_node *np, const char *propname,
1445 const char **out_string)
1446 {
1447 const struct property *prop = of_find_property(np, propname, NULL);
1448 if (!prop)
1449 return -EINVAL;
1450 if (!prop->value)
1451 return -ENODATA;
1452 if (strnlen(prop->value, prop->length) >= prop->length)
1453 return -EILSEQ;
1454 *out_string = prop->value;
1455 return 0;
1456 }
1457 EXPORT_SYMBOL_GPL(of_property_read_string);
1458
1459 /**
1460 * of_property_match_string() - Find string in a list and return index
1461 * @np: pointer to node containing string list property
1462 * @propname: string list property name
1463 * @string: pointer to string to search for in string list
1464 *
1465 * This function searches a string list property and returns the index
1466 * of a specific string value.
1467 */
1468 int of_property_match_string(const struct device_node *np, const char *propname,
1469 const char *string)
1470 {
1471 const struct property *prop = of_find_property(np, propname, NULL);
1472 size_t l;
1473 int i;
1474 const char *p, *end;
1475
1476 if (!prop)
1477 return -EINVAL;
1478 if (!prop->value)
1479 return -ENODATA;
1480
1481 p = prop->value;
1482 end = p + prop->length;
1483
1484 for (i = 0; p < end; i++, p += l) {
1485 l = strnlen(p, end - p) + 1;
1486 if (p + l > end)
1487 return -EILSEQ;
1488 pr_debug("comparing %s with %s\n", string, p);
1489 if (strcmp(string, p) == 0)
1490 return i; /* Found it; return index */
1491 }
1492 return -ENODATA;
1493 }
1494 EXPORT_SYMBOL_GPL(of_property_match_string);
1495
1496 /**
1497 * of_property_read_string_helper() - Utility helper for parsing string properties
1498 * @np: device node from which the property value is to be read.
1499 * @propname: name of the property to be searched.
1500 * @out_strs: output array of string pointers.
1501 * @sz: number of array elements to read.
1502 * @skip: Number of strings to skip over at beginning of list.
1503 *
1504 * Don't call this function directly. It is a utility helper for the
1505 * of_property_read_string*() family of functions.
1506 */
1507 int of_property_read_string_helper(const struct device_node *np,
1508 const char *propname, const char **out_strs,
1509 size_t sz, int skip)
1510 {
1511 const struct property *prop = of_find_property(np, propname, NULL);
1512 int l = 0, i = 0;
1513 const char *p, *end;
1514
1515 if (!prop)
1516 return -EINVAL;
1517 if (!prop->value)
1518 return -ENODATA;
1519 p = prop->value;
1520 end = p + prop->length;
1521
1522 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1523 l = strnlen(p, end - p) + 1;
1524 if (p + l > end)
1525 return -EILSEQ;
1526 if (out_strs && i >= skip)
1527 *out_strs++ = p;
1528 }
1529 i -= skip;
1530 return i <= 0 ? -ENODATA : i;
1531 }
1532 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1533
1534 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1535 {
1536 int i;
1537 printk("%s %s", msg, of_node_full_name(args->np));
1538 for (i = 0; i < args->args_count; i++) {
1539 const char delim = i ? ',' : ':';
1540
1541 pr_cont("%c%08x", delim, args->args[i]);
1542 }
1543 pr_cont("\n");
1544 }
1545
1546 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1547 const struct device_node *np,
1548 const char *list_name,
1549 const char *cells_name,
1550 int cell_count)
1551 {
1552 const __be32 *list;
1553 int size;
1554
1555 memset(it, 0, sizeof(*it));
1556
1557 list = of_get_property(np, list_name, &size);
1558 if (!list)
1559 return -ENOENT;
1560
1561 it->cells_name = cells_name;
1562 it->cell_count = cell_count;
1563 it->parent = np;
1564 it->list_end = list + size / sizeof(*list);
1565 it->phandle_end = list;
1566 it->cur = list;
1567
1568 return 0;
1569 }
1570
1571 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1572 {
1573 uint32_t count = 0;
1574
1575 if (it->node) {
1576 of_node_put(it->node);
1577 it->node = NULL;
1578 }
1579
1580 if (!it->cur || it->phandle_end >= it->list_end)
1581 return -ENOENT;
1582
1583 it->cur = it->phandle_end;
1584
1585 /* If phandle is 0, then it is an empty entry with no arguments. */
1586 it->phandle = be32_to_cpup(it->cur++);
1587
1588 if (it->phandle) {
1589
1590 /*
1591 * Find the provider node and parse the #*-cells property to
1592 * determine the argument length.
1593 */
1594 it->node = of_find_node_by_phandle(it->phandle);
1595
1596 if (it->cells_name) {
1597 if (!it->node) {
1598 pr_err("%s: could not find phandle\n",
1599 it->parent->full_name);
1600 goto err;
1601 }
1602
1603 if (of_property_read_u32(it->node, it->cells_name,
1604 &count)) {
1605 pr_err("%s: could not get %s for %s\n",
1606 it->parent->full_name,
1607 it->cells_name,
1608 it->node->full_name);
1609 goto err;
1610 }
1611 } else {
1612 count = it->cell_count;
1613 }
1614
1615 /*
1616 * Make sure that the arguments actually fit in the remaining
1617 * property data length
1618 */
1619 if (it->cur + count > it->list_end) {
1620 pr_err("%s: arguments longer than property\n",
1621 it->parent->full_name);
1622 goto err;
1623 }
1624 }
1625
1626 it->phandle_end = it->cur + count;
1627 it->cur_count = count;
1628
1629 return 0;
1630
1631 err:
1632 if (it->node) {
1633 of_node_put(it->node);
1634 it->node = NULL;
1635 }
1636
1637 return -EINVAL;
1638 }
1639
1640 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1641 uint32_t *args,
1642 int size)
1643 {
1644 int i, count;
1645
1646 count = it->cur_count;
1647
1648 if (WARN_ON(size < count))
1649 count = size;
1650
1651 for (i = 0; i < count; i++)
1652 args[i] = be32_to_cpup(it->cur++);
1653
1654 return count;
1655 }
1656
1657 static int __of_parse_phandle_with_args(const struct device_node *np,
1658 const char *list_name,
1659 const char *cells_name,
1660 int cell_count, int index,
1661 struct of_phandle_args *out_args)
1662 {
1663 struct of_phandle_iterator it;
1664 int rc, cur_index = 0;
1665
1666 /* Loop over the phandles until all the requested entry is found */
1667 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1668 /*
1669 * All of the error cases bail out of the loop, so at
1670 * this point, the parsing is successful. If the requested
1671 * index matches, then fill the out_args structure and return,
1672 * or return -ENOENT for an empty entry.
1673 */
1674 rc = -ENOENT;
1675 if (cur_index == index) {
1676 if (!it.phandle)
1677 goto err;
1678
1679 if (out_args) {
1680 int c;
1681
1682 c = of_phandle_iterator_args(&it,
1683 out_args->args,
1684 MAX_PHANDLE_ARGS);
1685 out_args->np = it.node;
1686 out_args->args_count = c;
1687 } else {
1688 of_node_put(it.node);
1689 }
1690
1691 /* Found it! return success */
1692 return 0;
1693 }
1694
1695 cur_index++;
1696 }
1697
1698 /*
1699 * Unlock node before returning result; will be one of:
1700 * -ENOENT : index is for empty phandle
1701 * -EINVAL : parsing error on data
1702 */
1703
1704 err:
1705 of_node_put(it.node);
1706 return rc;
1707 }
1708
1709 /**
1710 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1711 * @np: Pointer to device node holding phandle property
1712 * @phandle_name: Name of property holding a phandle value
1713 * @index: For properties holding a table of phandles, this is the index into
1714 * the table
1715 *
1716 * Returns the device_node pointer with refcount incremented. Use
1717 * of_node_put() on it when done.
1718 */
1719 struct device_node *of_parse_phandle(const struct device_node *np,
1720 const char *phandle_name, int index)
1721 {
1722 struct of_phandle_args args;
1723
1724 if (index < 0)
1725 return NULL;
1726
1727 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1728 index, &args))
1729 return NULL;
1730
1731 return args.np;
1732 }
1733 EXPORT_SYMBOL(of_parse_phandle);
1734
1735 /**
1736 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1737 * @np: pointer to a device tree node containing a list
1738 * @list_name: property name that contains a list
1739 * @cells_name: property name that specifies phandles' arguments count
1740 * @index: index of a phandle to parse out
1741 * @out_args: optional pointer to output arguments structure (will be filled)
1742 *
1743 * This function is useful to parse lists of phandles and their arguments.
1744 * Returns 0 on success and fills out_args, on error returns appropriate
1745 * errno value.
1746 *
1747 * Caller is responsible to call of_node_put() on the returned out_args->np
1748 * pointer.
1749 *
1750 * Example:
1751 *
1752 * phandle1: node1 {
1753 * #list-cells = <2>;
1754 * }
1755 *
1756 * phandle2: node2 {
1757 * #list-cells = <1>;
1758 * }
1759 *
1760 * node3 {
1761 * list = <&phandle1 1 2 &phandle2 3>;
1762 * }
1763 *
1764 * To get a device_node of the `node2' node you may call this:
1765 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1766 */
1767 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1768 const char *cells_name, int index,
1769 struct of_phandle_args *out_args)
1770 {
1771 if (index < 0)
1772 return -EINVAL;
1773 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1774 index, out_args);
1775 }
1776 EXPORT_SYMBOL(of_parse_phandle_with_args);
1777
1778 /**
1779 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1780 * @np: pointer to a device tree node containing a list
1781 * @list_name: property name that contains a list
1782 * @cell_count: number of argument cells following the phandle
1783 * @index: index of a phandle to parse out
1784 * @out_args: optional pointer to output arguments structure (will be filled)
1785 *
1786 * This function is useful to parse lists of phandles and their arguments.
1787 * Returns 0 on success and fills out_args, on error returns appropriate
1788 * errno value.
1789 *
1790 * Caller is responsible to call of_node_put() on the returned out_args->np
1791 * pointer.
1792 *
1793 * Example:
1794 *
1795 * phandle1: node1 {
1796 * }
1797 *
1798 * phandle2: node2 {
1799 * }
1800 *
1801 * node3 {
1802 * list = <&phandle1 0 2 &phandle2 2 3>;
1803 * }
1804 *
1805 * To get a device_node of the `node2' node you may call this:
1806 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1807 */
1808 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1809 const char *list_name, int cell_count,
1810 int index, struct of_phandle_args *out_args)
1811 {
1812 if (index < 0)
1813 return -EINVAL;
1814 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1815 index, out_args);
1816 }
1817 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1818
1819 /**
1820 * of_count_phandle_with_args() - Find the number of phandles references in a property
1821 * @np: pointer to a device tree node containing a list
1822 * @list_name: property name that contains a list
1823 * @cells_name: property name that specifies phandles' arguments count
1824 *
1825 * Returns the number of phandle + argument tuples within a property. It
1826 * is a typical pattern to encode a list of phandle and variable
1827 * arguments into a single property. The number of arguments is encoded
1828 * by a property in the phandle-target node. For example, a gpios
1829 * property would contain a list of GPIO specifies consisting of a
1830 * phandle and 1 or more arguments. The number of arguments are
1831 * determined by the #gpio-cells property in the node pointed to by the
1832 * phandle.
1833 */
1834 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1835 const char *cells_name)
1836 {
1837 struct of_phandle_iterator it;
1838 int rc, cur_index = 0;
1839
1840 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1841 if (rc)
1842 return rc;
1843
1844 while ((rc = of_phandle_iterator_next(&it)) == 0)
1845 cur_index += 1;
1846
1847 if (rc != -ENOENT)
1848 return rc;
1849
1850 return cur_index;
1851 }
1852 EXPORT_SYMBOL(of_count_phandle_with_args);
1853
1854 /**
1855 * __of_add_property - Add a property to a node without lock operations
1856 */
1857 int __of_add_property(struct device_node *np, struct property *prop)
1858 {
1859 struct property **next;
1860
1861 prop->next = NULL;
1862 next = &np->properties;
1863 while (*next) {
1864 if (strcmp(prop->name, (*next)->name) == 0)
1865 /* duplicate ! don't insert it */
1866 return -EEXIST;
1867
1868 next = &(*next)->next;
1869 }
1870 *next = prop;
1871
1872 return 0;
1873 }
1874
1875 /**
1876 * of_add_property - Add a property to a node
1877 */
1878 int of_add_property(struct device_node *np, struct property *prop)
1879 {
1880 unsigned long flags;
1881 int rc;
1882
1883 mutex_lock(&of_mutex);
1884
1885 raw_spin_lock_irqsave(&devtree_lock, flags);
1886 rc = __of_add_property(np, prop);
1887 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1888
1889 if (!rc)
1890 __of_add_property_sysfs(np, prop);
1891
1892 mutex_unlock(&of_mutex);
1893
1894 if (!rc)
1895 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1896
1897 return rc;
1898 }
1899
1900 int __of_remove_property(struct device_node *np, struct property *prop)
1901 {
1902 struct property **next;
1903
1904 for (next = &np->properties; *next; next = &(*next)->next) {
1905 if (*next == prop)
1906 break;
1907 }
1908 if (*next == NULL)
1909 return -ENODEV;
1910
1911 /* found the node */
1912 *next = prop->next;
1913 prop->next = np->deadprops;
1914 np->deadprops = prop;
1915
1916 return 0;
1917 }
1918
1919 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1920 {
1921 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1922 kfree(prop->attr.attr.name);
1923 }
1924
1925 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1926 {
1927 if (!IS_ENABLED(CONFIG_SYSFS))
1928 return;
1929
1930 /* at early boot, bail here and defer setup to of_init() */
1931 if (of_kset && of_node_is_attached(np))
1932 __of_sysfs_remove_bin_file(np, prop);
1933 }
1934
1935 /**
1936 * of_remove_property - Remove a property from a node.
1937 *
1938 * Note that we don't actually remove it, since we have given out
1939 * who-knows-how-many pointers to the data using get-property.
1940 * Instead we just move the property to the "dead properties"
1941 * list, so it won't be found any more.
1942 */
1943 int of_remove_property(struct device_node *np, struct property *prop)
1944 {
1945 unsigned long flags;
1946 int rc;
1947
1948 if (!prop)
1949 return -ENODEV;
1950
1951 mutex_lock(&of_mutex);
1952
1953 raw_spin_lock_irqsave(&devtree_lock, flags);
1954 rc = __of_remove_property(np, prop);
1955 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1956
1957 if (!rc)
1958 __of_remove_property_sysfs(np, prop);
1959
1960 mutex_unlock(&of_mutex);
1961
1962 if (!rc)
1963 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1964
1965 return rc;
1966 }
1967
1968 int __of_update_property(struct device_node *np, struct property *newprop,
1969 struct property **oldpropp)
1970 {
1971 struct property **next, *oldprop;
1972
1973 for (next = &np->properties; *next; next = &(*next)->next) {
1974 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1975 break;
1976 }
1977 *oldpropp = oldprop = *next;
1978
1979 if (oldprop) {
1980 /* replace the node */
1981 newprop->next = oldprop->next;
1982 *next = newprop;
1983 oldprop->next = np->deadprops;
1984 np->deadprops = oldprop;
1985 } else {
1986 /* new node */
1987 newprop->next = NULL;
1988 *next = newprop;
1989 }
1990
1991 return 0;
1992 }
1993
1994 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1995 struct property *oldprop)
1996 {
1997 if (!IS_ENABLED(CONFIG_SYSFS))
1998 return;
1999
2000 /* At early boot, bail out and defer setup to of_init() */
2001 if (!of_kset)
2002 return;
2003
2004 if (oldprop)
2005 __of_sysfs_remove_bin_file(np, oldprop);
2006 __of_add_property_sysfs(np, newprop);
2007 }
2008
2009 /*
2010 * of_update_property - Update a property in a node, if the property does
2011 * not exist, add it.
2012 *
2013 * Note that we don't actually remove it, since we have given out
2014 * who-knows-how-many pointers to the data using get-property.
2015 * Instead we just move the property to the "dead properties" list,
2016 * and add the new property to the property list
2017 */
2018 int of_update_property(struct device_node *np, struct property *newprop)
2019 {
2020 struct property *oldprop;
2021 unsigned long flags;
2022 int rc;
2023
2024 if (!newprop->name)
2025 return -EINVAL;
2026
2027 mutex_lock(&of_mutex);
2028
2029 raw_spin_lock_irqsave(&devtree_lock, flags);
2030 rc = __of_update_property(np, newprop, &oldprop);
2031 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2032
2033 if (!rc)
2034 __of_update_property_sysfs(np, newprop, oldprop);
2035
2036 mutex_unlock(&of_mutex);
2037
2038 if (!rc)
2039 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2040
2041 return rc;
2042 }
2043
2044 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2045 int id, const char *stem, int stem_len)
2046 {
2047 ap->np = np;
2048 ap->id = id;
2049 strncpy(ap->stem, stem, stem_len);
2050 ap->stem[stem_len] = 0;
2051 list_add_tail(&ap->link, &aliases_lookup);
2052 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2053 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2054 }
2055
2056 /**
2057 * of_alias_scan - Scan all properties of the 'aliases' node
2058 *
2059 * The function scans all the properties of the 'aliases' node and populates
2060 * the global lookup table with the properties. It returns the
2061 * number of alias properties found, or an error code in case of failure.
2062 *
2063 * @dt_alloc: An allocator that provides a virtual address to memory
2064 * for storing the resulting tree
2065 */
2066 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2067 {
2068 struct property *pp;
2069
2070 of_aliases = of_find_node_by_path("/aliases");
2071 of_chosen = of_find_node_by_path("/chosen");
2072 if (of_chosen == NULL)
2073 of_chosen = of_find_node_by_path("/chosen@0");
2074
2075 if (of_chosen) {
2076 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2077 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2078 if (!name)
2079 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2080 if (IS_ENABLED(CONFIG_PPC) && !name)
2081 name = of_get_property(of_aliases, "stdout", NULL);
2082 if (name)
2083 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2084 }
2085
2086 if (!of_aliases)
2087 return;
2088
2089 for_each_property_of_node(of_aliases, pp) {
2090 const char *start = pp->name;
2091 const char *end = start + strlen(start);
2092 struct device_node *np;
2093 struct alias_prop *ap;
2094 int id, len;
2095
2096 /* Skip those we do not want to proceed */
2097 if (!strcmp(pp->name, "name") ||
2098 !strcmp(pp->name, "phandle") ||
2099 !strcmp(pp->name, "linux,phandle"))
2100 continue;
2101
2102 np = of_find_node_by_path(pp->value);
2103 if (!np)
2104 continue;
2105
2106 /* walk the alias backwards to extract the id and work out
2107 * the 'stem' string */
2108 while (isdigit(*(end-1)) && end > start)
2109 end--;
2110 len = end - start;
2111
2112 if (kstrtoint(end, 10, &id) < 0)
2113 continue;
2114
2115 /* Allocate an alias_prop with enough space for the stem */
2116 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2117 if (!ap)
2118 continue;
2119 memset(ap, 0, sizeof(*ap) + len + 1);
2120 ap->alias = start;
2121 of_alias_add(ap, np, id, start, len);
2122 }
2123 }
2124
2125 /**
2126 * of_alias_get_id - Get alias id for the given device_node
2127 * @np: Pointer to the given device_node
2128 * @stem: Alias stem of the given device_node
2129 *
2130 * The function travels the lookup table to get the alias id for the given
2131 * device_node and alias stem. It returns the alias id if found.
2132 */
2133 int of_alias_get_id(struct device_node *np, const char *stem)
2134 {
2135 struct alias_prop *app;
2136 int id = -ENODEV;
2137
2138 mutex_lock(&of_mutex);
2139 list_for_each_entry(app, &aliases_lookup, link) {
2140 if (strcmp(app->stem, stem) != 0)
2141 continue;
2142
2143 if (np == app->np) {
2144 id = app->id;
2145 break;
2146 }
2147 }
2148 mutex_unlock(&of_mutex);
2149
2150 return id;
2151 }
2152 EXPORT_SYMBOL_GPL(of_alias_get_id);
2153
2154 /**
2155 * of_alias_get_highest_id - Get highest alias id for the given stem
2156 * @stem: Alias stem to be examined
2157 *
2158 * The function travels the lookup table to get the highest alias id for the
2159 * given alias stem. It returns the alias id if found.
2160 */
2161 int of_alias_get_highest_id(const char *stem)
2162 {
2163 struct alias_prop *app;
2164 int id = -ENODEV;
2165
2166 mutex_lock(&of_mutex);
2167 list_for_each_entry(app, &aliases_lookup, link) {
2168 if (strcmp(app->stem, stem) != 0)
2169 continue;
2170
2171 if (app->id > id)
2172 id = app->id;
2173 }
2174 mutex_unlock(&of_mutex);
2175
2176 return id;
2177 }
2178 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2179
2180 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2181 u32 *pu)
2182 {
2183 const void *curv = cur;
2184
2185 if (!prop)
2186 return NULL;
2187
2188 if (!cur) {
2189 curv = prop->value;
2190 goto out_val;
2191 }
2192
2193 curv += sizeof(*cur);
2194 if (curv >= prop->value + prop->length)
2195 return NULL;
2196
2197 out_val:
2198 *pu = be32_to_cpup(curv);
2199 return curv;
2200 }
2201 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2202
2203 const char *of_prop_next_string(struct property *prop, const char *cur)
2204 {
2205 const void *curv = cur;
2206
2207 if (!prop)
2208 return NULL;
2209
2210 if (!cur)
2211 return prop->value;
2212
2213 curv += strlen(cur) + 1;
2214 if (curv >= prop->value + prop->length)
2215 return NULL;
2216
2217 return curv;
2218 }
2219 EXPORT_SYMBOL_GPL(of_prop_next_string);
2220
2221 /**
2222 * of_console_check() - Test and setup console for DT setup
2223 * @dn - Pointer to device node
2224 * @name - Name to use for preferred console without index. ex. "ttyS"
2225 * @index - Index to use for preferred console.
2226 *
2227 * Check if the given device node matches the stdout-path property in the
2228 * /chosen node. If it does then register it as the preferred console and return
2229 * TRUE. Otherwise return FALSE.
2230 */
2231 bool of_console_check(struct device_node *dn, char *name, int index)
2232 {
2233 if (!dn || dn != of_stdout || console_set_on_cmdline)
2234 return false;
2235 return !add_preferred_console(name, index,
2236 kstrdup(of_stdout_options, GFP_KERNEL));
2237 }
2238 EXPORT_SYMBOL_GPL(of_console_check);
2239
2240 /**
2241 * of_find_next_cache_node - Find a node's subsidiary cache
2242 * @np: node of type "cpu" or "cache"
2243 *
2244 * Returns a node pointer with refcount incremented, use
2245 * of_node_put() on it when done. Caller should hold a reference
2246 * to np.
2247 */
2248 struct device_node *of_find_next_cache_node(const struct device_node *np)
2249 {
2250 struct device_node *child;
2251 const phandle *handle;
2252
2253 handle = of_get_property(np, "l2-cache", NULL);
2254 if (!handle)
2255 handle = of_get_property(np, "next-level-cache", NULL);
2256
2257 if (handle)
2258 return of_find_node_by_phandle(be32_to_cpup(handle));
2259
2260 /* OF on pmac has nodes instead of properties named "l2-cache"
2261 * beneath CPU nodes.
2262 */
2263 if (!strcmp(np->type, "cpu"))
2264 for_each_child_of_node(np, child)
2265 if (!strcmp(child->type, "cache"))
2266 return child;
2267
2268 return NULL;
2269 }
2270
2271 /**
2272 * of_find_last_cache_level - Find the level at which the last cache is
2273 * present for the given logical cpu
2274 *
2275 * @cpu: cpu number(logical index) for which the last cache level is needed
2276 *
2277 * Returns the the level at which the last cache is present. It is exactly
2278 * same as the total number of cache levels for the given logical cpu.
2279 */
2280 int of_find_last_cache_level(unsigned int cpu)
2281 {
2282 u32 cache_level = 0;
2283 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2284
2285 while (np) {
2286 prev = np;
2287 of_node_put(np);
2288 np = of_find_next_cache_node(np);
2289 }
2290
2291 of_property_read_u32(prev, "cache-level", &cache_level);
2292
2293 return cache_level;
2294 }
2295
2296 /**
2297 * of_graph_parse_endpoint() - parse common endpoint node properties
2298 * @node: pointer to endpoint device_node
2299 * @endpoint: pointer to the OF endpoint data structure
2300 *
2301 * The caller should hold a reference to @node.
2302 */
2303 int of_graph_parse_endpoint(const struct device_node *node,
2304 struct of_endpoint *endpoint)
2305 {
2306 struct device_node *port_node = of_get_parent(node);
2307
2308 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2309 __func__, node->full_name);
2310
2311 memset(endpoint, 0, sizeof(*endpoint));
2312
2313 endpoint->local_node = node;
2314 /*
2315 * It doesn't matter whether the two calls below succeed.
2316 * If they don't then the default value 0 is used.
2317 */
2318 of_property_read_u32(port_node, "reg", &endpoint->port);
2319 of_property_read_u32(node, "reg", &endpoint->id);
2320
2321 of_node_put(port_node);
2322
2323 return 0;
2324 }
2325 EXPORT_SYMBOL(of_graph_parse_endpoint);
2326
2327 /**
2328 * of_graph_get_port_by_id() - get the port matching a given id
2329 * @parent: pointer to the parent device node
2330 * @id: id of the port
2331 *
2332 * Return: A 'port' node pointer with refcount incremented. The caller
2333 * has to use of_node_put() on it when done.
2334 */
2335 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2336 {
2337 struct device_node *node, *port;
2338
2339 node = of_get_child_by_name(parent, "ports");
2340 if (node)
2341 parent = node;
2342
2343 for_each_child_of_node(parent, port) {
2344 u32 port_id = 0;
2345
2346 if (of_node_cmp(port->name, "port") != 0)
2347 continue;
2348 of_property_read_u32(port, "reg", &port_id);
2349 if (id == port_id)
2350 break;
2351 }
2352
2353 of_node_put(node);
2354
2355 return port;
2356 }
2357 EXPORT_SYMBOL(of_graph_get_port_by_id);
2358
2359 /**
2360 * of_graph_get_next_endpoint() - get next endpoint node
2361 * @parent: pointer to the parent device node
2362 * @prev: previous endpoint node, or NULL to get first
2363 *
2364 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2365 * of the passed @prev node is decremented.
2366 */
2367 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2368 struct device_node *prev)
2369 {
2370 struct device_node *endpoint;
2371 struct device_node *port;
2372
2373 if (!parent)
2374 return NULL;
2375
2376 /*
2377 * Start by locating the port node. If no previous endpoint is specified
2378 * search for the first port node, otherwise get the previous endpoint
2379 * parent port node.
2380 */
2381 if (!prev) {
2382 struct device_node *node;
2383
2384 node = of_get_child_by_name(parent, "ports");
2385 if (node)
2386 parent = node;
2387
2388 port = of_get_child_by_name(parent, "port");
2389 of_node_put(node);
2390
2391 if (!port) {
2392 pr_err("graph: no port node found in %s\n",
2393 parent->full_name);
2394 return NULL;
2395 }
2396 } else {
2397 port = of_get_parent(prev);
2398 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2399 __func__, prev->full_name))
2400 return NULL;
2401 }
2402
2403 while (1) {
2404 /*
2405 * Now that we have a port node, get the next endpoint by
2406 * getting the next child. If the previous endpoint is NULL this
2407 * will return the first child.
2408 */
2409 endpoint = of_get_next_child(port, prev);
2410 if (endpoint) {
2411 of_node_put(port);
2412 return endpoint;
2413 }
2414
2415 /* No more endpoints under this port, try the next one. */
2416 prev = NULL;
2417
2418 do {
2419 port = of_get_next_child(parent, port);
2420 if (!port)
2421 return NULL;
2422 } while (of_node_cmp(port->name, "port"));
2423 }
2424 }
2425 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2426
2427 /**
2428 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2429 * @parent: pointer to the parent device node
2430 * @port_reg: identifier (value of reg property) of the parent port node
2431 * @reg: identifier (value of reg property) of the endpoint node
2432 *
2433 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2434 * is the child of a port node identified by port_reg. reg and port_reg are
2435 * ignored when they are -1.
2436 */
2437 struct device_node *of_graph_get_endpoint_by_regs(
2438 const struct device_node *parent, int port_reg, int reg)
2439 {
2440 struct of_endpoint endpoint;
2441 struct device_node *node = NULL;
2442
2443 for_each_endpoint_of_node(parent, node) {
2444 of_graph_parse_endpoint(node, &endpoint);
2445 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2446 ((reg == -1) || (endpoint.id == reg)))
2447 return node;
2448 }
2449
2450 return NULL;
2451 }
2452 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2453
2454 /**
2455 * of_graph_get_remote_port_parent() - get remote port's parent node
2456 * @node: pointer to a local endpoint device_node
2457 *
2458 * Return: Remote device node associated with remote endpoint node linked
2459 * to @node. Use of_node_put() on it when done.
2460 */
2461 struct device_node *of_graph_get_remote_port_parent(
2462 const struct device_node *node)
2463 {
2464 struct device_node *np;
2465 unsigned int depth;
2466
2467 /* Get remote endpoint node. */
2468 np = of_parse_phandle(node, "remote-endpoint", 0);
2469
2470 /* Walk 3 levels up only if there is 'ports' node. */
2471 for (depth = 3; depth && np; depth--) {
2472 np = of_get_next_parent(np);
2473 if (depth == 2 && of_node_cmp(np->name, "ports"))
2474 break;
2475 }
2476 return np;
2477 }
2478 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2479
2480 /**
2481 * of_graph_get_remote_port() - get remote port node
2482 * @node: pointer to a local endpoint device_node
2483 *
2484 * Return: Remote port node associated with remote endpoint node linked
2485 * to @node. Use of_node_put() on it when done.
2486 */
2487 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2488 {
2489 struct device_node *np;
2490
2491 /* Get remote endpoint node. */
2492 np = of_parse_phandle(node, "remote-endpoint", 0);
2493 if (!np)
2494 return NULL;
2495 return of_get_next_parent(np);
2496 }
2497 EXPORT_SYMBOL(of_graph_get_remote_port);