]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/of/base.c
bc420d2aa5f5726075416753683f9f8cefed7d76
[mirror_ubuntu-hirsute-kernel.git] / drivers / of / base.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41
42 struct kset *of_kset;
43
44 /*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50 DEFINE_MUTEX(of_mutex);
51
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56
57 int of_n_addr_cells(struct device_node *np)
58 {
59 u32 cells;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 if (!of_property_read_u32(np, "#address-cells", &cells))
65 return cells;
66 } while (np->parent);
67 /* No #address-cells property for the root node */
68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69 }
70 EXPORT_SYMBOL(of_n_addr_cells);
71
72 int of_n_size_cells(struct device_node *np)
73 {
74 u32 cells;
75
76 do {
77 if (np->parent)
78 np = np->parent;
79 if (!of_property_read_u32(np, "#size-cells", &cells))
80 return cells;
81 } while (np->parent);
82 /* No #size-cells property for the root node */
83 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
84 }
85 EXPORT_SYMBOL(of_n_size_cells);
86
87 #ifdef CONFIG_NUMA
88 int __weak of_node_to_nid(struct device_node *np)
89 {
90 return NUMA_NO_NODE;
91 }
92 #endif
93
94 static struct device_node **phandle_cache;
95 static u32 phandle_cache_mask;
96
97 /*
98 * Assumptions behind phandle_cache implementation:
99 * - phandle property values are in a contiguous range of 1..n
100 *
101 * If the assumptions do not hold, then
102 * - the phandle lookup overhead reduction provided by the cache
103 * will likely be less
104 */
105 void of_populate_phandle_cache(void)
106 {
107 unsigned long flags;
108 u32 cache_entries;
109 struct device_node *np;
110 u32 phandles = 0;
111
112 raw_spin_lock_irqsave(&devtree_lock, flags);
113
114 kfree(phandle_cache);
115 phandle_cache = NULL;
116
117 for_each_of_allnodes(np)
118 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
119 phandles++;
120
121 cache_entries = roundup_pow_of_two(phandles);
122 phandle_cache_mask = cache_entries - 1;
123
124 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
125 GFP_ATOMIC);
126 if (!phandle_cache)
127 goto out;
128
129 for_each_of_allnodes(np)
130 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
131 phandle_cache[np->phandle & phandle_cache_mask] = np;
132
133 out:
134 raw_spin_unlock_irqrestore(&devtree_lock, flags);
135 }
136
137 int of_free_phandle_cache(void)
138 {
139 unsigned long flags;
140
141 raw_spin_lock_irqsave(&devtree_lock, flags);
142
143 kfree(phandle_cache);
144 phandle_cache = NULL;
145
146 raw_spin_unlock_irqrestore(&devtree_lock, flags);
147
148 return 0;
149 }
150 #if !defined(CONFIG_MODULES)
151 late_initcall_sync(of_free_phandle_cache);
152 #endif
153
154 void __init of_core_init(void)
155 {
156 struct device_node *np;
157
158 of_populate_phandle_cache();
159
160 /* Create the kset, and register existing nodes */
161 mutex_lock(&of_mutex);
162 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
163 if (!of_kset) {
164 mutex_unlock(&of_mutex);
165 pr_err("failed to register existing nodes\n");
166 return;
167 }
168 for_each_of_allnodes(np)
169 __of_attach_node_sysfs(np);
170 mutex_unlock(&of_mutex);
171
172 /* Symlink in /proc as required by userspace ABI */
173 if (of_root)
174 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
175 }
176
177 static struct property *__of_find_property(const struct device_node *np,
178 const char *name, int *lenp)
179 {
180 struct property *pp;
181
182 if (!np)
183 return NULL;
184
185 for (pp = np->properties; pp; pp = pp->next) {
186 if (of_prop_cmp(pp->name, name) == 0) {
187 if (lenp)
188 *lenp = pp->length;
189 break;
190 }
191 }
192
193 return pp;
194 }
195
196 struct property *of_find_property(const struct device_node *np,
197 const char *name,
198 int *lenp)
199 {
200 struct property *pp;
201 unsigned long flags;
202
203 raw_spin_lock_irqsave(&devtree_lock, flags);
204 pp = __of_find_property(np, name, lenp);
205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
206
207 return pp;
208 }
209 EXPORT_SYMBOL(of_find_property);
210
211 struct device_node *__of_find_all_nodes(struct device_node *prev)
212 {
213 struct device_node *np;
214 if (!prev) {
215 np = of_root;
216 } else if (prev->child) {
217 np = prev->child;
218 } else {
219 /* Walk back up looking for a sibling, or the end of the structure */
220 np = prev;
221 while (np->parent && !np->sibling)
222 np = np->parent;
223 np = np->sibling; /* Might be null at the end of the tree */
224 }
225 return np;
226 }
227
228 /**
229 * of_find_all_nodes - Get next node in global list
230 * @prev: Previous node or NULL to start iteration
231 * of_node_put() will be called on it
232 *
233 * Returns a node pointer with refcount incremented, use
234 * of_node_put() on it when done.
235 */
236 struct device_node *of_find_all_nodes(struct device_node *prev)
237 {
238 struct device_node *np;
239 unsigned long flags;
240
241 raw_spin_lock_irqsave(&devtree_lock, flags);
242 np = __of_find_all_nodes(prev);
243 of_node_get(np);
244 of_node_put(prev);
245 raw_spin_unlock_irqrestore(&devtree_lock, flags);
246 return np;
247 }
248 EXPORT_SYMBOL(of_find_all_nodes);
249
250 /*
251 * Find a property with a given name for a given node
252 * and return the value.
253 */
254 const void *__of_get_property(const struct device_node *np,
255 const char *name, int *lenp)
256 {
257 struct property *pp = __of_find_property(np, name, lenp);
258
259 return pp ? pp->value : NULL;
260 }
261
262 /*
263 * Find a property with a given name for a given node
264 * and return the value.
265 */
266 const void *of_get_property(const struct device_node *np, const char *name,
267 int *lenp)
268 {
269 struct property *pp = of_find_property(np, name, lenp);
270
271 return pp ? pp->value : NULL;
272 }
273 EXPORT_SYMBOL(of_get_property);
274
275 /*
276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
277 *
278 * @cpu: logical cpu index of a core/thread
279 * @phys_id: physical identifier of a core/thread
280 *
281 * CPU logical to physical index mapping is architecture specific.
282 * However this __weak function provides a default match of physical
283 * id to logical cpu index. phys_id provided here is usually values read
284 * from the device tree which must match the hardware internal registers.
285 *
286 * Returns true if the physical identifier and the logical cpu index
287 * correspond to the same core/thread, false otherwise.
288 */
289 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
290 {
291 return (u32)phys_id == cpu;
292 }
293
294 /**
295 * Checks if the given "prop_name" property holds the physical id of the
296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
297 * NULL, local thread number within the core is returned in it.
298 */
299 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
300 const char *prop_name, int cpu, unsigned int *thread)
301 {
302 const __be32 *cell;
303 int ac, prop_len, tid;
304 u64 hwid;
305
306 ac = of_n_addr_cells(cpun);
307 cell = of_get_property(cpun, prop_name, &prop_len);
308 if (!cell || !ac)
309 return false;
310 prop_len /= sizeof(*cell) * ac;
311 for (tid = 0; tid < prop_len; tid++) {
312 hwid = of_read_number(cell, ac);
313 if (arch_match_cpu_phys_id(cpu, hwid)) {
314 if (thread)
315 *thread = tid;
316 return true;
317 }
318 cell += ac;
319 }
320 return false;
321 }
322
323 /*
324 * arch_find_n_match_cpu_physical_id - See if the given device node is
325 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
326 * else false. If 'thread' is non-NULL, the local thread number within the
327 * core is returned in it.
328 */
329 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
330 int cpu, unsigned int *thread)
331 {
332 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
333 * for thread ids on PowerPC. If it doesn't exist fallback to
334 * standard "reg" property.
335 */
336 if (IS_ENABLED(CONFIG_PPC) &&
337 __of_find_n_match_cpu_property(cpun,
338 "ibm,ppc-interrupt-server#s",
339 cpu, thread))
340 return true;
341
342 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
343 }
344
345 /**
346 * of_get_cpu_node - Get device node associated with the given logical CPU
347 *
348 * @cpu: CPU number(logical index) for which device node is required
349 * @thread: if not NULL, local thread number within the physical core is
350 * returned
351 *
352 * The main purpose of this function is to retrieve the device node for the
353 * given logical CPU index. It should be used to initialize the of_node in
354 * cpu device. Once of_node in cpu device is populated, all the further
355 * references can use that instead.
356 *
357 * CPU logical to physical index mapping is architecture specific and is built
358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
359 * which can be overridden by architecture specific implementation.
360 *
361 * Returns a node pointer for the logical cpu with refcount incremented, use
362 * of_node_put() on it when done. Returns NULL if not found.
363 */
364 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
365 {
366 struct device_node *cpun;
367
368 for_each_node_by_type(cpun, "cpu") {
369 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
370 return cpun;
371 }
372 return NULL;
373 }
374 EXPORT_SYMBOL(of_get_cpu_node);
375
376 /**
377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
378 *
379 * @cpu_node: Pointer to the device_node for CPU.
380 *
381 * Returns the logical CPU number of the given CPU device_node.
382 * Returns -ENODEV if the CPU is not found.
383 */
384 int of_cpu_node_to_id(struct device_node *cpu_node)
385 {
386 int cpu;
387 bool found = false;
388 struct device_node *np;
389
390 for_each_possible_cpu(cpu) {
391 np = of_cpu_device_node_get(cpu);
392 found = (cpu_node == np);
393 of_node_put(np);
394 if (found)
395 return cpu;
396 }
397
398 return -ENODEV;
399 }
400 EXPORT_SYMBOL(of_cpu_node_to_id);
401
402 /**
403 * __of_device_is_compatible() - Check if the node matches given constraints
404 * @device: pointer to node
405 * @compat: required compatible string, NULL or "" for any match
406 * @type: required device_type value, NULL or "" for any match
407 * @name: required node name, NULL or "" for any match
408 *
409 * Checks if the given @compat, @type and @name strings match the
410 * properties of the given @device. A constraints can be skipped by
411 * passing NULL or an empty string as the constraint.
412 *
413 * Returns 0 for no match, and a positive integer on match. The return
414 * value is a relative score with larger values indicating better
415 * matches. The score is weighted for the most specific compatible value
416 * to get the highest score. Matching type is next, followed by matching
417 * name. Practically speaking, this results in the following priority
418 * order for matches:
419 *
420 * 1. specific compatible && type && name
421 * 2. specific compatible && type
422 * 3. specific compatible && name
423 * 4. specific compatible
424 * 5. general compatible && type && name
425 * 6. general compatible && type
426 * 7. general compatible && name
427 * 8. general compatible
428 * 9. type && name
429 * 10. type
430 * 11. name
431 */
432 static int __of_device_is_compatible(const struct device_node *device,
433 const char *compat, const char *type, const char *name)
434 {
435 struct property *prop;
436 const char *cp;
437 int index = 0, score = 0;
438
439 /* Compatible match has highest priority */
440 if (compat && compat[0]) {
441 prop = __of_find_property(device, "compatible", NULL);
442 for (cp = of_prop_next_string(prop, NULL); cp;
443 cp = of_prop_next_string(prop, cp), index++) {
444 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
445 score = INT_MAX/2 - (index << 2);
446 break;
447 }
448 }
449 if (!score)
450 return 0;
451 }
452
453 /* Matching type is better than matching name */
454 if (type && type[0]) {
455 if (!device->type || of_node_cmp(type, device->type))
456 return 0;
457 score += 2;
458 }
459
460 /* Matching name is a bit better than not */
461 if (name && name[0]) {
462 if (!device->name || of_node_cmp(name, device->name))
463 return 0;
464 score++;
465 }
466
467 return score;
468 }
469
470 /** Checks if the given "compat" string matches one of the strings in
471 * the device's "compatible" property
472 */
473 int of_device_is_compatible(const struct device_node *device,
474 const char *compat)
475 {
476 unsigned long flags;
477 int res;
478
479 raw_spin_lock_irqsave(&devtree_lock, flags);
480 res = __of_device_is_compatible(device, compat, NULL, NULL);
481 raw_spin_unlock_irqrestore(&devtree_lock, flags);
482 return res;
483 }
484 EXPORT_SYMBOL(of_device_is_compatible);
485
486 /** Checks if the device is compatible with any of the entries in
487 * a NULL terminated array of strings. Returns the best match
488 * score or 0.
489 */
490 int of_device_compatible_match(struct device_node *device,
491 const char *const *compat)
492 {
493 unsigned int tmp, score = 0;
494
495 if (!compat)
496 return 0;
497
498 while (*compat) {
499 tmp = of_device_is_compatible(device, *compat);
500 if (tmp > score)
501 score = tmp;
502 compat++;
503 }
504
505 return score;
506 }
507
508 /**
509 * of_machine_is_compatible - Test root of device tree for a given compatible value
510 * @compat: compatible string to look for in root node's compatible property.
511 *
512 * Returns a positive integer if the root node has the given value in its
513 * compatible property.
514 */
515 int of_machine_is_compatible(const char *compat)
516 {
517 struct device_node *root;
518 int rc = 0;
519
520 root = of_find_node_by_path("/");
521 if (root) {
522 rc = of_device_is_compatible(root, compat);
523 of_node_put(root);
524 }
525 return rc;
526 }
527 EXPORT_SYMBOL(of_machine_is_compatible);
528
529 /**
530 * __of_device_is_available - check if a device is available for use
531 *
532 * @device: Node to check for availability, with locks already held
533 *
534 * Returns true if the status property is absent or set to "okay" or "ok",
535 * false otherwise
536 */
537 static bool __of_device_is_available(const struct device_node *device)
538 {
539 const char *status;
540 int statlen;
541
542 if (!device)
543 return false;
544
545 status = __of_get_property(device, "status", &statlen);
546 if (status == NULL)
547 return true;
548
549 if (statlen > 0) {
550 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
551 return true;
552 }
553
554 return false;
555 }
556
557 /**
558 * of_device_is_available - check if a device is available for use
559 *
560 * @device: Node to check for availability
561 *
562 * Returns true if the status property is absent or set to "okay" or "ok",
563 * false otherwise
564 */
565 bool of_device_is_available(const struct device_node *device)
566 {
567 unsigned long flags;
568 bool res;
569
570 raw_spin_lock_irqsave(&devtree_lock, flags);
571 res = __of_device_is_available(device);
572 raw_spin_unlock_irqrestore(&devtree_lock, flags);
573 return res;
574
575 }
576 EXPORT_SYMBOL(of_device_is_available);
577
578 /**
579 * of_device_is_big_endian - check if a device has BE registers
580 *
581 * @device: Node to check for endianness
582 *
583 * Returns true if the device has a "big-endian" property, or if the kernel
584 * was compiled for BE *and* the device has a "native-endian" property.
585 * Returns false otherwise.
586 *
587 * Callers would nominally use ioread32be/iowrite32be if
588 * of_device_is_big_endian() == true, or readl/writel otherwise.
589 */
590 bool of_device_is_big_endian(const struct device_node *device)
591 {
592 if (of_property_read_bool(device, "big-endian"))
593 return true;
594 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
595 of_property_read_bool(device, "native-endian"))
596 return true;
597 return false;
598 }
599 EXPORT_SYMBOL(of_device_is_big_endian);
600
601 /**
602 * of_get_parent - Get a node's parent if any
603 * @node: Node to get parent
604 *
605 * Returns a node pointer with refcount incremented, use
606 * of_node_put() on it when done.
607 */
608 struct device_node *of_get_parent(const struct device_node *node)
609 {
610 struct device_node *np;
611 unsigned long flags;
612
613 if (!node)
614 return NULL;
615
616 raw_spin_lock_irqsave(&devtree_lock, flags);
617 np = of_node_get(node->parent);
618 raw_spin_unlock_irqrestore(&devtree_lock, flags);
619 return np;
620 }
621 EXPORT_SYMBOL(of_get_parent);
622
623 /**
624 * of_get_next_parent - Iterate to a node's parent
625 * @node: Node to get parent of
626 *
627 * This is like of_get_parent() except that it drops the
628 * refcount on the passed node, making it suitable for iterating
629 * through a node's parents.
630 *
631 * Returns a node pointer with refcount incremented, use
632 * of_node_put() on it when done.
633 */
634 struct device_node *of_get_next_parent(struct device_node *node)
635 {
636 struct device_node *parent;
637 unsigned long flags;
638
639 if (!node)
640 return NULL;
641
642 raw_spin_lock_irqsave(&devtree_lock, flags);
643 parent = of_node_get(node->parent);
644 of_node_put(node);
645 raw_spin_unlock_irqrestore(&devtree_lock, flags);
646 return parent;
647 }
648 EXPORT_SYMBOL(of_get_next_parent);
649
650 static struct device_node *__of_get_next_child(const struct device_node *node,
651 struct device_node *prev)
652 {
653 struct device_node *next;
654
655 if (!node)
656 return NULL;
657
658 next = prev ? prev->sibling : node->child;
659 for (; next; next = next->sibling)
660 if (of_node_get(next))
661 break;
662 of_node_put(prev);
663 return next;
664 }
665 #define __for_each_child_of_node(parent, child) \
666 for (child = __of_get_next_child(parent, NULL); child != NULL; \
667 child = __of_get_next_child(parent, child))
668
669 /**
670 * of_get_next_child - Iterate a node childs
671 * @node: parent node
672 * @prev: previous child of the parent node, or NULL to get first
673 *
674 * Returns a node pointer with refcount incremented, use of_node_put() on
675 * it when done. Returns NULL when prev is the last child. Decrements the
676 * refcount of prev.
677 */
678 struct device_node *of_get_next_child(const struct device_node *node,
679 struct device_node *prev)
680 {
681 struct device_node *next;
682 unsigned long flags;
683
684 raw_spin_lock_irqsave(&devtree_lock, flags);
685 next = __of_get_next_child(node, prev);
686 raw_spin_unlock_irqrestore(&devtree_lock, flags);
687 return next;
688 }
689 EXPORT_SYMBOL(of_get_next_child);
690
691 /**
692 * of_get_next_available_child - Find the next available child node
693 * @node: parent node
694 * @prev: previous child of the parent node, or NULL to get first
695 *
696 * This function is like of_get_next_child(), except that it
697 * automatically skips any disabled nodes (i.e. status = "disabled").
698 */
699 struct device_node *of_get_next_available_child(const struct device_node *node,
700 struct device_node *prev)
701 {
702 struct device_node *next;
703 unsigned long flags;
704
705 if (!node)
706 return NULL;
707
708 raw_spin_lock_irqsave(&devtree_lock, flags);
709 next = prev ? prev->sibling : node->child;
710 for (; next; next = next->sibling) {
711 if (!__of_device_is_available(next))
712 continue;
713 if (of_node_get(next))
714 break;
715 }
716 of_node_put(prev);
717 raw_spin_unlock_irqrestore(&devtree_lock, flags);
718 return next;
719 }
720 EXPORT_SYMBOL(of_get_next_available_child);
721
722 /**
723 * of_get_compatible_child - Find compatible child node
724 * @parent: parent node
725 * @compatible: compatible string
726 *
727 * Lookup child node whose compatible property contains the given compatible
728 * string.
729 *
730 * Returns a node pointer with refcount incremented, use of_node_put() on it
731 * when done; or NULL if not found.
732 */
733 struct device_node *of_get_compatible_child(const struct device_node *parent,
734 const char *compatible)
735 {
736 struct device_node *child;
737
738 for_each_child_of_node(parent, child) {
739 if (of_device_is_compatible(child, compatible))
740 break;
741 }
742
743 return child;
744 }
745 EXPORT_SYMBOL(of_get_compatible_child);
746
747 /**
748 * of_get_child_by_name - Find the child node by name for a given parent
749 * @node: parent node
750 * @name: child name to look for.
751 *
752 * This function looks for child node for given matching name
753 *
754 * Returns a node pointer if found, with refcount incremented, use
755 * of_node_put() on it when done.
756 * Returns NULL if node is not found.
757 */
758 struct device_node *of_get_child_by_name(const struct device_node *node,
759 const char *name)
760 {
761 struct device_node *child;
762
763 for_each_child_of_node(node, child)
764 if (child->name && (of_node_cmp(child->name, name) == 0))
765 break;
766 return child;
767 }
768 EXPORT_SYMBOL(of_get_child_by_name);
769
770 struct device_node *__of_find_node_by_path(struct device_node *parent,
771 const char *path)
772 {
773 struct device_node *child;
774 int len;
775
776 len = strcspn(path, "/:");
777 if (!len)
778 return NULL;
779
780 __for_each_child_of_node(parent, child) {
781 const char *name = kbasename(child->full_name);
782 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
783 return child;
784 }
785 return NULL;
786 }
787
788 struct device_node *__of_find_node_by_full_path(struct device_node *node,
789 const char *path)
790 {
791 const char *separator = strchr(path, ':');
792
793 while (node && *path == '/') {
794 struct device_node *tmp = node;
795
796 path++; /* Increment past '/' delimiter */
797 node = __of_find_node_by_path(node, path);
798 of_node_put(tmp);
799 path = strchrnul(path, '/');
800 if (separator && separator < path)
801 break;
802 }
803 return node;
804 }
805
806 /**
807 * of_find_node_opts_by_path - Find a node matching a full OF path
808 * @path: Either the full path to match, or if the path does not
809 * start with '/', the name of a property of the /aliases
810 * node (an alias). In the case of an alias, the node
811 * matching the alias' value will be returned.
812 * @opts: Address of a pointer into which to store the start of
813 * an options string appended to the end of the path with
814 * a ':' separator.
815 *
816 * Valid paths:
817 * /foo/bar Full path
818 * foo Valid alias
819 * foo/bar Valid alias + relative path
820 *
821 * Returns a node pointer with refcount incremented, use
822 * of_node_put() on it when done.
823 */
824 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
825 {
826 struct device_node *np = NULL;
827 struct property *pp;
828 unsigned long flags;
829 const char *separator = strchr(path, ':');
830
831 if (opts)
832 *opts = separator ? separator + 1 : NULL;
833
834 if (strcmp(path, "/") == 0)
835 return of_node_get(of_root);
836
837 /* The path could begin with an alias */
838 if (*path != '/') {
839 int len;
840 const char *p = separator;
841
842 if (!p)
843 p = strchrnul(path, '/');
844 len = p - path;
845
846 /* of_aliases must not be NULL */
847 if (!of_aliases)
848 return NULL;
849
850 for_each_property_of_node(of_aliases, pp) {
851 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
852 np = of_find_node_by_path(pp->value);
853 break;
854 }
855 }
856 if (!np)
857 return NULL;
858 path = p;
859 }
860
861 /* Step down the tree matching path components */
862 raw_spin_lock_irqsave(&devtree_lock, flags);
863 if (!np)
864 np = of_node_get(of_root);
865 np = __of_find_node_by_full_path(np, path);
866 raw_spin_unlock_irqrestore(&devtree_lock, flags);
867 return np;
868 }
869 EXPORT_SYMBOL(of_find_node_opts_by_path);
870
871 /**
872 * of_find_node_by_name - Find a node by its "name" property
873 * @from: The node to start searching from or NULL; the node
874 * you pass will not be searched, only the next one
875 * will. Typically, you pass what the previous call
876 * returned. of_node_put() will be called on @from.
877 * @name: The name string to match against
878 *
879 * Returns a node pointer with refcount incremented, use
880 * of_node_put() on it when done.
881 */
882 struct device_node *of_find_node_by_name(struct device_node *from,
883 const char *name)
884 {
885 struct device_node *np;
886 unsigned long flags;
887
888 raw_spin_lock_irqsave(&devtree_lock, flags);
889 for_each_of_allnodes_from(from, np)
890 if (np->name && (of_node_cmp(np->name, name) == 0)
891 && of_node_get(np))
892 break;
893 of_node_put(from);
894 raw_spin_unlock_irqrestore(&devtree_lock, flags);
895 return np;
896 }
897 EXPORT_SYMBOL(of_find_node_by_name);
898
899 /**
900 * of_find_node_by_type - Find a node by its "device_type" property
901 * @from: The node to start searching from, or NULL to start searching
902 * the entire device tree. The node you pass will not be
903 * searched, only the next one will; typically, you pass
904 * what the previous call returned. of_node_put() will be
905 * called on from for you.
906 * @type: The type string to match against
907 *
908 * Returns a node pointer with refcount incremented, use
909 * of_node_put() on it when done.
910 */
911 struct device_node *of_find_node_by_type(struct device_node *from,
912 const char *type)
913 {
914 struct device_node *np;
915 unsigned long flags;
916
917 raw_spin_lock_irqsave(&devtree_lock, flags);
918 for_each_of_allnodes_from(from, np)
919 if (np->type && (of_node_cmp(np->type, type) == 0)
920 && of_node_get(np))
921 break;
922 of_node_put(from);
923 raw_spin_unlock_irqrestore(&devtree_lock, flags);
924 return np;
925 }
926 EXPORT_SYMBOL(of_find_node_by_type);
927
928 /**
929 * of_find_compatible_node - Find a node based on type and one of the
930 * tokens in its "compatible" property
931 * @from: The node to start searching from or NULL, the node
932 * you pass will not be searched, only the next one
933 * will; typically, you pass what the previous call
934 * returned. of_node_put() will be called on it
935 * @type: The type string to match "device_type" or NULL to ignore
936 * @compatible: The string to match to one of the tokens in the device
937 * "compatible" list.
938 *
939 * Returns a node pointer with refcount incremented, use
940 * of_node_put() on it when done.
941 */
942 struct device_node *of_find_compatible_node(struct device_node *from,
943 const char *type, const char *compatible)
944 {
945 struct device_node *np;
946 unsigned long flags;
947
948 raw_spin_lock_irqsave(&devtree_lock, flags);
949 for_each_of_allnodes_from(from, np)
950 if (__of_device_is_compatible(np, compatible, type, NULL) &&
951 of_node_get(np))
952 break;
953 of_node_put(from);
954 raw_spin_unlock_irqrestore(&devtree_lock, flags);
955 return np;
956 }
957 EXPORT_SYMBOL(of_find_compatible_node);
958
959 /**
960 * of_find_node_with_property - Find a node which has a property with
961 * the given name.
962 * @from: The node to start searching from or NULL, the node
963 * you pass will not be searched, only the next one
964 * will; typically, you pass what the previous call
965 * returned. of_node_put() will be called on it
966 * @prop_name: The name of the property to look for.
967 *
968 * Returns a node pointer with refcount incremented, use
969 * of_node_put() on it when done.
970 */
971 struct device_node *of_find_node_with_property(struct device_node *from,
972 const char *prop_name)
973 {
974 struct device_node *np;
975 struct property *pp;
976 unsigned long flags;
977
978 raw_spin_lock_irqsave(&devtree_lock, flags);
979 for_each_of_allnodes_from(from, np) {
980 for (pp = np->properties; pp; pp = pp->next) {
981 if (of_prop_cmp(pp->name, prop_name) == 0) {
982 of_node_get(np);
983 goto out;
984 }
985 }
986 }
987 out:
988 of_node_put(from);
989 raw_spin_unlock_irqrestore(&devtree_lock, flags);
990 return np;
991 }
992 EXPORT_SYMBOL(of_find_node_with_property);
993
994 static
995 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
996 const struct device_node *node)
997 {
998 const struct of_device_id *best_match = NULL;
999 int score, best_score = 0;
1000
1001 if (!matches)
1002 return NULL;
1003
1004 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1005 score = __of_device_is_compatible(node, matches->compatible,
1006 matches->type, matches->name);
1007 if (score > best_score) {
1008 best_match = matches;
1009 best_score = score;
1010 }
1011 }
1012
1013 return best_match;
1014 }
1015
1016 /**
1017 * of_match_node - Tell if a device_node has a matching of_match structure
1018 * @matches: array of of device match structures to search in
1019 * @node: the of device structure to match against
1020 *
1021 * Low level utility function used by device matching.
1022 */
1023 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1024 const struct device_node *node)
1025 {
1026 const struct of_device_id *match;
1027 unsigned long flags;
1028
1029 raw_spin_lock_irqsave(&devtree_lock, flags);
1030 match = __of_match_node(matches, node);
1031 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1032 return match;
1033 }
1034 EXPORT_SYMBOL(of_match_node);
1035
1036 /**
1037 * of_find_matching_node_and_match - Find a node based on an of_device_id
1038 * match table.
1039 * @from: The node to start searching from or NULL, the node
1040 * you pass will not be searched, only the next one
1041 * will; typically, you pass what the previous call
1042 * returned. of_node_put() will be called on it
1043 * @matches: array of of device match structures to search in
1044 * @match Updated to point at the matches entry which matched
1045 *
1046 * Returns a node pointer with refcount incremented, use
1047 * of_node_put() on it when done.
1048 */
1049 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1050 const struct of_device_id *matches,
1051 const struct of_device_id **match)
1052 {
1053 struct device_node *np;
1054 const struct of_device_id *m;
1055 unsigned long flags;
1056
1057 if (match)
1058 *match = NULL;
1059
1060 raw_spin_lock_irqsave(&devtree_lock, flags);
1061 for_each_of_allnodes_from(from, np) {
1062 m = __of_match_node(matches, np);
1063 if (m && of_node_get(np)) {
1064 if (match)
1065 *match = m;
1066 break;
1067 }
1068 }
1069 of_node_put(from);
1070 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1071 return np;
1072 }
1073 EXPORT_SYMBOL(of_find_matching_node_and_match);
1074
1075 /**
1076 * of_modalias_node - Lookup appropriate modalias for a device node
1077 * @node: pointer to a device tree node
1078 * @modalias: Pointer to buffer that modalias value will be copied into
1079 * @len: Length of modalias value
1080 *
1081 * Based on the value of the compatible property, this routine will attempt
1082 * to choose an appropriate modalias value for a particular device tree node.
1083 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1084 * from the first entry in the compatible list property.
1085 *
1086 * This routine returns 0 on success, <0 on failure.
1087 */
1088 int of_modalias_node(struct device_node *node, char *modalias, int len)
1089 {
1090 const char *compatible, *p;
1091 int cplen;
1092
1093 compatible = of_get_property(node, "compatible", &cplen);
1094 if (!compatible || strlen(compatible) > cplen)
1095 return -ENODEV;
1096 p = strchr(compatible, ',');
1097 strlcpy(modalias, p ? p + 1 : compatible, len);
1098 return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(of_modalias_node);
1101
1102 /**
1103 * of_find_node_by_phandle - Find a node given a phandle
1104 * @handle: phandle of the node to find
1105 *
1106 * Returns a node pointer with refcount incremented, use
1107 * of_node_put() on it when done.
1108 */
1109 struct device_node *of_find_node_by_phandle(phandle handle)
1110 {
1111 struct device_node *np = NULL;
1112 unsigned long flags;
1113 phandle masked_handle;
1114
1115 if (!handle)
1116 return NULL;
1117
1118 raw_spin_lock_irqsave(&devtree_lock, flags);
1119
1120 masked_handle = handle & phandle_cache_mask;
1121
1122 if (phandle_cache) {
1123 if (phandle_cache[masked_handle] &&
1124 handle == phandle_cache[masked_handle]->phandle)
1125 np = phandle_cache[masked_handle];
1126 }
1127
1128 if (!np) {
1129 for_each_of_allnodes(np)
1130 if (np->phandle == handle) {
1131 if (phandle_cache)
1132 phandle_cache[masked_handle] = np;
1133 break;
1134 }
1135 }
1136
1137 of_node_get(np);
1138 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1139 return np;
1140 }
1141 EXPORT_SYMBOL(of_find_node_by_phandle);
1142
1143 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1144 {
1145 int i;
1146 printk("%s %pOF", msg, args->np);
1147 for (i = 0; i < args->args_count; i++) {
1148 const char delim = i ? ',' : ':';
1149
1150 pr_cont("%c%08x", delim, args->args[i]);
1151 }
1152 pr_cont("\n");
1153 }
1154
1155 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1156 const struct device_node *np,
1157 const char *list_name,
1158 const char *cells_name,
1159 int cell_count)
1160 {
1161 const __be32 *list;
1162 int size;
1163
1164 memset(it, 0, sizeof(*it));
1165
1166 list = of_get_property(np, list_name, &size);
1167 if (!list)
1168 return -ENOENT;
1169
1170 it->cells_name = cells_name;
1171 it->cell_count = cell_count;
1172 it->parent = np;
1173 it->list_end = list + size / sizeof(*list);
1174 it->phandle_end = list;
1175 it->cur = list;
1176
1177 return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1180
1181 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1182 {
1183 uint32_t count = 0;
1184
1185 if (it->node) {
1186 of_node_put(it->node);
1187 it->node = NULL;
1188 }
1189
1190 if (!it->cur || it->phandle_end >= it->list_end)
1191 return -ENOENT;
1192
1193 it->cur = it->phandle_end;
1194
1195 /* If phandle is 0, then it is an empty entry with no arguments. */
1196 it->phandle = be32_to_cpup(it->cur++);
1197
1198 if (it->phandle) {
1199
1200 /*
1201 * Find the provider node and parse the #*-cells property to
1202 * determine the argument length.
1203 */
1204 it->node = of_find_node_by_phandle(it->phandle);
1205
1206 if (it->cells_name) {
1207 if (!it->node) {
1208 pr_err("%pOF: could not find phandle\n",
1209 it->parent);
1210 goto err;
1211 }
1212
1213 if (of_property_read_u32(it->node, it->cells_name,
1214 &count)) {
1215 pr_err("%pOF: could not get %s for %pOF\n",
1216 it->parent,
1217 it->cells_name,
1218 it->node);
1219 goto err;
1220 }
1221 } else {
1222 count = it->cell_count;
1223 }
1224
1225 /*
1226 * Make sure that the arguments actually fit in the remaining
1227 * property data length
1228 */
1229 if (it->cur + count > it->list_end) {
1230 pr_err("%pOF: arguments longer than property\n",
1231 it->parent);
1232 goto err;
1233 }
1234 }
1235
1236 it->phandle_end = it->cur + count;
1237 it->cur_count = count;
1238
1239 return 0;
1240
1241 err:
1242 if (it->node) {
1243 of_node_put(it->node);
1244 it->node = NULL;
1245 }
1246
1247 return -EINVAL;
1248 }
1249 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1250
1251 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1252 uint32_t *args,
1253 int size)
1254 {
1255 int i, count;
1256
1257 count = it->cur_count;
1258
1259 if (WARN_ON(size < count))
1260 count = size;
1261
1262 for (i = 0; i < count; i++)
1263 args[i] = be32_to_cpup(it->cur++);
1264
1265 return count;
1266 }
1267
1268 static int __of_parse_phandle_with_args(const struct device_node *np,
1269 const char *list_name,
1270 const char *cells_name,
1271 int cell_count, int index,
1272 struct of_phandle_args *out_args)
1273 {
1274 struct of_phandle_iterator it;
1275 int rc, cur_index = 0;
1276
1277 /* Loop over the phandles until all the requested entry is found */
1278 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1279 /*
1280 * All of the error cases bail out of the loop, so at
1281 * this point, the parsing is successful. If the requested
1282 * index matches, then fill the out_args structure and return,
1283 * or return -ENOENT for an empty entry.
1284 */
1285 rc = -ENOENT;
1286 if (cur_index == index) {
1287 if (!it.phandle)
1288 goto err;
1289
1290 if (out_args) {
1291 int c;
1292
1293 c = of_phandle_iterator_args(&it,
1294 out_args->args,
1295 MAX_PHANDLE_ARGS);
1296 out_args->np = it.node;
1297 out_args->args_count = c;
1298 } else {
1299 of_node_put(it.node);
1300 }
1301
1302 /* Found it! return success */
1303 return 0;
1304 }
1305
1306 cur_index++;
1307 }
1308
1309 /*
1310 * Unlock node before returning result; will be one of:
1311 * -ENOENT : index is for empty phandle
1312 * -EINVAL : parsing error on data
1313 */
1314
1315 err:
1316 of_node_put(it.node);
1317 return rc;
1318 }
1319
1320 /**
1321 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1322 * @np: Pointer to device node holding phandle property
1323 * @phandle_name: Name of property holding a phandle value
1324 * @index: For properties holding a table of phandles, this is the index into
1325 * the table
1326 *
1327 * Returns the device_node pointer with refcount incremented. Use
1328 * of_node_put() on it when done.
1329 */
1330 struct device_node *of_parse_phandle(const struct device_node *np,
1331 const char *phandle_name, int index)
1332 {
1333 struct of_phandle_args args;
1334
1335 if (index < 0)
1336 return NULL;
1337
1338 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1339 index, &args))
1340 return NULL;
1341
1342 return args.np;
1343 }
1344 EXPORT_SYMBOL(of_parse_phandle);
1345
1346 /**
1347 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1348 * @np: pointer to a device tree node containing a list
1349 * @list_name: property name that contains a list
1350 * @cells_name: property name that specifies phandles' arguments count
1351 * @index: index of a phandle to parse out
1352 * @out_args: optional pointer to output arguments structure (will be filled)
1353 *
1354 * This function is useful to parse lists of phandles and their arguments.
1355 * Returns 0 on success and fills out_args, on error returns appropriate
1356 * errno value.
1357 *
1358 * Caller is responsible to call of_node_put() on the returned out_args->np
1359 * pointer.
1360 *
1361 * Example:
1362 *
1363 * phandle1: node1 {
1364 * #list-cells = <2>;
1365 * }
1366 *
1367 * phandle2: node2 {
1368 * #list-cells = <1>;
1369 * }
1370 *
1371 * node3 {
1372 * list = <&phandle1 1 2 &phandle2 3>;
1373 * }
1374 *
1375 * To get a device_node of the `node2' node you may call this:
1376 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1377 */
1378 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1379 const char *cells_name, int index,
1380 struct of_phandle_args *out_args)
1381 {
1382 if (index < 0)
1383 return -EINVAL;
1384 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1385 index, out_args);
1386 }
1387 EXPORT_SYMBOL(of_parse_phandle_with_args);
1388
1389 /**
1390 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1391 * @np: pointer to a device tree node containing a list
1392 * @list_name: property name that contains a list
1393 * @stem_name: stem of property names that specify phandles' arguments count
1394 * @index: index of a phandle to parse out
1395 * @out_args: optional pointer to output arguments structure (will be filled)
1396 *
1397 * This function is useful to parse lists of phandles and their arguments.
1398 * Returns 0 on success and fills out_args, on error returns appropriate errno
1399 * value. The difference between this function and of_parse_phandle_with_args()
1400 * is that this API remaps a phandle if the node the phandle points to has
1401 * a <@stem_name>-map property.
1402 *
1403 * Caller is responsible to call of_node_put() on the returned out_args->np
1404 * pointer.
1405 *
1406 * Example:
1407 *
1408 * phandle1: node1 {
1409 * #list-cells = <2>;
1410 * }
1411 *
1412 * phandle2: node2 {
1413 * #list-cells = <1>;
1414 * }
1415 *
1416 * phandle3: node3 {
1417 * #list-cells = <1>;
1418 * list-map = <0 &phandle2 3>,
1419 * <1 &phandle2 2>,
1420 * <2 &phandle1 5 1>;
1421 * list-map-mask = <0x3>;
1422 * };
1423 *
1424 * node4 {
1425 * list = <&phandle1 1 2 &phandle3 0>;
1426 * }
1427 *
1428 * To get a device_node of the `node2' node you may call this:
1429 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1430 */
1431 int of_parse_phandle_with_args_map(const struct device_node *np,
1432 const char *list_name,
1433 const char *stem_name,
1434 int index, struct of_phandle_args *out_args)
1435 {
1436 char *cells_name, *map_name = NULL, *mask_name = NULL;
1437 char *pass_name = NULL;
1438 struct device_node *cur, *new = NULL;
1439 const __be32 *map, *mask, *pass;
1440 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1441 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1442 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1443 const __be32 *match_array = initial_match_array;
1444 int i, ret, map_len, match;
1445 u32 list_size, new_size;
1446
1447 if (index < 0)
1448 return -EINVAL;
1449
1450 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1451 if (!cells_name)
1452 return -ENOMEM;
1453
1454 ret = -ENOMEM;
1455 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1456 if (!map_name)
1457 goto free;
1458
1459 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1460 if (!mask_name)
1461 goto free;
1462
1463 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1464 if (!pass_name)
1465 goto free;
1466
1467 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1468 out_args);
1469 if (ret)
1470 goto free;
1471
1472 /* Get the #<list>-cells property */
1473 cur = out_args->np;
1474 ret = of_property_read_u32(cur, cells_name, &list_size);
1475 if (ret < 0)
1476 goto put;
1477
1478 /* Precalculate the match array - this simplifies match loop */
1479 for (i = 0; i < list_size; i++)
1480 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1481
1482 ret = -EINVAL;
1483 while (cur) {
1484 /* Get the <list>-map property */
1485 map = of_get_property(cur, map_name, &map_len);
1486 if (!map) {
1487 ret = 0;
1488 goto free;
1489 }
1490 map_len /= sizeof(u32);
1491
1492 /* Get the <list>-map-mask property (optional) */
1493 mask = of_get_property(cur, mask_name, NULL);
1494 if (!mask)
1495 mask = dummy_mask;
1496 /* Iterate through <list>-map property */
1497 match = 0;
1498 while (map_len > (list_size + 1) && !match) {
1499 /* Compare specifiers */
1500 match = 1;
1501 for (i = 0; i < list_size; i++, map_len--)
1502 match &= !((match_array[i] ^ *map++) & mask[i]);
1503
1504 of_node_put(new);
1505 new = of_find_node_by_phandle(be32_to_cpup(map));
1506 map++;
1507 map_len--;
1508
1509 /* Check if not found */
1510 if (!new)
1511 goto put;
1512
1513 if (!of_device_is_available(new))
1514 match = 0;
1515
1516 ret = of_property_read_u32(new, cells_name, &new_size);
1517 if (ret)
1518 goto put;
1519
1520 /* Check for malformed properties */
1521 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1522 goto put;
1523 if (map_len < new_size)
1524 goto put;
1525
1526 /* Move forward by new node's #<list>-cells amount */
1527 map += new_size;
1528 map_len -= new_size;
1529 }
1530 if (!match)
1531 goto put;
1532
1533 /* Get the <list>-map-pass-thru property (optional) */
1534 pass = of_get_property(cur, pass_name, NULL);
1535 if (!pass)
1536 pass = dummy_pass;
1537
1538 /*
1539 * Successfully parsed a <list>-map translation; copy new
1540 * specifier into the out_args structure, keeping the
1541 * bits specified in <list>-map-pass-thru.
1542 */
1543 match_array = map - new_size;
1544 for (i = 0; i < new_size; i++) {
1545 __be32 val = *(map - new_size + i);
1546
1547 if (i < list_size) {
1548 val &= ~pass[i];
1549 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1550 }
1551
1552 out_args->args[i] = be32_to_cpu(val);
1553 }
1554 out_args->args_count = list_size = new_size;
1555 /* Iterate again with new provider */
1556 out_args->np = new;
1557 of_node_put(cur);
1558 cur = new;
1559 }
1560 put:
1561 of_node_put(cur);
1562 of_node_put(new);
1563 free:
1564 kfree(mask_name);
1565 kfree(map_name);
1566 kfree(cells_name);
1567 kfree(pass_name);
1568
1569 return ret;
1570 }
1571 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1572
1573 /**
1574 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1575 * @np: pointer to a device tree node containing a list
1576 * @list_name: property name that contains a list
1577 * @cell_count: number of argument cells following the phandle
1578 * @index: index of a phandle to parse out
1579 * @out_args: optional pointer to output arguments structure (will be filled)
1580 *
1581 * This function is useful to parse lists of phandles and their arguments.
1582 * Returns 0 on success and fills out_args, on error returns appropriate
1583 * errno value.
1584 *
1585 * Caller is responsible to call of_node_put() on the returned out_args->np
1586 * pointer.
1587 *
1588 * Example:
1589 *
1590 * phandle1: node1 {
1591 * }
1592 *
1593 * phandle2: node2 {
1594 * }
1595 *
1596 * node3 {
1597 * list = <&phandle1 0 2 &phandle2 2 3>;
1598 * }
1599 *
1600 * To get a device_node of the `node2' node you may call this:
1601 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1602 */
1603 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1604 const char *list_name, int cell_count,
1605 int index, struct of_phandle_args *out_args)
1606 {
1607 if (index < 0)
1608 return -EINVAL;
1609 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1610 index, out_args);
1611 }
1612 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1613
1614 /**
1615 * of_count_phandle_with_args() - Find the number of phandles references in a property
1616 * @np: pointer to a device tree node containing a list
1617 * @list_name: property name that contains a list
1618 * @cells_name: property name that specifies phandles' arguments count
1619 *
1620 * Returns the number of phandle + argument tuples within a property. It
1621 * is a typical pattern to encode a list of phandle and variable
1622 * arguments into a single property. The number of arguments is encoded
1623 * by a property in the phandle-target node. For example, a gpios
1624 * property would contain a list of GPIO specifies consisting of a
1625 * phandle and 1 or more arguments. The number of arguments are
1626 * determined by the #gpio-cells property in the node pointed to by the
1627 * phandle.
1628 */
1629 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1630 const char *cells_name)
1631 {
1632 struct of_phandle_iterator it;
1633 int rc, cur_index = 0;
1634
1635 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1636 if (rc)
1637 return rc;
1638
1639 while ((rc = of_phandle_iterator_next(&it)) == 0)
1640 cur_index += 1;
1641
1642 if (rc != -ENOENT)
1643 return rc;
1644
1645 return cur_index;
1646 }
1647 EXPORT_SYMBOL(of_count_phandle_with_args);
1648
1649 /**
1650 * __of_add_property - Add a property to a node without lock operations
1651 */
1652 int __of_add_property(struct device_node *np, struct property *prop)
1653 {
1654 struct property **next;
1655
1656 prop->next = NULL;
1657 next = &np->properties;
1658 while (*next) {
1659 if (strcmp(prop->name, (*next)->name) == 0)
1660 /* duplicate ! don't insert it */
1661 return -EEXIST;
1662
1663 next = &(*next)->next;
1664 }
1665 *next = prop;
1666
1667 return 0;
1668 }
1669
1670 /**
1671 * of_add_property - Add a property to a node
1672 */
1673 int of_add_property(struct device_node *np, struct property *prop)
1674 {
1675 unsigned long flags;
1676 int rc;
1677
1678 mutex_lock(&of_mutex);
1679
1680 raw_spin_lock_irqsave(&devtree_lock, flags);
1681 rc = __of_add_property(np, prop);
1682 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1683
1684 if (!rc)
1685 __of_add_property_sysfs(np, prop);
1686
1687 mutex_unlock(&of_mutex);
1688
1689 if (!rc)
1690 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1691
1692 return rc;
1693 }
1694
1695 int __of_remove_property(struct device_node *np, struct property *prop)
1696 {
1697 struct property **next;
1698
1699 for (next = &np->properties; *next; next = &(*next)->next) {
1700 if (*next == prop)
1701 break;
1702 }
1703 if (*next == NULL)
1704 return -ENODEV;
1705
1706 /* found the node */
1707 *next = prop->next;
1708 prop->next = np->deadprops;
1709 np->deadprops = prop;
1710
1711 return 0;
1712 }
1713
1714 /**
1715 * of_remove_property - Remove a property from a node.
1716 *
1717 * Note that we don't actually remove it, since we have given out
1718 * who-knows-how-many pointers to the data using get-property.
1719 * Instead we just move the property to the "dead properties"
1720 * list, so it won't be found any more.
1721 */
1722 int of_remove_property(struct device_node *np, struct property *prop)
1723 {
1724 unsigned long flags;
1725 int rc;
1726
1727 if (!prop)
1728 return -ENODEV;
1729
1730 mutex_lock(&of_mutex);
1731
1732 raw_spin_lock_irqsave(&devtree_lock, flags);
1733 rc = __of_remove_property(np, prop);
1734 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735
1736 if (!rc)
1737 __of_remove_property_sysfs(np, prop);
1738
1739 mutex_unlock(&of_mutex);
1740
1741 if (!rc)
1742 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1743
1744 return rc;
1745 }
1746
1747 int __of_update_property(struct device_node *np, struct property *newprop,
1748 struct property **oldpropp)
1749 {
1750 struct property **next, *oldprop;
1751
1752 for (next = &np->properties; *next; next = &(*next)->next) {
1753 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1754 break;
1755 }
1756 *oldpropp = oldprop = *next;
1757
1758 if (oldprop) {
1759 /* replace the node */
1760 newprop->next = oldprop->next;
1761 *next = newprop;
1762 oldprop->next = np->deadprops;
1763 np->deadprops = oldprop;
1764 } else {
1765 /* new node */
1766 newprop->next = NULL;
1767 *next = newprop;
1768 }
1769
1770 return 0;
1771 }
1772
1773 /*
1774 * of_update_property - Update a property in a node, if the property does
1775 * not exist, add it.
1776 *
1777 * Note that we don't actually remove it, since we have given out
1778 * who-knows-how-many pointers to the data using get-property.
1779 * Instead we just move the property to the "dead properties" list,
1780 * and add the new property to the property list
1781 */
1782 int of_update_property(struct device_node *np, struct property *newprop)
1783 {
1784 struct property *oldprop;
1785 unsigned long flags;
1786 int rc;
1787
1788 if (!newprop->name)
1789 return -EINVAL;
1790
1791 mutex_lock(&of_mutex);
1792
1793 raw_spin_lock_irqsave(&devtree_lock, flags);
1794 rc = __of_update_property(np, newprop, &oldprop);
1795 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1796
1797 if (!rc)
1798 __of_update_property_sysfs(np, newprop, oldprop);
1799
1800 mutex_unlock(&of_mutex);
1801
1802 if (!rc)
1803 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1804
1805 return rc;
1806 }
1807
1808 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1809 int id, const char *stem, int stem_len)
1810 {
1811 ap->np = np;
1812 ap->id = id;
1813 strncpy(ap->stem, stem, stem_len);
1814 ap->stem[stem_len] = 0;
1815 list_add_tail(&ap->link, &aliases_lookup);
1816 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1817 ap->alias, ap->stem, ap->id, np);
1818 }
1819
1820 /**
1821 * of_alias_scan - Scan all properties of the 'aliases' node
1822 *
1823 * The function scans all the properties of the 'aliases' node and populates
1824 * the global lookup table with the properties. It returns the
1825 * number of alias properties found, or an error code in case of failure.
1826 *
1827 * @dt_alloc: An allocator that provides a virtual address to memory
1828 * for storing the resulting tree
1829 */
1830 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1831 {
1832 struct property *pp;
1833
1834 of_aliases = of_find_node_by_path("/aliases");
1835 of_chosen = of_find_node_by_path("/chosen");
1836 if (of_chosen == NULL)
1837 of_chosen = of_find_node_by_path("/chosen@0");
1838
1839 if (of_chosen) {
1840 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1841 const char *name = NULL;
1842
1843 if (of_property_read_string(of_chosen, "stdout-path", &name))
1844 of_property_read_string(of_chosen, "linux,stdout-path",
1845 &name);
1846 if (IS_ENABLED(CONFIG_PPC) && !name)
1847 of_property_read_string(of_aliases, "stdout", &name);
1848 if (name)
1849 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1850 }
1851
1852 if (!of_aliases)
1853 return;
1854
1855 for_each_property_of_node(of_aliases, pp) {
1856 const char *start = pp->name;
1857 const char *end = start + strlen(start);
1858 struct device_node *np;
1859 struct alias_prop *ap;
1860 int id, len;
1861
1862 /* Skip those we do not want to proceed */
1863 if (!strcmp(pp->name, "name") ||
1864 !strcmp(pp->name, "phandle") ||
1865 !strcmp(pp->name, "linux,phandle"))
1866 continue;
1867
1868 np = of_find_node_by_path(pp->value);
1869 if (!np)
1870 continue;
1871
1872 /* walk the alias backwards to extract the id and work out
1873 * the 'stem' string */
1874 while (isdigit(*(end-1)) && end > start)
1875 end--;
1876 len = end - start;
1877
1878 if (kstrtoint(end, 10, &id) < 0)
1879 continue;
1880
1881 /* Allocate an alias_prop with enough space for the stem */
1882 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1883 if (!ap)
1884 continue;
1885 memset(ap, 0, sizeof(*ap) + len + 1);
1886 ap->alias = start;
1887 of_alias_add(ap, np, id, start, len);
1888 }
1889 }
1890
1891 /**
1892 * of_alias_get_id - Get alias id for the given device_node
1893 * @np: Pointer to the given device_node
1894 * @stem: Alias stem of the given device_node
1895 *
1896 * The function travels the lookup table to get the alias id for the given
1897 * device_node and alias stem. It returns the alias id if found.
1898 */
1899 int of_alias_get_id(struct device_node *np, const char *stem)
1900 {
1901 struct alias_prop *app;
1902 int id = -ENODEV;
1903
1904 mutex_lock(&of_mutex);
1905 list_for_each_entry(app, &aliases_lookup, link) {
1906 if (strcmp(app->stem, stem) != 0)
1907 continue;
1908
1909 if (np == app->np) {
1910 id = app->id;
1911 break;
1912 }
1913 }
1914 mutex_unlock(&of_mutex);
1915
1916 return id;
1917 }
1918 EXPORT_SYMBOL_GPL(of_alias_get_id);
1919
1920 /**
1921 * of_alias_get_highest_id - Get highest alias id for the given stem
1922 * @stem: Alias stem to be examined
1923 *
1924 * The function travels the lookup table to get the highest alias id for the
1925 * given alias stem. It returns the alias id if found.
1926 */
1927 int of_alias_get_highest_id(const char *stem)
1928 {
1929 struct alias_prop *app;
1930 int id = -ENODEV;
1931
1932 mutex_lock(&of_mutex);
1933 list_for_each_entry(app, &aliases_lookup, link) {
1934 if (strcmp(app->stem, stem) != 0)
1935 continue;
1936
1937 if (app->id > id)
1938 id = app->id;
1939 }
1940 mutex_unlock(&of_mutex);
1941
1942 return id;
1943 }
1944 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1945
1946 /**
1947 * of_console_check() - Test and setup console for DT setup
1948 * @dn - Pointer to device node
1949 * @name - Name to use for preferred console without index. ex. "ttyS"
1950 * @index - Index to use for preferred console.
1951 *
1952 * Check if the given device node matches the stdout-path property in the
1953 * /chosen node. If it does then register it as the preferred console and return
1954 * TRUE. Otherwise return FALSE.
1955 */
1956 bool of_console_check(struct device_node *dn, char *name, int index)
1957 {
1958 if (!dn || dn != of_stdout || console_set_on_cmdline)
1959 return false;
1960
1961 /*
1962 * XXX: cast `options' to char pointer to suppress complication
1963 * warnings: printk, UART and console drivers expect char pointer.
1964 */
1965 return !add_preferred_console(name, index, (char *)of_stdout_options);
1966 }
1967 EXPORT_SYMBOL_GPL(of_console_check);
1968
1969 /**
1970 * of_find_next_cache_node - Find a node's subsidiary cache
1971 * @np: node of type "cpu" or "cache"
1972 *
1973 * Returns a node pointer with refcount incremented, use
1974 * of_node_put() on it when done. Caller should hold a reference
1975 * to np.
1976 */
1977 struct device_node *of_find_next_cache_node(const struct device_node *np)
1978 {
1979 struct device_node *child, *cache_node;
1980
1981 cache_node = of_parse_phandle(np, "l2-cache", 0);
1982 if (!cache_node)
1983 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1984
1985 if (cache_node)
1986 return cache_node;
1987
1988 /* OF on pmac has nodes instead of properties named "l2-cache"
1989 * beneath CPU nodes.
1990 */
1991 if (!strcmp(np->type, "cpu"))
1992 for_each_child_of_node(np, child)
1993 if (!strcmp(child->type, "cache"))
1994 return child;
1995
1996 return NULL;
1997 }
1998
1999 /**
2000 * of_find_last_cache_level - Find the level at which the last cache is
2001 * present for the given logical cpu
2002 *
2003 * @cpu: cpu number(logical index) for which the last cache level is needed
2004 *
2005 * Returns the the level at which the last cache is present. It is exactly
2006 * same as the total number of cache levels for the given logical cpu.
2007 */
2008 int of_find_last_cache_level(unsigned int cpu)
2009 {
2010 u32 cache_level = 0;
2011 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2012
2013 while (np) {
2014 prev = np;
2015 of_node_put(np);
2016 np = of_find_next_cache_node(np);
2017 }
2018
2019 of_property_read_u32(prev, "cache-level", &cache_level);
2020
2021 return cache_level;
2022 }