]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/of/base.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
61 int of_n_addr_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#address-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #address-cells property for the root node */
73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_addr_cells);
76
77 int of_n_size_cells(struct device_node *np)
78 {
79 const __be32 *ip;
80
81 do {
82 if (np->parent)
83 np = np->parent;
84 ip = of_get_property(np, "#size-cells", NULL);
85 if (ip)
86 return be32_to_cpup(ip);
87 } while (np->parent);
88 /* No #size-cells property for the root node */
89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 }
91 EXPORT_SYMBOL(of_n_size_cells);
92
93 #ifdef CONFIG_NUMA
94 int __weak of_node_to_nid(struct device_node *np)
95 {
96 return NUMA_NO_NODE;
97 }
98 #endif
99
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
102 {
103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 }
105 #endif /* CONFIG_OF_DYNAMIC */
106
107 struct kobj_type of_node_ktype = {
108 .release = of_node_release,
109 };
110
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 struct bin_attribute *bin_attr, char *buf,
113 loff_t offset, size_t count)
114 {
115 struct property *pp = container_of(bin_attr, struct property, attr);
116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
117 }
118
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 {
122 const char *name = orig_name;
123 struct kernfs_node *kn;
124 int i = 0;
125
126 /* don't be a hero. After 16 tries give up */
127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
128 sysfs_put(kn);
129 if (name != orig_name)
130 kfree(name);
131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
132 }
133
134 if (name == orig_name) {
135 name = kstrdup(orig_name, GFP_KERNEL);
136 } else {
137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 kobject_name(kobj), name);
139 }
140 return name;
141 }
142
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 {
145 int rc;
146
147 /* Important: Don't leak passwords */
148 bool secure = strncmp(pp->name, "security-", 9) == 0;
149
150 if (!IS_ENABLED(CONFIG_SYSFS))
151 return 0;
152
153 if (!of_kset || !of_node_is_attached(np))
154 return 0;
155
156 sysfs_bin_attr_init(&pp->attr);
157 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
159 pp->attr.size = secure ? 0 : pp->length;
160 pp->attr.read = of_node_property_read;
161
162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
164 return rc;
165 }
166
167 int __of_attach_node_sysfs(struct device_node *np)
168 {
169 const char *name;
170 struct kobject *parent;
171 struct property *pp;
172 int rc;
173
174 if (!IS_ENABLED(CONFIG_SYSFS))
175 return 0;
176
177 if (!of_kset)
178 return 0;
179
180 np->kobj.kset = of_kset;
181 if (!np->parent) {
182 /* Nodes without parents are new top level trees */
183 name = safe_name(&of_kset->kobj, "base");
184 parent = NULL;
185 } else {
186 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 parent = &np->parent->kobj;
188 }
189 if (!name)
190 return -ENOMEM;
191 rc = kobject_add(&np->kobj, parent, "%s", name);
192 kfree(name);
193 if (rc)
194 return rc;
195
196 for_each_property_of_node(np, pp)
197 __of_add_property_sysfs(np, pp);
198
199 return 0;
200 }
201
202 void __init of_core_init(void)
203 {
204 struct device_node *np;
205
206 /* Create the kset, and register existing nodes */
207 mutex_lock(&of_mutex);
208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
209 if (!of_kset) {
210 mutex_unlock(&of_mutex);
211 pr_err("failed to register existing nodes\n");
212 return;
213 }
214 for_each_of_allnodes(np)
215 __of_attach_node_sysfs(np);
216 mutex_unlock(&of_mutex);
217
218 /* Symlink in /proc as required by userspace ABI */
219 if (of_root)
220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
221 }
222
223 static struct property *__of_find_property(const struct device_node *np,
224 const char *name, int *lenp)
225 {
226 struct property *pp;
227
228 if (!np)
229 return NULL;
230
231 for (pp = np->properties; pp; pp = pp->next) {
232 if (of_prop_cmp(pp->name, name) == 0) {
233 if (lenp)
234 *lenp = pp->length;
235 break;
236 }
237 }
238
239 return pp;
240 }
241
242 struct property *of_find_property(const struct device_node *np,
243 const char *name,
244 int *lenp)
245 {
246 struct property *pp;
247 unsigned long flags;
248
249 raw_spin_lock_irqsave(&devtree_lock, flags);
250 pp = __of_find_property(np, name, lenp);
251 raw_spin_unlock_irqrestore(&devtree_lock, flags);
252
253 return pp;
254 }
255 EXPORT_SYMBOL(of_find_property);
256
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
258 {
259 struct device_node *np;
260 if (!prev) {
261 np = of_root;
262 } else if (prev->child) {
263 np = prev->child;
264 } else {
265 /* Walk back up looking for a sibling, or the end of the structure */
266 np = prev;
267 while (np->parent && !np->sibling)
268 np = np->parent;
269 np = np->sibling; /* Might be null at the end of the tree */
270 }
271 return np;
272 }
273
274 /**
275 * of_find_all_nodes - Get next node in global list
276 * @prev: Previous node or NULL to start iteration
277 * of_node_put() will be called on it
278 *
279 * Returns a node pointer with refcount incremented, use
280 * of_node_put() on it when done.
281 */
282 struct device_node *of_find_all_nodes(struct device_node *prev)
283 {
284 struct device_node *np;
285 unsigned long flags;
286
287 raw_spin_lock_irqsave(&devtree_lock, flags);
288 np = __of_find_all_nodes(prev);
289 of_node_get(np);
290 of_node_put(prev);
291 raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 return np;
293 }
294 EXPORT_SYMBOL(of_find_all_nodes);
295
296 /*
297 * Find a property with a given name for a given node
298 * and return the value.
299 */
300 const void *__of_get_property(const struct device_node *np,
301 const char *name, int *lenp)
302 {
303 struct property *pp = __of_find_property(np, name, lenp);
304
305 return pp ? pp->value : NULL;
306 }
307
308 /*
309 * Find a property with a given name for a given node
310 * and return the value.
311 */
312 const void *of_get_property(const struct device_node *np, const char *name,
313 int *lenp)
314 {
315 struct property *pp = of_find_property(np, name, lenp);
316
317 return pp ? pp->value : NULL;
318 }
319 EXPORT_SYMBOL(of_get_property);
320
321 /*
322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
323 *
324 * @cpu: logical cpu index of a core/thread
325 * @phys_id: physical identifier of a core/thread
326 *
327 * CPU logical to physical index mapping is architecture specific.
328 * However this __weak function provides a default match of physical
329 * id to logical cpu index. phys_id provided here is usually values read
330 * from the device tree which must match the hardware internal registers.
331 *
332 * Returns true if the physical identifier and the logical cpu index
333 * correspond to the same core/thread, false otherwise.
334 */
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
336 {
337 return (u32)phys_id == cpu;
338 }
339
340 /**
341 * Checks if the given "prop_name" property holds the physical id of the
342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343 * NULL, local thread number within the core is returned in it.
344 */
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 const char *prop_name, int cpu, unsigned int *thread)
347 {
348 const __be32 *cell;
349 int ac, prop_len, tid;
350 u64 hwid;
351
352 ac = of_n_addr_cells(cpun);
353 cell = of_get_property(cpun, prop_name, &prop_len);
354 if (!cell || !ac)
355 return false;
356 prop_len /= sizeof(*cell) * ac;
357 for (tid = 0; tid < prop_len; tid++) {
358 hwid = of_read_number(cell, ac);
359 if (arch_match_cpu_phys_id(cpu, hwid)) {
360 if (thread)
361 *thread = tid;
362 return true;
363 }
364 cell += ac;
365 }
366 return false;
367 }
368
369 /*
370 * arch_find_n_match_cpu_physical_id - See if the given device node is
371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
372 * else false. If 'thread' is non-NULL, the local thread number within the
373 * core is returned in it.
374 */
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 int cpu, unsigned int *thread)
377 {
378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 * for thread ids on PowerPC. If it doesn't exist fallback to
380 * standard "reg" property.
381 */
382 if (IS_ENABLED(CONFIG_PPC) &&
383 __of_find_n_match_cpu_property(cpun,
384 "ibm,ppc-interrupt-server#s",
385 cpu, thread))
386 return true;
387
388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 }
390
391 /**
392 * of_get_cpu_node - Get device node associated with the given logical CPU
393 *
394 * @cpu: CPU number(logical index) for which device node is required
395 * @thread: if not NULL, local thread number within the physical core is
396 * returned
397 *
398 * The main purpose of this function is to retrieve the device node for the
399 * given logical CPU index. It should be used to initialize the of_node in
400 * cpu device. Once of_node in cpu device is populated, all the further
401 * references can use that instead.
402 *
403 * CPU logical to physical index mapping is architecture specific and is built
404 * before booting secondary cores. This function uses arch_match_cpu_phys_id
405 * which can be overridden by architecture specific implementation.
406 *
407 * Returns a node pointer for the logical cpu with refcount incremented, use
408 * of_node_put() on it when done. Returns NULL if not found.
409 */
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
411 {
412 struct device_node *cpun;
413
414 for_each_node_by_type(cpun, "cpu") {
415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 return cpun;
417 }
418 return NULL;
419 }
420 EXPORT_SYMBOL(of_get_cpu_node);
421
422 /**
423 * __of_device_is_compatible() - Check if the node matches given constraints
424 * @device: pointer to node
425 * @compat: required compatible string, NULL or "" for any match
426 * @type: required device_type value, NULL or "" for any match
427 * @name: required node name, NULL or "" for any match
428 *
429 * Checks if the given @compat, @type and @name strings match the
430 * properties of the given @device. A constraints can be skipped by
431 * passing NULL or an empty string as the constraint.
432 *
433 * Returns 0 for no match, and a positive integer on match. The return
434 * value is a relative score with larger values indicating better
435 * matches. The score is weighted for the most specific compatible value
436 * to get the highest score. Matching type is next, followed by matching
437 * name. Practically speaking, this results in the following priority
438 * order for matches:
439 *
440 * 1. specific compatible && type && name
441 * 2. specific compatible && type
442 * 3. specific compatible && name
443 * 4. specific compatible
444 * 5. general compatible && type && name
445 * 6. general compatible && type
446 * 7. general compatible && name
447 * 8. general compatible
448 * 9. type && name
449 * 10. type
450 * 11. name
451 */
452 static int __of_device_is_compatible(const struct device_node *device,
453 const char *compat, const char *type, const char *name)
454 {
455 struct property *prop;
456 const char *cp;
457 int index = 0, score = 0;
458
459 /* Compatible match has highest priority */
460 if (compat && compat[0]) {
461 prop = __of_find_property(device, "compatible", NULL);
462 for (cp = of_prop_next_string(prop, NULL); cp;
463 cp = of_prop_next_string(prop, cp), index++) {
464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 score = INT_MAX/2 - (index << 2);
466 break;
467 }
468 }
469 if (!score)
470 return 0;
471 }
472
473 /* Matching type is better than matching name */
474 if (type && type[0]) {
475 if (!device->type || of_node_cmp(type, device->type))
476 return 0;
477 score += 2;
478 }
479
480 /* Matching name is a bit better than not */
481 if (name && name[0]) {
482 if (!device->name || of_node_cmp(name, device->name))
483 return 0;
484 score++;
485 }
486
487 return score;
488 }
489
490 /** Checks if the given "compat" string matches one of the strings in
491 * the device's "compatible" property
492 */
493 int of_device_is_compatible(const struct device_node *device,
494 const char *compat)
495 {
496 unsigned long flags;
497 int res;
498
499 raw_spin_lock_irqsave(&devtree_lock, flags);
500 res = __of_device_is_compatible(device, compat, NULL, NULL);
501 raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 return res;
503 }
504 EXPORT_SYMBOL(of_device_is_compatible);
505
506 /** Checks if the device is compatible with any of the entries in
507 * a NULL terminated array of strings. Returns the best match
508 * score or 0.
509 */
510 int of_device_compatible_match(struct device_node *device,
511 const char *const *compat)
512 {
513 unsigned int tmp, score = 0;
514
515 if (!compat)
516 return 0;
517
518 while (*compat) {
519 tmp = of_device_is_compatible(device, *compat);
520 if (tmp > score)
521 score = tmp;
522 compat++;
523 }
524
525 return score;
526 }
527
528 /**
529 * of_machine_is_compatible - Test root of device tree for a given compatible value
530 * @compat: compatible string to look for in root node's compatible property.
531 *
532 * Returns a positive integer if the root node has the given value in its
533 * compatible property.
534 */
535 int of_machine_is_compatible(const char *compat)
536 {
537 struct device_node *root;
538 int rc = 0;
539
540 root = of_find_node_by_path("/");
541 if (root) {
542 rc = of_device_is_compatible(root, compat);
543 of_node_put(root);
544 }
545 return rc;
546 }
547 EXPORT_SYMBOL(of_machine_is_compatible);
548
549 /**
550 * __of_device_is_available - check if a device is available for use
551 *
552 * @device: Node to check for availability, with locks already held
553 *
554 * Returns true if the status property is absent or set to "okay" or "ok",
555 * false otherwise
556 */
557 static bool __of_device_is_available(const struct device_node *device)
558 {
559 const char *status;
560 int statlen;
561
562 if (!device)
563 return false;
564
565 status = __of_get_property(device, "status", &statlen);
566 if (status == NULL)
567 return true;
568
569 if (statlen > 0) {
570 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571 return true;
572 }
573
574 return false;
575 }
576
577 /**
578 * of_device_is_available - check if a device is available for use
579 *
580 * @device: Node to check for availability
581 *
582 * Returns true if the status property is absent or set to "okay" or "ok",
583 * false otherwise
584 */
585 bool of_device_is_available(const struct device_node *device)
586 {
587 unsigned long flags;
588 bool res;
589
590 raw_spin_lock_irqsave(&devtree_lock, flags);
591 res = __of_device_is_available(device);
592 raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 return res;
594
595 }
596 EXPORT_SYMBOL(of_device_is_available);
597
598 /**
599 * of_device_is_big_endian - check if a device has BE registers
600 *
601 * @device: Node to check for endianness
602 *
603 * Returns true if the device has a "big-endian" property, or if the kernel
604 * was compiled for BE *and* the device has a "native-endian" property.
605 * Returns false otherwise.
606 *
607 * Callers would nominally use ioread32be/iowrite32be if
608 * of_device_is_big_endian() == true, or readl/writel otherwise.
609 */
610 bool of_device_is_big_endian(const struct device_node *device)
611 {
612 if (of_property_read_bool(device, "big-endian"))
613 return true;
614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 of_property_read_bool(device, "native-endian"))
616 return true;
617 return false;
618 }
619 EXPORT_SYMBOL(of_device_is_big_endian);
620
621 /**
622 * of_get_parent - Get a node's parent if any
623 * @node: Node to get parent
624 *
625 * Returns a node pointer with refcount incremented, use
626 * of_node_put() on it when done.
627 */
628 struct device_node *of_get_parent(const struct device_node *node)
629 {
630 struct device_node *np;
631 unsigned long flags;
632
633 if (!node)
634 return NULL;
635
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 np = of_node_get(node->parent);
638 raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 return np;
640 }
641 EXPORT_SYMBOL(of_get_parent);
642
643 /**
644 * of_get_next_parent - Iterate to a node's parent
645 * @node: Node to get parent of
646 *
647 * This is like of_get_parent() except that it drops the
648 * refcount on the passed node, making it suitable for iterating
649 * through a node's parents.
650 *
651 * Returns a node pointer with refcount incremented, use
652 * of_node_put() on it when done.
653 */
654 struct device_node *of_get_next_parent(struct device_node *node)
655 {
656 struct device_node *parent;
657 unsigned long flags;
658
659 if (!node)
660 return NULL;
661
662 raw_spin_lock_irqsave(&devtree_lock, flags);
663 parent = of_node_get(node->parent);
664 of_node_put(node);
665 raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 return parent;
667 }
668 EXPORT_SYMBOL(of_get_next_parent);
669
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 struct device_node *prev)
672 {
673 struct device_node *next;
674
675 if (!node)
676 return NULL;
677
678 next = prev ? prev->sibling : node->child;
679 for (; next; next = next->sibling)
680 if (of_node_get(next))
681 break;
682 of_node_put(prev);
683 return next;
684 }
685 #define __for_each_child_of_node(parent, child) \
686 for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 child = __of_get_next_child(parent, child))
688
689 /**
690 * of_get_next_child - Iterate a node childs
691 * @node: parent node
692 * @prev: previous child of the parent node, or NULL to get first
693 *
694 * Returns a node pointer with refcount incremented, use of_node_put() on
695 * it when done. Returns NULL when prev is the last child. Decrements the
696 * refcount of prev.
697 */
698 struct device_node *of_get_next_child(const struct device_node *node,
699 struct device_node *prev)
700 {
701 struct device_node *next;
702 unsigned long flags;
703
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 next = __of_get_next_child(node, prev);
706 raw_spin_unlock_irqrestore(&devtree_lock, flags);
707 return next;
708 }
709 EXPORT_SYMBOL(of_get_next_child);
710
711 /**
712 * of_get_next_available_child - Find the next available child node
713 * @node: parent node
714 * @prev: previous child of the parent node, or NULL to get first
715 *
716 * This function is like of_get_next_child(), except that it
717 * automatically skips any disabled nodes (i.e. status = "disabled").
718 */
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 struct device_node *prev)
721 {
722 struct device_node *next;
723 unsigned long flags;
724
725 if (!node)
726 return NULL;
727
728 raw_spin_lock_irqsave(&devtree_lock, flags);
729 next = prev ? prev->sibling : node->child;
730 for (; next; next = next->sibling) {
731 if (!__of_device_is_available(next))
732 continue;
733 if (of_node_get(next))
734 break;
735 }
736 of_node_put(prev);
737 raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 return next;
739 }
740 EXPORT_SYMBOL(of_get_next_available_child);
741
742 /**
743 * of_get_child_by_name - Find the child node by name for a given parent
744 * @node: parent node
745 * @name: child name to look for.
746 *
747 * This function looks for child node for given matching name
748 *
749 * Returns a node pointer if found, with refcount incremented, use
750 * of_node_put() on it when done.
751 * Returns NULL if node is not found.
752 */
753 struct device_node *of_get_child_by_name(const struct device_node *node,
754 const char *name)
755 {
756 struct device_node *child;
757
758 for_each_child_of_node(node, child)
759 if (child->name && (of_node_cmp(child->name, name) == 0))
760 break;
761 return child;
762 }
763 EXPORT_SYMBOL(of_get_child_by_name);
764
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
766 const char *path)
767 {
768 struct device_node *child;
769 int len;
770
771 len = strcspn(path, "/:");
772 if (!len)
773 return NULL;
774
775 __for_each_child_of_node(parent, child) {
776 const char *name = strrchr(child->full_name, '/');
777 if (WARN(!name, "malformed device_node %s\n", child->full_name))
778 continue;
779 name++;
780 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
781 return child;
782 }
783 return NULL;
784 }
785
786 /**
787 * of_find_node_opts_by_path - Find a node matching a full OF path
788 * @path: Either the full path to match, or if the path does not
789 * start with '/', the name of a property of the /aliases
790 * node (an alias). In the case of an alias, the node
791 * matching the alias' value will be returned.
792 * @opts: Address of a pointer into which to store the start of
793 * an options string appended to the end of the path with
794 * a ':' separator.
795 *
796 * Valid paths:
797 * /foo/bar Full path
798 * foo Valid alias
799 * foo/bar Valid alias + relative path
800 *
801 * Returns a node pointer with refcount incremented, use
802 * of_node_put() on it when done.
803 */
804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
805 {
806 struct device_node *np = NULL;
807 struct property *pp;
808 unsigned long flags;
809 const char *separator = strchr(path, ':');
810
811 if (opts)
812 *opts = separator ? separator + 1 : NULL;
813
814 if (strcmp(path, "/") == 0)
815 return of_node_get(of_root);
816
817 /* The path could begin with an alias */
818 if (*path != '/') {
819 int len;
820 const char *p = separator;
821
822 if (!p)
823 p = strchrnul(path, '/');
824 len = p - path;
825
826 /* of_aliases must not be NULL */
827 if (!of_aliases)
828 return NULL;
829
830 for_each_property_of_node(of_aliases, pp) {
831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
832 np = of_find_node_by_path(pp->value);
833 break;
834 }
835 }
836 if (!np)
837 return NULL;
838 path = p;
839 }
840
841 /* Step down the tree matching path components */
842 raw_spin_lock_irqsave(&devtree_lock, flags);
843 if (!np)
844 np = of_node_get(of_root);
845 while (np && *path == '/') {
846 struct device_node *tmp = np;
847
848 path++; /* Increment past '/' delimiter */
849 np = __of_find_node_by_path(np, path);
850 of_node_put(tmp);
851 path = strchrnul(path, '/');
852 if (separator && separator < path)
853 break;
854 }
855 raw_spin_unlock_irqrestore(&devtree_lock, flags);
856 return np;
857 }
858 EXPORT_SYMBOL(of_find_node_opts_by_path);
859
860 /**
861 * of_find_node_by_name - Find a node by its "name" property
862 * @from: The node to start searching from or NULL, the node
863 * you pass will not be searched, only the next one
864 * will; typically, you pass what the previous call
865 * returned. of_node_put() will be called on it
866 * @name: The name string to match against
867 *
868 * Returns a node pointer with refcount incremented, use
869 * of_node_put() on it when done.
870 */
871 struct device_node *of_find_node_by_name(struct device_node *from,
872 const char *name)
873 {
874 struct device_node *np;
875 unsigned long flags;
876
877 raw_spin_lock_irqsave(&devtree_lock, flags);
878 for_each_of_allnodes_from(from, np)
879 if (np->name && (of_node_cmp(np->name, name) == 0)
880 && of_node_get(np))
881 break;
882 of_node_put(from);
883 raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 return np;
885 }
886 EXPORT_SYMBOL(of_find_node_by_name);
887
888 /**
889 * of_find_node_by_type - Find a node by its "device_type" property
890 * @from: The node to start searching from, or NULL to start searching
891 * the entire device tree. The node you pass will not be
892 * searched, only the next one will; typically, you pass
893 * what the previous call returned. of_node_put() will be
894 * called on from for you.
895 * @type: The type string to match against
896 *
897 * Returns a node pointer with refcount incremented, use
898 * of_node_put() on it when done.
899 */
900 struct device_node *of_find_node_by_type(struct device_node *from,
901 const char *type)
902 {
903 struct device_node *np;
904 unsigned long flags;
905
906 raw_spin_lock_irqsave(&devtree_lock, flags);
907 for_each_of_allnodes_from(from, np)
908 if (np->type && (of_node_cmp(np->type, type) == 0)
909 && of_node_get(np))
910 break;
911 of_node_put(from);
912 raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 return np;
914 }
915 EXPORT_SYMBOL(of_find_node_by_type);
916
917 /**
918 * of_find_compatible_node - Find a node based on type and one of the
919 * tokens in its "compatible" property
920 * @from: The node to start searching from or NULL, the node
921 * you pass will not be searched, only the next one
922 * will; typically, you pass what the previous call
923 * returned. of_node_put() will be called on it
924 * @type: The type string to match "device_type" or NULL to ignore
925 * @compatible: The string to match to one of the tokens in the device
926 * "compatible" list.
927 *
928 * Returns a node pointer with refcount incremented, use
929 * of_node_put() on it when done.
930 */
931 struct device_node *of_find_compatible_node(struct device_node *from,
932 const char *type, const char *compatible)
933 {
934 struct device_node *np;
935 unsigned long flags;
936
937 raw_spin_lock_irqsave(&devtree_lock, flags);
938 for_each_of_allnodes_from(from, np)
939 if (__of_device_is_compatible(np, compatible, type, NULL) &&
940 of_node_get(np))
941 break;
942 of_node_put(from);
943 raw_spin_unlock_irqrestore(&devtree_lock, flags);
944 return np;
945 }
946 EXPORT_SYMBOL(of_find_compatible_node);
947
948 /**
949 * of_find_node_with_property - Find a node which has a property with
950 * the given name.
951 * @from: The node to start searching from or NULL, the node
952 * you pass will not be searched, only the next one
953 * will; typically, you pass what the previous call
954 * returned. of_node_put() will be called on it
955 * @prop_name: The name of the property to look for.
956 *
957 * Returns a node pointer with refcount incremented, use
958 * of_node_put() on it when done.
959 */
960 struct device_node *of_find_node_with_property(struct device_node *from,
961 const char *prop_name)
962 {
963 struct device_node *np;
964 struct property *pp;
965 unsigned long flags;
966
967 raw_spin_lock_irqsave(&devtree_lock, flags);
968 for_each_of_allnodes_from(from, np) {
969 for (pp = np->properties; pp; pp = pp->next) {
970 if (of_prop_cmp(pp->name, prop_name) == 0) {
971 of_node_get(np);
972 goto out;
973 }
974 }
975 }
976 out:
977 of_node_put(from);
978 raw_spin_unlock_irqrestore(&devtree_lock, flags);
979 return np;
980 }
981 EXPORT_SYMBOL(of_find_node_with_property);
982
983 static
984 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
985 const struct device_node *node)
986 {
987 const struct of_device_id *best_match = NULL;
988 int score, best_score = 0;
989
990 if (!matches)
991 return NULL;
992
993 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
994 score = __of_device_is_compatible(node, matches->compatible,
995 matches->type, matches->name);
996 if (score > best_score) {
997 best_match = matches;
998 best_score = score;
999 }
1000 }
1001
1002 return best_match;
1003 }
1004
1005 /**
1006 * of_match_node - Tell if a device_node has a matching of_match structure
1007 * @matches: array of of device match structures to search in
1008 * @node: the of device structure to match against
1009 *
1010 * Low level utility function used by device matching.
1011 */
1012 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1013 const struct device_node *node)
1014 {
1015 const struct of_device_id *match;
1016 unsigned long flags;
1017
1018 raw_spin_lock_irqsave(&devtree_lock, flags);
1019 match = __of_match_node(matches, node);
1020 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 return match;
1022 }
1023 EXPORT_SYMBOL(of_match_node);
1024
1025 /**
1026 * of_find_matching_node_and_match - Find a node based on an of_device_id
1027 * match table.
1028 * @from: The node to start searching from or NULL, the node
1029 * you pass will not be searched, only the next one
1030 * will; typically, you pass what the previous call
1031 * returned. of_node_put() will be called on it
1032 * @matches: array of of device match structures to search in
1033 * @match Updated to point at the matches entry which matched
1034 *
1035 * Returns a node pointer with refcount incremented, use
1036 * of_node_put() on it when done.
1037 */
1038 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1039 const struct of_device_id *matches,
1040 const struct of_device_id **match)
1041 {
1042 struct device_node *np;
1043 const struct of_device_id *m;
1044 unsigned long flags;
1045
1046 if (match)
1047 *match = NULL;
1048
1049 raw_spin_lock_irqsave(&devtree_lock, flags);
1050 for_each_of_allnodes_from(from, np) {
1051 m = __of_match_node(matches, np);
1052 if (m && of_node_get(np)) {
1053 if (match)
1054 *match = m;
1055 break;
1056 }
1057 }
1058 of_node_put(from);
1059 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1060 return np;
1061 }
1062 EXPORT_SYMBOL(of_find_matching_node_and_match);
1063
1064 /**
1065 * of_modalias_node - Lookup appropriate modalias for a device node
1066 * @node: pointer to a device tree node
1067 * @modalias: Pointer to buffer that modalias value will be copied into
1068 * @len: Length of modalias value
1069 *
1070 * Based on the value of the compatible property, this routine will attempt
1071 * to choose an appropriate modalias value for a particular device tree node.
1072 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1073 * from the first entry in the compatible list property.
1074 *
1075 * This routine returns 0 on success, <0 on failure.
1076 */
1077 int of_modalias_node(struct device_node *node, char *modalias, int len)
1078 {
1079 const char *compatible, *p;
1080 int cplen;
1081
1082 compatible = of_get_property(node, "compatible", &cplen);
1083 if (!compatible || strlen(compatible) > cplen)
1084 return -ENODEV;
1085 p = strchr(compatible, ',');
1086 strlcpy(modalias, p ? p + 1 : compatible, len);
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(of_modalias_node);
1090
1091 /**
1092 * of_find_node_by_phandle - Find a node given a phandle
1093 * @handle: phandle of the node to find
1094 *
1095 * Returns a node pointer with refcount incremented, use
1096 * of_node_put() on it when done.
1097 */
1098 struct device_node *of_find_node_by_phandle(phandle handle)
1099 {
1100 struct device_node *np;
1101 unsigned long flags;
1102
1103 if (!handle)
1104 return NULL;
1105
1106 raw_spin_lock_irqsave(&devtree_lock, flags);
1107 for_each_of_allnodes(np)
1108 if (np->phandle == handle)
1109 break;
1110 of_node_get(np);
1111 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1112 return np;
1113 }
1114 EXPORT_SYMBOL(of_find_node_by_phandle);
1115
1116 /**
1117 * of_property_count_elems_of_size - Count the number of elements in a property
1118 *
1119 * @np: device node from which the property value is to be read.
1120 * @propname: name of the property to be searched.
1121 * @elem_size: size of the individual element
1122 *
1123 * Search for a property in a device node and count the number of elements of
1124 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1125 * property does not exist or its length does not match a multiple of elem_size
1126 * and -ENODATA if the property does not have a value.
1127 */
1128 int of_property_count_elems_of_size(const struct device_node *np,
1129 const char *propname, int elem_size)
1130 {
1131 struct property *prop = of_find_property(np, propname, NULL);
1132
1133 if (!prop)
1134 return -EINVAL;
1135 if (!prop->value)
1136 return -ENODATA;
1137
1138 if (prop->length % elem_size != 0) {
1139 pr_err("size of %s in node %s is not a multiple of %d\n",
1140 propname, np->full_name, elem_size);
1141 return -EINVAL;
1142 }
1143
1144 return prop->length / elem_size;
1145 }
1146 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1147
1148 /**
1149 * of_find_property_value_of_size
1150 *
1151 * @np: device node from which the property value is to be read.
1152 * @propname: name of the property to be searched.
1153 * @min: minimum allowed length of property value
1154 * @max: maximum allowed length of property value (0 means unlimited)
1155 * @len: if !=NULL, actual length is written to here
1156 *
1157 * Search for a property in a device node and valid the requested size.
1158 * Returns the property value on success, -EINVAL if the property does not
1159 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1160 * property data is too small or too large.
1161 *
1162 */
1163 static void *of_find_property_value_of_size(const struct device_node *np,
1164 const char *propname, u32 min, u32 max, size_t *len)
1165 {
1166 struct property *prop = of_find_property(np, propname, NULL);
1167
1168 if (!prop)
1169 return ERR_PTR(-EINVAL);
1170 if (!prop->value)
1171 return ERR_PTR(-ENODATA);
1172 if (prop->length < min)
1173 return ERR_PTR(-EOVERFLOW);
1174 if (max && prop->length > max)
1175 return ERR_PTR(-EOVERFLOW);
1176
1177 if (len)
1178 *len = prop->length;
1179
1180 return prop->value;
1181 }
1182
1183 /**
1184 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1185 *
1186 * @np: device node from which the property value is to be read.
1187 * @propname: name of the property to be searched.
1188 * @index: index of the u32 in the list of values
1189 * @out_value: pointer to return value, modified only if no error.
1190 *
1191 * Search for a property in a device node and read nth 32-bit value from
1192 * it. Returns 0 on success, -EINVAL if the property does not exist,
1193 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1194 * property data isn't large enough.
1195 *
1196 * The out_value is modified only if a valid u32 value can be decoded.
1197 */
1198 int of_property_read_u32_index(const struct device_node *np,
1199 const char *propname,
1200 u32 index, u32 *out_value)
1201 {
1202 const u32 *val = of_find_property_value_of_size(np, propname,
1203 ((index + 1) * sizeof(*out_value)),
1204 0,
1205 NULL);
1206
1207 if (IS_ERR(val))
1208 return PTR_ERR(val);
1209
1210 *out_value = be32_to_cpup(((__be32 *)val) + index);
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1214
1215 /**
1216 * of_property_read_variable_u8_array - Find and read an array of u8 from a
1217 * property, with bounds on the minimum and maximum array size.
1218 *
1219 * @np: device node from which the property value is to be read.
1220 * @propname: name of the property to be searched.
1221 * @out_values: pointer to return value, modified only if return value is 0.
1222 * @sz_min: minimum number of array elements to read
1223 * @sz_max: maximum number of array elements to read, if zero there is no
1224 * upper limit on the number of elements in the dts entry but only
1225 * sz_min will be read.
1226 *
1227 * Search for a property in a device node and read 8-bit value(s) from
1228 * it. Returns number of elements read on success, -EINVAL if the property
1229 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1230 * if the property data is smaller than sz_min or longer than sz_max.
1231 *
1232 * dts entry of array should be like:
1233 * property = /bits/ 8 <0x50 0x60 0x70>;
1234 *
1235 * The out_values is modified only if a valid u8 value can be decoded.
1236 */
1237 int of_property_read_variable_u8_array(const struct device_node *np,
1238 const char *propname, u8 *out_values,
1239 size_t sz_min, size_t sz_max)
1240 {
1241 size_t sz, count;
1242 const u8 *val = of_find_property_value_of_size(np, propname,
1243 (sz_min * sizeof(*out_values)),
1244 (sz_max * sizeof(*out_values)),
1245 &sz);
1246
1247 if (IS_ERR(val))
1248 return PTR_ERR(val);
1249
1250 if (!sz_max)
1251 sz = sz_min;
1252 else
1253 sz /= sizeof(*out_values);
1254
1255 count = sz;
1256 while (count--)
1257 *out_values++ = *val++;
1258
1259 return sz;
1260 }
1261 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1262
1263 /**
1264 * of_property_read_variable_u16_array - Find and read an array of u16 from a
1265 * property, with bounds on the minimum and maximum array size.
1266 *
1267 * @np: device node from which the property value is to be read.
1268 * @propname: name of the property to be searched.
1269 * @out_values: pointer to return value, modified only if return value is 0.
1270 * @sz_min: minimum number of array elements to read
1271 * @sz_max: maximum number of array elements to read, if zero there is no
1272 * upper limit on the number of elements in the dts entry but only
1273 * sz_min will be read.
1274 *
1275 * Search for a property in a device node and read 16-bit value(s) from
1276 * it. Returns number of elements read on success, -EINVAL if the property
1277 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1278 * if the property data is smaller than sz_min or longer than sz_max.
1279 *
1280 * dts entry of array should be like:
1281 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1282 *
1283 * The out_values is modified only if a valid u16 value can be decoded.
1284 */
1285 int of_property_read_variable_u16_array(const struct device_node *np,
1286 const char *propname, u16 *out_values,
1287 size_t sz_min, size_t sz_max)
1288 {
1289 size_t sz, count;
1290 const __be16 *val = of_find_property_value_of_size(np, propname,
1291 (sz_min * sizeof(*out_values)),
1292 (sz_max * sizeof(*out_values)),
1293 &sz);
1294
1295 if (IS_ERR(val))
1296 return PTR_ERR(val);
1297
1298 if (!sz_max)
1299 sz = sz_min;
1300 else
1301 sz /= sizeof(*out_values);
1302
1303 count = sz;
1304 while (count--)
1305 *out_values++ = be16_to_cpup(val++);
1306
1307 return sz;
1308 }
1309 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1310
1311 /**
1312 * of_property_read_variable_u32_array - Find and read an array of 32 bit
1313 * integers from a property, with bounds on the minimum and maximum array size.
1314 *
1315 * @np: device node from which the property value is to be read.
1316 * @propname: name of the property to be searched.
1317 * @out_values: pointer to return value, modified only if return value is 0.
1318 * @sz_min: minimum number of array elements to read
1319 * @sz_max: maximum number of array elements to read, if zero there is no
1320 * upper limit on the number of elements in the dts entry but only
1321 * sz_min will be read.
1322 *
1323 * Search for a property in a device node and read 32-bit value(s) from
1324 * it. Returns number of elements read on success, -EINVAL if the property
1325 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1326 * if the property data is smaller than sz_min or longer than sz_max.
1327 *
1328 * The out_values is modified only if a valid u32 value can be decoded.
1329 */
1330 int of_property_read_variable_u32_array(const struct device_node *np,
1331 const char *propname, u32 *out_values,
1332 size_t sz_min, size_t sz_max)
1333 {
1334 size_t sz, count;
1335 const __be32 *val = of_find_property_value_of_size(np, propname,
1336 (sz_min * sizeof(*out_values)),
1337 (sz_max * sizeof(*out_values)),
1338 &sz);
1339
1340 if (IS_ERR(val))
1341 return PTR_ERR(val);
1342
1343 if (!sz_max)
1344 sz = sz_min;
1345 else
1346 sz /= sizeof(*out_values);
1347
1348 count = sz;
1349 while (count--)
1350 *out_values++ = be32_to_cpup(val++);
1351
1352 return sz;
1353 }
1354 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1355
1356 /**
1357 * of_property_read_u64 - Find and read a 64 bit integer from a property
1358 * @np: device node from which the property value is to be read.
1359 * @propname: name of the property to be searched.
1360 * @out_value: pointer to return value, modified only if return value is 0.
1361 *
1362 * Search for a property in a device node and read a 64-bit value from
1363 * it. Returns 0 on success, -EINVAL if the property does not exist,
1364 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1365 * property data isn't large enough.
1366 *
1367 * The out_value is modified only if a valid u64 value can be decoded.
1368 */
1369 int of_property_read_u64(const struct device_node *np, const char *propname,
1370 u64 *out_value)
1371 {
1372 const __be32 *val = of_find_property_value_of_size(np, propname,
1373 sizeof(*out_value),
1374 0,
1375 NULL);
1376
1377 if (IS_ERR(val))
1378 return PTR_ERR(val);
1379
1380 *out_value = of_read_number(val, 2);
1381 return 0;
1382 }
1383 EXPORT_SYMBOL_GPL(of_property_read_u64);
1384
1385 /**
1386 * of_property_read_variable_u64_array - Find and read an array of 64 bit
1387 * integers from a property, with bounds on the minimum and maximum array size.
1388 *
1389 * @np: device node from which the property value is to be read.
1390 * @propname: name of the property to be searched.
1391 * @out_values: pointer to return value, modified only if return value is 0.
1392 * @sz_min: minimum number of array elements to read
1393 * @sz_max: maximum number of array elements to read, if zero there is no
1394 * upper limit on the number of elements in the dts entry but only
1395 * sz_min will be read.
1396 *
1397 * Search for a property in a device node and read 64-bit value(s) from
1398 * it. Returns number of elements read on success, -EINVAL if the property
1399 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1400 * if the property data is smaller than sz_min or longer than sz_max.
1401 *
1402 * The out_values is modified only if a valid u64 value can be decoded.
1403 */
1404 int of_property_read_variable_u64_array(const struct device_node *np,
1405 const char *propname, u64 *out_values,
1406 size_t sz_min, size_t sz_max)
1407 {
1408 size_t sz, count;
1409 const __be32 *val = of_find_property_value_of_size(np, propname,
1410 (sz_min * sizeof(*out_values)),
1411 (sz_max * sizeof(*out_values)),
1412 &sz);
1413
1414 if (IS_ERR(val))
1415 return PTR_ERR(val);
1416
1417 if (!sz_max)
1418 sz = sz_min;
1419 else
1420 sz /= sizeof(*out_values);
1421
1422 count = sz;
1423 while (count--) {
1424 *out_values++ = of_read_number(val, 2);
1425 val += 2;
1426 }
1427
1428 return sz;
1429 }
1430 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1431
1432 /**
1433 * of_property_read_string - Find and read a string from a property
1434 * @np: device node from which the property value is to be read.
1435 * @propname: name of the property to be searched.
1436 * @out_string: pointer to null terminated return string, modified only if
1437 * return value is 0.
1438 *
1439 * Search for a property in a device tree node and retrieve a null
1440 * terminated string value (pointer to data, not a copy). Returns 0 on
1441 * success, -EINVAL if the property does not exist, -ENODATA if property
1442 * does not have a value, and -EILSEQ if the string is not null-terminated
1443 * within the length of the property data.
1444 *
1445 * The out_string pointer is modified only if a valid string can be decoded.
1446 */
1447 int of_property_read_string(const struct device_node *np, const char *propname,
1448 const char **out_string)
1449 {
1450 const struct property *prop = of_find_property(np, propname, NULL);
1451 if (!prop)
1452 return -EINVAL;
1453 if (!prop->value)
1454 return -ENODATA;
1455 if (strnlen(prop->value, prop->length) >= prop->length)
1456 return -EILSEQ;
1457 *out_string = prop->value;
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(of_property_read_string);
1461
1462 /**
1463 * of_property_match_string() - Find string in a list and return index
1464 * @np: pointer to node containing string list property
1465 * @propname: string list property name
1466 * @string: pointer to string to search for in string list
1467 *
1468 * This function searches a string list property and returns the index
1469 * of a specific string value.
1470 */
1471 int of_property_match_string(const struct device_node *np, const char *propname,
1472 const char *string)
1473 {
1474 const struct property *prop = of_find_property(np, propname, NULL);
1475 size_t l;
1476 int i;
1477 const char *p, *end;
1478
1479 if (!prop)
1480 return -EINVAL;
1481 if (!prop->value)
1482 return -ENODATA;
1483
1484 p = prop->value;
1485 end = p + prop->length;
1486
1487 for (i = 0; p < end; i++, p += l) {
1488 l = strnlen(p, end - p) + 1;
1489 if (p + l > end)
1490 return -EILSEQ;
1491 pr_debug("comparing %s with %s\n", string, p);
1492 if (strcmp(string, p) == 0)
1493 return i; /* Found it; return index */
1494 }
1495 return -ENODATA;
1496 }
1497 EXPORT_SYMBOL_GPL(of_property_match_string);
1498
1499 /**
1500 * of_property_read_string_helper() - Utility helper for parsing string properties
1501 * @np: device node from which the property value is to be read.
1502 * @propname: name of the property to be searched.
1503 * @out_strs: output array of string pointers.
1504 * @sz: number of array elements to read.
1505 * @skip: Number of strings to skip over at beginning of list.
1506 *
1507 * Don't call this function directly. It is a utility helper for the
1508 * of_property_read_string*() family of functions.
1509 */
1510 int of_property_read_string_helper(const struct device_node *np,
1511 const char *propname, const char **out_strs,
1512 size_t sz, int skip)
1513 {
1514 const struct property *prop = of_find_property(np, propname, NULL);
1515 int l = 0, i = 0;
1516 const char *p, *end;
1517
1518 if (!prop)
1519 return -EINVAL;
1520 if (!prop->value)
1521 return -ENODATA;
1522 p = prop->value;
1523 end = p + prop->length;
1524
1525 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1526 l = strnlen(p, end - p) + 1;
1527 if (p + l > end)
1528 return -EILSEQ;
1529 if (out_strs && i >= skip)
1530 *out_strs++ = p;
1531 }
1532 i -= skip;
1533 return i <= 0 ? -ENODATA : i;
1534 }
1535 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1536
1537 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1538 {
1539 int i;
1540 printk("%s %s", msg, of_node_full_name(args->np));
1541 for (i = 0; i < args->args_count; i++) {
1542 const char delim = i ? ',' : ':';
1543
1544 pr_cont("%c%08x", delim, args->args[i]);
1545 }
1546 pr_cont("\n");
1547 }
1548
1549 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1550 const struct device_node *np,
1551 const char *list_name,
1552 const char *cells_name,
1553 int cell_count)
1554 {
1555 const __be32 *list;
1556 int size;
1557
1558 memset(it, 0, sizeof(*it));
1559
1560 list = of_get_property(np, list_name, &size);
1561 if (!list)
1562 return -ENOENT;
1563
1564 it->cells_name = cells_name;
1565 it->cell_count = cell_count;
1566 it->parent = np;
1567 it->list_end = list + size / sizeof(*list);
1568 it->phandle_end = list;
1569 it->cur = list;
1570
1571 return 0;
1572 }
1573
1574 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1575 {
1576 uint32_t count = 0;
1577
1578 if (it->node) {
1579 of_node_put(it->node);
1580 it->node = NULL;
1581 }
1582
1583 if (!it->cur || it->phandle_end >= it->list_end)
1584 return -ENOENT;
1585
1586 it->cur = it->phandle_end;
1587
1588 /* If phandle is 0, then it is an empty entry with no arguments. */
1589 it->phandle = be32_to_cpup(it->cur++);
1590
1591 if (it->phandle) {
1592
1593 /*
1594 * Find the provider node and parse the #*-cells property to
1595 * determine the argument length.
1596 */
1597 it->node = of_find_node_by_phandle(it->phandle);
1598
1599 if (it->cells_name) {
1600 if (!it->node) {
1601 pr_err("%s: could not find phandle\n",
1602 it->parent->full_name);
1603 goto err;
1604 }
1605
1606 if (of_property_read_u32(it->node, it->cells_name,
1607 &count)) {
1608 pr_err("%s: could not get %s for %s\n",
1609 it->parent->full_name,
1610 it->cells_name,
1611 it->node->full_name);
1612 goto err;
1613 }
1614 } else {
1615 count = it->cell_count;
1616 }
1617
1618 /*
1619 * Make sure that the arguments actually fit in the remaining
1620 * property data length
1621 */
1622 if (it->cur + count > it->list_end) {
1623 pr_err("%s: arguments longer than property\n",
1624 it->parent->full_name);
1625 goto err;
1626 }
1627 }
1628
1629 it->phandle_end = it->cur + count;
1630 it->cur_count = count;
1631
1632 return 0;
1633
1634 err:
1635 if (it->node) {
1636 of_node_put(it->node);
1637 it->node = NULL;
1638 }
1639
1640 return -EINVAL;
1641 }
1642
1643 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1644 uint32_t *args,
1645 int size)
1646 {
1647 int i, count;
1648
1649 count = it->cur_count;
1650
1651 if (WARN_ON(size < count))
1652 count = size;
1653
1654 for (i = 0; i < count; i++)
1655 args[i] = be32_to_cpup(it->cur++);
1656
1657 return count;
1658 }
1659
1660 static int __of_parse_phandle_with_args(const struct device_node *np,
1661 const char *list_name,
1662 const char *cells_name,
1663 int cell_count, int index,
1664 struct of_phandle_args *out_args)
1665 {
1666 struct of_phandle_iterator it;
1667 int rc, cur_index = 0;
1668
1669 /* Loop over the phandles until all the requested entry is found */
1670 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1671 /*
1672 * All of the error cases bail out of the loop, so at
1673 * this point, the parsing is successful. If the requested
1674 * index matches, then fill the out_args structure and return,
1675 * or return -ENOENT for an empty entry.
1676 */
1677 rc = -ENOENT;
1678 if (cur_index == index) {
1679 if (!it.phandle)
1680 goto err;
1681
1682 if (out_args) {
1683 int c;
1684
1685 c = of_phandle_iterator_args(&it,
1686 out_args->args,
1687 MAX_PHANDLE_ARGS);
1688 out_args->np = it.node;
1689 out_args->args_count = c;
1690 } else {
1691 of_node_put(it.node);
1692 }
1693
1694 /* Found it! return success */
1695 return 0;
1696 }
1697
1698 cur_index++;
1699 }
1700
1701 /*
1702 * Unlock node before returning result; will be one of:
1703 * -ENOENT : index is for empty phandle
1704 * -EINVAL : parsing error on data
1705 */
1706
1707 err:
1708 of_node_put(it.node);
1709 return rc;
1710 }
1711
1712 /**
1713 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1714 * @np: Pointer to device node holding phandle property
1715 * @phandle_name: Name of property holding a phandle value
1716 * @index: For properties holding a table of phandles, this is the index into
1717 * the table
1718 *
1719 * Returns the device_node pointer with refcount incremented. Use
1720 * of_node_put() on it when done.
1721 */
1722 struct device_node *of_parse_phandle(const struct device_node *np,
1723 const char *phandle_name, int index)
1724 {
1725 struct of_phandle_args args;
1726
1727 if (index < 0)
1728 return NULL;
1729
1730 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1731 index, &args))
1732 return NULL;
1733
1734 return args.np;
1735 }
1736 EXPORT_SYMBOL(of_parse_phandle);
1737
1738 /**
1739 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1740 * @np: pointer to a device tree node containing a list
1741 * @list_name: property name that contains a list
1742 * @cells_name: property name that specifies phandles' arguments count
1743 * @index: index of a phandle to parse out
1744 * @out_args: optional pointer to output arguments structure (will be filled)
1745 *
1746 * This function is useful to parse lists of phandles and their arguments.
1747 * Returns 0 on success and fills out_args, on error returns appropriate
1748 * errno value.
1749 *
1750 * Caller is responsible to call of_node_put() on the returned out_args->np
1751 * pointer.
1752 *
1753 * Example:
1754 *
1755 * phandle1: node1 {
1756 * #list-cells = <2>;
1757 * }
1758 *
1759 * phandle2: node2 {
1760 * #list-cells = <1>;
1761 * }
1762 *
1763 * node3 {
1764 * list = <&phandle1 1 2 &phandle2 3>;
1765 * }
1766 *
1767 * To get a device_node of the `node2' node you may call this:
1768 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1769 */
1770 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1771 const char *cells_name, int index,
1772 struct of_phandle_args *out_args)
1773 {
1774 if (index < 0)
1775 return -EINVAL;
1776 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1777 index, out_args);
1778 }
1779 EXPORT_SYMBOL(of_parse_phandle_with_args);
1780
1781 /**
1782 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1783 * @np: pointer to a device tree node containing a list
1784 * @list_name: property name that contains a list
1785 * @cell_count: number of argument cells following the phandle
1786 * @index: index of a phandle to parse out
1787 * @out_args: optional pointer to output arguments structure (will be filled)
1788 *
1789 * This function is useful to parse lists of phandles and their arguments.
1790 * Returns 0 on success and fills out_args, on error returns appropriate
1791 * errno value.
1792 *
1793 * Caller is responsible to call of_node_put() on the returned out_args->np
1794 * pointer.
1795 *
1796 * Example:
1797 *
1798 * phandle1: node1 {
1799 * }
1800 *
1801 * phandle2: node2 {
1802 * }
1803 *
1804 * node3 {
1805 * list = <&phandle1 0 2 &phandle2 2 3>;
1806 * }
1807 *
1808 * To get a device_node of the `node2' node you may call this:
1809 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1810 */
1811 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1812 const char *list_name, int cell_count,
1813 int index, struct of_phandle_args *out_args)
1814 {
1815 if (index < 0)
1816 return -EINVAL;
1817 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1818 index, out_args);
1819 }
1820 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1821
1822 /**
1823 * of_count_phandle_with_args() - Find the number of phandles references in a property
1824 * @np: pointer to a device tree node containing a list
1825 * @list_name: property name that contains a list
1826 * @cells_name: property name that specifies phandles' arguments count
1827 *
1828 * Returns the number of phandle + argument tuples within a property. It
1829 * is a typical pattern to encode a list of phandle and variable
1830 * arguments into a single property. The number of arguments is encoded
1831 * by a property in the phandle-target node. For example, a gpios
1832 * property would contain a list of GPIO specifies consisting of a
1833 * phandle and 1 or more arguments. The number of arguments are
1834 * determined by the #gpio-cells property in the node pointed to by the
1835 * phandle.
1836 */
1837 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1838 const char *cells_name)
1839 {
1840 struct of_phandle_iterator it;
1841 int rc, cur_index = 0;
1842
1843 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1844 if (rc)
1845 return rc;
1846
1847 while ((rc = of_phandle_iterator_next(&it)) == 0)
1848 cur_index += 1;
1849
1850 if (rc != -ENOENT)
1851 return rc;
1852
1853 return cur_index;
1854 }
1855 EXPORT_SYMBOL(of_count_phandle_with_args);
1856
1857 /**
1858 * __of_add_property - Add a property to a node without lock operations
1859 */
1860 int __of_add_property(struct device_node *np, struct property *prop)
1861 {
1862 struct property **next;
1863
1864 prop->next = NULL;
1865 next = &np->properties;
1866 while (*next) {
1867 if (strcmp(prop->name, (*next)->name) == 0)
1868 /* duplicate ! don't insert it */
1869 return -EEXIST;
1870
1871 next = &(*next)->next;
1872 }
1873 *next = prop;
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * of_add_property - Add a property to a node
1880 */
1881 int of_add_property(struct device_node *np, struct property *prop)
1882 {
1883 unsigned long flags;
1884 int rc;
1885
1886 mutex_lock(&of_mutex);
1887
1888 raw_spin_lock_irqsave(&devtree_lock, flags);
1889 rc = __of_add_property(np, prop);
1890 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1891
1892 if (!rc)
1893 __of_add_property_sysfs(np, prop);
1894
1895 mutex_unlock(&of_mutex);
1896
1897 if (!rc)
1898 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1899
1900 return rc;
1901 }
1902
1903 int __of_remove_property(struct device_node *np, struct property *prop)
1904 {
1905 struct property **next;
1906
1907 for (next = &np->properties; *next; next = &(*next)->next) {
1908 if (*next == prop)
1909 break;
1910 }
1911 if (*next == NULL)
1912 return -ENODEV;
1913
1914 /* found the node */
1915 *next = prop->next;
1916 prop->next = np->deadprops;
1917 np->deadprops = prop;
1918
1919 return 0;
1920 }
1921
1922 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1923 {
1924 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1925 kfree(prop->attr.attr.name);
1926 }
1927
1928 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1929 {
1930 if (!IS_ENABLED(CONFIG_SYSFS))
1931 return;
1932
1933 /* at early boot, bail here and defer setup to of_init() */
1934 if (of_kset && of_node_is_attached(np))
1935 __of_sysfs_remove_bin_file(np, prop);
1936 }
1937
1938 /**
1939 * of_remove_property - Remove a property from a node.
1940 *
1941 * Note that we don't actually remove it, since we have given out
1942 * who-knows-how-many pointers to the data using get-property.
1943 * Instead we just move the property to the "dead properties"
1944 * list, so it won't be found any more.
1945 */
1946 int of_remove_property(struct device_node *np, struct property *prop)
1947 {
1948 unsigned long flags;
1949 int rc;
1950
1951 if (!prop)
1952 return -ENODEV;
1953
1954 mutex_lock(&of_mutex);
1955
1956 raw_spin_lock_irqsave(&devtree_lock, flags);
1957 rc = __of_remove_property(np, prop);
1958 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1959
1960 if (!rc)
1961 __of_remove_property_sysfs(np, prop);
1962
1963 mutex_unlock(&of_mutex);
1964
1965 if (!rc)
1966 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1967
1968 return rc;
1969 }
1970
1971 int __of_update_property(struct device_node *np, struct property *newprop,
1972 struct property **oldpropp)
1973 {
1974 struct property **next, *oldprop;
1975
1976 for (next = &np->properties; *next; next = &(*next)->next) {
1977 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1978 break;
1979 }
1980 *oldpropp = oldprop = *next;
1981
1982 if (oldprop) {
1983 /* replace the node */
1984 newprop->next = oldprop->next;
1985 *next = newprop;
1986 oldprop->next = np->deadprops;
1987 np->deadprops = oldprop;
1988 } else {
1989 /* new node */
1990 newprop->next = NULL;
1991 *next = newprop;
1992 }
1993
1994 return 0;
1995 }
1996
1997 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1998 struct property *oldprop)
1999 {
2000 if (!IS_ENABLED(CONFIG_SYSFS))
2001 return;
2002
2003 /* At early boot, bail out and defer setup to of_init() */
2004 if (!of_kset)
2005 return;
2006
2007 if (oldprop)
2008 __of_sysfs_remove_bin_file(np, oldprop);
2009 __of_add_property_sysfs(np, newprop);
2010 }
2011
2012 /*
2013 * of_update_property - Update a property in a node, if the property does
2014 * not exist, add it.
2015 *
2016 * Note that we don't actually remove it, since we have given out
2017 * who-knows-how-many pointers to the data using get-property.
2018 * Instead we just move the property to the "dead properties" list,
2019 * and add the new property to the property list
2020 */
2021 int of_update_property(struct device_node *np, struct property *newprop)
2022 {
2023 struct property *oldprop;
2024 unsigned long flags;
2025 int rc;
2026
2027 if (!newprop->name)
2028 return -EINVAL;
2029
2030 mutex_lock(&of_mutex);
2031
2032 raw_spin_lock_irqsave(&devtree_lock, flags);
2033 rc = __of_update_property(np, newprop, &oldprop);
2034 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2035
2036 if (!rc)
2037 __of_update_property_sysfs(np, newprop, oldprop);
2038
2039 mutex_unlock(&of_mutex);
2040
2041 if (!rc)
2042 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2043
2044 return rc;
2045 }
2046
2047 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2048 int id, const char *stem, int stem_len)
2049 {
2050 ap->np = np;
2051 ap->id = id;
2052 strncpy(ap->stem, stem, stem_len);
2053 ap->stem[stem_len] = 0;
2054 list_add_tail(&ap->link, &aliases_lookup);
2055 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2056 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2057 }
2058
2059 /**
2060 * of_alias_scan - Scan all properties of the 'aliases' node
2061 *
2062 * The function scans all the properties of the 'aliases' node and populates
2063 * the global lookup table with the properties. It returns the
2064 * number of alias properties found, or an error code in case of failure.
2065 *
2066 * @dt_alloc: An allocator that provides a virtual address to memory
2067 * for storing the resulting tree
2068 */
2069 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2070 {
2071 struct property *pp;
2072
2073 of_aliases = of_find_node_by_path("/aliases");
2074 of_chosen = of_find_node_by_path("/chosen");
2075 if (of_chosen == NULL)
2076 of_chosen = of_find_node_by_path("/chosen@0");
2077
2078 if (of_chosen) {
2079 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2080 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2081 if (!name)
2082 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2083 if (IS_ENABLED(CONFIG_PPC) && !name)
2084 name = of_get_property(of_aliases, "stdout", NULL);
2085 if (name)
2086 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2087 }
2088
2089 if (!of_aliases)
2090 return;
2091
2092 for_each_property_of_node(of_aliases, pp) {
2093 const char *start = pp->name;
2094 const char *end = start + strlen(start);
2095 struct device_node *np;
2096 struct alias_prop *ap;
2097 int id, len;
2098
2099 /* Skip those we do not want to proceed */
2100 if (!strcmp(pp->name, "name") ||
2101 !strcmp(pp->name, "phandle") ||
2102 !strcmp(pp->name, "linux,phandle"))
2103 continue;
2104
2105 np = of_find_node_by_path(pp->value);
2106 if (!np)
2107 continue;
2108
2109 /* walk the alias backwards to extract the id and work out
2110 * the 'stem' string */
2111 while (isdigit(*(end-1)) && end > start)
2112 end--;
2113 len = end - start;
2114
2115 if (kstrtoint(end, 10, &id) < 0)
2116 continue;
2117
2118 /* Allocate an alias_prop with enough space for the stem */
2119 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2120 if (!ap)
2121 continue;
2122 memset(ap, 0, sizeof(*ap) + len + 1);
2123 ap->alias = start;
2124 of_alias_add(ap, np, id, start, len);
2125 }
2126 }
2127
2128 /**
2129 * of_alias_get_id - Get alias id for the given device_node
2130 * @np: Pointer to the given device_node
2131 * @stem: Alias stem of the given device_node
2132 *
2133 * The function travels the lookup table to get the alias id for the given
2134 * device_node and alias stem. It returns the alias id if found.
2135 */
2136 int of_alias_get_id(struct device_node *np, const char *stem)
2137 {
2138 struct alias_prop *app;
2139 int id = -ENODEV;
2140
2141 mutex_lock(&of_mutex);
2142 list_for_each_entry(app, &aliases_lookup, link) {
2143 if (strcmp(app->stem, stem) != 0)
2144 continue;
2145
2146 if (np == app->np) {
2147 id = app->id;
2148 break;
2149 }
2150 }
2151 mutex_unlock(&of_mutex);
2152
2153 return id;
2154 }
2155 EXPORT_SYMBOL_GPL(of_alias_get_id);
2156
2157 /**
2158 * of_alias_get_highest_id - Get highest alias id for the given stem
2159 * @stem: Alias stem to be examined
2160 *
2161 * The function travels the lookup table to get the highest alias id for the
2162 * given alias stem. It returns the alias id if found.
2163 */
2164 int of_alias_get_highest_id(const char *stem)
2165 {
2166 struct alias_prop *app;
2167 int id = -ENODEV;
2168
2169 mutex_lock(&of_mutex);
2170 list_for_each_entry(app, &aliases_lookup, link) {
2171 if (strcmp(app->stem, stem) != 0)
2172 continue;
2173
2174 if (app->id > id)
2175 id = app->id;
2176 }
2177 mutex_unlock(&of_mutex);
2178
2179 return id;
2180 }
2181 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2182
2183 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2184 u32 *pu)
2185 {
2186 const void *curv = cur;
2187
2188 if (!prop)
2189 return NULL;
2190
2191 if (!cur) {
2192 curv = prop->value;
2193 goto out_val;
2194 }
2195
2196 curv += sizeof(*cur);
2197 if (curv >= prop->value + prop->length)
2198 return NULL;
2199
2200 out_val:
2201 *pu = be32_to_cpup(curv);
2202 return curv;
2203 }
2204 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2205
2206 const char *of_prop_next_string(struct property *prop, const char *cur)
2207 {
2208 const void *curv = cur;
2209
2210 if (!prop)
2211 return NULL;
2212
2213 if (!cur)
2214 return prop->value;
2215
2216 curv += strlen(cur) + 1;
2217 if (curv >= prop->value + prop->length)
2218 return NULL;
2219
2220 return curv;
2221 }
2222 EXPORT_SYMBOL_GPL(of_prop_next_string);
2223
2224 /**
2225 * of_console_check() - Test and setup console for DT setup
2226 * @dn - Pointer to device node
2227 * @name - Name to use for preferred console without index. ex. "ttyS"
2228 * @index - Index to use for preferred console.
2229 *
2230 * Check if the given device node matches the stdout-path property in the
2231 * /chosen node. If it does then register it as the preferred console and return
2232 * TRUE. Otherwise return FALSE.
2233 */
2234 bool of_console_check(struct device_node *dn, char *name, int index)
2235 {
2236 if (!dn || dn != of_stdout || console_set_on_cmdline)
2237 return false;
2238 return !add_preferred_console(name, index,
2239 kstrdup(of_stdout_options, GFP_KERNEL));
2240 }
2241 EXPORT_SYMBOL_GPL(of_console_check);
2242
2243 /**
2244 * of_find_next_cache_node - Find a node's subsidiary cache
2245 * @np: node of type "cpu" or "cache"
2246 *
2247 * Returns a node pointer with refcount incremented, use
2248 * of_node_put() on it when done. Caller should hold a reference
2249 * to np.
2250 */
2251 struct device_node *of_find_next_cache_node(const struct device_node *np)
2252 {
2253 struct device_node *child;
2254 const phandle *handle;
2255
2256 handle = of_get_property(np, "l2-cache", NULL);
2257 if (!handle)
2258 handle = of_get_property(np, "next-level-cache", NULL);
2259
2260 if (handle)
2261 return of_find_node_by_phandle(be32_to_cpup(handle));
2262
2263 /* OF on pmac has nodes instead of properties named "l2-cache"
2264 * beneath CPU nodes.
2265 */
2266 if (!strcmp(np->type, "cpu"))
2267 for_each_child_of_node(np, child)
2268 if (!strcmp(child->type, "cache"))
2269 return child;
2270
2271 return NULL;
2272 }
2273
2274 /**
2275 * of_find_last_cache_level - Find the level at which the last cache is
2276 * present for the given logical cpu
2277 *
2278 * @cpu: cpu number(logical index) for which the last cache level is needed
2279 *
2280 * Returns the the level at which the last cache is present. It is exactly
2281 * same as the total number of cache levels for the given logical cpu.
2282 */
2283 int of_find_last_cache_level(unsigned int cpu)
2284 {
2285 u32 cache_level = 0;
2286 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2287
2288 while (np) {
2289 prev = np;
2290 of_node_put(np);
2291 np = of_find_next_cache_node(np);
2292 }
2293
2294 of_property_read_u32(prev, "cache-level", &cache_level);
2295
2296 return cache_level;
2297 }
2298
2299 /**
2300 * of_graph_parse_endpoint() - parse common endpoint node properties
2301 * @node: pointer to endpoint device_node
2302 * @endpoint: pointer to the OF endpoint data structure
2303 *
2304 * The caller should hold a reference to @node.
2305 */
2306 int of_graph_parse_endpoint(const struct device_node *node,
2307 struct of_endpoint *endpoint)
2308 {
2309 struct device_node *port_node = of_get_parent(node);
2310
2311 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2312 __func__, node->full_name);
2313
2314 memset(endpoint, 0, sizeof(*endpoint));
2315
2316 endpoint->local_node = node;
2317 /*
2318 * It doesn't matter whether the two calls below succeed.
2319 * If they don't then the default value 0 is used.
2320 */
2321 of_property_read_u32(port_node, "reg", &endpoint->port);
2322 of_property_read_u32(node, "reg", &endpoint->id);
2323
2324 of_node_put(port_node);
2325
2326 return 0;
2327 }
2328 EXPORT_SYMBOL(of_graph_parse_endpoint);
2329
2330 /**
2331 * of_graph_get_port_by_id() - get the port matching a given id
2332 * @parent: pointer to the parent device node
2333 * @id: id of the port
2334 *
2335 * Return: A 'port' node pointer with refcount incremented. The caller
2336 * has to use of_node_put() on it when done.
2337 */
2338 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2339 {
2340 struct device_node *node, *port;
2341
2342 node = of_get_child_by_name(parent, "ports");
2343 if (node)
2344 parent = node;
2345
2346 for_each_child_of_node(parent, port) {
2347 u32 port_id = 0;
2348
2349 if (of_node_cmp(port->name, "port") != 0)
2350 continue;
2351 of_property_read_u32(port, "reg", &port_id);
2352 if (id == port_id)
2353 break;
2354 }
2355
2356 of_node_put(node);
2357
2358 return port;
2359 }
2360 EXPORT_SYMBOL(of_graph_get_port_by_id);
2361
2362 /**
2363 * of_graph_get_next_endpoint() - get next endpoint node
2364 * @parent: pointer to the parent device node
2365 * @prev: previous endpoint node, or NULL to get first
2366 *
2367 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2368 * of the passed @prev node is decremented.
2369 */
2370 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2371 struct device_node *prev)
2372 {
2373 struct device_node *endpoint;
2374 struct device_node *port;
2375
2376 if (!parent)
2377 return NULL;
2378
2379 /*
2380 * Start by locating the port node. If no previous endpoint is specified
2381 * search for the first port node, otherwise get the previous endpoint
2382 * parent port node.
2383 */
2384 if (!prev) {
2385 struct device_node *node;
2386
2387 node = of_get_child_by_name(parent, "ports");
2388 if (node)
2389 parent = node;
2390
2391 port = of_get_child_by_name(parent, "port");
2392 of_node_put(node);
2393
2394 if (!port) {
2395 pr_err("graph: no port node found in %s\n",
2396 parent->full_name);
2397 return NULL;
2398 }
2399 } else {
2400 port = of_get_parent(prev);
2401 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2402 __func__, prev->full_name))
2403 return NULL;
2404 }
2405
2406 while (1) {
2407 /*
2408 * Now that we have a port node, get the next endpoint by
2409 * getting the next child. If the previous endpoint is NULL this
2410 * will return the first child.
2411 */
2412 endpoint = of_get_next_child(port, prev);
2413 if (endpoint) {
2414 of_node_put(port);
2415 return endpoint;
2416 }
2417
2418 /* No more endpoints under this port, try the next one. */
2419 prev = NULL;
2420
2421 do {
2422 port = of_get_next_child(parent, port);
2423 if (!port)
2424 return NULL;
2425 } while (of_node_cmp(port->name, "port"));
2426 }
2427 }
2428 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2429
2430 /**
2431 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2432 * @parent: pointer to the parent device node
2433 * @port_reg: identifier (value of reg property) of the parent port node
2434 * @reg: identifier (value of reg property) of the endpoint node
2435 *
2436 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2437 * is the child of a port node identified by port_reg. reg and port_reg are
2438 * ignored when they are -1.
2439 */
2440 struct device_node *of_graph_get_endpoint_by_regs(
2441 const struct device_node *parent, int port_reg, int reg)
2442 {
2443 struct of_endpoint endpoint;
2444 struct device_node *node = NULL;
2445
2446 for_each_endpoint_of_node(parent, node) {
2447 of_graph_parse_endpoint(node, &endpoint);
2448 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2449 ((reg == -1) || (endpoint.id == reg)))
2450 return node;
2451 }
2452
2453 return NULL;
2454 }
2455 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2456
2457 /**
2458 * of_graph_get_remote_port_parent() - get remote port's parent node
2459 * @node: pointer to a local endpoint device_node
2460 *
2461 * Return: Remote device node associated with remote endpoint node linked
2462 * to @node. Use of_node_put() on it when done.
2463 */
2464 struct device_node *of_graph_get_remote_port_parent(
2465 const struct device_node *node)
2466 {
2467 struct device_node *np;
2468 unsigned int depth;
2469
2470 /* Get remote endpoint node. */
2471 np = of_parse_phandle(node, "remote-endpoint", 0);
2472
2473 /* Walk 3 levels up only if there is 'ports' node. */
2474 for (depth = 3; depth && np; depth--) {
2475 np = of_get_next_parent(np);
2476 if (depth == 2 && of_node_cmp(np->name, "ports"))
2477 break;
2478 }
2479 return np;
2480 }
2481 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2482
2483 /**
2484 * of_graph_get_remote_port() - get remote port node
2485 * @node: pointer to a local endpoint device_node
2486 *
2487 * Return: Remote port node associated with remote endpoint node linked
2488 * to @node. Use of_node_put() on it when done.
2489 */
2490 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2491 {
2492 struct device_node *np;
2493
2494 /* Get remote endpoint node. */
2495 np = of_parse_phandle(node, "remote-endpoint", 0);
2496 if (!np)
2497 return NULL;
2498 return of_get_next_parent(np);
2499 }
2500 EXPORT_SYMBOL(of_graph_get_remote_port);
2501
2502 /**
2503 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
2504 * @node: pointer to parent device_node containing graph port/endpoint
2505 * @port: identifier (value of reg property) of the parent port node
2506 * @endpoint: identifier (value of reg property) of the endpoint node
2507 *
2508 * Return: Remote device node associated with remote endpoint node linked
2509 * to @node. Use of_node_put() on it when done.
2510 */
2511 struct device_node *of_graph_get_remote_node(const struct device_node *node,
2512 u32 port, u32 endpoint)
2513 {
2514 struct device_node *endpoint_node, *remote;
2515
2516 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
2517 if (!endpoint_node) {
2518 pr_debug("no valid endpoint (%d, %d) for node %s\n",
2519 port, endpoint, node->full_name);
2520 return NULL;
2521 }
2522
2523 remote = of_graph_get_remote_port_parent(endpoint_node);
2524 of_node_put(endpoint_node);
2525 if (!remote) {
2526 pr_debug("no valid remote node\n");
2527 return NULL;
2528 }
2529
2530 if (!of_device_is_available(remote)) {
2531 pr_debug("not available for remote node\n");
2532 return NULL;
2533 }
2534
2535 return remote;
2536 }
2537 EXPORT_SYMBOL(of_graph_get_remote_node);