]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/of/base.c
of: Factor out #{addr,size}-cells parsing
[mirror_ubuntu-hirsute-kernel.git] / drivers / of / base.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42
43 struct kset *of_kset;
44
45 /*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51 DEFINE_MUTEX(of_mutex);
52
53 /* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87 }
88
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100
101 int of_n_addr_cells(struct device_node *np)
102 {
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121
122 int of_n_size_cells(struct device_node *np)
123 {
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 return NUMA_NO_NODE;
135 }
136 #endif
137
138 /*
139 * Assumptions behind phandle_cache implementation:
140 * - phandle property values are in a contiguous range of 1..n
141 *
142 * If the assumptions do not hold, then
143 * - the phandle lookup overhead reduction provided by the cache
144 * will likely be less
145 */
146
147 static struct device_node **phandle_cache;
148 static u32 phandle_cache_mask;
149
150 /*
151 * Caller must hold devtree_lock.
152 */
153 static void __of_free_phandle_cache(void)
154 {
155 u32 cache_entries = phandle_cache_mask + 1;
156 u32 k;
157
158 if (!phandle_cache)
159 return;
160
161 for (k = 0; k < cache_entries; k++)
162 of_node_put(phandle_cache[k]);
163
164 kfree(phandle_cache);
165 phandle_cache = NULL;
166 }
167
168 int of_free_phandle_cache(void)
169 {
170 unsigned long flags;
171
172 raw_spin_lock_irqsave(&devtree_lock, flags);
173
174 __of_free_phandle_cache();
175
176 raw_spin_unlock_irqrestore(&devtree_lock, flags);
177
178 return 0;
179 }
180 #if !defined(CONFIG_MODULES)
181 late_initcall_sync(of_free_phandle_cache);
182 #endif
183
184 /*
185 * Caller must hold devtree_lock.
186 */
187 void __of_free_phandle_cache_entry(phandle handle)
188 {
189 phandle masked_handle;
190 struct device_node *np;
191
192 if (!handle)
193 return;
194
195 masked_handle = handle & phandle_cache_mask;
196
197 if (phandle_cache) {
198 np = phandle_cache[masked_handle];
199 if (np && handle == np->phandle) {
200 of_node_put(np);
201 phandle_cache[masked_handle] = NULL;
202 }
203 }
204 }
205
206 void of_populate_phandle_cache(void)
207 {
208 unsigned long flags;
209 u32 cache_entries;
210 struct device_node *np;
211 u32 phandles = 0;
212
213 raw_spin_lock_irqsave(&devtree_lock, flags);
214
215 __of_free_phandle_cache();
216
217 for_each_of_allnodes(np)
218 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
219 phandles++;
220
221 if (!phandles)
222 goto out;
223
224 cache_entries = roundup_pow_of_two(phandles);
225 phandle_cache_mask = cache_entries - 1;
226
227 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
228 GFP_ATOMIC);
229 if (!phandle_cache)
230 goto out;
231
232 for_each_of_allnodes(np)
233 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
234 of_node_get(np);
235 phandle_cache[np->phandle & phandle_cache_mask] = np;
236 }
237
238 out:
239 raw_spin_unlock_irqrestore(&devtree_lock, flags);
240 }
241
242 void __init of_core_init(void)
243 {
244 struct device_node *np;
245
246 of_populate_phandle_cache();
247
248 /* Create the kset, and register existing nodes */
249 mutex_lock(&of_mutex);
250 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
251 if (!of_kset) {
252 mutex_unlock(&of_mutex);
253 pr_err("failed to register existing nodes\n");
254 return;
255 }
256 for_each_of_allnodes(np)
257 __of_attach_node_sysfs(np);
258 mutex_unlock(&of_mutex);
259
260 /* Symlink in /proc as required by userspace ABI */
261 if (of_root)
262 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
263 }
264
265 static struct property *__of_find_property(const struct device_node *np,
266 const char *name, int *lenp)
267 {
268 struct property *pp;
269
270 if (!np)
271 return NULL;
272
273 for (pp = np->properties; pp; pp = pp->next) {
274 if (of_prop_cmp(pp->name, name) == 0) {
275 if (lenp)
276 *lenp = pp->length;
277 break;
278 }
279 }
280
281 return pp;
282 }
283
284 struct property *of_find_property(const struct device_node *np,
285 const char *name,
286 int *lenp)
287 {
288 struct property *pp;
289 unsigned long flags;
290
291 raw_spin_lock_irqsave(&devtree_lock, flags);
292 pp = __of_find_property(np, name, lenp);
293 raw_spin_unlock_irqrestore(&devtree_lock, flags);
294
295 return pp;
296 }
297 EXPORT_SYMBOL(of_find_property);
298
299 struct device_node *__of_find_all_nodes(struct device_node *prev)
300 {
301 struct device_node *np;
302 if (!prev) {
303 np = of_root;
304 } else if (prev->child) {
305 np = prev->child;
306 } else {
307 /* Walk back up looking for a sibling, or the end of the structure */
308 np = prev;
309 while (np->parent && !np->sibling)
310 np = np->parent;
311 np = np->sibling; /* Might be null at the end of the tree */
312 }
313 return np;
314 }
315
316 /**
317 * of_find_all_nodes - Get next node in global list
318 * @prev: Previous node or NULL to start iteration
319 * of_node_put() will be called on it
320 *
321 * Returns a node pointer with refcount incremented, use
322 * of_node_put() on it when done.
323 */
324 struct device_node *of_find_all_nodes(struct device_node *prev)
325 {
326 struct device_node *np;
327 unsigned long flags;
328
329 raw_spin_lock_irqsave(&devtree_lock, flags);
330 np = __of_find_all_nodes(prev);
331 of_node_get(np);
332 of_node_put(prev);
333 raw_spin_unlock_irqrestore(&devtree_lock, flags);
334 return np;
335 }
336 EXPORT_SYMBOL(of_find_all_nodes);
337
338 /*
339 * Find a property with a given name for a given node
340 * and return the value.
341 */
342 const void *__of_get_property(const struct device_node *np,
343 const char *name, int *lenp)
344 {
345 struct property *pp = __of_find_property(np, name, lenp);
346
347 return pp ? pp->value : NULL;
348 }
349
350 /*
351 * Find a property with a given name for a given node
352 * and return the value.
353 */
354 const void *of_get_property(const struct device_node *np, const char *name,
355 int *lenp)
356 {
357 struct property *pp = of_find_property(np, name, lenp);
358
359 return pp ? pp->value : NULL;
360 }
361 EXPORT_SYMBOL(of_get_property);
362
363 /*
364 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
365 *
366 * @cpu: logical cpu index of a core/thread
367 * @phys_id: physical identifier of a core/thread
368 *
369 * CPU logical to physical index mapping is architecture specific.
370 * However this __weak function provides a default match of physical
371 * id to logical cpu index. phys_id provided here is usually values read
372 * from the device tree which must match the hardware internal registers.
373 *
374 * Returns true if the physical identifier and the logical cpu index
375 * correspond to the same core/thread, false otherwise.
376 */
377 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
378 {
379 return (u32)phys_id == cpu;
380 }
381
382 /**
383 * Checks if the given "prop_name" property holds the physical id of the
384 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
385 * NULL, local thread number within the core is returned in it.
386 */
387 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
388 const char *prop_name, int cpu, unsigned int *thread)
389 {
390 const __be32 *cell;
391 int ac, prop_len, tid;
392 u64 hwid;
393
394 ac = of_n_addr_cells(cpun);
395 cell = of_get_property(cpun, prop_name, &prop_len);
396 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
397 return true;
398 if (!cell || !ac)
399 return false;
400 prop_len /= sizeof(*cell) * ac;
401 for (tid = 0; tid < prop_len; tid++) {
402 hwid = of_read_number(cell, ac);
403 if (arch_match_cpu_phys_id(cpu, hwid)) {
404 if (thread)
405 *thread = tid;
406 return true;
407 }
408 cell += ac;
409 }
410 return false;
411 }
412
413 /*
414 * arch_find_n_match_cpu_physical_id - See if the given device node is
415 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
416 * else false. If 'thread' is non-NULL, the local thread number within the
417 * core is returned in it.
418 */
419 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
420 int cpu, unsigned int *thread)
421 {
422 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
423 * for thread ids on PowerPC. If it doesn't exist fallback to
424 * standard "reg" property.
425 */
426 if (IS_ENABLED(CONFIG_PPC) &&
427 __of_find_n_match_cpu_property(cpun,
428 "ibm,ppc-interrupt-server#s",
429 cpu, thread))
430 return true;
431
432 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
433 }
434
435 /**
436 * of_get_cpu_node - Get device node associated with the given logical CPU
437 *
438 * @cpu: CPU number(logical index) for which device node is required
439 * @thread: if not NULL, local thread number within the physical core is
440 * returned
441 *
442 * The main purpose of this function is to retrieve the device node for the
443 * given logical CPU index. It should be used to initialize the of_node in
444 * cpu device. Once of_node in cpu device is populated, all the further
445 * references can use that instead.
446 *
447 * CPU logical to physical index mapping is architecture specific and is built
448 * before booting secondary cores. This function uses arch_match_cpu_phys_id
449 * which can be overridden by architecture specific implementation.
450 *
451 * Returns a node pointer for the logical cpu with refcount incremented, use
452 * of_node_put() on it when done. Returns NULL if not found.
453 */
454 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
455 {
456 struct device_node *cpun;
457
458 for_each_of_cpu_node(cpun) {
459 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
460 return cpun;
461 }
462 return NULL;
463 }
464 EXPORT_SYMBOL(of_get_cpu_node);
465
466 /**
467 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
468 *
469 * @cpu_node: Pointer to the device_node for CPU.
470 *
471 * Returns the logical CPU number of the given CPU device_node.
472 * Returns -ENODEV if the CPU is not found.
473 */
474 int of_cpu_node_to_id(struct device_node *cpu_node)
475 {
476 int cpu;
477 bool found = false;
478 struct device_node *np;
479
480 for_each_possible_cpu(cpu) {
481 np = of_cpu_device_node_get(cpu);
482 found = (cpu_node == np);
483 of_node_put(np);
484 if (found)
485 return cpu;
486 }
487
488 return -ENODEV;
489 }
490 EXPORT_SYMBOL(of_cpu_node_to_id);
491
492 /**
493 * __of_device_is_compatible() - Check if the node matches given constraints
494 * @device: pointer to node
495 * @compat: required compatible string, NULL or "" for any match
496 * @type: required device_type value, NULL or "" for any match
497 * @name: required node name, NULL or "" for any match
498 *
499 * Checks if the given @compat, @type and @name strings match the
500 * properties of the given @device. A constraints can be skipped by
501 * passing NULL or an empty string as the constraint.
502 *
503 * Returns 0 for no match, and a positive integer on match. The return
504 * value is a relative score with larger values indicating better
505 * matches. The score is weighted for the most specific compatible value
506 * to get the highest score. Matching type is next, followed by matching
507 * name. Practically speaking, this results in the following priority
508 * order for matches:
509 *
510 * 1. specific compatible && type && name
511 * 2. specific compatible && type
512 * 3. specific compatible && name
513 * 4. specific compatible
514 * 5. general compatible && type && name
515 * 6. general compatible && type
516 * 7. general compatible && name
517 * 8. general compatible
518 * 9. type && name
519 * 10. type
520 * 11. name
521 */
522 static int __of_device_is_compatible(const struct device_node *device,
523 const char *compat, const char *type, const char *name)
524 {
525 struct property *prop;
526 const char *cp;
527 int index = 0, score = 0;
528
529 /* Compatible match has highest priority */
530 if (compat && compat[0]) {
531 prop = __of_find_property(device, "compatible", NULL);
532 for (cp = of_prop_next_string(prop, NULL); cp;
533 cp = of_prop_next_string(prop, cp), index++) {
534 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
535 score = INT_MAX/2 - (index << 2);
536 break;
537 }
538 }
539 if (!score)
540 return 0;
541 }
542
543 /* Matching type is better than matching name */
544 if (type && type[0]) {
545 if (!__of_node_is_type(device, type))
546 return 0;
547 score += 2;
548 }
549
550 /* Matching name is a bit better than not */
551 if (name && name[0]) {
552 if (!of_node_name_eq(device, name))
553 return 0;
554 score++;
555 }
556
557 return score;
558 }
559
560 /** Checks if the given "compat" string matches one of the strings in
561 * the device's "compatible" property
562 */
563 int of_device_is_compatible(const struct device_node *device,
564 const char *compat)
565 {
566 unsigned long flags;
567 int res;
568
569 raw_spin_lock_irqsave(&devtree_lock, flags);
570 res = __of_device_is_compatible(device, compat, NULL, NULL);
571 raw_spin_unlock_irqrestore(&devtree_lock, flags);
572 return res;
573 }
574 EXPORT_SYMBOL(of_device_is_compatible);
575
576 /** Checks if the device is compatible with any of the entries in
577 * a NULL terminated array of strings. Returns the best match
578 * score or 0.
579 */
580 int of_device_compatible_match(struct device_node *device,
581 const char *const *compat)
582 {
583 unsigned int tmp, score = 0;
584
585 if (!compat)
586 return 0;
587
588 while (*compat) {
589 tmp = of_device_is_compatible(device, *compat);
590 if (tmp > score)
591 score = tmp;
592 compat++;
593 }
594
595 return score;
596 }
597
598 /**
599 * of_machine_is_compatible - Test root of device tree for a given compatible value
600 * @compat: compatible string to look for in root node's compatible property.
601 *
602 * Returns a positive integer if the root node has the given value in its
603 * compatible property.
604 */
605 int of_machine_is_compatible(const char *compat)
606 {
607 struct device_node *root;
608 int rc = 0;
609
610 root = of_find_node_by_path("/");
611 if (root) {
612 rc = of_device_is_compatible(root, compat);
613 of_node_put(root);
614 }
615 return rc;
616 }
617 EXPORT_SYMBOL(of_machine_is_compatible);
618
619 /**
620 * __of_device_is_available - check if a device is available for use
621 *
622 * @device: Node to check for availability, with locks already held
623 *
624 * Returns true if the status property is absent or set to "okay" or "ok",
625 * false otherwise
626 */
627 static bool __of_device_is_available(const struct device_node *device)
628 {
629 const char *status;
630 int statlen;
631
632 if (!device)
633 return false;
634
635 status = __of_get_property(device, "status", &statlen);
636 if (status == NULL)
637 return true;
638
639 if (statlen > 0) {
640 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
641 return true;
642 }
643
644 return false;
645 }
646
647 /**
648 * of_device_is_available - check if a device is available for use
649 *
650 * @device: Node to check for availability
651 *
652 * Returns true if the status property is absent or set to "okay" or "ok",
653 * false otherwise
654 */
655 bool of_device_is_available(const struct device_node *device)
656 {
657 unsigned long flags;
658 bool res;
659
660 raw_spin_lock_irqsave(&devtree_lock, flags);
661 res = __of_device_is_available(device);
662 raw_spin_unlock_irqrestore(&devtree_lock, flags);
663 return res;
664
665 }
666 EXPORT_SYMBOL(of_device_is_available);
667
668 /**
669 * of_device_is_big_endian - check if a device has BE registers
670 *
671 * @device: Node to check for endianness
672 *
673 * Returns true if the device has a "big-endian" property, or if the kernel
674 * was compiled for BE *and* the device has a "native-endian" property.
675 * Returns false otherwise.
676 *
677 * Callers would nominally use ioread32be/iowrite32be if
678 * of_device_is_big_endian() == true, or readl/writel otherwise.
679 */
680 bool of_device_is_big_endian(const struct device_node *device)
681 {
682 if (of_property_read_bool(device, "big-endian"))
683 return true;
684 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
685 of_property_read_bool(device, "native-endian"))
686 return true;
687 return false;
688 }
689 EXPORT_SYMBOL(of_device_is_big_endian);
690
691 /**
692 * of_get_parent - Get a node's parent if any
693 * @node: Node to get parent
694 *
695 * Returns a node pointer with refcount incremented, use
696 * of_node_put() on it when done.
697 */
698 struct device_node *of_get_parent(const struct device_node *node)
699 {
700 struct device_node *np;
701 unsigned long flags;
702
703 if (!node)
704 return NULL;
705
706 raw_spin_lock_irqsave(&devtree_lock, flags);
707 np = of_node_get(node->parent);
708 raw_spin_unlock_irqrestore(&devtree_lock, flags);
709 return np;
710 }
711 EXPORT_SYMBOL(of_get_parent);
712
713 /**
714 * of_get_next_parent - Iterate to a node's parent
715 * @node: Node to get parent of
716 *
717 * This is like of_get_parent() except that it drops the
718 * refcount on the passed node, making it suitable for iterating
719 * through a node's parents.
720 *
721 * Returns a node pointer with refcount incremented, use
722 * of_node_put() on it when done.
723 */
724 struct device_node *of_get_next_parent(struct device_node *node)
725 {
726 struct device_node *parent;
727 unsigned long flags;
728
729 if (!node)
730 return NULL;
731
732 raw_spin_lock_irqsave(&devtree_lock, flags);
733 parent = of_node_get(node->parent);
734 of_node_put(node);
735 raw_spin_unlock_irqrestore(&devtree_lock, flags);
736 return parent;
737 }
738 EXPORT_SYMBOL(of_get_next_parent);
739
740 static struct device_node *__of_get_next_child(const struct device_node *node,
741 struct device_node *prev)
742 {
743 struct device_node *next;
744
745 if (!node)
746 return NULL;
747
748 next = prev ? prev->sibling : node->child;
749 for (; next; next = next->sibling)
750 if (of_node_get(next))
751 break;
752 of_node_put(prev);
753 return next;
754 }
755 #define __for_each_child_of_node(parent, child) \
756 for (child = __of_get_next_child(parent, NULL); child != NULL; \
757 child = __of_get_next_child(parent, child))
758
759 /**
760 * of_get_next_child - Iterate a node childs
761 * @node: parent node
762 * @prev: previous child of the parent node, or NULL to get first
763 *
764 * Returns a node pointer with refcount incremented, use of_node_put() on
765 * it when done. Returns NULL when prev is the last child. Decrements the
766 * refcount of prev.
767 */
768 struct device_node *of_get_next_child(const struct device_node *node,
769 struct device_node *prev)
770 {
771 struct device_node *next;
772 unsigned long flags;
773
774 raw_spin_lock_irqsave(&devtree_lock, flags);
775 next = __of_get_next_child(node, prev);
776 raw_spin_unlock_irqrestore(&devtree_lock, flags);
777 return next;
778 }
779 EXPORT_SYMBOL(of_get_next_child);
780
781 /**
782 * of_get_next_available_child - Find the next available child node
783 * @node: parent node
784 * @prev: previous child of the parent node, or NULL to get first
785 *
786 * This function is like of_get_next_child(), except that it
787 * automatically skips any disabled nodes (i.e. status = "disabled").
788 */
789 struct device_node *of_get_next_available_child(const struct device_node *node,
790 struct device_node *prev)
791 {
792 struct device_node *next;
793 unsigned long flags;
794
795 if (!node)
796 return NULL;
797
798 raw_spin_lock_irqsave(&devtree_lock, flags);
799 next = prev ? prev->sibling : node->child;
800 for (; next; next = next->sibling) {
801 if (!__of_device_is_available(next))
802 continue;
803 if (of_node_get(next))
804 break;
805 }
806 of_node_put(prev);
807 raw_spin_unlock_irqrestore(&devtree_lock, flags);
808 return next;
809 }
810 EXPORT_SYMBOL(of_get_next_available_child);
811
812 /**
813 * of_get_next_cpu_node - Iterate on cpu nodes
814 * @prev: previous child of the /cpus node, or NULL to get first
815 *
816 * Returns a cpu node pointer with refcount incremented, use of_node_put()
817 * on it when done. Returns NULL when prev is the last child. Decrements
818 * the refcount of prev.
819 */
820 struct device_node *of_get_next_cpu_node(struct device_node *prev)
821 {
822 struct device_node *next = NULL;
823 unsigned long flags;
824 struct device_node *node;
825
826 if (!prev)
827 node = of_find_node_by_path("/cpus");
828
829 raw_spin_lock_irqsave(&devtree_lock, flags);
830 if (prev)
831 next = prev->sibling;
832 else if (node) {
833 next = node->child;
834 of_node_put(node);
835 }
836 for (; next; next = next->sibling) {
837 if (!(of_node_name_eq(next, "cpu") ||
838 __of_node_is_type(next, "cpu")))
839 continue;
840 if (of_node_get(next))
841 break;
842 }
843 of_node_put(prev);
844 raw_spin_unlock_irqrestore(&devtree_lock, flags);
845 return next;
846 }
847 EXPORT_SYMBOL(of_get_next_cpu_node);
848
849 /**
850 * of_get_compatible_child - Find compatible child node
851 * @parent: parent node
852 * @compatible: compatible string
853 *
854 * Lookup child node whose compatible property contains the given compatible
855 * string.
856 *
857 * Returns a node pointer with refcount incremented, use of_node_put() on it
858 * when done; or NULL if not found.
859 */
860 struct device_node *of_get_compatible_child(const struct device_node *parent,
861 const char *compatible)
862 {
863 struct device_node *child;
864
865 for_each_child_of_node(parent, child) {
866 if (of_device_is_compatible(child, compatible))
867 break;
868 }
869
870 return child;
871 }
872 EXPORT_SYMBOL(of_get_compatible_child);
873
874 /**
875 * of_get_child_by_name - Find the child node by name for a given parent
876 * @node: parent node
877 * @name: child name to look for.
878 *
879 * This function looks for child node for given matching name
880 *
881 * Returns a node pointer if found, with refcount incremented, use
882 * of_node_put() on it when done.
883 * Returns NULL if node is not found.
884 */
885 struct device_node *of_get_child_by_name(const struct device_node *node,
886 const char *name)
887 {
888 struct device_node *child;
889
890 for_each_child_of_node(node, child)
891 if (of_node_name_eq(child, name))
892 break;
893 return child;
894 }
895 EXPORT_SYMBOL(of_get_child_by_name);
896
897 struct device_node *__of_find_node_by_path(struct device_node *parent,
898 const char *path)
899 {
900 struct device_node *child;
901 int len;
902
903 len = strcspn(path, "/:");
904 if (!len)
905 return NULL;
906
907 __for_each_child_of_node(parent, child) {
908 const char *name = kbasename(child->full_name);
909 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
910 return child;
911 }
912 return NULL;
913 }
914
915 struct device_node *__of_find_node_by_full_path(struct device_node *node,
916 const char *path)
917 {
918 const char *separator = strchr(path, ':');
919
920 while (node && *path == '/') {
921 struct device_node *tmp = node;
922
923 path++; /* Increment past '/' delimiter */
924 node = __of_find_node_by_path(node, path);
925 of_node_put(tmp);
926 path = strchrnul(path, '/');
927 if (separator && separator < path)
928 break;
929 }
930 return node;
931 }
932
933 /**
934 * of_find_node_opts_by_path - Find a node matching a full OF path
935 * @path: Either the full path to match, or if the path does not
936 * start with '/', the name of a property of the /aliases
937 * node (an alias). In the case of an alias, the node
938 * matching the alias' value will be returned.
939 * @opts: Address of a pointer into which to store the start of
940 * an options string appended to the end of the path with
941 * a ':' separator.
942 *
943 * Valid paths:
944 * /foo/bar Full path
945 * foo Valid alias
946 * foo/bar Valid alias + relative path
947 *
948 * Returns a node pointer with refcount incremented, use
949 * of_node_put() on it when done.
950 */
951 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
952 {
953 struct device_node *np = NULL;
954 struct property *pp;
955 unsigned long flags;
956 const char *separator = strchr(path, ':');
957
958 if (opts)
959 *opts = separator ? separator + 1 : NULL;
960
961 if (strcmp(path, "/") == 0)
962 return of_node_get(of_root);
963
964 /* The path could begin with an alias */
965 if (*path != '/') {
966 int len;
967 const char *p = separator;
968
969 if (!p)
970 p = strchrnul(path, '/');
971 len = p - path;
972
973 /* of_aliases must not be NULL */
974 if (!of_aliases)
975 return NULL;
976
977 for_each_property_of_node(of_aliases, pp) {
978 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
979 np = of_find_node_by_path(pp->value);
980 break;
981 }
982 }
983 if (!np)
984 return NULL;
985 path = p;
986 }
987
988 /* Step down the tree matching path components */
989 raw_spin_lock_irqsave(&devtree_lock, flags);
990 if (!np)
991 np = of_node_get(of_root);
992 np = __of_find_node_by_full_path(np, path);
993 raw_spin_unlock_irqrestore(&devtree_lock, flags);
994 return np;
995 }
996 EXPORT_SYMBOL(of_find_node_opts_by_path);
997
998 /**
999 * of_find_node_by_name - Find a node by its "name" property
1000 * @from: The node to start searching from or NULL; the node
1001 * you pass will not be searched, only the next one
1002 * will. Typically, you pass what the previous call
1003 * returned. of_node_put() will be called on @from.
1004 * @name: The name string to match against
1005 *
1006 * Returns a node pointer with refcount incremented, use
1007 * of_node_put() on it when done.
1008 */
1009 struct device_node *of_find_node_by_name(struct device_node *from,
1010 const char *name)
1011 {
1012 struct device_node *np;
1013 unsigned long flags;
1014
1015 raw_spin_lock_irqsave(&devtree_lock, flags);
1016 for_each_of_allnodes_from(from, np)
1017 if (of_node_name_eq(np, name) && of_node_get(np))
1018 break;
1019 of_node_put(from);
1020 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 return np;
1022 }
1023 EXPORT_SYMBOL(of_find_node_by_name);
1024
1025 /**
1026 * of_find_node_by_type - Find a node by its "device_type" property
1027 * @from: The node to start searching from, or NULL to start searching
1028 * the entire device tree. The node you pass will not be
1029 * searched, only the next one will; typically, you pass
1030 * what the previous call returned. of_node_put() will be
1031 * called on from for you.
1032 * @type: The type string to match against
1033 *
1034 * Returns a node pointer with refcount incremented, use
1035 * of_node_put() on it when done.
1036 */
1037 struct device_node *of_find_node_by_type(struct device_node *from,
1038 const char *type)
1039 {
1040 struct device_node *np;
1041 unsigned long flags;
1042
1043 raw_spin_lock_irqsave(&devtree_lock, flags);
1044 for_each_of_allnodes_from(from, np)
1045 if (__of_node_is_type(np, type) && of_node_get(np))
1046 break;
1047 of_node_put(from);
1048 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1049 return np;
1050 }
1051 EXPORT_SYMBOL(of_find_node_by_type);
1052
1053 /**
1054 * of_find_compatible_node - Find a node based on type and one of the
1055 * tokens in its "compatible" property
1056 * @from: The node to start searching from or NULL, the node
1057 * you pass will not be searched, only the next one
1058 * will; typically, you pass what the previous call
1059 * returned. of_node_put() will be called on it
1060 * @type: The type string to match "device_type" or NULL to ignore
1061 * @compatible: The string to match to one of the tokens in the device
1062 * "compatible" list.
1063 *
1064 * Returns a node pointer with refcount incremented, use
1065 * of_node_put() on it when done.
1066 */
1067 struct device_node *of_find_compatible_node(struct device_node *from,
1068 const char *type, const char *compatible)
1069 {
1070 struct device_node *np;
1071 unsigned long flags;
1072
1073 raw_spin_lock_irqsave(&devtree_lock, flags);
1074 for_each_of_allnodes_from(from, np)
1075 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1076 of_node_get(np))
1077 break;
1078 of_node_put(from);
1079 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1080 return np;
1081 }
1082 EXPORT_SYMBOL(of_find_compatible_node);
1083
1084 /**
1085 * of_find_node_with_property - Find a node which has a property with
1086 * the given name.
1087 * @from: The node to start searching from or NULL, the node
1088 * you pass will not be searched, only the next one
1089 * will; typically, you pass what the previous call
1090 * returned. of_node_put() will be called on it
1091 * @prop_name: The name of the property to look for.
1092 *
1093 * Returns a node pointer with refcount incremented, use
1094 * of_node_put() on it when done.
1095 */
1096 struct device_node *of_find_node_with_property(struct device_node *from,
1097 const char *prop_name)
1098 {
1099 struct device_node *np;
1100 struct property *pp;
1101 unsigned long flags;
1102
1103 raw_spin_lock_irqsave(&devtree_lock, flags);
1104 for_each_of_allnodes_from(from, np) {
1105 for (pp = np->properties; pp; pp = pp->next) {
1106 if (of_prop_cmp(pp->name, prop_name) == 0) {
1107 of_node_get(np);
1108 goto out;
1109 }
1110 }
1111 }
1112 out:
1113 of_node_put(from);
1114 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1115 return np;
1116 }
1117 EXPORT_SYMBOL(of_find_node_with_property);
1118
1119 static
1120 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1121 const struct device_node *node)
1122 {
1123 const struct of_device_id *best_match = NULL;
1124 int score, best_score = 0;
1125
1126 if (!matches)
1127 return NULL;
1128
1129 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1130 score = __of_device_is_compatible(node, matches->compatible,
1131 matches->type, matches->name);
1132 if (score > best_score) {
1133 best_match = matches;
1134 best_score = score;
1135 }
1136 }
1137
1138 return best_match;
1139 }
1140
1141 /**
1142 * of_match_node - Tell if a device_node has a matching of_match structure
1143 * @matches: array of of device match structures to search in
1144 * @node: the of device structure to match against
1145 *
1146 * Low level utility function used by device matching.
1147 */
1148 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1149 const struct device_node *node)
1150 {
1151 const struct of_device_id *match;
1152 unsigned long flags;
1153
1154 raw_spin_lock_irqsave(&devtree_lock, flags);
1155 match = __of_match_node(matches, node);
1156 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157 return match;
1158 }
1159 EXPORT_SYMBOL(of_match_node);
1160
1161 /**
1162 * of_find_matching_node_and_match - Find a node based on an of_device_id
1163 * match table.
1164 * @from: The node to start searching from or NULL, the node
1165 * you pass will not be searched, only the next one
1166 * will; typically, you pass what the previous call
1167 * returned. of_node_put() will be called on it
1168 * @matches: array of of device match structures to search in
1169 * @match Updated to point at the matches entry which matched
1170 *
1171 * Returns a node pointer with refcount incremented, use
1172 * of_node_put() on it when done.
1173 */
1174 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1175 const struct of_device_id *matches,
1176 const struct of_device_id **match)
1177 {
1178 struct device_node *np;
1179 const struct of_device_id *m;
1180 unsigned long flags;
1181
1182 if (match)
1183 *match = NULL;
1184
1185 raw_spin_lock_irqsave(&devtree_lock, flags);
1186 for_each_of_allnodes_from(from, np) {
1187 m = __of_match_node(matches, np);
1188 if (m && of_node_get(np)) {
1189 if (match)
1190 *match = m;
1191 break;
1192 }
1193 }
1194 of_node_put(from);
1195 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1196 return np;
1197 }
1198 EXPORT_SYMBOL(of_find_matching_node_and_match);
1199
1200 /**
1201 * of_modalias_node - Lookup appropriate modalias for a device node
1202 * @node: pointer to a device tree node
1203 * @modalias: Pointer to buffer that modalias value will be copied into
1204 * @len: Length of modalias value
1205 *
1206 * Based on the value of the compatible property, this routine will attempt
1207 * to choose an appropriate modalias value for a particular device tree node.
1208 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1209 * from the first entry in the compatible list property.
1210 *
1211 * This routine returns 0 on success, <0 on failure.
1212 */
1213 int of_modalias_node(struct device_node *node, char *modalias, int len)
1214 {
1215 const char *compatible, *p;
1216 int cplen;
1217
1218 compatible = of_get_property(node, "compatible", &cplen);
1219 if (!compatible || strlen(compatible) > cplen)
1220 return -ENODEV;
1221 p = strchr(compatible, ',');
1222 strlcpy(modalias, p ? p + 1 : compatible, len);
1223 return 0;
1224 }
1225 EXPORT_SYMBOL_GPL(of_modalias_node);
1226
1227 /**
1228 * of_find_node_by_phandle - Find a node given a phandle
1229 * @handle: phandle of the node to find
1230 *
1231 * Returns a node pointer with refcount incremented, use
1232 * of_node_put() on it when done.
1233 */
1234 struct device_node *of_find_node_by_phandle(phandle handle)
1235 {
1236 struct device_node *np = NULL;
1237 unsigned long flags;
1238 phandle masked_handle;
1239
1240 if (!handle)
1241 return NULL;
1242
1243 raw_spin_lock_irqsave(&devtree_lock, flags);
1244
1245 masked_handle = handle & phandle_cache_mask;
1246
1247 if (phandle_cache) {
1248 if (phandle_cache[masked_handle] &&
1249 handle == phandle_cache[masked_handle]->phandle)
1250 np = phandle_cache[masked_handle];
1251 if (np && of_node_check_flag(np, OF_DETACHED)) {
1252 WARN_ON(1); /* did not uncache np on node removal */
1253 of_node_put(np);
1254 phandle_cache[masked_handle] = NULL;
1255 np = NULL;
1256 }
1257 }
1258
1259 if (!np) {
1260 for_each_of_allnodes(np)
1261 if (np->phandle == handle &&
1262 !of_node_check_flag(np, OF_DETACHED)) {
1263 if (phandle_cache) {
1264 /* will put when removed from cache */
1265 of_node_get(np);
1266 phandle_cache[masked_handle] = np;
1267 }
1268 break;
1269 }
1270 }
1271
1272 of_node_get(np);
1273 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1274 return np;
1275 }
1276 EXPORT_SYMBOL(of_find_node_by_phandle);
1277
1278 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1279 {
1280 int i;
1281 printk("%s %pOF", msg, args->np);
1282 for (i = 0; i < args->args_count; i++) {
1283 const char delim = i ? ',' : ':';
1284
1285 pr_cont("%c%08x", delim, args->args[i]);
1286 }
1287 pr_cont("\n");
1288 }
1289
1290 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1291 const struct device_node *np,
1292 const char *list_name,
1293 const char *cells_name,
1294 int cell_count)
1295 {
1296 const __be32 *list;
1297 int size;
1298
1299 memset(it, 0, sizeof(*it));
1300
1301 /*
1302 * one of cell_count or cells_name must be provided to determine the
1303 * argument length.
1304 */
1305 if (cell_count < 0 && !cells_name)
1306 return -EINVAL;
1307
1308 list = of_get_property(np, list_name, &size);
1309 if (!list)
1310 return -ENOENT;
1311
1312 it->cells_name = cells_name;
1313 it->cell_count = cell_count;
1314 it->parent = np;
1315 it->list_end = list + size / sizeof(*list);
1316 it->phandle_end = list;
1317 it->cur = list;
1318
1319 return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1322
1323 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1324 {
1325 uint32_t count = 0;
1326
1327 if (it->node) {
1328 of_node_put(it->node);
1329 it->node = NULL;
1330 }
1331
1332 if (!it->cur || it->phandle_end >= it->list_end)
1333 return -ENOENT;
1334
1335 it->cur = it->phandle_end;
1336
1337 /* If phandle is 0, then it is an empty entry with no arguments. */
1338 it->phandle = be32_to_cpup(it->cur++);
1339
1340 if (it->phandle) {
1341
1342 /*
1343 * Find the provider node and parse the #*-cells property to
1344 * determine the argument length.
1345 */
1346 it->node = of_find_node_by_phandle(it->phandle);
1347
1348 if (it->cells_name) {
1349 if (!it->node) {
1350 pr_err("%pOF: could not find phandle\n",
1351 it->parent);
1352 goto err;
1353 }
1354
1355 if (of_property_read_u32(it->node, it->cells_name,
1356 &count)) {
1357 /*
1358 * If both cell_count and cells_name is given,
1359 * fall back to cell_count in absence
1360 * of the cells_name property
1361 */
1362 if (it->cell_count >= 0) {
1363 count = it->cell_count;
1364 } else {
1365 pr_err("%pOF: could not get %s for %pOF\n",
1366 it->parent,
1367 it->cells_name,
1368 it->node);
1369 goto err;
1370 }
1371 }
1372 } else {
1373 count = it->cell_count;
1374 }
1375
1376 /*
1377 * Make sure that the arguments actually fit in the remaining
1378 * property data length
1379 */
1380 if (it->cur + count > it->list_end) {
1381 pr_err("%pOF: %s = %d found %d\n",
1382 it->parent, it->cells_name,
1383 count, it->cell_count);
1384 goto err;
1385 }
1386 }
1387
1388 it->phandle_end = it->cur + count;
1389 it->cur_count = count;
1390
1391 return 0;
1392
1393 err:
1394 if (it->node) {
1395 of_node_put(it->node);
1396 it->node = NULL;
1397 }
1398
1399 return -EINVAL;
1400 }
1401 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1402
1403 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1404 uint32_t *args,
1405 int size)
1406 {
1407 int i, count;
1408
1409 count = it->cur_count;
1410
1411 if (WARN_ON(size < count))
1412 count = size;
1413
1414 for (i = 0; i < count; i++)
1415 args[i] = be32_to_cpup(it->cur++);
1416
1417 return count;
1418 }
1419
1420 static int __of_parse_phandle_with_args(const struct device_node *np,
1421 const char *list_name,
1422 const char *cells_name,
1423 int cell_count, int index,
1424 struct of_phandle_args *out_args)
1425 {
1426 struct of_phandle_iterator it;
1427 int rc, cur_index = 0;
1428
1429 /* Loop over the phandles until all the requested entry is found */
1430 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1431 /*
1432 * All of the error cases bail out of the loop, so at
1433 * this point, the parsing is successful. If the requested
1434 * index matches, then fill the out_args structure and return,
1435 * or return -ENOENT for an empty entry.
1436 */
1437 rc = -ENOENT;
1438 if (cur_index == index) {
1439 if (!it.phandle)
1440 goto err;
1441
1442 if (out_args) {
1443 int c;
1444
1445 c = of_phandle_iterator_args(&it,
1446 out_args->args,
1447 MAX_PHANDLE_ARGS);
1448 out_args->np = it.node;
1449 out_args->args_count = c;
1450 } else {
1451 of_node_put(it.node);
1452 }
1453
1454 /* Found it! return success */
1455 return 0;
1456 }
1457
1458 cur_index++;
1459 }
1460
1461 /*
1462 * Unlock node before returning result; will be one of:
1463 * -ENOENT : index is for empty phandle
1464 * -EINVAL : parsing error on data
1465 */
1466
1467 err:
1468 of_node_put(it.node);
1469 return rc;
1470 }
1471
1472 /**
1473 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1474 * @np: Pointer to device node holding phandle property
1475 * @phandle_name: Name of property holding a phandle value
1476 * @index: For properties holding a table of phandles, this is the index into
1477 * the table
1478 *
1479 * Returns the device_node pointer with refcount incremented. Use
1480 * of_node_put() on it when done.
1481 */
1482 struct device_node *of_parse_phandle(const struct device_node *np,
1483 const char *phandle_name, int index)
1484 {
1485 struct of_phandle_args args;
1486
1487 if (index < 0)
1488 return NULL;
1489
1490 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1491 index, &args))
1492 return NULL;
1493
1494 return args.np;
1495 }
1496 EXPORT_SYMBOL(of_parse_phandle);
1497
1498 /**
1499 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1500 * @np: pointer to a device tree node containing a list
1501 * @list_name: property name that contains a list
1502 * @cells_name: property name that specifies phandles' arguments count
1503 * @index: index of a phandle to parse out
1504 * @out_args: optional pointer to output arguments structure (will be filled)
1505 *
1506 * This function is useful to parse lists of phandles and their arguments.
1507 * Returns 0 on success and fills out_args, on error returns appropriate
1508 * errno value.
1509 *
1510 * Caller is responsible to call of_node_put() on the returned out_args->np
1511 * pointer.
1512 *
1513 * Example:
1514 *
1515 * phandle1: node1 {
1516 * #list-cells = <2>;
1517 * }
1518 *
1519 * phandle2: node2 {
1520 * #list-cells = <1>;
1521 * }
1522 *
1523 * node3 {
1524 * list = <&phandle1 1 2 &phandle2 3>;
1525 * }
1526 *
1527 * To get a device_node of the `node2' node you may call this:
1528 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1529 */
1530 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1531 const char *cells_name, int index,
1532 struct of_phandle_args *out_args)
1533 {
1534 int cell_count = -1;
1535
1536 if (index < 0)
1537 return -EINVAL;
1538
1539 /* If cells_name is NULL we assume a cell count of 0 */
1540 if (!cells_name)
1541 cell_count = 0;
1542
1543 return __of_parse_phandle_with_args(np, list_name, cells_name,
1544 cell_count, index, out_args);
1545 }
1546 EXPORT_SYMBOL(of_parse_phandle_with_args);
1547
1548 /**
1549 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1550 * @np: pointer to a device tree node containing a list
1551 * @list_name: property name that contains a list
1552 * @stem_name: stem of property names that specify phandles' arguments count
1553 * @index: index of a phandle to parse out
1554 * @out_args: optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate errno
1558 * value. The difference between this function and of_parse_phandle_with_args()
1559 * is that this API remaps a phandle if the node the phandle points to has
1560 * a <@stem_name>-map property.
1561 *
1562 * Caller is responsible to call of_node_put() on the returned out_args->np
1563 * pointer.
1564 *
1565 * Example:
1566 *
1567 * phandle1: node1 {
1568 * #list-cells = <2>;
1569 * }
1570 *
1571 * phandle2: node2 {
1572 * #list-cells = <1>;
1573 * }
1574 *
1575 * phandle3: node3 {
1576 * #list-cells = <1>;
1577 * list-map = <0 &phandle2 3>,
1578 * <1 &phandle2 2>,
1579 * <2 &phandle1 5 1>;
1580 * list-map-mask = <0x3>;
1581 * };
1582 *
1583 * node4 {
1584 * list = <&phandle1 1 2 &phandle3 0>;
1585 * }
1586 *
1587 * To get a device_node of the `node2' node you may call this:
1588 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1589 */
1590 int of_parse_phandle_with_args_map(const struct device_node *np,
1591 const char *list_name,
1592 const char *stem_name,
1593 int index, struct of_phandle_args *out_args)
1594 {
1595 char *cells_name, *map_name = NULL, *mask_name = NULL;
1596 char *pass_name = NULL;
1597 struct device_node *cur, *new = NULL;
1598 const __be32 *map, *mask, *pass;
1599 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1600 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1601 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1602 const __be32 *match_array = initial_match_array;
1603 int i, ret, map_len, match;
1604 u32 list_size, new_size;
1605
1606 if (index < 0)
1607 return -EINVAL;
1608
1609 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1610 if (!cells_name)
1611 return -ENOMEM;
1612
1613 ret = -ENOMEM;
1614 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1615 if (!map_name)
1616 goto free;
1617
1618 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1619 if (!mask_name)
1620 goto free;
1621
1622 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1623 if (!pass_name)
1624 goto free;
1625
1626 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1627 out_args);
1628 if (ret)
1629 goto free;
1630
1631 /* Get the #<list>-cells property */
1632 cur = out_args->np;
1633 ret = of_property_read_u32(cur, cells_name, &list_size);
1634 if (ret < 0)
1635 goto put;
1636
1637 /* Precalculate the match array - this simplifies match loop */
1638 for (i = 0; i < list_size; i++)
1639 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1640
1641 ret = -EINVAL;
1642 while (cur) {
1643 /* Get the <list>-map property */
1644 map = of_get_property(cur, map_name, &map_len);
1645 if (!map) {
1646 ret = 0;
1647 goto free;
1648 }
1649 map_len /= sizeof(u32);
1650
1651 /* Get the <list>-map-mask property (optional) */
1652 mask = of_get_property(cur, mask_name, NULL);
1653 if (!mask)
1654 mask = dummy_mask;
1655 /* Iterate through <list>-map property */
1656 match = 0;
1657 while (map_len > (list_size + 1) && !match) {
1658 /* Compare specifiers */
1659 match = 1;
1660 for (i = 0; i < list_size; i++, map_len--)
1661 match &= !((match_array[i] ^ *map++) & mask[i]);
1662
1663 of_node_put(new);
1664 new = of_find_node_by_phandle(be32_to_cpup(map));
1665 map++;
1666 map_len--;
1667
1668 /* Check if not found */
1669 if (!new)
1670 goto put;
1671
1672 if (!of_device_is_available(new))
1673 match = 0;
1674
1675 ret = of_property_read_u32(new, cells_name, &new_size);
1676 if (ret)
1677 goto put;
1678
1679 /* Check for malformed properties */
1680 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1681 goto put;
1682 if (map_len < new_size)
1683 goto put;
1684
1685 /* Move forward by new node's #<list>-cells amount */
1686 map += new_size;
1687 map_len -= new_size;
1688 }
1689 if (!match)
1690 goto put;
1691
1692 /* Get the <list>-map-pass-thru property (optional) */
1693 pass = of_get_property(cur, pass_name, NULL);
1694 if (!pass)
1695 pass = dummy_pass;
1696
1697 /*
1698 * Successfully parsed a <list>-map translation; copy new
1699 * specifier into the out_args structure, keeping the
1700 * bits specified in <list>-map-pass-thru.
1701 */
1702 match_array = map - new_size;
1703 for (i = 0; i < new_size; i++) {
1704 __be32 val = *(map - new_size + i);
1705
1706 if (i < list_size) {
1707 val &= ~pass[i];
1708 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1709 }
1710
1711 out_args->args[i] = be32_to_cpu(val);
1712 }
1713 out_args->args_count = list_size = new_size;
1714 /* Iterate again with new provider */
1715 out_args->np = new;
1716 of_node_put(cur);
1717 cur = new;
1718 }
1719 put:
1720 of_node_put(cur);
1721 of_node_put(new);
1722 free:
1723 kfree(mask_name);
1724 kfree(map_name);
1725 kfree(cells_name);
1726 kfree(pass_name);
1727
1728 return ret;
1729 }
1730 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1731
1732 /**
1733 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1734 * @np: pointer to a device tree node containing a list
1735 * @list_name: property name that contains a list
1736 * @cell_count: number of argument cells following the phandle
1737 * @index: index of a phandle to parse out
1738 * @out_args: optional pointer to output arguments structure (will be filled)
1739 *
1740 * This function is useful to parse lists of phandles and their arguments.
1741 * Returns 0 on success and fills out_args, on error returns appropriate
1742 * errno value.
1743 *
1744 * Caller is responsible to call of_node_put() on the returned out_args->np
1745 * pointer.
1746 *
1747 * Example:
1748 *
1749 * phandle1: node1 {
1750 * }
1751 *
1752 * phandle2: node2 {
1753 * }
1754 *
1755 * node3 {
1756 * list = <&phandle1 0 2 &phandle2 2 3>;
1757 * }
1758 *
1759 * To get a device_node of the `node2' node you may call this:
1760 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1761 */
1762 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1763 const char *list_name, int cell_count,
1764 int index, struct of_phandle_args *out_args)
1765 {
1766 if (index < 0)
1767 return -EINVAL;
1768 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1769 index, out_args);
1770 }
1771 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1772
1773 /**
1774 * of_count_phandle_with_args() - Find the number of phandles references in a property
1775 * @np: pointer to a device tree node containing a list
1776 * @list_name: property name that contains a list
1777 * @cells_name: property name that specifies phandles' arguments count
1778 *
1779 * Returns the number of phandle + argument tuples within a property. It
1780 * is a typical pattern to encode a list of phandle and variable
1781 * arguments into a single property. The number of arguments is encoded
1782 * by a property in the phandle-target node. For example, a gpios
1783 * property would contain a list of GPIO specifies consisting of a
1784 * phandle and 1 or more arguments. The number of arguments are
1785 * determined by the #gpio-cells property in the node pointed to by the
1786 * phandle.
1787 */
1788 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1789 const char *cells_name)
1790 {
1791 struct of_phandle_iterator it;
1792 int rc, cur_index = 0;
1793
1794 /*
1795 * If cells_name is NULL we assume a cell count of 0. This makes
1796 * counting the phandles trivial as each 32bit word in the list is a
1797 * phandle and no arguments are to consider. So we don't iterate through
1798 * the list but just use the length to determine the phandle count.
1799 */
1800 if (!cells_name) {
1801 const __be32 *list;
1802 int size;
1803
1804 list = of_get_property(np, list_name, &size);
1805 if (!list)
1806 return -ENOENT;
1807
1808 return size / sizeof(*list);
1809 }
1810
1811 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1812 if (rc)
1813 return rc;
1814
1815 while ((rc = of_phandle_iterator_next(&it)) == 0)
1816 cur_index += 1;
1817
1818 if (rc != -ENOENT)
1819 return rc;
1820
1821 return cur_index;
1822 }
1823 EXPORT_SYMBOL(of_count_phandle_with_args);
1824
1825 /**
1826 * __of_add_property - Add a property to a node without lock operations
1827 */
1828 int __of_add_property(struct device_node *np, struct property *prop)
1829 {
1830 struct property **next;
1831
1832 prop->next = NULL;
1833 next = &np->properties;
1834 while (*next) {
1835 if (strcmp(prop->name, (*next)->name) == 0)
1836 /* duplicate ! don't insert it */
1837 return -EEXIST;
1838
1839 next = &(*next)->next;
1840 }
1841 *next = prop;
1842
1843 return 0;
1844 }
1845
1846 /**
1847 * of_add_property - Add a property to a node
1848 */
1849 int of_add_property(struct device_node *np, struct property *prop)
1850 {
1851 unsigned long flags;
1852 int rc;
1853
1854 mutex_lock(&of_mutex);
1855
1856 raw_spin_lock_irqsave(&devtree_lock, flags);
1857 rc = __of_add_property(np, prop);
1858 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1859
1860 if (!rc)
1861 __of_add_property_sysfs(np, prop);
1862
1863 mutex_unlock(&of_mutex);
1864
1865 if (!rc)
1866 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1867
1868 return rc;
1869 }
1870
1871 int __of_remove_property(struct device_node *np, struct property *prop)
1872 {
1873 struct property **next;
1874
1875 for (next = &np->properties; *next; next = &(*next)->next) {
1876 if (*next == prop)
1877 break;
1878 }
1879 if (*next == NULL)
1880 return -ENODEV;
1881
1882 /* found the node */
1883 *next = prop->next;
1884 prop->next = np->deadprops;
1885 np->deadprops = prop;
1886
1887 return 0;
1888 }
1889
1890 /**
1891 * of_remove_property - Remove a property from a node.
1892 *
1893 * Note that we don't actually remove it, since we have given out
1894 * who-knows-how-many pointers to the data using get-property.
1895 * Instead we just move the property to the "dead properties"
1896 * list, so it won't be found any more.
1897 */
1898 int of_remove_property(struct device_node *np, struct property *prop)
1899 {
1900 unsigned long flags;
1901 int rc;
1902
1903 if (!prop)
1904 return -ENODEV;
1905
1906 mutex_lock(&of_mutex);
1907
1908 raw_spin_lock_irqsave(&devtree_lock, flags);
1909 rc = __of_remove_property(np, prop);
1910 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1911
1912 if (!rc)
1913 __of_remove_property_sysfs(np, prop);
1914
1915 mutex_unlock(&of_mutex);
1916
1917 if (!rc)
1918 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1919
1920 return rc;
1921 }
1922
1923 int __of_update_property(struct device_node *np, struct property *newprop,
1924 struct property **oldpropp)
1925 {
1926 struct property **next, *oldprop;
1927
1928 for (next = &np->properties; *next; next = &(*next)->next) {
1929 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1930 break;
1931 }
1932 *oldpropp = oldprop = *next;
1933
1934 if (oldprop) {
1935 /* replace the node */
1936 newprop->next = oldprop->next;
1937 *next = newprop;
1938 oldprop->next = np->deadprops;
1939 np->deadprops = oldprop;
1940 } else {
1941 /* new node */
1942 newprop->next = NULL;
1943 *next = newprop;
1944 }
1945
1946 return 0;
1947 }
1948
1949 /*
1950 * of_update_property - Update a property in a node, if the property does
1951 * not exist, add it.
1952 *
1953 * Note that we don't actually remove it, since we have given out
1954 * who-knows-how-many pointers to the data using get-property.
1955 * Instead we just move the property to the "dead properties" list,
1956 * and add the new property to the property list
1957 */
1958 int of_update_property(struct device_node *np, struct property *newprop)
1959 {
1960 struct property *oldprop;
1961 unsigned long flags;
1962 int rc;
1963
1964 if (!newprop->name)
1965 return -EINVAL;
1966
1967 mutex_lock(&of_mutex);
1968
1969 raw_spin_lock_irqsave(&devtree_lock, flags);
1970 rc = __of_update_property(np, newprop, &oldprop);
1971 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1972
1973 if (!rc)
1974 __of_update_property_sysfs(np, newprop, oldprop);
1975
1976 mutex_unlock(&of_mutex);
1977
1978 if (!rc)
1979 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1980
1981 return rc;
1982 }
1983
1984 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1985 int id, const char *stem, int stem_len)
1986 {
1987 ap->np = np;
1988 ap->id = id;
1989 strncpy(ap->stem, stem, stem_len);
1990 ap->stem[stem_len] = 0;
1991 list_add_tail(&ap->link, &aliases_lookup);
1992 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1993 ap->alias, ap->stem, ap->id, np);
1994 }
1995
1996 /**
1997 * of_alias_scan - Scan all properties of the 'aliases' node
1998 *
1999 * The function scans all the properties of the 'aliases' node and populates
2000 * the global lookup table with the properties. It returns the
2001 * number of alias properties found, or an error code in case of failure.
2002 *
2003 * @dt_alloc: An allocator that provides a virtual address to memory
2004 * for storing the resulting tree
2005 */
2006 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2007 {
2008 struct property *pp;
2009
2010 of_aliases = of_find_node_by_path("/aliases");
2011 of_chosen = of_find_node_by_path("/chosen");
2012 if (of_chosen == NULL)
2013 of_chosen = of_find_node_by_path("/chosen@0");
2014
2015 if (of_chosen) {
2016 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2017 const char *name = NULL;
2018
2019 if (of_property_read_string(of_chosen, "stdout-path", &name))
2020 of_property_read_string(of_chosen, "linux,stdout-path",
2021 &name);
2022 if (IS_ENABLED(CONFIG_PPC) && !name)
2023 of_property_read_string(of_aliases, "stdout", &name);
2024 if (name)
2025 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2026 }
2027
2028 if (!of_aliases)
2029 return;
2030
2031 for_each_property_of_node(of_aliases, pp) {
2032 const char *start = pp->name;
2033 const char *end = start + strlen(start);
2034 struct device_node *np;
2035 struct alias_prop *ap;
2036 int id, len;
2037
2038 /* Skip those we do not want to proceed */
2039 if (!strcmp(pp->name, "name") ||
2040 !strcmp(pp->name, "phandle") ||
2041 !strcmp(pp->name, "linux,phandle"))
2042 continue;
2043
2044 np = of_find_node_by_path(pp->value);
2045 if (!np)
2046 continue;
2047
2048 /* walk the alias backwards to extract the id and work out
2049 * the 'stem' string */
2050 while (isdigit(*(end-1)) && end > start)
2051 end--;
2052 len = end - start;
2053
2054 if (kstrtoint(end, 10, &id) < 0)
2055 continue;
2056
2057 /* Allocate an alias_prop with enough space for the stem */
2058 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2059 if (!ap)
2060 continue;
2061 memset(ap, 0, sizeof(*ap) + len + 1);
2062 ap->alias = start;
2063 of_alias_add(ap, np, id, start, len);
2064 }
2065 }
2066
2067 /**
2068 * of_alias_get_id - Get alias id for the given device_node
2069 * @np: Pointer to the given device_node
2070 * @stem: Alias stem of the given device_node
2071 *
2072 * The function travels the lookup table to get the alias id for the given
2073 * device_node and alias stem. It returns the alias id if found.
2074 */
2075 int of_alias_get_id(struct device_node *np, const char *stem)
2076 {
2077 struct alias_prop *app;
2078 int id = -ENODEV;
2079
2080 mutex_lock(&of_mutex);
2081 list_for_each_entry(app, &aliases_lookup, link) {
2082 if (strcmp(app->stem, stem) != 0)
2083 continue;
2084
2085 if (np == app->np) {
2086 id = app->id;
2087 break;
2088 }
2089 }
2090 mutex_unlock(&of_mutex);
2091
2092 return id;
2093 }
2094 EXPORT_SYMBOL_GPL(of_alias_get_id);
2095
2096 /**
2097 * of_alias_get_alias_list - Get alias list for the given device driver
2098 * @matches: Array of OF device match structures to search in
2099 * @stem: Alias stem of the given device_node
2100 * @bitmap: Bitmap field pointer
2101 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2102 *
2103 * The function travels the lookup table to record alias ids for the given
2104 * device match structures and alias stem.
2105 *
2106 * Return: 0 or -ENOSYS when !CONFIG_OF or
2107 * -EOVERFLOW if alias ID is greater then allocated nbits
2108 */
2109 int of_alias_get_alias_list(const struct of_device_id *matches,
2110 const char *stem, unsigned long *bitmap,
2111 unsigned int nbits)
2112 {
2113 struct alias_prop *app;
2114 int ret = 0;
2115
2116 /* Zero bitmap field to make sure that all the time it is clean */
2117 bitmap_zero(bitmap, nbits);
2118
2119 mutex_lock(&of_mutex);
2120 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2121 list_for_each_entry(app, &aliases_lookup, link) {
2122 pr_debug("%s: stem: %s, id: %d\n",
2123 __func__, app->stem, app->id);
2124
2125 if (strcmp(app->stem, stem) != 0) {
2126 pr_debug("%s: stem comparison didn't pass %s\n",
2127 __func__, app->stem);
2128 continue;
2129 }
2130
2131 if (of_match_node(matches, app->np)) {
2132 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2133
2134 if (app->id >= nbits) {
2135 pr_warn("%s: ID %d >= than bitmap field %d\n",
2136 __func__, app->id, nbits);
2137 ret = -EOVERFLOW;
2138 } else {
2139 set_bit(app->id, bitmap);
2140 }
2141 }
2142 }
2143 mutex_unlock(&of_mutex);
2144
2145 return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2148
2149 /**
2150 * of_alias_get_highest_id - Get highest alias id for the given stem
2151 * @stem: Alias stem to be examined
2152 *
2153 * The function travels the lookup table to get the highest alias id for the
2154 * given alias stem. It returns the alias id if found.
2155 */
2156 int of_alias_get_highest_id(const char *stem)
2157 {
2158 struct alias_prop *app;
2159 int id = -ENODEV;
2160
2161 mutex_lock(&of_mutex);
2162 list_for_each_entry(app, &aliases_lookup, link) {
2163 if (strcmp(app->stem, stem) != 0)
2164 continue;
2165
2166 if (app->id > id)
2167 id = app->id;
2168 }
2169 mutex_unlock(&of_mutex);
2170
2171 return id;
2172 }
2173 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2174
2175 /**
2176 * of_console_check() - Test and setup console for DT setup
2177 * @dn - Pointer to device node
2178 * @name - Name to use for preferred console without index. ex. "ttyS"
2179 * @index - Index to use for preferred console.
2180 *
2181 * Check if the given device node matches the stdout-path property in the
2182 * /chosen node. If it does then register it as the preferred console and return
2183 * TRUE. Otherwise return FALSE.
2184 */
2185 bool of_console_check(struct device_node *dn, char *name, int index)
2186 {
2187 if (!dn || dn != of_stdout || console_set_on_cmdline)
2188 return false;
2189
2190 /*
2191 * XXX: cast `options' to char pointer to suppress complication
2192 * warnings: printk, UART and console drivers expect char pointer.
2193 */
2194 return !add_preferred_console(name, index, (char *)of_stdout_options);
2195 }
2196 EXPORT_SYMBOL_GPL(of_console_check);
2197
2198 /**
2199 * of_find_next_cache_node - Find a node's subsidiary cache
2200 * @np: node of type "cpu" or "cache"
2201 *
2202 * Returns a node pointer with refcount incremented, use
2203 * of_node_put() on it when done. Caller should hold a reference
2204 * to np.
2205 */
2206 struct device_node *of_find_next_cache_node(const struct device_node *np)
2207 {
2208 struct device_node *child, *cache_node;
2209
2210 cache_node = of_parse_phandle(np, "l2-cache", 0);
2211 if (!cache_node)
2212 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2213
2214 if (cache_node)
2215 return cache_node;
2216
2217 /* OF on pmac has nodes instead of properties named "l2-cache"
2218 * beneath CPU nodes.
2219 */
2220 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2221 for_each_child_of_node(np, child)
2222 if (of_node_is_type(child, "cache"))
2223 return child;
2224
2225 return NULL;
2226 }
2227
2228 /**
2229 * of_find_last_cache_level - Find the level at which the last cache is
2230 * present for the given logical cpu
2231 *
2232 * @cpu: cpu number(logical index) for which the last cache level is needed
2233 *
2234 * Returns the the level at which the last cache is present. It is exactly
2235 * same as the total number of cache levels for the given logical cpu.
2236 */
2237 int of_find_last_cache_level(unsigned int cpu)
2238 {
2239 u32 cache_level = 0;
2240 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2241
2242 while (np) {
2243 prev = np;
2244 of_node_put(np);
2245 np = of_find_next_cache_node(np);
2246 }
2247
2248 of_property_read_u32(prev, "cache-level", &cache_level);
2249
2250 return cache_level;
2251 }
2252
2253 /**
2254 * of_map_rid - Translate a requester ID through a downstream mapping.
2255 * @np: root complex device node.
2256 * @rid: device requester ID to map.
2257 * @map_name: property name of the map to use.
2258 * @map_mask_name: optional property name of the mask to use.
2259 * @target: optional pointer to a target device node.
2260 * @id_out: optional pointer to receive the translated ID.
2261 *
2262 * Given a device requester ID, look up the appropriate implementation-defined
2263 * platform ID and/or the target device which receives transactions on that
2264 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2265 * @id_out may be NULL if only the other is required. If @target points to
2266 * a non-NULL device node pointer, only entries targeting that node will be
2267 * matched; if it points to a NULL value, it will receive the device node of
2268 * the first matching target phandle, with a reference held.
2269 *
2270 * Return: 0 on success or a standard error code on failure.
2271 */
2272 int of_map_rid(struct device_node *np, u32 rid,
2273 const char *map_name, const char *map_mask_name,
2274 struct device_node **target, u32 *id_out)
2275 {
2276 u32 map_mask, masked_rid;
2277 int map_len;
2278 const __be32 *map = NULL;
2279
2280 if (!np || !map_name || (!target && !id_out))
2281 return -EINVAL;
2282
2283 map = of_get_property(np, map_name, &map_len);
2284 if (!map) {
2285 if (target)
2286 return -ENODEV;
2287 /* Otherwise, no map implies no translation */
2288 *id_out = rid;
2289 return 0;
2290 }
2291
2292 if (!map_len || map_len % (4 * sizeof(*map))) {
2293 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2294 map_name, map_len);
2295 return -EINVAL;
2296 }
2297
2298 /* The default is to select all bits. */
2299 map_mask = 0xffffffff;
2300
2301 /*
2302 * Can be overridden by "{iommu,msi}-map-mask" property.
2303 * If of_property_read_u32() fails, the default is used.
2304 */
2305 if (map_mask_name)
2306 of_property_read_u32(np, map_mask_name, &map_mask);
2307
2308 masked_rid = map_mask & rid;
2309 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2310 struct device_node *phandle_node;
2311 u32 rid_base = be32_to_cpup(map + 0);
2312 u32 phandle = be32_to_cpup(map + 1);
2313 u32 out_base = be32_to_cpup(map + 2);
2314 u32 rid_len = be32_to_cpup(map + 3);
2315
2316 if (rid_base & ~map_mask) {
2317 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2318 np, map_name, map_name,
2319 map_mask, rid_base);
2320 return -EFAULT;
2321 }
2322
2323 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2324 continue;
2325
2326 phandle_node = of_find_node_by_phandle(phandle);
2327 if (!phandle_node)
2328 return -ENODEV;
2329
2330 if (target) {
2331 if (*target)
2332 of_node_put(phandle_node);
2333 else
2334 *target = phandle_node;
2335
2336 if (*target != phandle_node)
2337 continue;
2338 }
2339
2340 if (id_out)
2341 *id_out = masked_rid - rid_base + out_base;
2342
2343 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2344 np, map_name, map_mask, rid_base, out_base,
2345 rid_len, rid, masked_rid - rid_base + out_base);
2346 return 0;
2347 }
2348
2349 pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2350 rid, target && *target ? *target : NULL);
2351
2352 /* Bypasses translation */
2353 if (id_out)
2354 *id_out = rid;
2355 return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(of_map_rid);