]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/of/base.c
of: rename of_aliases_mutex to just of_mutex
[mirror_ubuntu-bionic-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_graph.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/proc_fs.h>
29
30 #include "of_private.h"
31
32 LIST_HEAD(aliases_lookup);
33
34 struct device_node *of_allnodes;
35 EXPORT_SYMBOL(of_allnodes);
36 struct device_node *of_chosen;
37 struct device_node *of_aliases;
38 static struct device_node *of_stdout;
39
40 static struct kset *of_kset;
41
42 /*
43 * Used to protect the of_aliases, to hold off addition of nodes to sysfs
44 */
45 DEFINE_MUTEX(of_mutex);
46
47 /* use when traversing tree through the allnext, child, sibling,
48 * or parent members of struct device_node.
49 */
50 DEFINE_RAW_SPINLOCK(devtree_lock);
51
52 int of_n_addr_cells(struct device_node *np)
53 {
54 const __be32 *ip;
55
56 do {
57 if (np->parent)
58 np = np->parent;
59 ip = of_get_property(np, "#address-cells", NULL);
60 if (ip)
61 return be32_to_cpup(ip);
62 } while (np->parent);
63 /* No #address-cells property for the root node */
64 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
65 }
66 EXPORT_SYMBOL(of_n_addr_cells);
67
68 int of_n_size_cells(struct device_node *np)
69 {
70 const __be32 *ip;
71
72 do {
73 if (np->parent)
74 np = np->parent;
75 ip = of_get_property(np, "#size-cells", NULL);
76 if (ip)
77 return be32_to_cpup(ip);
78 } while (np->parent);
79 /* No #size-cells property for the root node */
80 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
81 }
82 EXPORT_SYMBOL(of_n_size_cells);
83
84 #ifdef CONFIG_NUMA
85 int __weak of_node_to_nid(struct device_node *np)
86 {
87 return numa_node_id();
88 }
89 #endif
90
91 #if defined(CONFIG_OF_DYNAMIC)
92 /**
93 * of_node_get - Increment refcount of a node
94 * @node: Node to inc refcount, NULL is supported to
95 * simplify writing of callers
96 *
97 * Returns node.
98 */
99 struct device_node *of_node_get(struct device_node *node)
100 {
101 if (node)
102 kobject_get(&node->kobj);
103 return node;
104 }
105 EXPORT_SYMBOL(of_node_get);
106
107 static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
108 {
109 return container_of(kobj, struct device_node, kobj);
110 }
111
112 /**
113 * of_node_release - release a dynamically allocated node
114 * @kref: kref element of the node to be released
115 *
116 * In of_node_put() this function is passed to kref_put()
117 * as the destructor.
118 */
119 static void of_node_release(struct kobject *kobj)
120 {
121 struct device_node *node = kobj_to_device_node(kobj);
122 struct property *prop = node->properties;
123
124 /* We should never be releasing nodes that haven't been detached. */
125 if (!of_node_check_flag(node, OF_DETACHED)) {
126 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
127 dump_stack();
128 return;
129 }
130
131 if (!of_node_check_flag(node, OF_DYNAMIC))
132 return;
133
134 while (prop) {
135 struct property *next = prop->next;
136 kfree(prop->name);
137 kfree(prop->value);
138 kfree(prop);
139 prop = next;
140
141 if (!prop) {
142 prop = node->deadprops;
143 node->deadprops = NULL;
144 }
145 }
146 kfree(node->full_name);
147 kfree(node->data);
148 kfree(node);
149 }
150
151 /**
152 * of_node_put - Decrement refcount of a node
153 * @node: Node to dec refcount, NULL is supported to
154 * simplify writing of callers
155 *
156 */
157 void of_node_put(struct device_node *node)
158 {
159 if (node)
160 kobject_put(&node->kobj);
161 }
162 EXPORT_SYMBOL(of_node_put);
163 #else
164 static void of_node_release(struct kobject *kobj)
165 {
166 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
167 }
168 #endif /* CONFIG_OF_DYNAMIC */
169
170 struct kobj_type of_node_ktype = {
171 .release = of_node_release,
172 };
173
174 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
175 struct bin_attribute *bin_attr, char *buf,
176 loff_t offset, size_t count)
177 {
178 struct property *pp = container_of(bin_attr, struct property, attr);
179 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
180 }
181
182 static const char *safe_name(struct kobject *kobj, const char *orig_name)
183 {
184 const char *name = orig_name;
185 struct kernfs_node *kn;
186 int i = 0;
187
188 /* don't be a hero. After 16 tries give up */
189 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
190 sysfs_put(kn);
191 if (name != orig_name)
192 kfree(name);
193 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
194 }
195
196 if (name != orig_name)
197 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
198 kobject_name(kobj), name);
199 return name;
200 }
201
202 static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
203 {
204 int rc;
205
206 /* Important: Don't leak passwords */
207 bool secure = strncmp(pp->name, "security-", 9) == 0;
208
209 sysfs_bin_attr_init(&pp->attr);
210 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
211 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
212 pp->attr.size = secure ? 0 : pp->length;
213 pp->attr.read = of_node_property_read;
214
215 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
216 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
217 return rc;
218 }
219
220 static int __of_node_add(struct device_node *np)
221 {
222 const char *name;
223 struct property *pp;
224 int rc;
225
226 np->kobj.kset = of_kset;
227 if (!np->parent) {
228 /* Nodes without parents are new top level trees */
229 rc = kobject_add(&np->kobj, NULL, "%s",
230 safe_name(&of_kset->kobj, "base"));
231 } else {
232 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
233 if (!name || !name[0])
234 return -EINVAL;
235
236 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
237 }
238 if (rc)
239 return rc;
240
241 for_each_property_of_node(np, pp)
242 __of_add_property_sysfs(np, pp);
243
244 return 0;
245 }
246
247 int of_node_add(struct device_node *np)
248 {
249 int rc = 0;
250
251 BUG_ON(!of_node_is_initialized(np));
252
253 /*
254 * Grab the mutex here so that in a race condition between of_init() and
255 * of_node_add(), node addition will still be consistent.
256 */
257 mutex_lock(&of_mutex);
258 if (of_kset)
259 rc = __of_node_add(np);
260 else
261 /* This scenario may be perfectly valid, but report it anyway */
262 pr_info("of_node_add(%s) before of_init()\n", np->full_name);
263 mutex_unlock(&of_mutex);
264 return rc;
265 }
266
267 #if defined(CONFIG_OF_DYNAMIC)
268 static void of_node_remove(struct device_node *np)
269 {
270 struct property *pp;
271
272 BUG_ON(!of_node_is_initialized(np));
273
274 /* only remove properties if on sysfs */
275 if (of_node_is_attached(np)) {
276 for_each_property_of_node(np, pp)
277 sysfs_remove_bin_file(&np->kobj, &pp->attr);
278 kobject_del(&np->kobj);
279 }
280
281 /* finally remove the kobj_init ref */
282 of_node_put(np);
283 }
284 #endif
285
286 static int __init of_init(void)
287 {
288 struct device_node *np;
289
290 /* Create the kset, and register existing nodes */
291 mutex_lock(&of_mutex);
292 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
293 if (!of_kset) {
294 mutex_unlock(&of_mutex);
295 return -ENOMEM;
296 }
297 for_each_of_allnodes(np)
298 __of_node_add(np);
299 mutex_unlock(&of_mutex);
300
301 /* Symlink in /proc as required by userspace ABI */
302 if (of_allnodes)
303 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
304
305 return 0;
306 }
307 core_initcall(of_init);
308
309 static struct property *__of_find_property(const struct device_node *np,
310 const char *name, int *lenp)
311 {
312 struct property *pp;
313
314 if (!np)
315 return NULL;
316
317 for (pp = np->properties; pp; pp = pp->next) {
318 if (of_prop_cmp(pp->name, name) == 0) {
319 if (lenp)
320 *lenp = pp->length;
321 break;
322 }
323 }
324
325 return pp;
326 }
327
328 struct property *of_find_property(const struct device_node *np,
329 const char *name,
330 int *lenp)
331 {
332 struct property *pp;
333 unsigned long flags;
334
335 raw_spin_lock_irqsave(&devtree_lock, flags);
336 pp = __of_find_property(np, name, lenp);
337 raw_spin_unlock_irqrestore(&devtree_lock, flags);
338
339 return pp;
340 }
341 EXPORT_SYMBOL(of_find_property);
342
343 /**
344 * of_find_all_nodes - Get next node in global list
345 * @prev: Previous node or NULL to start iteration
346 * of_node_put() will be called on it
347 *
348 * Returns a node pointer with refcount incremented, use
349 * of_node_put() on it when done.
350 */
351 struct device_node *of_find_all_nodes(struct device_node *prev)
352 {
353 struct device_node *np;
354 unsigned long flags;
355
356 raw_spin_lock_irqsave(&devtree_lock, flags);
357 np = prev ? prev->allnext : of_allnodes;
358 for (; np != NULL; np = np->allnext)
359 if (of_node_get(np))
360 break;
361 of_node_put(prev);
362 raw_spin_unlock_irqrestore(&devtree_lock, flags);
363 return np;
364 }
365 EXPORT_SYMBOL(of_find_all_nodes);
366
367 /*
368 * Find a property with a given name for a given node
369 * and return the value.
370 */
371 static const void *__of_get_property(const struct device_node *np,
372 const char *name, int *lenp)
373 {
374 struct property *pp = __of_find_property(np, name, lenp);
375
376 return pp ? pp->value : NULL;
377 }
378
379 /*
380 * Find a property with a given name for a given node
381 * and return the value.
382 */
383 const void *of_get_property(const struct device_node *np, const char *name,
384 int *lenp)
385 {
386 struct property *pp = of_find_property(np, name, lenp);
387
388 return pp ? pp->value : NULL;
389 }
390 EXPORT_SYMBOL(of_get_property);
391
392 /*
393 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
394 *
395 * @cpu: logical cpu index of a core/thread
396 * @phys_id: physical identifier of a core/thread
397 *
398 * CPU logical to physical index mapping is architecture specific.
399 * However this __weak function provides a default match of physical
400 * id to logical cpu index. phys_id provided here is usually values read
401 * from the device tree which must match the hardware internal registers.
402 *
403 * Returns true if the physical identifier and the logical cpu index
404 * correspond to the same core/thread, false otherwise.
405 */
406 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
407 {
408 return (u32)phys_id == cpu;
409 }
410
411 /**
412 * Checks if the given "prop_name" property holds the physical id of the
413 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
414 * NULL, local thread number within the core is returned in it.
415 */
416 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
417 const char *prop_name, int cpu, unsigned int *thread)
418 {
419 const __be32 *cell;
420 int ac, prop_len, tid;
421 u64 hwid;
422
423 ac = of_n_addr_cells(cpun);
424 cell = of_get_property(cpun, prop_name, &prop_len);
425 if (!cell || !ac)
426 return false;
427 prop_len /= sizeof(*cell) * ac;
428 for (tid = 0; tid < prop_len; tid++) {
429 hwid = of_read_number(cell, ac);
430 if (arch_match_cpu_phys_id(cpu, hwid)) {
431 if (thread)
432 *thread = tid;
433 return true;
434 }
435 cell += ac;
436 }
437 return false;
438 }
439
440 /*
441 * arch_find_n_match_cpu_physical_id - See if the given device node is
442 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
443 * else false. If 'thread' is non-NULL, the local thread number within the
444 * core is returned in it.
445 */
446 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
447 int cpu, unsigned int *thread)
448 {
449 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
450 * for thread ids on PowerPC. If it doesn't exist fallback to
451 * standard "reg" property.
452 */
453 if (IS_ENABLED(CONFIG_PPC) &&
454 __of_find_n_match_cpu_property(cpun,
455 "ibm,ppc-interrupt-server#s",
456 cpu, thread))
457 return true;
458
459 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
460 return true;
461
462 return false;
463 }
464
465 /**
466 * of_get_cpu_node - Get device node associated with the given logical CPU
467 *
468 * @cpu: CPU number(logical index) for which device node is required
469 * @thread: if not NULL, local thread number within the physical core is
470 * returned
471 *
472 * The main purpose of this function is to retrieve the device node for the
473 * given logical CPU index. It should be used to initialize the of_node in
474 * cpu device. Once of_node in cpu device is populated, all the further
475 * references can use that instead.
476 *
477 * CPU logical to physical index mapping is architecture specific and is built
478 * before booting secondary cores. This function uses arch_match_cpu_phys_id
479 * which can be overridden by architecture specific implementation.
480 *
481 * Returns a node pointer for the logical cpu if found, else NULL.
482 */
483 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
484 {
485 struct device_node *cpun;
486
487 for_each_node_by_type(cpun, "cpu") {
488 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
489 return cpun;
490 }
491 return NULL;
492 }
493 EXPORT_SYMBOL(of_get_cpu_node);
494
495 /**
496 * __of_device_is_compatible() - Check if the node matches given constraints
497 * @device: pointer to node
498 * @compat: required compatible string, NULL or "" for any match
499 * @type: required device_type value, NULL or "" for any match
500 * @name: required node name, NULL or "" for any match
501 *
502 * Checks if the given @compat, @type and @name strings match the
503 * properties of the given @device. A constraints can be skipped by
504 * passing NULL or an empty string as the constraint.
505 *
506 * Returns 0 for no match, and a positive integer on match. The return
507 * value is a relative score with larger values indicating better
508 * matches. The score is weighted for the most specific compatible value
509 * to get the highest score. Matching type is next, followed by matching
510 * name. Practically speaking, this results in the following priority
511 * order for matches:
512 *
513 * 1. specific compatible && type && name
514 * 2. specific compatible && type
515 * 3. specific compatible && name
516 * 4. specific compatible
517 * 5. general compatible && type && name
518 * 6. general compatible && type
519 * 7. general compatible && name
520 * 8. general compatible
521 * 9. type && name
522 * 10. type
523 * 11. name
524 */
525 static int __of_device_is_compatible(const struct device_node *device,
526 const char *compat, const char *type, const char *name)
527 {
528 struct property *prop;
529 const char *cp;
530 int index = 0, score = 0;
531
532 /* Compatible match has highest priority */
533 if (compat && compat[0]) {
534 prop = __of_find_property(device, "compatible", NULL);
535 for (cp = of_prop_next_string(prop, NULL); cp;
536 cp = of_prop_next_string(prop, cp), index++) {
537 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
538 score = INT_MAX/2 - (index << 2);
539 break;
540 }
541 }
542 if (!score)
543 return 0;
544 }
545
546 /* Matching type is better than matching name */
547 if (type && type[0]) {
548 if (!device->type || of_node_cmp(type, device->type))
549 return 0;
550 score += 2;
551 }
552
553 /* Matching name is a bit better than not */
554 if (name && name[0]) {
555 if (!device->name || of_node_cmp(name, device->name))
556 return 0;
557 score++;
558 }
559
560 return score;
561 }
562
563 /** Checks if the given "compat" string matches one of the strings in
564 * the device's "compatible" property
565 */
566 int of_device_is_compatible(const struct device_node *device,
567 const char *compat)
568 {
569 unsigned long flags;
570 int res;
571
572 raw_spin_lock_irqsave(&devtree_lock, flags);
573 res = __of_device_is_compatible(device, compat, NULL, NULL);
574 raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 return res;
576 }
577 EXPORT_SYMBOL(of_device_is_compatible);
578
579 /**
580 * of_machine_is_compatible - Test root of device tree for a given compatible value
581 * @compat: compatible string to look for in root node's compatible property.
582 *
583 * Returns true if the root node has the given value in its
584 * compatible property.
585 */
586 int of_machine_is_compatible(const char *compat)
587 {
588 struct device_node *root;
589 int rc = 0;
590
591 root = of_find_node_by_path("/");
592 if (root) {
593 rc = of_device_is_compatible(root, compat);
594 of_node_put(root);
595 }
596 return rc;
597 }
598 EXPORT_SYMBOL(of_machine_is_compatible);
599
600 /**
601 * __of_device_is_available - check if a device is available for use
602 *
603 * @device: Node to check for availability, with locks already held
604 *
605 * Returns 1 if the status property is absent or set to "okay" or "ok",
606 * 0 otherwise
607 */
608 static int __of_device_is_available(const struct device_node *device)
609 {
610 const char *status;
611 int statlen;
612
613 if (!device)
614 return 0;
615
616 status = __of_get_property(device, "status", &statlen);
617 if (status == NULL)
618 return 1;
619
620 if (statlen > 0) {
621 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
622 return 1;
623 }
624
625 return 0;
626 }
627
628 /**
629 * of_device_is_available - check if a device is available for use
630 *
631 * @device: Node to check for availability
632 *
633 * Returns 1 if the status property is absent or set to "okay" or "ok",
634 * 0 otherwise
635 */
636 int of_device_is_available(const struct device_node *device)
637 {
638 unsigned long flags;
639 int res;
640
641 raw_spin_lock_irqsave(&devtree_lock, flags);
642 res = __of_device_is_available(device);
643 raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 return res;
645
646 }
647 EXPORT_SYMBOL(of_device_is_available);
648
649 /**
650 * of_get_parent - Get a node's parent if any
651 * @node: Node to get parent
652 *
653 * Returns a node pointer with refcount incremented, use
654 * of_node_put() on it when done.
655 */
656 struct device_node *of_get_parent(const struct device_node *node)
657 {
658 struct device_node *np;
659 unsigned long flags;
660
661 if (!node)
662 return NULL;
663
664 raw_spin_lock_irqsave(&devtree_lock, flags);
665 np = of_node_get(node->parent);
666 raw_spin_unlock_irqrestore(&devtree_lock, flags);
667 return np;
668 }
669 EXPORT_SYMBOL(of_get_parent);
670
671 /**
672 * of_get_next_parent - Iterate to a node's parent
673 * @node: Node to get parent of
674 *
675 * This is like of_get_parent() except that it drops the
676 * refcount on the passed node, making it suitable for iterating
677 * through a node's parents.
678 *
679 * Returns a node pointer with refcount incremented, use
680 * of_node_put() on it when done.
681 */
682 struct device_node *of_get_next_parent(struct device_node *node)
683 {
684 struct device_node *parent;
685 unsigned long flags;
686
687 if (!node)
688 return NULL;
689
690 raw_spin_lock_irqsave(&devtree_lock, flags);
691 parent = of_node_get(node->parent);
692 of_node_put(node);
693 raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 return parent;
695 }
696 EXPORT_SYMBOL(of_get_next_parent);
697
698 static struct device_node *__of_get_next_child(const struct device_node *node,
699 struct device_node *prev)
700 {
701 struct device_node *next;
702
703 if (!node)
704 return NULL;
705
706 next = prev ? prev->sibling : node->child;
707 for (; next; next = next->sibling)
708 if (of_node_get(next))
709 break;
710 of_node_put(prev);
711 return next;
712 }
713 #define __for_each_child_of_node(parent, child) \
714 for (child = __of_get_next_child(parent, NULL); child != NULL; \
715 child = __of_get_next_child(parent, child))
716
717 /**
718 * of_get_next_child - Iterate a node childs
719 * @node: parent node
720 * @prev: previous child of the parent node, or NULL to get first
721 *
722 * Returns a node pointer with refcount incremented, use
723 * of_node_put() on it when done.
724 */
725 struct device_node *of_get_next_child(const struct device_node *node,
726 struct device_node *prev)
727 {
728 struct device_node *next;
729 unsigned long flags;
730
731 raw_spin_lock_irqsave(&devtree_lock, flags);
732 next = __of_get_next_child(node, prev);
733 raw_spin_unlock_irqrestore(&devtree_lock, flags);
734 return next;
735 }
736 EXPORT_SYMBOL(of_get_next_child);
737
738 /**
739 * of_get_next_available_child - Find the next available child node
740 * @node: parent node
741 * @prev: previous child of the parent node, or NULL to get first
742 *
743 * This function is like of_get_next_child(), except that it
744 * automatically skips any disabled nodes (i.e. status = "disabled").
745 */
746 struct device_node *of_get_next_available_child(const struct device_node *node,
747 struct device_node *prev)
748 {
749 struct device_node *next;
750 unsigned long flags;
751
752 if (!node)
753 return NULL;
754
755 raw_spin_lock_irqsave(&devtree_lock, flags);
756 next = prev ? prev->sibling : node->child;
757 for (; next; next = next->sibling) {
758 if (!__of_device_is_available(next))
759 continue;
760 if (of_node_get(next))
761 break;
762 }
763 of_node_put(prev);
764 raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 return next;
766 }
767 EXPORT_SYMBOL(of_get_next_available_child);
768
769 /**
770 * of_get_child_by_name - Find the child node by name for a given parent
771 * @node: parent node
772 * @name: child name to look for.
773 *
774 * This function looks for child node for given matching name
775 *
776 * Returns a node pointer if found, with refcount incremented, use
777 * of_node_put() on it when done.
778 * Returns NULL if node is not found.
779 */
780 struct device_node *of_get_child_by_name(const struct device_node *node,
781 const char *name)
782 {
783 struct device_node *child;
784
785 for_each_child_of_node(node, child)
786 if (child->name && (of_node_cmp(child->name, name) == 0))
787 break;
788 return child;
789 }
790 EXPORT_SYMBOL(of_get_child_by_name);
791
792 static struct device_node *__of_find_node_by_path(struct device_node *parent,
793 const char *path)
794 {
795 struct device_node *child;
796 int len = strchrnul(path, '/') - path;
797
798 if (!len)
799 return NULL;
800
801 __for_each_child_of_node(parent, child) {
802 const char *name = strrchr(child->full_name, '/');
803 if (WARN(!name, "malformed device_node %s\n", child->full_name))
804 continue;
805 name++;
806 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
807 return child;
808 }
809 return NULL;
810 }
811
812 /**
813 * of_find_node_by_path - Find a node matching a full OF path
814 * @path: Either the full path to match, or if the path does not
815 * start with '/', the name of a property of the /aliases
816 * node (an alias). In the case of an alias, the node
817 * matching the alias' value will be returned.
818 *
819 * Valid paths:
820 * /foo/bar Full path
821 * foo Valid alias
822 * foo/bar Valid alias + relative path
823 *
824 * Returns a node pointer with refcount incremented, use
825 * of_node_put() on it when done.
826 */
827 struct device_node *of_find_node_by_path(const char *path)
828 {
829 struct device_node *np = NULL;
830 struct property *pp;
831 unsigned long flags;
832
833 if (strcmp(path, "/") == 0)
834 return of_node_get(of_allnodes);
835
836 /* The path could begin with an alias */
837 if (*path != '/') {
838 char *p = strchrnul(path, '/');
839 int len = p - path;
840
841 /* of_aliases must not be NULL */
842 if (!of_aliases)
843 return NULL;
844
845 for_each_property_of_node(of_aliases, pp) {
846 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
847 np = of_find_node_by_path(pp->value);
848 break;
849 }
850 }
851 if (!np)
852 return NULL;
853 path = p;
854 }
855
856 /* Step down the tree matching path components */
857 raw_spin_lock_irqsave(&devtree_lock, flags);
858 if (!np)
859 np = of_node_get(of_allnodes);
860 while (np && *path == '/') {
861 path++; /* Increment past '/' delimiter */
862 np = __of_find_node_by_path(np, path);
863 path = strchrnul(path, '/');
864 }
865 raw_spin_unlock_irqrestore(&devtree_lock, flags);
866 return np;
867 }
868 EXPORT_SYMBOL(of_find_node_by_path);
869
870 /**
871 * of_find_node_by_name - Find a node by its "name" property
872 * @from: The node to start searching from or NULL, the node
873 * you pass will not be searched, only the next one
874 * will; typically, you pass what the previous call
875 * returned. of_node_put() will be called on it
876 * @name: The name string to match against
877 *
878 * Returns a node pointer with refcount incremented, use
879 * of_node_put() on it when done.
880 */
881 struct device_node *of_find_node_by_name(struct device_node *from,
882 const char *name)
883 {
884 struct device_node *np;
885 unsigned long flags;
886
887 raw_spin_lock_irqsave(&devtree_lock, flags);
888 np = from ? from->allnext : of_allnodes;
889 for (; np; np = np->allnext)
890 if (np->name && (of_node_cmp(np->name, name) == 0)
891 && of_node_get(np))
892 break;
893 of_node_put(from);
894 raw_spin_unlock_irqrestore(&devtree_lock, flags);
895 return np;
896 }
897 EXPORT_SYMBOL(of_find_node_by_name);
898
899 /**
900 * of_find_node_by_type - Find a node by its "device_type" property
901 * @from: The node to start searching from, or NULL to start searching
902 * the entire device tree. The node you pass will not be
903 * searched, only the next one will; typically, you pass
904 * what the previous call returned. of_node_put() will be
905 * called on from for you.
906 * @type: The type string to match against
907 *
908 * Returns a node pointer with refcount incremented, use
909 * of_node_put() on it when done.
910 */
911 struct device_node *of_find_node_by_type(struct device_node *from,
912 const char *type)
913 {
914 struct device_node *np;
915 unsigned long flags;
916
917 raw_spin_lock_irqsave(&devtree_lock, flags);
918 np = from ? from->allnext : of_allnodes;
919 for (; np; np = np->allnext)
920 if (np->type && (of_node_cmp(np->type, type) == 0)
921 && of_node_get(np))
922 break;
923 of_node_put(from);
924 raw_spin_unlock_irqrestore(&devtree_lock, flags);
925 return np;
926 }
927 EXPORT_SYMBOL(of_find_node_by_type);
928
929 /**
930 * of_find_compatible_node - Find a node based on type and one of the
931 * tokens in its "compatible" property
932 * @from: The node to start searching from or NULL, the node
933 * you pass will not be searched, only the next one
934 * will; typically, you pass what the previous call
935 * returned. of_node_put() will be called on it
936 * @type: The type string to match "device_type" or NULL to ignore
937 * @compatible: The string to match to one of the tokens in the device
938 * "compatible" list.
939 *
940 * Returns a node pointer with refcount incremented, use
941 * of_node_put() on it when done.
942 */
943 struct device_node *of_find_compatible_node(struct device_node *from,
944 const char *type, const char *compatible)
945 {
946 struct device_node *np;
947 unsigned long flags;
948
949 raw_spin_lock_irqsave(&devtree_lock, flags);
950 np = from ? from->allnext : of_allnodes;
951 for (; np; np = np->allnext) {
952 if (__of_device_is_compatible(np, compatible, type, NULL) &&
953 of_node_get(np))
954 break;
955 }
956 of_node_put(from);
957 raw_spin_unlock_irqrestore(&devtree_lock, flags);
958 return np;
959 }
960 EXPORT_SYMBOL(of_find_compatible_node);
961
962 /**
963 * of_find_node_with_property - Find a node which has a property with
964 * the given name.
965 * @from: The node to start searching from or NULL, the node
966 * you pass will not be searched, only the next one
967 * will; typically, you pass what the previous call
968 * returned. of_node_put() will be called on it
969 * @prop_name: The name of the property to look for.
970 *
971 * Returns a node pointer with refcount incremented, use
972 * of_node_put() on it when done.
973 */
974 struct device_node *of_find_node_with_property(struct device_node *from,
975 const char *prop_name)
976 {
977 struct device_node *np;
978 struct property *pp;
979 unsigned long flags;
980
981 raw_spin_lock_irqsave(&devtree_lock, flags);
982 np = from ? from->allnext : of_allnodes;
983 for (; np; np = np->allnext) {
984 for (pp = np->properties; pp; pp = pp->next) {
985 if (of_prop_cmp(pp->name, prop_name) == 0) {
986 of_node_get(np);
987 goto out;
988 }
989 }
990 }
991 out:
992 of_node_put(from);
993 raw_spin_unlock_irqrestore(&devtree_lock, flags);
994 return np;
995 }
996 EXPORT_SYMBOL(of_find_node_with_property);
997
998 static
999 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1000 const struct device_node *node)
1001 {
1002 const struct of_device_id *best_match = NULL;
1003 int score, best_score = 0;
1004
1005 if (!matches)
1006 return NULL;
1007
1008 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1009 score = __of_device_is_compatible(node, matches->compatible,
1010 matches->type, matches->name);
1011 if (score > best_score) {
1012 best_match = matches;
1013 best_score = score;
1014 }
1015 }
1016
1017 return best_match;
1018 }
1019
1020 /**
1021 * of_match_node - Tell if an device_node has a matching of_match structure
1022 * @matches: array of of device match structures to search in
1023 * @node: the of device structure to match against
1024 *
1025 * Low level utility function used by device matching.
1026 */
1027 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1028 const struct device_node *node)
1029 {
1030 const struct of_device_id *match;
1031 unsigned long flags;
1032
1033 raw_spin_lock_irqsave(&devtree_lock, flags);
1034 match = __of_match_node(matches, node);
1035 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1036 return match;
1037 }
1038 EXPORT_SYMBOL(of_match_node);
1039
1040 /**
1041 * of_find_matching_node_and_match - Find a node based on an of_device_id
1042 * match table.
1043 * @from: The node to start searching from or NULL, the node
1044 * you pass will not be searched, only the next one
1045 * will; typically, you pass what the previous call
1046 * returned. of_node_put() will be called on it
1047 * @matches: array of of device match structures to search in
1048 * @match Updated to point at the matches entry which matched
1049 *
1050 * Returns a node pointer with refcount incremented, use
1051 * of_node_put() on it when done.
1052 */
1053 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1054 const struct of_device_id *matches,
1055 const struct of_device_id **match)
1056 {
1057 struct device_node *np;
1058 const struct of_device_id *m;
1059 unsigned long flags;
1060
1061 if (match)
1062 *match = NULL;
1063
1064 raw_spin_lock_irqsave(&devtree_lock, flags);
1065 np = from ? from->allnext : of_allnodes;
1066 for (; np; np = np->allnext) {
1067 m = __of_match_node(matches, np);
1068 if (m && of_node_get(np)) {
1069 if (match)
1070 *match = m;
1071 break;
1072 }
1073 }
1074 of_node_put(from);
1075 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 return np;
1077 }
1078 EXPORT_SYMBOL(of_find_matching_node_and_match);
1079
1080 /**
1081 * of_modalias_node - Lookup appropriate modalias for a device node
1082 * @node: pointer to a device tree node
1083 * @modalias: Pointer to buffer that modalias value will be copied into
1084 * @len: Length of modalias value
1085 *
1086 * Based on the value of the compatible property, this routine will attempt
1087 * to choose an appropriate modalias value for a particular device tree node.
1088 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1089 * from the first entry in the compatible list property.
1090 *
1091 * This routine returns 0 on success, <0 on failure.
1092 */
1093 int of_modalias_node(struct device_node *node, char *modalias, int len)
1094 {
1095 const char *compatible, *p;
1096 int cplen;
1097
1098 compatible = of_get_property(node, "compatible", &cplen);
1099 if (!compatible || strlen(compatible) > cplen)
1100 return -ENODEV;
1101 p = strchr(compatible, ',');
1102 strlcpy(modalias, p ? p + 1 : compatible, len);
1103 return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(of_modalias_node);
1106
1107 /**
1108 * of_find_node_by_phandle - Find a node given a phandle
1109 * @handle: phandle of the node to find
1110 *
1111 * Returns a node pointer with refcount incremented, use
1112 * of_node_put() on it when done.
1113 */
1114 struct device_node *of_find_node_by_phandle(phandle handle)
1115 {
1116 struct device_node *np;
1117 unsigned long flags;
1118
1119 raw_spin_lock_irqsave(&devtree_lock, flags);
1120 for (np = of_allnodes; np; np = np->allnext)
1121 if (np->phandle == handle)
1122 break;
1123 of_node_get(np);
1124 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125 return np;
1126 }
1127 EXPORT_SYMBOL(of_find_node_by_phandle);
1128
1129 /**
1130 * of_property_count_elems_of_size - Count the number of elements in a property
1131 *
1132 * @np: device node from which the property value is to be read.
1133 * @propname: name of the property to be searched.
1134 * @elem_size: size of the individual element
1135 *
1136 * Search for a property in a device node and count the number of elements of
1137 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1138 * property does not exist or its length does not match a multiple of elem_size
1139 * and -ENODATA if the property does not have a value.
1140 */
1141 int of_property_count_elems_of_size(const struct device_node *np,
1142 const char *propname, int elem_size)
1143 {
1144 struct property *prop = of_find_property(np, propname, NULL);
1145
1146 if (!prop)
1147 return -EINVAL;
1148 if (!prop->value)
1149 return -ENODATA;
1150
1151 if (prop->length % elem_size != 0) {
1152 pr_err("size of %s in node %s is not a multiple of %d\n",
1153 propname, np->full_name, elem_size);
1154 return -EINVAL;
1155 }
1156
1157 return prop->length / elem_size;
1158 }
1159 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1160
1161 /**
1162 * of_find_property_value_of_size
1163 *
1164 * @np: device node from which the property value is to be read.
1165 * @propname: name of the property to be searched.
1166 * @len: requested length of property value
1167 *
1168 * Search for a property in a device node and valid the requested size.
1169 * Returns the property value on success, -EINVAL if the property does not
1170 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1171 * property data isn't large enough.
1172 *
1173 */
1174 static void *of_find_property_value_of_size(const struct device_node *np,
1175 const char *propname, u32 len)
1176 {
1177 struct property *prop = of_find_property(np, propname, NULL);
1178
1179 if (!prop)
1180 return ERR_PTR(-EINVAL);
1181 if (!prop->value)
1182 return ERR_PTR(-ENODATA);
1183 if (len > prop->length)
1184 return ERR_PTR(-EOVERFLOW);
1185
1186 return prop->value;
1187 }
1188
1189 /**
1190 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1191 *
1192 * @np: device node from which the property value is to be read.
1193 * @propname: name of the property to be searched.
1194 * @index: index of the u32 in the list of values
1195 * @out_value: pointer to return value, modified only if no error.
1196 *
1197 * Search for a property in a device node and read nth 32-bit value from
1198 * it. Returns 0 on success, -EINVAL if the property does not exist,
1199 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1200 * property data isn't large enough.
1201 *
1202 * The out_value is modified only if a valid u32 value can be decoded.
1203 */
1204 int of_property_read_u32_index(const struct device_node *np,
1205 const char *propname,
1206 u32 index, u32 *out_value)
1207 {
1208 const u32 *val = of_find_property_value_of_size(np, propname,
1209 ((index + 1) * sizeof(*out_value)));
1210
1211 if (IS_ERR(val))
1212 return PTR_ERR(val);
1213
1214 *out_value = be32_to_cpup(((__be32 *)val) + index);
1215 return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1218
1219 /**
1220 * of_property_read_u8_array - Find and read an array of u8 from a property.
1221 *
1222 * @np: device node from which the property value is to be read.
1223 * @propname: name of the property to be searched.
1224 * @out_values: pointer to return value, modified only if return value is 0.
1225 * @sz: number of array elements to read
1226 *
1227 * Search for a property in a device node and read 8-bit value(s) from
1228 * it. Returns 0 on success, -EINVAL if the property does not exist,
1229 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1230 * property data isn't large enough.
1231 *
1232 * dts entry of array should be like:
1233 * property = /bits/ 8 <0x50 0x60 0x70>;
1234 *
1235 * The out_values is modified only if a valid u8 value can be decoded.
1236 */
1237 int of_property_read_u8_array(const struct device_node *np,
1238 const char *propname, u8 *out_values, size_t sz)
1239 {
1240 const u8 *val = of_find_property_value_of_size(np, propname,
1241 (sz * sizeof(*out_values)));
1242
1243 if (IS_ERR(val))
1244 return PTR_ERR(val);
1245
1246 while (sz--)
1247 *out_values++ = *val++;
1248 return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1251
1252 /**
1253 * of_property_read_u16_array - Find and read an array of u16 from a property.
1254 *
1255 * @np: device node from which the property value is to be read.
1256 * @propname: name of the property to be searched.
1257 * @out_values: pointer to return value, modified only if return value is 0.
1258 * @sz: number of array elements to read
1259 *
1260 * Search for a property in a device node and read 16-bit value(s) from
1261 * it. Returns 0 on success, -EINVAL if the property does not exist,
1262 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1263 * property data isn't large enough.
1264 *
1265 * dts entry of array should be like:
1266 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1267 *
1268 * The out_values is modified only if a valid u16 value can be decoded.
1269 */
1270 int of_property_read_u16_array(const struct device_node *np,
1271 const char *propname, u16 *out_values, size_t sz)
1272 {
1273 const __be16 *val = of_find_property_value_of_size(np, propname,
1274 (sz * sizeof(*out_values)));
1275
1276 if (IS_ERR(val))
1277 return PTR_ERR(val);
1278
1279 while (sz--)
1280 *out_values++ = be16_to_cpup(val++);
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1284
1285 /**
1286 * of_property_read_u32_array - Find and read an array of 32 bit integers
1287 * from a property.
1288 *
1289 * @np: device node from which the property value is to be read.
1290 * @propname: name of the property to be searched.
1291 * @out_values: pointer to return value, modified only if return value is 0.
1292 * @sz: number of array elements to read
1293 *
1294 * Search for a property in a device node and read 32-bit value(s) from
1295 * it. Returns 0 on success, -EINVAL if the property does not exist,
1296 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1297 * property data isn't large enough.
1298 *
1299 * The out_values is modified only if a valid u32 value can be decoded.
1300 */
1301 int of_property_read_u32_array(const struct device_node *np,
1302 const char *propname, u32 *out_values,
1303 size_t sz)
1304 {
1305 const __be32 *val = of_find_property_value_of_size(np, propname,
1306 (sz * sizeof(*out_values)));
1307
1308 if (IS_ERR(val))
1309 return PTR_ERR(val);
1310
1311 while (sz--)
1312 *out_values++ = be32_to_cpup(val++);
1313 return 0;
1314 }
1315 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1316
1317 /**
1318 * of_property_read_u64 - Find and read a 64 bit integer from a property
1319 * @np: device node from which the property value is to be read.
1320 * @propname: name of the property to be searched.
1321 * @out_value: pointer to return value, modified only if return value is 0.
1322 *
1323 * Search for a property in a device node and read a 64-bit value from
1324 * it. Returns 0 on success, -EINVAL if the property does not exist,
1325 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1326 * property data isn't large enough.
1327 *
1328 * The out_value is modified only if a valid u64 value can be decoded.
1329 */
1330 int of_property_read_u64(const struct device_node *np, const char *propname,
1331 u64 *out_value)
1332 {
1333 const __be32 *val = of_find_property_value_of_size(np, propname,
1334 sizeof(*out_value));
1335
1336 if (IS_ERR(val))
1337 return PTR_ERR(val);
1338
1339 *out_value = of_read_number(val, 2);
1340 return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(of_property_read_u64);
1343
1344 /**
1345 * of_property_read_string - Find and read a string from a property
1346 * @np: device node from which the property value is to be read.
1347 * @propname: name of the property to be searched.
1348 * @out_string: pointer to null terminated return string, modified only if
1349 * return value is 0.
1350 *
1351 * Search for a property in a device tree node and retrieve a null
1352 * terminated string value (pointer to data, not a copy). Returns 0 on
1353 * success, -EINVAL if the property does not exist, -ENODATA if property
1354 * does not have a value, and -EILSEQ if the string is not null-terminated
1355 * within the length of the property data.
1356 *
1357 * The out_string pointer is modified only if a valid string can be decoded.
1358 */
1359 int of_property_read_string(struct device_node *np, const char *propname,
1360 const char **out_string)
1361 {
1362 struct property *prop = of_find_property(np, propname, NULL);
1363 if (!prop)
1364 return -EINVAL;
1365 if (!prop->value)
1366 return -ENODATA;
1367 if (strnlen(prop->value, prop->length) >= prop->length)
1368 return -EILSEQ;
1369 *out_string = prop->value;
1370 return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(of_property_read_string);
1373
1374 /**
1375 * of_property_read_string_index - Find and read a string from a multiple
1376 * strings property.
1377 * @np: device node from which the property value is to be read.
1378 * @propname: name of the property to be searched.
1379 * @index: index of the string in the list of strings
1380 * @out_string: pointer to null terminated return string, modified only if
1381 * return value is 0.
1382 *
1383 * Search for a property in a device tree node and retrieve a null
1384 * terminated string value (pointer to data, not a copy) in the list of strings
1385 * contained in that property.
1386 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1387 * property does not have a value, and -EILSEQ if the string is not
1388 * null-terminated within the length of the property data.
1389 *
1390 * The out_string pointer is modified only if a valid string can be decoded.
1391 */
1392 int of_property_read_string_index(struct device_node *np, const char *propname,
1393 int index, const char **output)
1394 {
1395 struct property *prop = of_find_property(np, propname, NULL);
1396 int i = 0;
1397 size_t l = 0, total = 0;
1398 const char *p;
1399
1400 if (!prop)
1401 return -EINVAL;
1402 if (!prop->value)
1403 return -ENODATA;
1404 if (strnlen(prop->value, prop->length) >= prop->length)
1405 return -EILSEQ;
1406
1407 p = prop->value;
1408
1409 for (i = 0; total < prop->length; total += l, p += l) {
1410 l = strlen(p) + 1;
1411 if (i++ == index) {
1412 *output = p;
1413 return 0;
1414 }
1415 }
1416 return -ENODATA;
1417 }
1418 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1419
1420 /**
1421 * of_property_match_string() - Find string in a list and return index
1422 * @np: pointer to node containing string list property
1423 * @propname: string list property name
1424 * @string: pointer to string to search for in string list
1425 *
1426 * This function searches a string list property and returns the index
1427 * of a specific string value.
1428 */
1429 int of_property_match_string(struct device_node *np, const char *propname,
1430 const char *string)
1431 {
1432 struct property *prop = of_find_property(np, propname, NULL);
1433 size_t l;
1434 int i;
1435 const char *p, *end;
1436
1437 if (!prop)
1438 return -EINVAL;
1439 if (!prop->value)
1440 return -ENODATA;
1441
1442 p = prop->value;
1443 end = p + prop->length;
1444
1445 for (i = 0; p < end; i++, p += l) {
1446 l = strlen(p) + 1;
1447 if (p + l > end)
1448 return -EILSEQ;
1449 pr_debug("comparing %s with %s\n", string, p);
1450 if (strcmp(string, p) == 0)
1451 return i; /* Found it; return index */
1452 }
1453 return -ENODATA;
1454 }
1455 EXPORT_SYMBOL_GPL(of_property_match_string);
1456
1457 /**
1458 * of_property_count_strings - Find and return the number of strings from a
1459 * multiple strings property.
1460 * @np: device node from which the property value is to be read.
1461 * @propname: name of the property to be searched.
1462 *
1463 * Search for a property in a device tree node and retrieve the number of null
1464 * terminated string contain in it. Returns the number of strings on
1465 * success, -EINVAL if the property does not exist, -ENODATA if property
1466 * does not have a value, and -EILSEQ if the string is not null-terminated
1467 * within the length of the property data.
1468 */
1469 int of_property_count_strings(struct device_node *np, const char *propname)
1470 {
1471 struct property *prop = of_find_property(np, propname, NULL);
1472 int i = 0;
1473 size_t l = 0, total = 0;
1474 const char *p;
1475
1476 if (!prop)
1477 return -EINVAL;
1478 if (!prop->value)
1479 return -ENODATA;
1480 if (strnlen(prop->value, prop->length) >= prop->length)
1481 return -EILSEQ;
1482
1483 p = prop->value;
1484
1485 for (i = 0; total < prop->length; total += l, p += l, i++)
1486 l = strlen(p) + 1;
1487
1488 return i;
1489 }
1490 EXPORT_SYMBOL_GPL(of_property_count_strings);
1491
1492 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1493 {
1494 int i;
1495 printk("%s %s", msg, of_node_full_name(args->np));
1496 for (i = 0; i < args->args_count; i++)
1497 printk(i ? ",%08x" : ":%08x", args->args[i]);
1498 printk("\n");
1499 }
1500
1501 static int __of_parse_phandle_with_args(const struct device_node *np,
1502 const char *list_name,
1503 const char *cells_name,
1504 int cell_count, int index,
1505 struct of_phandle_args *out_args)
1506 {
1507 const __be32 *list, *list_end;
1508 int rc = 0, size, cur_index = 0;
1509 uint32_t count = 0;
1510 struct device_node *node = NULL;
1511 phandle phandle;
1512
1513 /* Retrieve the phandle list property */
1514 list = of_get_property(np, list_name, &size);
1515 if (!list)
1516 return -ENOENT;
1517 list_end = list + size / sizeof(*list);
1518
1519 /* Loop over the phandles until all the requested entry is found */
1520 while (list < list_end) {
1521 rc = -EINVAL;
1522 count = 0;
1523
1524 /*
1525 * If phandle is 0, then it is an empty entry with no
1526 * arguments. Skip forward to the next entry.
1527 */
1528 phandle = be32_to_cpup(list++);
1529 if (phandle) {
1530 /*
1531 * Find the provider node and parse the #*-cells
1532 * property to determine the argument length.
1533 *
1534 * This is not needed if the cell count is hard-coded
1535 * (i.e. cells_name not set, but cell_count is set),
1536 * except when we're going to return the found node
1537 * below.
1538 */
1539 if (cells_name || cur_index == index) {
1540 node = of_find_node_by_phandle(phandle);
1541 if (!node) {
1542 pr_err("%s: could not find phandle\n",
1543 np->full_name);
1544 goto err;
1545 }
1546 }
1547
1548 if (cells_name) {
1549 if (of_property_read_u32(node, cells_name,
1550 &count)) {
1551 pr_err("%s: could not get %s for %s\n",
1552 np->full_name, cells_name,
1553 node->full_name);
1554 goto err;
1555 }
1556 } else {
1557 count = cell_count;
1558 }
1559
1560 /*
1561 * Make sure that the arguments actually fit in the
1562 * remaining property data length
1563 */
1564 if (list + count > list_end) {
1565 pr_err("%s: arguments longer than property\n",
1566 np->full_name);
1567 goto err;
1568 }
1569 }
1570
1571 /*
1572 * All of the error cases above bail out of the loop, so at
1573 * this point, the parsing is successful. If the requested
1574 * index matches, then fill the out_args structure and return,
1575 * or return -ENOENT for an empty entry.
1576 */
1577 rc = -ENOENT;
1578 if (cur_index == index) {
1579 if (!phandle)
1580 goto err;
1581
1582 if (out_args) {
1583 int i;
1584 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1585 count = MAX_PHANDLE_ARGS;
1586 out_args->np = node;
1587 out_args->args_count = count;
1588 for (i = 0; i < count; i++)
1589 out_args->args[i] = be32_to_cpup(list++);
1590 } else {
1591 of_node_put(node);
1592 }
1593
1594 /* Found it! return success */
1595 return 0;
1596 }
1597
1598 of_node_put(node);
1599 node = NULL;
1600 list += count;
1601 cur_index++;
1602 }
1603
1604 /*
1605 * Unlock node before returning result; will be one of:
1606 * -ENOENT : index is for empty phandle
1607 * -EINVAL : parsing error on data
1608 * [1..n] : Number of phandle (count mode; when index = -1)
1609 */
1610 rc = index < 0 ? cur_index : -ENOENT;
1611 err:
1612 if (node)
1613 of_node_put(node);
1614 return rc;
1615 }
1616
1617 /**
1618 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1619 * @np: Pointer to device node holding phandle property
1620 * @phandle_name: Name of property holding a phandle value
1621 * @index: For properties holding a table of phandles, this is the index into
1622 * the table
1623 *
1624 * Returns the device_node pointer with refcount incremented. Use
1625 * of_node_put() on it when done.
1626 */
1627 struct device_node *of_parse_phandle(const struct device_node *np,
1628 const char *phandle_name, int index)
1629 {
1630 struct of_phandle_args args;
1631
1632 if (index < 0)
1633 return NULL;
1634
1635 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1636 index, &args))
1637 return NULL;
1638
1639 return args.np;
1640 }
1641 EXPORT_SYMBOL(of_parse_phandle);
1642
1643 /**
1644 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1645 * @np: pointer to a device tree node containing a list
1646 * @list_name: property name that contains a list
1647 * @cells_name: property name that specifies phandles' arguments count
1648 * @index: index of a phandle to parse out
1649 * @out_args: optional pointer to output arguments structure (will be filled)
1650 *
1651 * This function is useful to parse lists of phandles and their arguments.
1652 * Returns 0 on success and fills out_args, on error returns appropriate
1653 * errno value.
1654 *
1655 * Caller is responsible to call of_node_put() on the returned out_args->node
1656 * pointer.
1657 *
1658 * Example:
1659 *
1660 * phandle1: node1 {
1661 * #list-cells = <2>;
1662 * }
1663 *
1664 * phandle2: node2 {
1665 * #list-cells = <1>;
1666 * }
1667 *
1668 * node3 {
1669 * list = <&phandle1 1 2 &phandle2 3>;
1670 * }
1671 *
1672 * To get a device_node of the `node2' node you may call this:
1673 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1674 */
1675 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1676 const char *cells_name, int index,
1677 struct of_phandle_args *out_args)
1678 {
1679 if (index < 0)
1680 return -EINVAL;
1681 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1682 index, out_args);
1683 }
1684 EXPORT_SYMBOL(of_parse_phandle_with_args);
1685
1686 /**
1687 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1688 * @np: pointer to a device tree node containing a list
1689 * @list_name: property name that contains a list
1690 * @cell_count: number of argument cells following the phandle
1691 * @index: index of a phandle to parse out
1692 * @out_args: optional pointer to output arguments structure (will be filled)
1693 *
1694 * This function is useful to parse lists of phandles and their arguments.
1695 * Returns 0 on success and fills out_args, on error returns appropriate
1696 * errno value.
1697 *
1698 * Caller is responsible to call of_node_put() on the returned out_args->node
1699 * pointer.
1700 *
1701 * Example:
1702 *
1703 * phandle1: node1 {
1704 * }
1705 *
1706 * phandle2: node2 {
1707 * }
1708 *
1709 * node3 {
1710 * list = <&phandle1 0 2 &phandle2 2 3>;
1711 * }
1712 *
1713 * To get a device_node of the `node2' node you may call this:
1714 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1715 */
1716 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1717 const char *list_name, int cell_count,
1718 int index, struct of_phandle_args *out_args)
1719 {
1720 if (index < 0)
1721 return -EINVAL;
1722 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1723 index, out_args);
1724 }
1725 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1726
1727 /**
1728 * of_count_phandle_with_args() - Find the number of phandles references in a property
1729 * @np: pointer to a device tree node containing a list
1730 * @list_name: property name that contains a list
1731 * @cells_name: property name that specifies phandles' arguments count
1732 *
1733 * Returns the number of phandle + argument tuples within a property. It
1734 * is a typical pattern to encode a list of phandle and variable
1735 * arguments into a single property. The number of arguments is encoded
1736 * by a property in the phandle-target node. For example, a gpios
1737 * property would contain a list of GPIO specifies consisting of a
1738 * phandle and 1 or more arguments. The number of arguments are
1739 * determined by the #gpio-cells property in the node pointed to by the
1740 * phandle.
1741 */
1742 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1743 const char *cells_name)
1744 {
1745 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1746 NULL);
1747 }
1748 EXPORT_SYMBOL(of_count_phandle_with_args);
1749
1750 #if defined(CONFIG_OF_DYNAMIC)
1751 static int of_property_notify(int action, struct device_node *np,
1752 struct property *prop)
1753 {
1754 struct of_prop_reconfig pr;
1755
1756 /* only call notifiers if the node is attached */
1757 if (!of_node_is_attached(np))
1758 return 0;
1759
1760 pr.dn = np;
1761 pr.prop = prop;
1762 return of_reconfig_notify(action, &pr);
1763 }
1764 #else
1765 static int of_property_notify(int action, struct device_node *np,
1766 struct property *prop)
1767 {
1768 return 0;
1769 }
1770 #endif
1771
1772 /**
1773 * __of_add_property - Add a property to a node without lock operations
1774 */
1775 static int __of_add_property(struct device_node *np, struct property *prop)
1776 {
1777 struct property **next;
1778
1779 prop->next = NULL;
1780 next = &np->properties;
1781 while (*next) {
1782 if (strcmp(prop->name, (*next)->name) == 0)
1783 /* duplicate ! don't insert it */
1784 return -EEXIST;
1785
1786 next = &(*next)->next;
1787 }
1788 *next = prop;
1789
1790 return 0;
1791 }
1792
1793 /**
1794 * of_add_property - Add a property to a node
1795 */
1796 int of_add_property(struct device_node *np, struct property *prop)
1797 {
1798 unsigned long flags;
1799 int rc;
1800
1801 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1802 if (rc)
1803 return rc;
1804
1805 raw_spin_lock_irqsave(&devtree_lock, flags);
1806 rc = __of_add_property(np, prop);
1807 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1808 if (rc)
1809 return rc;
1810
1811 if (of_node_is_attached(np))
1812 __of_add_property_sysfs(np, prop);
1813
1814 return rc;
1815 }
1816
1817 /**
1818 * of_remove_property - Remove a property from a node.
1819 *
1820 * Note that we don't actually remove it, since we have given out
1821 * who-knows-how-many pointers to the data using get-property.
1822 * Instead we just move the property to the "dead properties"
1823 * list, so it won't be found any more.
1824 */
1825 int of_remove_property(struct device_node *np, struct property *prop)
1826 {
1827 struct property **next;
1828 unsigned long flags;
1829 int found = 0;
1830 int rc;
1831
1832 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1833 if (rc)
1834 return rc;
1835
1836 raw_spin_lock_irqsave(&devtree_lock, flags);
1837 next = &np->properties;
1838 while (*next) {
1839 if (*next == prop) {
1840 /* found the node */
1841 *next = prop->next;
1842 prop->next = np->deadprops;
1843 np->deadprops = prop;
1844 found = 1;
1845 break;
1846 }
1847 next = &(*next)->next;
1848 }
1849 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1850
1851 if (!found)
1852 return -ENODEV;
1853
1854 /* at early boot, bail hear and defer setup to of_init() */
1855 if (!of_kset)
1856 return 0;
1857
1858 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1859
1860 return 0;
1861 }
1862
1863 /*
1864 * of_update_property - Update a property in a node, if the property does
1865 * not exist, add it.
1866 *
1867 * Note that we don't actually remove it, since we have given out
1868 * who-knows-how-many pointers to the data using get-property.
1869 * Instead we just move the property to the "dead properties" list,
1870 * and add the new property to the property list
1871 */
1872 int of_update_property(struct device_node *np, struct property *newprop)
1873 {
1874 struct property **next, *oldprop;
1875 unsigned long flags;
1876 int rc;
1877
1878 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1879 if (rc)
1880 return rc;
1881
1882 if (!newprop->name)
1883 return -EINVAL;
1884
1885 raw_spin_lock_irqsave(&devtree_lock, flags);
1886 next = &np->properties;
1887 oldprop = __of_find_property(np, newprop->name, NULL);
1888 if (!oldprop) {
1889 /* add the new node */
1890 rc = __of_add_property(np, newprop);
1891 } else while (*next) {
1892 /* replace the node */
1893 if (*next == oldprop) {
1894 newprop->next = oldprop->next;
1895 *next = newprop;
1896 oldprop->next = np->deadprops;
1897 np->deadprops = oldprop;
1898 break;
1899 }
1900 next = &(*next)->next;
1901 }
1902 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1903 if (rc)
1904 return rc;
1905
1906 /* At early boot, bail out and defer setup to of_init() */
1907 if (!of_kset)
1908 return 0;
1909
1910 /* Update the sysfs attribute */
1911 if (oldprop)
1912 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1913 __of_add_property_sysfs(np, newprop);
1914
1915 return 0;
1916 }
1917
1918 #if defined(CONFIG_OF_DYNAMIC)
1919 /*
1920 * Support for dynamic device trees.
1921 *
1922 * On some platforms, the device tree can be manipulated at runtime.
1923 * The routines in this section support adding, removing and changing
1924 * device tree nodes.
1925 */
1926
1927 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1928
1929 int of_reconfig_notifier_register(struct notifier_block *nb)
1930 {
1931 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1932 }
1933 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1934
1935 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1936 {
1937 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1938 }
1939 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1940
1941 int of_reconfig_notify(unsigned long action, void *p)
1942 {
1943 int rc;
1944
1945 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1946 return notifier_to_errno(rc);
1947 }
1948
1949 /**
1950 * of_attach_node - Plug a device node into the tree and global list.
1951 */
1952 int of_attach_node(struct device_node *np)
1953 {
1954 unsigned long flags;
1955 int rc;
1956
1957 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1958 if (rc)
1959 return rc;
1960
1961 raw_spin_lock_irqsave(&devtree_lock, flags);
1962 np->sibling = np->parent->child;
1963 np->allnext = np->parent->allnext;
1964 np->parent->allnext = np;
1965 np->parent->child = np;
1966 of_node_clear_flag(np, OF_DETACHED);
1967 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1968
1969 of_node_add(np);
1970 return 0;
1971 }
1972
1973 /**
1974 * of_detach_node - "Unplug" a node from the device tree.
1975 *
1976 * The caller must hold a reference to the node. The memory associated with
1977 * the node is not freed until its refcount goes to zero.
1978 */
1979 int of_detach_node(struct device_node *np)
1980 {
1981 struct device_node *parent;
1982 unsigned long flags;
1983 int rc = 0;
1984
1985 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1986 if (rc)
1987 return rc;
1988
1989 raw_spin_lock_irqsave(&devtree_lock, flags);
1990
1991 if (of_node_check_flag(np, OF_DETACHED)) {
1992 /* someone already detached it */
1993 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1994 return rc;
1995 }
1996
1997 parent = np->parent;
1998 if (!parent) {
1999 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2000 return rc;
2001 }
2002
2003 if (of_allnodes == np)
2004 of_allnodes = np->allnext;
2005 else {
2006 struct device_node *prev;
2007 for (prev = of_allnodes;
2008 prev->allnext != np;
2009 prev = prev->allnext)
2010 ;
2011 prev->allnext = np->allnext;
2012 }
2013
2014 if (parent->child == np)
2015 parent->child = np->sibling;
2016 else {
2017 struct device_node *prevsib;
2018 for (prevsib = np->parent->child;
2019 prevsib->sibling != np;
2020 prevsib = prevsib->sibling)
2021 ;
2022 prevsib->sibling = np->sibling;
2023 }
2024
2025 of_node_set_flag(np, OF_DETACHED);
2026 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2027
2028 of_node_remove(np);
2029 return rc;
2030 }
2031 #endif /* defined(CONFIG_OF_DYNAMIC) */
2032
2033 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2034 int id, const char *stem, int stem_len)
2035 {
2036 ap->np = np;
2037 ap->id = id;
2038 strncpy(ap->stem, stem, stem_len);
2039 ap->stem[stem_len] = 0;
2040 list_add_tail(&ap->link, &aliases_lookup);
2041 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2042 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2043 }
2044
2045 /**
2046 * of_alias_scan - Scan all properties of 'aliases' node
2047 *
2048 * The function scans all the properties of 'aliases' node and populate
2049 * the the global lookup table with the properties. It returns the
2050 * number of alias_prop found, or error code in error case.
2051 *
2052 * @dt_alloc: An allocator that provides a virtual address to memory
2053 * for the resulting tree
2054 */
2055 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2056 {
2057 struct property *pp;
2058
2059 of_chosen = of_find_node_by_path("/chosen");
2060 if (of_chosen == NULL)
2061 of_chosen = of_find_node_by_path("/chosen@0");
2062
2063 if (of_chosen) {
2064 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2065 if (!name)
2066 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2067 if (name)
2068 of_stdout = of_find_node_by_path(name);
2069 }
2070
2071 of_aliases = of_find_node_by_path("/aliases");
2072 if (!of_aliases)
2073 return;
2074
2075 for_each_property_of_node(of_aliases, pp) {
2076 const char *start = pp->name;
2077 const char *end = start + strlen(start);
2078 struct device_node *np;
2079 struct alias_prop *ap;
2080 int id, len;
2081
2082 /* Skip those we do not want to proceed */
2083 if (!strcmp(pp->name, "name") ||
2084 !strcmp(pp->name, "phandle") ||
2085 !strcmp(pp->name, "linux,phandle"))
2086 continue;
2087
2088 np = of_find_node_by_path(pp->value);
2089 if (!np)
2090 continue;
2091
2092 /* walk the alias backwards to extract the id and work out
2093 * the 'stem' string */
2094 while (isdigit(*(end-1)) && end > start)
2095 end--;
2096 len = end - start;
2097
2098 if (kstrtoint(end, 10, &id) < 0)
2099 continue;
2100
2101 /* Allocate an alias_prop with enough space for the stem */
2102 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2103 if (!ap)
2104 continue;
2105 memset(ap, 0, sizeof(*ap) + len + 1);
2106 ap->alias = start;
2107 of_alias_add(ap, np, id, start, len);
2108 }
2109 }
2110
2111 /**
2112 * of_alias_get_id - Get alias id for the given device_node
2113 * @np: Pointer to the given device_node
2114 * @stem: Alias stem of the given device_node
2115 *
2116 * The function travels the lookup table to get the alias id for the given
2117 * device_node and alias stem. It returns the alias id if found.
2118 */
2119 int of_alias_get_id(struct device_node *np, const char *stem)
2120 {
2121 struct alias_prop *app;
2122 int id = -ENODEV;
2123
2124 mutex_lock(&of_mutex);
2125 list_for_each_entry(app, &aliases_lookup, link) {
2126 if (strcmp(app->stem, stem) != 0)
2127 continue;
2128
2129 if (np == app->np) {
2130 id = app->id;
2131 break;
2132 }
2133 }
2134 mutex_unlock(&of_mutex);
2135
2136 return id;
2137 }
2138 EXPORT_SYMBOL_GPL(of_alias_get_id);
2139
2140 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2141 u32 *pu)
2142 {
2143 const void *curv = cur;
2144
2145 if (!prop)
2146 return NULL;
2147
2148 if (!cur) {
2149 curv = prop->value;
2150 goto out_val;
2151 }
2152
2153 curv += sizeof(*cur);
2154 if (curv >= prop->value + prop->length)
2155 return NULL;
2156
2157 out_val:
2158 *pu = be32_to_cpup(curv);
2159 return curv;
2160 }
2161 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2162
2163 const char *of_prop_next_string(struct property *prop, const char *cur)
2164 {
2165 const void *curv = cur;
2166
2167 if (!prop)
2168 return NULL;
2169
2170 if (!cur)
2171 return prop->value;
2172
2173 curv += strlen(cur) + 1;
2174 if (curv >= prop->value + prop->length)
2175 return NULL;
2176
2177 return curv;
2178 }
2179 EXPORT_SYMBOL_GPL(of_prop_next_string);
2180
2181 /**
2182 * of_device_is_stdout_path - check if a device node matches the
2183 * linux,stdout-path property
2184 *
2185 * Check if this device node matches the linux,stdout-path property
2186 * in the chosen node. return true if yes, false otherwise.
2187 */
2188 int of_device_is_stdout_path(struct device_node *dn)
2189 {
2190 if (!of_stdout)
2191 return false;
2192
2193 return of_stdout == dn;
2194 }
2195 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2196
2197 /**
2198 * of_find_next_cache_node - Find a node's subsidiary cache
2199 * @np: node of type "cpu" or "cache"
2200 *
2201 * Returns a node pointer with refcount incremented, use
2202 * of_node_put() on it when done. Caller should hold a reference
2203 * to np.
2204 */
2205 struct device_node *of_find_next_cache_node(const struct device_node *np)
2206 {
2207 struct device_node *child;
2208 const phandle *handle;
2209
2210 handle = of_get_property(np, "l2-cache", NULL);
2211 if (!handle)
2212 handle = of_get_property(np, "next-level-cache", NULL);
2213
2214 if (handle)
2215 return of_find_node_by_phandle(be32_to_cpup(handle));
2216
2217 /* OF on pmac has nodes instead of properties named "l2-cache"
2218 * beneath CPU nodes.
2219 */
2220 if (!strcmp(np->type, "cpu"))
2221 for_each_child_of_node(np, child)
2222 if (!strcmp(child->type, "cache"))
2223 return child;
2224
2225 return NULL;
2226 }
2227
2228 /**
2229 * of_graph_parse_endpoint() - parse common endpoint node properties
2230 * @node: pointer to endpoint device_node
2231 * @endpoint: pointer to the OF endpoint data structure
2232 *
2233 * The caller should hold a reference to @node.
2234 */
2235 int of_graph_parse_endpoint(const struct device_node *node,
2236 struct of_endpoint *endpoint)
2237 {
2238 struct device_node *port_node = of_get_parent(node);
2239
2240 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2241 __func__, node->full_name);
2242
2243 memset(endpoint, 0, sizeof(*endpoint));
2244
2245 endpoint->local_node = node;
2246 /*
2247 * It doesn't matter whether the two calls below succeed.
2248 * If they don't then the default value 0 is used.
2249 */
2250 of_property_read_u32(port_node, "reg", &endpoint->port);
2251 of_property_read_u32(node, "reg", &endpoint->id);
2252
2253 of_node_put(port_node);
2254
2255 return 0;
2256 }
2257 EXPORT_SYMBOL(of_graph_parse_endpoint);
2258
2259 /**
2260 * of_graph_get_next_endpoint() - get next endpoint node
2261 * @parent: pointer to the parent device node
2262 * @prev: previous endpoint node, or NULL to get first
2263 *
2264 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2265 * of the passed @prev node is not decremented, the caller have to use
2266 * of_node_put() on it when done.
2267 */
2268 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2269 struct device_node *prev)
2270 {
2271 struct device_node *endpoint;
2272 struct device_node *port;
2273
2274 if (!parent)
2275 return NULL;
2276
2277 /*
2278 * Start by locating the port node. If no previous endpoint is specified
2279 * search for the first port node, otherwise get the previous endpoint
2280 * parent port node.
2281 */
2282 if (!prev) {
2283 struct device_node *node;
2284
2285 node = of_get_child_by_name(parent, "ports");
2286 if (node)
2287 parent = node;
2288
2289 port = of_get_child_by_name(parent, "port");
2290 of_node_put(node);
2291
2292 if (!port) {
2293 pr_err("%s(): no port node found in %s\n",
2294 __func__, parent->full_name);
2295 return NULL;
2296 }
2297 } else {
2298 port = of_get_parent(prev);
2299 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2300 __func__, prev->full_name))
2301 return NULL;
2302
2303 /*
2304 * Avoid dropping prev node refcount to 0 when getting the next
2305 * child below.
2306 */
2307 of_node_get(prev);
2308 }
2309
2310 while (1) {
2311 /*
2312 * Now that we have a port node, get the next endpoint by
2313 * getting the next child. If the previous endpoint is NULL this
2314 * will return the first child.
2315 */
2316 endpoint = of_get_next_child(port, prev);
2317 if (endpoint) {
2318 of_node_put(port);
2319 return endpoint;
2320 }
2321
2322 /* No more endpoints under this port, try the next one. */
2323 prev = NULL;
2324
2325 do {
2326 port = of_get_next_child(parent, port);
2327 if (!port)
2328 return NULL;
2329 } while (of_node_cmp(port->name, "port"));
2330 }
2331 }
2332 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2333
2334 /**
2335 * of_graph_get_remote_port_parent() - get remote port's parent node
2336 * @node: pointer to a local endpoint device_node
2337 *
2338 * Return: Remote device node associated with remote endpoint node linked
2339 * to @node. Use of_node_put() on it when done.
2340 */
2341 struct device_node *of_graph_get_remote_port_parent(
2342 const struct device_node *node)
2343 {
2344 struct device_node *np;
2345 unsigned int depth;
2346
2347 /* Get remote endpoint node. */
2348 np = of_parse_phandle(node, "remote-endpoint", 0);
2349
2350 /* Walk 3 levels up only if there is 'ports' node. */
2351 for (depth = 3; depth && np; depth--) {
2352 np = of_get_next_parent(np);
2353 if (depth == 2 && of_node_cmp(np->name, "ports"))
2354 break;
2355 }
2356 return np;
2357 }
2358 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2359
2360 /**
2361 * of_graph_get_remote_port() - get remote port node
2362 * @node: pointer to a local endpoint device_node
2363 *
2364 * Return: Remote port node associated with remote endpoint node linked
2365 * to @node. Use of_node_put() on it when done.
2366 */
2367 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2368 {
2369 struct device_node *np;
2370
2371 /* Get remote endpoint node. */
2372 np = of_parse_phandle(node, "remote-endpoint", 0);
2373 if (!np)
2374 return NULL;
2375 return of_get_next_parent(np);
2376 }
2377 EXPORT_SYMBOL(of_graph_get_remote_port);