]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/of/base.c
f2e649ff746f546b153d5ff1f64dc70958490c56
[mirror_ubuntu-bionic-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
61 int of_n_addr_cells(struct device_node *np)
62 {
63 u32 cells;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 if (!of_property_read_u32(np, "#address-cells", &cells))
69 return cells;
70 } while (np->parent);
71 /* No #address-cells property for the root node */
72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75
76 int of_n_size_cells(struct device_node *np)
77 {
78 u32 cells;
79
80 do {
81 if (np->parent)
82 np = np->parent;
83 if (!of_property_read_u32(np, "#size-cells", &cells))
84 return cells;
85 } while (np->parent);
86 /* No #size-cells property for the root node */
87 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90
91 #ifdef CONFIG_NUMA
92 int __weak of_node_to_nid(struct device_node *np)
93 {
94 return NUMA_NO_NODE;
95 }
96 #endif
97
98 void __init of_core_init(void)
99 {
100 struct device_node *np;
101
102 /* Create the kset, and register existing nodes */
103 mutex_lock(&of_mutex);
104 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
105 if (!of_kset) {
106 mutex_unlock(&of_mutex);
107 pr_err("failed to register existing nodes\n");
108 return;
109 }
110 for_each_of_allnodes(np)
111 __of_attach_node_sysfs(np);
112 mutex_unlock(&of_mutex);
113
114 /* Symlink in /proc as required by userspace ABI */
115 if (of_root)
116 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
117 }
118
119 static struct property *__of_find_property(const struct device_node *np,
120 const char *name, int *lenp)
121 {
122 struct property *pp;
123
124 if (!np)
125 return NULL;
126
127 for (pp = np->properties; pp; pp = pp->next) {
128 if (of_prop_cmp(pp->name, name) == 0) {
129 if (lenp)
130 *lenp = pp->length;
131 break;
132 }
133 }
134
135 return pp;
136 }
137
138 struct property *of_find_property(const struct device_node *np,
139 const char *name,
140 int *lenp)
141 {
142 struct property *pp;
143 unsigned long flags;
144
145 raw_spin_lock_irqsave(&devtree_lock, flags);
146 pp = __of_find_property(np, name, lenp);
147 raw_spin_unlock_irqrestore(&devtree_lock, flags);
148
149 return pp;
150 }
151 EXPORT_SYMBOL(of_find_property);
152
153 struct device_node *__of_find_all_nodes(struct device_node *prev)
154 {
155 struct device_node *np;
156 if (!prev) {
157 np = of_root;
158 } else if (prev->child) {
159 np = prev->child;
160 } else {
161 /* Walk back up looking for a sibling, or the end of the structure */
162 np = prev;
163 while (np->parent && !np->sibling)
164 np = np->parent;
165 np = np->sibling; /* Might be null at the end of the tree */
166 }
167 return np;
168 }
169
170 /**
171 * of_find_all_nodes - Get next node in global list
172 * @prev: Previous node or NULL to start iteration
173 * of_node_put() will be called on it
174 *
175 * Returns a node pointer with refcount incremented, use
176 * of_node_put() on it when done.
177 */
178 struct device_node *of_find_all_nodes(struct device_node *prev)
179 {
180 struct device_node *np;
181 unsigned long flags;
182
183 raw_spin_lock_irqsave(&devtree_lock, flags);
184 np = __of_find_all_nodes(prev);
185 of_node_get(np);
186 of_node_put(prev);
187 raw_spin_unlock_irqrestore(&devtree_lock, flags);
188 return np;
189 }
190 EXPORT_SYMBOL(of_find_all_nodes);
191
192 /*
193 * Find a property with a given name for a given node
194 * and return the value.
195 */
196 const void *__of_get_property(const struct device_node *np,
197 const char *name, int *lenp)
198 {
199 struct property *pp = __of_find_property(np, name, lenp);
200
201 return pp ? pp->value : NULL;
202 }
203
204 /*
205 * Find a property with a given name for a given node
206 * and return the value.
207 */
208 const void *of_get_property(const struct device_node *np, const char *name,
209 int *lenp)
210 {
211 struct property *pp = of_find_property(np, name, lenp);
212
213 return pp ? pp->value : NULL;
214 }
215 EXPORT_SYMBOL(of_get_property);
216
217 /*
218 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
219 *
220 * @cpu: logical cpu index of a core/thread
221 * @phys_id: physical identifier of a core/thread
222 *
223 * CPU logical to physical index mapping is architecture specific.
224 * However this __weak function provides a default match of physical
225 * id to logical cpu index. phys_id provided here is usually values read
226 * from the device tree which must match the hardware internal registers.
227 *
228 * Returns true if the physical identifier and the logical cpu index
229 * correspond to the same core/thread, false otherwise.
230 */
231 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
232 {
233 return (u32)phys_id == cpu;
234 }
235
236 /**
237 * Checks if the given "prop_name" property holds the physical id of the
238 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
239 * NULL, local thread number within the core is returned in it.
240 */
241 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
242 const char *prop_name, int cpu, unsigned int *thread)
243 {
244 const __be32 *cell;
245 int ac, prop_len, tid;
246 u64 hwid;
247
248 ac = of_n_addr_cells(cpun);
249 cell = of_get_property(cpun, prop_name, &prop_len);
250 if (!cell || !ac)
251 return false;
252 prop_len /= sizeof(*cell) * ac;
253 for (tid = 0; tid < prop_len; tid++) {
254 hwid = of_read_number(cell, ac);
255 if (arch_match_cpu_phys_id(cpu, hwid)) {
256 if (thread)
257 *thread = tid;
258 return true;
259 }
260 cell += ac;
261 }
262 return false;
263 }
264
265 /*
266 * arch_find_n_match_cpu_physical_id - See if the given device node is
267 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
268 * else false. If 'thread' is non-NULL, the local thread number within the
269 * core is returned in it.
270 */
271 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
272 int cpu, unsigned int *thread)
273 {
274 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
275 * for thread ids on PowerPC. If it doesn't exist fallback to
276 * standard "reg" property.
277 */
278 if (IS_ENABLED(CONFIG_PPC) &&
279 __of_find_n_match_cpu_property(cpun,
280 "ibm,ppc-interrupt-server#s",
281 cpu, thread))
282 return true;
283
284 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
285 }
286
287 /**
288 * of_get_cpu_node - Get device node associated with the given logical CPU
289 *
290 * @cpu: CPU number(logical index) for which device node is required
291 * @thread: if not NULL, local thread number within the physical core is
292 * returned
293 *
294 * The main purpose of this function is to retrieve the device node for the
295 * given logical CPU index. It should be used to initialize the of_node in
296 * cpu device. Once of_node in cpu device is populated, all the further
297 * references can use that instead.
298 *
299 * CPU logical to physical index mapping is architecture specific and is built
300 * before booting secondary cores. This function uses arch_match_cpu_phys_id
301 * which can be overridden by architecture specific implementation.
302 *
303 * Returns a node pointer for the logical cpu with refcount incremented, use
304 * of_node_put() on it when done. Returns NULL if not found.
305 */
306 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
307 {
308 struct device_node *cpun;
309
310 for_each_node_by_type(cpun, "cpu") {
311 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
312 return cpun;
313 }
314 return NULL;
315 }
316 EXPORT_SYMBOL(of_get_cpu_node);
317
318 /**
319 * __of_device_is_compatible() - Check if the node matches given constraints
320 * @device: pointer to node
321 * @compat: required compatible string, NULL or "" for any match
322 * @type: required device_type value, NULL or "" for any match
323 * @name: required node name, NULL or "" for any match
324 *
325 * Checks if the given @compat, @type and @name strings match the
326 * properties of the given @device. A constraints can be skipped by
327 * passing NULL or an empty string as the constraint.
328 *
329 * Returns 0 for no match, and a positive integer on match. The return
330 * value is a relative score with larger values indicating better
331 * matches. The score is weighted for the most specific compatible value
332 * to get the highest score. Matching type is next, followed by matching
333 * name. Practically speaking, this results in the following priority
334 * order for matches:
335 *
336 * 1. specific compatible && type && name
337 * 2. specific compatible && type
338 * 3. specific compatible && name
339 * 4. specific compatible
340 * 5. general compatible && type && name
341 * 6. general compatible && type
342 * 7. general compatible && name
343 * 8. general compatible
344 * 9. type && name
345 * 10. type
346 * 11. name
347 */
348 static int __of_device_is_compatible(const struct device_node *device,
349 const char *compat, const char *type, const char *name)
350 {
351 struct property *prop;
352 const char *cp;
353 int index = 0, score = 0;
354
355 /* Compatible match has highest priority */
356 if (compat && compat[0]) {
357 prop = __of_find_property(device, "compatible", NULL);
358 for (cp = of_prop_next_string(prop, NULL); cp;
359 cp = of_prop_next_string(prop, cp), index++) {
360 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
361 score = INT_MAX/2 - (index << 2);
362 break;
363 }
364 }
365 if (!score)
366 return 0;
367 }
368
369 /* Matching type is better than matching name */
370 if (type && type[0]) {
371 if (!device->type || of_node_cmp(type, device->type))
372 return 0;
373 score += 2;
374 }
375
376 /* Matching name is a bit better than not */
377 if (name && name[0]) {
378 if (!device->name || of_node_cmp(name, device->name))
379 return 0;
380 score++;
381 }
382
383 return score;
384 }
385
386 /** Checks if the given "compat" string matches one of the strings in
387 * the device's "compatible" property
388 */
389 int of_device_is_compatible(const struct device_node *device,
390 const char *compat)
391 {
392 unsigned long flags;
393 int res;
394
395 raw_spin_lock_irqsave(&devtree_lock, flags);
396 res = __of_device_is_compatible(device, compat, NULL, NULL);
397 raw_spin_unlock_irqrestore(&devtree_lock, flags);
398 return res;
399 }
400 EXPORT_SYMBOL(of_device_is_compatible);
401
402 /** Checks if the device is compatible with any of the entries in
403 * a NULL terminated array of strings. Returns the best match
404 * score or 0.
405 */
406 int of_device_compatible_match(struct device_node *device,
407 const char *const *compat)
408 {
409 unsigned int tmp, score = 0;
410
411 if (!compat)
412 return 0;
413
414 while (*compat) {
415 tmp = of_device_is_compatible(device, *compat);
416 if (tmp > score)
417 score = tmp;
418 compat++;
419 }
420
421 return score;
422 }
423
424 /**
425 * of_machine_is_compatible - Test root of device tree for a given compatible value
426 * @compat: compatible string to look for in root node's compatible property.
427 *
428 * Returns a positive integer if the root node has the given value in its
429 * compatible property.
430 */
431 int of_machine_is_compatible(const char *compat)
432 {
433 struct device_node *root;
434 int rc = 0;
435
436 root = of_find_node_by_path("/");
437 if (root) {
438 rc = of_device_is_compatible(root, compat);
439 of_node_put(root);
440 }
441 return rc;
442 }
443 EXPORT_SYMBOL(of_machine_is_compatible);
444
445 /**
446 * __of_device_is_available - check if a device is available for use
447 *
448 * @device: Node to check for availability, with locks already held
449 *
450 * Returns true if the status property is absent or set to "okay" or "ok",
451 * false otherwise
452 */
453 static bool __of_device_is_available(const struct device_node *device)
454 {
455 const char *status;
456 int statlen;
457
458 if (!device)
459 return false;
460
461 status = __of_get_property(device, "status", &statlen);
462 if (status == NULL)
463 return true;
464
465 if (statlen > 0) {
466 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
467 return true;
468 }
469
470 return false;
471 }
472
473 /**
474 * of_device_is_available - check if a device is available for use
475 *
476 * @device: Node to check for availability
477 *
478 * Returns true if the status property is absent or set to "okay" or "ok",
479 * false otherwise
480 */
481 bool of_device_is_available(const struct device_node *device)
482 {
483 unsigned long flags;
484 bool res;
485
486 raw_spin_lock_irqsave(&devtree_lock, flags);
487 res = __of_device_is_available(device);
488 raw_spin_unlock_irqrestore(&devtree_lock, flags);
489 return res;
490
491 }
492 EXPORT_SYMBOL(of_device_is_available);
493
494 /**
495 * of_device_is_big_endian - check if a device has BE registers
496 *
497 * @device: Node to check for endianness
498 *
499 * Returns true if the device has a "big-endian" property, or if the kernel
500 * was compiled for BE *and* the device has a "native-endian" property.
501 * Returns false otherwise.
502 *
503 * Callers would nominally use ioread32be/iowrite32be if
504 * of_device_is_big_endian() == true, or readl/writel otherwise.
505 */
506 bool of_device_is_big_endian(const struct device_node *device)
507 {
508 if (of_property_read_bool(device, "big-endian"))
509 return true;
510 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
511 of_property_read_bool(device, "native-endian"))
512 return true;
513 return false;
514 }
515 EXPORT_SYMBOL(of_device_is_big_endian);
516
517 /**
518 * of_get_parent - Get a node's parent if any
519 * @node: Node to get parent
520 *
521 * Returns a node pointer with refcount incremented, use
522 * of_node_put() on it when done.
523 */
524 struct device_node *of_get_parent(const struct device_node *node)
525 {
526 struct device_node *np;
527 unsigned long flags;
528
529 if (!node)
530 return NULL;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 np = of_node_get(node->parent);
534 raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 return np;
536 }
537 EXPORT_SYMBOL(of_get_parent);
538
539 /**
540 * of_get_next_parent - Iterate to a node's parent
541 * @node: Node to get parent of
542 *
543 * This is like of_get_parent() except that it drops the
544 * refcount on the passed node, making it suitable for iterating
545 * through a node's parents.
546 *
547 * Returns a node pointer with refcount incremented, use
548 * of_node_put() on it when done.
549 */
550 struct device_node *of_get_next_parent(struct device_node *node)
551 {
552 struct device_node *parent;
553 unsigned long flags;
554
555 if (!node)
556 return NULL;
557
558 raw_spin_lock_irqsave(&devtree_lock, flags);
559 parent = of_node_get(node->parent);
560 of_node_put(node);
561 raw_spin_unlock_irqrestore(&devtree_lock, flags);
562 return parent;
563 }
564 EXPORT_SYMBOL(of_get_next_parent);
565
566 static struct device_node *__of_get_next_child(const struct device_node *node,
567 struct device_node *prev)
568 {
569 struct device_node *next;
570
571 if (!node)
572 return NULL;
573
574 next = prev ? prev->sibling : node->child;
575 for (; next; next = next->sibling)
576 if (of_node_get(next))
577 break;
578 of_node_put(prev);
579 return next;
580 }
581 #define __for_each_child_of_node(parent, child) \
582 for (child = __of_get_next_child(parent, NULL); child != NULL; \
583 child = __of_get_next_child(parent, child))
584
585 /**
586 * of_get_next_child - Iterate a node childs
587 * @node: parent node
588 * @prev: previous child of the parent node, or NULL to get first
589 *
590 * Returns a node pointer with refcount incremented, use of_node_put() on
591 * it when done. Returns NULL when prev is the last child. Decrements the
592 * refcount of prev.
593 */
594 struct device_node *of_get_next_child(const struct device_node *node,
595 struct device_node *prev)
596 {
597 struct device_node *next;
598 unsigned long flags;
599
600 raw_spin_lock_irqsave(&devtree_lock, flags);
601 next = __of_get_next_child(node, prev);
602 raw_spin_unlock_irqrestore(&devtree_lock, flags);
603 return next;
604 }
605 EXPORT_SYMBOL(of_get_next_child);
606
607 /**
608 * of_get_next_available_child - Find the next available child node
609 * @node: parent node
610 * @prev: previous child of the parent node, or NULL to get first
611 *
612 * This function is like of_get_next_child(), except that it
613 * automatically skips any disabled nodes (i.e. status = "disabled").
614 */
615 struct device_node *of_get_next_available_child(const struct device_node *node,
616 struct device_node *prev)
617 {
618 struct device_node *next;
619 unsigned long flags;
620
621 if (!node)
622 return NULL;
623
624 raw_spin_lock_irqsave(&devtree_lock, flags);
625 next = prev ? prev->sibling : node->child;
626 for (; next; next = next->sibling) {
627 if (!__of_device_is_available(next))
628 continue;
629 if (of_node_get(next))
630 break;
631 }
632 of_node_put(prev);
633 raw_spin_unlock_irqrestore(&devtree_lock, flags);
634 return next;
635 }
636 EXPORT_SYMBOL(of_get_next_available_child);
637
638 /**
639 * of_get_child_by_name - Find the child node by name for a given parent
640 * @node: parent node
641 * @name: child name to look for.
642 *
643 * This function looks for child node for given matching name
644 *
645 * Returns a node pointer if found, with refcount incremented, use
646 * of_node_put() on it when done.
647 * Returns NULL if node is not found.
648 */
649 struct device_node *of_get_child_by_name(const struct device_node *node,
650 const char *name)
651 {
652 struct device_node *child;
653
654 for_each_child_of_node(node, child)
655 if (child->name && (of_node_cmp(child->name, name) == 0))
656 break;
657 return child;
658 }
659 EXPORT_SYMBOL(of_get_child_by_name);
660
661 struct device_node *__of_find_node_by_path(struct device_node *parent,
662 const char *path)
663 {
664 struct device_node *child;
665 int len;
666
667 len = strcspn(path, "/:");
668 if (!len)
669 return NULL;
670
671 __for_each_child_of_node(parent, child) {
672 const char *name = kbasename(child->full_name);
673 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
674 return child;
675 }
676 return NULL;
677 }
678
679 struct device_node *__of_find_node_by_full_path(struct device_node *node,
680 const char *path)
681 {
682 const char *separator = strchr(path, ':');
683
684 while (node && *path == '/') {
685 struct device_node *tmp = node;
686
687 path++; /* Increment past '/' delimiter */
688 node = __of_find_node_by_path(node, path);
689 of_node_put(tmp);
690 path = strchrnul(path, '/');
691 if (separator && separator < path)
692 break;
693 }
694 return node;
695 }
696
697 /**
698 * of_find_node_opts_by_path - Find a node matching a full OF path
699 * @path: Either the full path to match, or if the path does not
700 * start with '/', the name of a property of the /aliases
701 * node (an alias). In the case of an alias, the node
702 * matching the alias' value will be returned.
703 * @opts: Address of a pointer into which to store the start of
704 * an options string appended to the end of the path with
705 * a ':' separator.
706 *
707 * Valid paths:
708 * /foo/bar Full path
709 * foo Valid alias
710 * foo/bar Valid alias + relative path
711 *
712 * Returns a node pointer with refcount incremented, use
713 * of_node_put() on it when done.
714 */
715 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
716 {
717 struct device_node *np = NULL;
718 struct property *pp;
719 unsigned long flags;
720 const char *separator = strchr(path, ':');
721
722 if (opts)
723 *opts = separator ? separator + 1 : NULL;
724
725 if (strcmp(path, "/") == 0)
726 return of_node_get(of_root);
727
728 /* The path could begin with an alias */
729 if (*path != '/') {
730 int len;
731 const char *p = separator;
732
733 if (!p)
734 p = strchrnul(path, '/');
735 len = p - path;
736
737 /* of_aliases must not be NULL */
738 if (!of_aliases)
739 return NULL;
740
741 for_each_property_of_node(of_aliases, pp) {
742 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
743 np = of_find_node_by_path(pp->value);
744 break;
745 }
746 }
747 if (!np)
748 return NULL;
749 path = p;
750 }
751
752 /* Step down the tree matching path components */
753 raw_spin_lock_irqsave(&devtree_lock, flags);
754 if (!np)
755 np = of_node_get(of_root);
756 np = __of_find_node_by_full_path(np, path);
757 raw_spin_unlock_irqrestore(&devtree_lock, flags);
758 return np;
759 }
760 EXPORT_SYMBOL(of_find_node_opts_by_path);
761
762 /**
763 * of_find_node_by_name - Find a node by its "name" property
764 * @from: The node to start searching from or NULL, the node
765 * you pass will not be searched, only the next one
766 * will; typically, you pass what the previous call
767 * returned. of_node_put() will be called on it
768 * @name: The name string to match against
769 *
770 * Returns a node pointer with refcount incremented, use
771 * of_node_put() on it when done.
772 */
773 struct device_node *of_find_node_by_name(struct device_node *from,
774 const char *name)
775 {
776 struct device_node *np;
777 unsigned long flags;
778
779 raw_spin_lock_irqsave(&devtree_lock, flags);
780 for_each_of_allnodes_from(from, np)
781 if (np->name && (of_node_cmp(np->name, name) == 0)
782 && of_node_get(np))
783 break;
784 of_node_put(from);
785 raw_spin_unlock_irqrestore(&devtree_lock, flags);
786 return np;
787 }
788 EXPORT_SYMBOL(of_find_node_by_name);
789
790 /**
791 * of_find_node_by_type - Find a node by its "device_type" property
792 * @from: The node to start searching from, or NULL to start searching
793 * the entire device tree. The node you pass will not be
794 * searched, only the next one will; typically, you pass
795 * what the previous call returned. of_node_put() will be
796 * called on from for you.
797 * @type: The type string to match against
798 *
799 * Returns a node pointer with refcount incremented, use
800 * of_node_put() on it when done.
801 */
802 struct device_node *of_find_node_by_type(struct device_node *from,
803 const char *type)
804 {
805 struct device_node *np;
806 unsigned long flags;
807
808 raw_spin_lock_irqsave(&devtree_lock, flags);
809 for_each_of_allnodes_from(from, np)
810 if (np->type && (of_node_cmp(np->type, type) == 0)
811 && of_node_get(np))
812 break;
813 of_node_put(from);
814 raw_spin_unlock_irqrestore(&devtree_lock, flags);
815 return np;
816 }
817 EXPORT_SYMBOL(of_find_node_by_type);
818
819 /**
820 * of_find_compatible_node - Find a node based on type and one of the
821 * tokens in its "compatible" property
822 * @from: The node to start searching from or NULL, the node
823 * you pass will not be searched, only the next one
824 * will; typically, you pass what the previous call
825 * returned. of_node_put() will be called on it
826 * @type: The type string to match "device_type" or NULL to ignore
827 * @compatible: The string to match to one of the tokens in the device
828 * "compatible" list.
829 *
830 * Returns a node pointer with refcount incremented, use
831 * of_node_put() on it when done.
832 */
833 struct device_node *of_find_compatible_node(struct device_node *from,
834 const char *type, const char *compatible)
835 {
836 struct device_node *np;
837 unsigned long flags;
838
839 raw_spin_lock_irqsave(&devtree_lock, flags);
840 for_each_of_allnodes_from(from, np)
841 if (__of_device_is_compatible(np, compatible, type, NULL) &&
842 of_node_get(np))
843 break;
844 of_node_put(from);
845 raw_spin_unlock_irqrestore(&devtree_lock, flags);
846 return np;
847 }
848 EXPORT_SYMBOL(of_find_compatible_node);
849
850 /**
851 * of_find_node_with_property - Find a node which has a property with
852 * the given name.
853 * @from: The node to start searching from or NULL, the node
854 * you pass will not be searched, only the next one
855 * will; typically, you pass what the previous call
856 * returned. of_node_put() will be called on it
857 * @prop_name: The name of the property to look for.
858 *
859 * Returns a node pointer with refcount incremented, use
860 * of_node_put() on it when done.
861 */
862 struct device_node *of_find_node_with_property(struct device_node *from,
863 const char *prop_name)
864 {
865 struct device_node *np;
866 struct property *pp;
867 unsigned long flags;
868
869 raw_spin_lock_irqsave(&devtree_lock, flags);
870 for_each_of_allnodes_from(from, np) {
871 for (pp = np->properties; pp; pp = pp->next) {
872 if (of_prop_cmp(pp->name, prop_name) == 0) {
873 of_node_get(np);
874 goto out;
875 }
876 }
877 }
878 out:
879 of_node_put(from);
880 raw_spin_unlock_irqrestore(&devtree_lock, flags);
881 return np;
882 }
883 EXPORT_SYMBOL(of_find_node_with_property);
884
885 static
886 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
887 const struct device_node *node)
888 {
889 const struct of_device_id *best_match = NULL;
890 int score, best_score = 0;
891
892 if (!matches)
893 return NULL;
894
895 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
896 score = __of_device_is_compatible(node, matches->compatible,
897 matches->type, matches->name);
898 if (score > best_score) {
899 best_match = matches;
900 best_score = score;
901 }
902 }
903
904 return best_match;
905 }
906
907 /**
908 * of_match_node - Tell if a device_node has a matching of_match structure
909 * @matches: array of of device match structures to search in
910 * @node: the of device structure to match against
911 *
912 * Low level utility function used by device matching.
913 */
914 const struct of_device_id *of_match_node(const struct of_device_id *matches,
915 const struct device_node *node)
916 {
917 const struct of_device_id *match;
918 unsigned long flags;
919
920 raw_spin_lock_irqsave(&devtree_lock, flags);
921 match = __of_match_node(matches, node);
922 raw_spin_unlock_irqrestore(&devtree_lock, flags);
923 return match;
924 }
925 EXPORT_SYMBOL(of_match_node);
926
927 /**
928 * of_find_matching_node_and_match - Find a node based on an of_device_id
929 * match table.
930 * @from: The node to start searching from or NULL, the node
931 * you pass will not be searched, only the next one
932 * will; typically, you pass what the previous call
933 * returned. of_node_put() will be called on it
934 * @matches: array of of device match structures to search in
935 * @match Updated to point at the matches entry which matched
936 *
937 * Returns a node pointer with refcount incremented, use
938 * of_node_put() on it when done.
939 */
940 struct device_node *of_find_matching_node_and_match(struct device_node *from,
941 const struct of_device_id *matches,
942 const struct of_device_id **match)
943 {
944 struct device_node *np;
945 const struct of_device_id *m;
946 unsigned long flags;
947
948 if (match)
949 *match = NULL;
950
951 raw_spin_lock_irqsave(&devtree_lock, flags);
952 for_each_of_allnodes_from(from, np) {
953 m = __of_match_node(matches, np);
954 if (m && of_node_get(np)) {
955 if (match)
956 *match = m;
957 break;
958 }
959 }
960 of_node_put(from);
961 raw_spin_unlock_irqrestore(&devtree_lock, flags);
962 return np;
963 }
964 EXPORT_SYMBOL(of_find_matching_node_and_match);
965
966 /**
967 * of_modalias_node - Lookup appropriate modalias for a device node
968 * @node: pointer to a device tree node
969 * @modalias: Pointer to buffer that modalias value will be copied into
970 * @len: Length of modalias value
971 *
972 * Based on the value of the compatible property, this routine will attempt
973 * to choose an appropriate modalias value for a particular device tree node.
974 * It does this by stripping the manufacturer prefix (as delimited by a ',')
975 * from the first entry in the compatible list property.
976 *
977 * This routine returns 0 on success, <0 on failure.
978 */
979 int of_modalias_node(struct device_node *node, char *modalias, int len)
980 {
981 const char *compatible, *p;
982 int cplen;
983
984 compatible = of_get_property(node, "compatible", &cplen);
985 if (!compatible || strlen(compatible) > cplen)
986 return -ENODEV;
987 p = strchr(compatible, ',');
988 strlcpy(modalias, p ? p + 1 : compatible, len);
989 return 0;
990 }
991 EXPORT_SYMBOL_GPL(of_modalias_node);
992
993 /**
994 * of_find_node_by_phandle - Find a node given a phandle
995 * @handle: phandle of the node to find
996 *
997 * Returns a node pointer with refcount incremented, use
998 * of_node_put() on it when done.
999 */
1000 struct device_node *of_find_node_by_phandle(phandle handle)
1001 {
1002 struct device_node *np;
1003 unsigned long flags;
1004
1005 if (!handle)
1006 return NULL;
1007
1008 raw_spin_lock_irqsave(&devtree_lock, flags);
1009 for_each_of_allnodes(np)
1010 if (np->phandle == handle)
1011 break;
1012 of_node_get(np);
1013 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1014 return np;
1015 }
1016 EXPORT_SYMBOL(of_find_node_by_phandle);
1017
1018 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1019 {
1020 int i;
1021 printk("%s %pOF", msg, args->np);
1022 for (i = 0; i < args->args_count; i++) {
1023 const char delim = i ? ',' : ':';
1024
1025 pr_cont("%c%08x", delim, args->args[i]);
1026 }
1027 pr_cont("\n");
1028 }
1029
1030 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1031 const struct device_node *np,
1032 const char *list_name,
1033 const char *cells_name,
1034 int cell_count)
1035 {
1036 const __be32 *list;
1037 int size;
1038
1039 memset(it, 0, sizeof(*it));
1040
1041 list = of_get_property(np, list_name, &size);
1042 if (!list)
1043 return -ENOENT;
1044
1045 it->cells_name = cells_name;
1046 it->cell_count = cell_count;
1047 it->parent = np;
1048 it->list_end = list + size / sizeof(*list);
1049 it->phandle_end = list;
1050 it->cur = list;
1051
1052 return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1055
1056 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1057 {
1058 uint32_t count = 0;
1059
1060 if (it->node) {
1061 of_node_put(it->node);
1062 it->node = NULL;
1063 }
1064
1065 if (!it->cur || it->phandle_end >= it->list_end)
1066 return -ENOENT;
1067
1068 it->cur = it->phandle_end;
1069
1070 /* If phandle is 0, then it is an empty entry with no arguments. */
1071 it->phandle = be32_to_cpup(it->cur++);
1072
1073 if (it->phandle) {
1074
1075 /*
1076 * Find the provider node and parse the #*-cells property to
1077 * determine the argument length.
1078 */
1079 it->node = of_find_node_by_phandle(it->phandle);
1080
1081 if (it->cells_name) {
1082 if (!it->node) {
1083 pr_err("%pOF: could not find phandle\n",
1084 it->parent);
1085 goto err;
1086 }
1087
1088 if (of_property_read_u32(it->node, it->cells_name,
1089 &count)) {
1090 pr_err("%pOF: could not get %s for %pOF\n",
1091 it->parent,
1092 it->cells_name,
1093 it->node);
1094 goto err;
1095 }
1096 } else {
1097 count = it->cell_count;
1098 }
1099
1100 /*
1101 * Make sure that the arguments actually fit in the remaining
1102 * property data length
1103 */
1104 if (it->cur + count > it->list_end) {
1105 pr_err("%pOF: arguments longer than property\n",
1106 it->parent);
1107 goto err;
1108 }
1109 }
1110
1111 it->phandle_end = it->cur + count;
1112 it->cur_count = count;
1113
1114 return 0;
1115
1116 err:
1117 if (it->node) {
1118 of_node_put(it->node);
1119 it->node = NULL;
1120 }
1121
1122 return -EINVAL;
1123 }
1124 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1125
1126 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1127 uint32_t *args,
1128 int size)
1129 {
1130 int i, count;
1131
1132 count = it->cur_count;
1133
1134 if (WARN_ON(size < count))
1135 count = size;
1136
1137 for (i = 0; i < count; i++)
1138 args[i] = be32_to_cpup(it->cur++);
1139
1140 return count;
1141 }
1142
1143 static int __of_parse_phandle_with_args(const struct device_node *np,
1144 const char *list_name,
1145 const char *cells_name,
1146 int cell_count, int index,
1147 struct of_phandle_args *out_args)
1148 {
1149 struct of_phandle_iterator it;
1150 int rc, cur_index = 0;
1151
1152 /* Loop over the phandles until all the requested entry is found */
1153 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1154 /*
1155 * All of the error cases bail out of the loop, so at
1156 * this point, the parsing is successful. If the requested
1157 * index matches, then fill the out_args structure and return,
1158 * or return -ENOENT for an empty entry.
1159 */
1160 rc = -ENOENT;
1161 if (cur_index == index) {
1162 if (!it.phandle)
1163 goto err;
1164
1165 if (out_args) {
1166 int c;
1167
1168 c = of_phandle_iterator_args(&it,
1169 out_args->args,
1170 MAX_PHANDLE_ARGS);
1171 out_args->np = it.node;
1172 out_args->args_count = c;
1173 } else {
1174 of_node_put(it.node);
1175 }
1176
1177 /* Found it! return success */
1178 return 0;
1179 }
1180
1181 cur_index++;
1182 }
1183
1184 /*
1185 * Unlock node before returning result; will be one of:
1186 * -ENOENT : index is for empty phandle
1187 * -EINVAL : parsing error on data
1188 */
1189
1190 err:
1191 of_node_put(it.node);
1192 return rc;
1193 }
1194
1195 /**
1196 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1197 * @np: Pointer to device node holding phandle property
1198 * @phandle_name: Name of property holding a phandle value
1199 * @index: For properties holding a table of phandles, this is the index into
1200 * the table
1201 *
1202 * Returns the device_node pointer with refcount incremented. Use
1203 * of_node_put() on it when done.
1204 */
1205 struct device_node *of_parse_phandle(const struct device_node *np,
1206 const char *phandle_name, int index)
1207 {
1208 struct of_phandle_args args;
1209
1210 if (index < 0)
1211 return NULL;
1212
1213 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1214 index, &args))
1215 return NULL;
1216
1217 return args.np;
1218 }
1219 EXPORT_SYMBOL(of_parse_phandle);
1220
1221 /**
1222 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1223 * @np: pointer to a device tree node containing a list
1224 * @list_name: property name that contains a list
1225 * @cells_name: property name that specifies phandles' arguments count
1226 * @index: index of a phandle to parse out
1227 * @out_args: optional pointer to output arguments structure (will be filled)
1228 *
1229 * This function is useful to parse lists of phandles and their arguments.
1230 * Returns 0 on success and fills out_args, on error returns appropriate
1231 * errno value.
1232 *
1233 * Caller is responsible to call of_node_put() on the returned out_args->np
1234 * pointer.
1235 *
1236 * Example:
1237 *
1238 * phandle1: node1 {
1239 * #list-cells = <2>;
1240 * }
1241 *
1242 * phandle2: node2 {
1243 * #list-cells = <1>;
1244 * }
1245 *
1246 * node3 {
1247 * list = <&phandle1 1 2 &phandle2 3>;
1248 * }
1249 *
1250 * To get a device_node of the `node2' node you may call this:
1251 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1252 */
1253 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1254 const char *cells_name, int index,
1255 struct of_phandle_args *out_args)
1256 {
1257 if (index < 0)
1258 return -EINVAL;
1259 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1260 index, out_args);
1261 }
1262 EXPORT_SYMBOL(of_parse_phandle_with_args);
1263
1264 /**
1265 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1266 * @np: pointer to a device tree node containing a list
1267 * @list_name: property name that contains a list
1268 * @cell_count: number of argument cells following the phandle
1269 * @index: index of a phandle to parse out
1270 * @out_args: optional pointer to output arguments structure (will be filled)
1271 *
1272 * This function is useful to parse lists of phandles and their arguments.
1273 * Returns 0 on success and fills out_args, on error returns appropriate
1274 * errno value.
1275 *
1276 * Caller is responsible to call of_node_put() on the returned out_args->np
1277 * pointer.
1278 *
1279 * Example:
1280 *
1281 * phandle1: node1 {
1282 * }
1283 *
1284 * phandle2: node2 {
1285 * }
1286 *
1287 * node3 {
1288 * list = <&phandle1 0 2 &phandle2 2 3>;
1289 * }
1290 *
1291 * To get a device_node of the `node2' node you may call this:
1292 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1293 */
1294 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1295 const char *list_name, int cell_count,
1296 int index, struct of_phandle_args *out_args)
1297 {
1298 if (index < 0)
1299 return -EINVAL;
1300 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1301 index, out_args);
1302 }
1303 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1304
1305 /**
1306 * of_count_phandle_with_args() - Find the number of phandles references in a property
1307 * @np: pointer to a device tree node containing a list
1308 * @list_name: property name that contains a list
1309 * @cells_name: property name that specifies phandles' arguments count
1310 *
1311 * Returns the number of phandle + argument tuples within a property. It
1312 * is a typical pattern to encode a list of phandle and variable
1313 * arguments into a single property. The number of arguments is encoded
1314 * by a property in the phandle-target node. For example, a gpios
1315 * property would contain a list of GPIO specifies consisting of a
1316 * phandle and 1 or more arguments. The number of arguments are
1317 * determined by the #gpio-cells property in the node pointed to by the
1318 * phandle.
1319 */
1320 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1321 const char *cells_name)
1322 {
1323 struct of_phandle_iterator it;
1324 int rc, cur_index = 0;
1325
1326 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1327 if (rc)
1328 return rc;
1329
1330 while ((rc = of_phandle_iterator_next(&it)) == 0)
1331 cur_index += 1;
1332
1333 if (rc != -ENOENT)
1334 return rc;
1335
1336 return cur_index;
1337 }
1338 EXPORT_SYMBOL(of_count_phandle_with_args);
1339
1340 /**
1341 * __of_add_property - Add a property to a node without lock operations
1342 */
1343 int __of_add_property(struct device_node *np, struct property *prop)
1344 {
1345 struct property **next;
1346
1347 prop->next = NULL;
1348 next = &np->properties;
1349 while (*next) {
1350 if (strcmp(prop->name, (*next)->name) == 0)
1351 /* duplicate ! don't insert it */
1352 return -EEXIST;
1353
1354 next = &(*next)->next;
1355 }
1356 *next = prop;
1357
1358 return 0;
1359 }
1360
1361 /**
1362 * of_add_property - Add a property to a node
1363 */
1364 int of_add_property(struct device_node *np, struct property *prop)
1365 {
1366 unsigned long flags;
1367 int rc;
1368
1369 mutex_lock(&of_mutex);
1370
1371 raw_spin_lock_irqsave(&devtree_lock, flags);
1372 rc = __of_add_property(np, prop);
1373 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1374
1375 if (!rc)
1376 __of_add_property_sysfs(np, prop);
1377
1378 mutex_unlock(&of_mutex);
1379
1380 if (!rc)
1381 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1382
1383 return rc;
1384 }
1385
1386 int __of_remove_property(struct device_node *np, struct property *prop)
1387 {
1388 struct property **next;
1389
1390 for (next = &np->properties; *next; next = &(*next)->next) {
1391 if (*next == prop)
1392 break;
1393 }
1394 if (*next == NULL)
1395 return -ENODEV;
1396
1397 /* found the node */
1398 *next = prop->next;
1399 prop->next = np->deadprops;
1400 np->deadprops = prop;
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * of_remove_property - Remove a property from a node.
1407 *
1408 * Note that we don't actually remove it, since we have given out
1409 * who-knows-how-many pointers to the data using get-property.
1410 * Instead we just move the property to the "dead properties"
1411 * list, so it won't be found any more.
1412 */
1413 int of_remove_property(struct device_node *np, struct property *prop)
1414 {
1415 unsigned long flags;
1416 int rc;
1417
1418 if (!prop)
1419 return -ENODEV;
1420
1421 mutex_lock(&of_mutex);
1422
1423 raw_spin_lock_irqsave(&devtree_lock, flags);
1424 rc = __of_remove_property(np, prop);
1425 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1426
1427 if (!rc)
1428 __of_remove_property_sysfs(np, prop);
1429
1430 mutex_unlock(&of_mutex);
1431
1432 if (!rc)
1433 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1434
1435 return rc;
1436 }
1437
1438 int __of_update_property(struct device_node *np, struct property *newprop,
1439 struct property **oldpropp)
1440 {
1441 struct property **next, *oldprop;
1442
1443 for (next = &np->properties; *next; next = &(*next)->next) {
1444 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1445 break;
1446 }
1447 *oldpropp = oldprop = *next;
1448
1449 if (oldprop) {
1450 /* replace the node */
1451 newprop->next = oldprop->next;
1452 *next = newprop;
1453 oldprop->next = np->deadprops;
1454 np->deadprops = oldprop;
1455 } else {
1456 /* new node */
1457 newprop->next = NULL;
1458 *next = newprop;
1459 }
1460
1461 return 0;
1462 }
1463
1464 /*
1465 * of_update_property - Update a property in a node, if the property does
1466 * not exist, add it.
1467 *
1468 * Note that we don't actually remove it, since we have given out
1469 * who-knows-how-many pointers to the data using get-property.
1470 * Instead we just move the property to the "dead properties" list,
1471 * and add the new property to the property list
1472 */
1473 int of_update_property(struct device_node *np, struct property *newprop)
1474 {
1475 struct property *oldprop;
1476 unsigned long flags;
1477 int rc;
1478
1479 if (!newprop->name)
1480 return -EINVAL;
1481
1482 mutex_lock(&of_mutex);
1483
1484 raw_spin_lock_irqsave(&devtree_lock, flags);
1485 rc = __of_update_property(np, newprop, &oldprop);
1486 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1487
1488 if (!rc)
1489 __of_update_property_sysfs(np, newprop, oldprop);
1490
1491 mutex_unlock(&of_mutex);
1492
1493 if (!rc)
1494 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1495
1496 return rc;
1497 }
1498
1499 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1500 int id, const char *stem, int stem_len)
1501 {
1502 ap->np = np;
1503 ap->id = id;
1504 strncpy(ap->stem, stem, stem_len);
1505 ap->stem[stem_len] = 0;
1506 list_add_tail(&ap->link, &aliases_lookup);
1507 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1508 ap->alias, ap->stem, ap->id, np);
1509 }
1510
1511 /**
1512 * of_alias_scan - Scan all properties of the 'aliases' node
1513 *
1514 * The function scans all the properties of the 'aliases' node and populates
1515 * the global lookup table with the properties. It returns the
1516 * number of alias properties found, or an error code in case of failure.
1517 *
1518 * @dt_alloc: An allocator that provides a virtual address to memory
1519 * for storing the resulting tree
1520 */
1521 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1522 {
1523 struct property *pp;
1524
1525 of_aliases = of_find_node_by_path("/aliases");
1526 of_chosen = of_find_node_by_path("/chosen");
1527 if (of_chosen == NULL)
1528 of_chosen = of_find_node_by_path("/chosen@0");
1529
1530 if (of_chosen) {
1531 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1532 const char *name = NULL;
1533
1534 if (of_property_read_string(of_chosen, "stdout-path", &name))
1535 of_property_read_string(of_chosen, "linux,stdout-path",
1536 &name);
1537 if (IS_ENABLED(CONFIG_PPC) && !name)
1538 of_property_read_string(of_aliases, "stdout", &name);
1539 if (name)
1540 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1541 }
1542
1543 if (!of_aliases)
1544 return;
1545
1546 for_each_property_of_node(of_aliases, pp) {
1547 const char *start = pp->name;
1548 const char *end = start + strlen(start);
1549 struct device_node *np;
1550 struct alias_prop *ap;
1551 int id, len;
1552
1553 /* Skip those we do not want to proceed */
1554 if (!strcmp(pp->name, "name") ||
1555 !strcmp(pp->name, "phandle") ||
1556 !strcmp(pp->name, "linux,phandle"))
1557 continue;
1558
1559 np = of_find_node_by_path(pp->value);
1560 if (!np)
1561 continue;
1562
1563 /* walk the alias backwards to extract the id and work out
1564 * the 'stem' string */
1565 while (isdigit(*(end-1)) && end > start)
1566 end--;
1567 len = end - start;
1568
1569 if (kstrtoint(end, 10, &id) < 0)
1570 continue;
1571
1572 /* Allocate an alias_prop with enough space for the stem */
1573 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1574 if (!ap)
1575 continue;
1576 memset(ap, 0, sizeof(*ap) + len + 1);
1577 ap->alias = start;
1578 of_alias_add(ap, np, id, start, len);
1579 }
1580 }
1581
1582 /**
1583 * of_alias_get_id - Get alias id for the given device_node
1584 * @np: Pointer to the given device_node
1585 * @stem: Alias stem of the given device_node
1586 *
1587 * The function travels the lookup table to get the alias id for the given
1588 * device_node and alias stem. It returns the alias id if found.
1589 */
1590 int of_alias_get_id(struct device_node *np, const char *stem)
1591 {
1592 struct alias_prop *app;
1593 int id = -ENODEV;
1594
1595 mutex_lock(&of_mutex);
1596 list_for_each_entry(app, &aliases_lookup, link) {
1597 if (strcmp(app->stem, stem) != 0)
1598 continue;
1599
1600 if (np == app->np) {
1601 id = app->id;
1602 break;
1603 }
1604 }
1605 mutex_unlock(&of_mutex);
1606
1607 return id;
1608 }
1609 EXPORT_SYMBOL_GPL(of_alias_get_id);
1610
1611 /**
1612 * of_alias_get_highest_id - Get highest alias id for the given stem
1613 * @stem: Alias stem to be examined
1614 *
1615 * The function travels the lookup table to get the highest alias id for the
1616 * given alias stem. It returns the alias id if found.
1617 */
1618 int of_alias_get_highest_id(const char *stem)
1619 {
1620 struct alias_prop *app;
1621 int id = -ENODEV;
1622
1623 mutex_lock(&of_mutex);
1624 list_for_each_entry(app, &aliases_lookup, link) {
1625 if (strcmp(app->stem, stem) != 0)
1626 continue;
1627
1628 if (app->id > id)
1629 id = app->id;
1630 }
1631 mutex_unlock(&of_mutex);
1632
1633 return id;
1634 }
1635 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1636
1637 /**
1638 * of_console_check() - Test and setup console for DT setup
1639 * @dn - Pointer to device node
1640 * @name - Name to use for preferred console without index. ex. "ttyS"
1641 * @index - Index to use for preferred console.
1642 *
1643 * Check if the given device node matches the stdout-path property in the
1644 * /chosen node. If it does then register it as the preferred console and return
1645 * TRUE. Otherwise return FALSE.
1646 */
1647 bool of_console_check(struct device_node *dn, char *name, int index)
1648 {
1649 if (!dn || dn != of_stdout || console_set_on_cmdline)
1650 return false;
1651
1652 /*
1653 * XXX: cast `options' to char pointer to suppress complication
1654 * warnings: printk, UART and console drivers expect char pointer.
1655 */
1656 return !add_preferred_console(name, index, (char *)of_stdout_options);
1657 }
1658 EXPORT_SYMBOL_GPL(of_console_check);
1659
1660 /**
1661 * of_find_next_cache_node - Find a node's subsidiary cache
1662 * @np: node of type "cpu" or "cache"
1663 *
1664 * Returns a node pointer with refcount incremented, use
1665 * of_node_put() on it when done. Caller should hold a reference
1666 * to np.
1667 */
1668 struct device_node *of_find_next_cache_node(const struct device_node *np)
1669 {
1670 struct device_node *child, *cache_node;
1671
1672 cache_node = of_parse_phandle(np, "l2-cache", 0);
1673 if (!cache_node)
1674 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1675
1676 if (cache_node)
1677 return cache_node;
1678
1679 /* OF on pmac has nodes instead of properties named "l2-cache"
1680 * beneath CPU nodes.
1681 */
1682 if (!strcmp(np->type, "cpu"))
1683 for_each_child_of_node(np, child)
1684 if (!strcmp(child->type, "cache"))
1685 return child;
1686
1687 return NULL;
1688 }
1689
1690 /**
1691 * of_find_last_cache_level - Find the level at which the last cache is
1692 * present for the given logical cpu
1693 *
1694 * @cpu: cpu number(logical index) for which the last cache level is needed
1695 *
1696 * Returns the the level at which the last cache is present. It is exactly
1697 * same as the total number of cache levels for the given logical cpu.
1698 */
1699 int of_find_last_cache_level(unsigned int cpu)
1700 {
1701 u32 cache_level = 0;
1702 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1703
1704 while (np) {
1705 prev = np;
1706 of_node_put(np);
1707 np = of_find_next_cache_node(np);
1708 }
1709
1710 of_property_read_u32(prev, "cache-level", &cache_level);
1711
1712 return cache_level;
1713 }