]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/of/base.c
of: add node name compare helper functions
[mirror_ubuntu-hirsute-kernel.git] / drivers / of / base.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41
42 struct kset *of_kset;
43
44 /*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50 DEFINE_MUTEX(of_mutex);
51
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56
57 bool of_node_name_eq(const struct device_node *np, const char *name)
58 {
59 const char *node_name;
60 size_t len;
61
62 if (!np)
63 return false;
64
65 node_name = kbasename(np->full_name);
66 len = strchrnul(node_name, '@') - node_name;
67
68 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
69 }
70
71 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
72 {
73 if (!np)
74 return false;
75
76 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
77 }
78
79 int of_n_addr_cells(struct device_node *np)
80 {
81 u32 cells;
82
83 do {
84 if (np->parent)
85 np = np->parent;
86 if (!of_property_read_u32(np, "#address-cells", &cells))
87 return cells;
88 } while (np->parent);
89 /* No #address-cells property for the root node */
90 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
91 }
92 EXPORT_SYMBOL(of_n_addr_cells);
93
94 int of_n_size_cells(struct device_node *np)
95 {
96 u32 cells;
97
98 do {
99 if (np->parent)
100 np = np->parent;
101 if (!of_property_read_u32(np, "#size-cells", &cells))
102 return cells;
103 } while (np->parent);
104 /* No #size-cells property for the root node */
105 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
106 }
107 EXPORT_SYMBOL(of_n_size_cells);
108
109 #ifdef CONFIG_NUMA
110 int __weak of_node_to_nid(struct device_node *np)
111 {
112 return NUMA_NO_NODE;
113 }
114 #endif
115
116 static struct device_node **phandle_cache;
117 static u32 phandle_cache_mask;
118
119 /*
120 * Assumptions behind phandle_cache implementation:
121 * - phandle property values are in a contiguous range of 1..n
122 *
123 * If the assumptions do not hold, then
124 * - the phandle lookup overhead reduction provided by the cache
125 * will likely be less
126 */
127 void of_populate_phandle_cache(void)
128 {
129 unsigned long flags;
130 u32 cache_entries;
131 struct device_node *np;
132 u32 phandles = 0;
133
134 raw_spin_lock_irqsave(&devtree_lock, flags);
135
136 kfree(phandle_cache);
137 phandle_cache = NULL;
138
139 for_each_of_allnodes(np)
140 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
141 phandles++;
142
143 cache_entries = roundup_pow_of_two(phandles);
144 phandle_cache_mask = cache_entries - 1;
145
146 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
147 GFP_ATOMIC);
148 if (!phandle_cache)
149 goto out;
150
151 for_each_of_allnodes(np)
152 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
153 phandle_cache[np->phandle & phandle_cache_mask] = np;
154
155 out:
156 raw_spin_unlock_irqrestore(&devtree_lock, flags);
157 }
158
159 int of_free_phandle_cache(void)
160 {
161 unsigned long flags;
162
163 raw_spin_lock_irqsave(&devtree_lock, flags);
164
165 kfree(phandle_cache);
166 phandle_cache = NULL;
167
168 raw_spin_unlock_irqrestore(&devtree_lock, flags);
169
170 return 0;
171 }
172 #if !defined(CONFIG_MODULES)
173 late_initcall_sync(of_free_phandle_cache);
174 #endif
175
176 void __init of_core_init(void)
177 {
178 struct device_node *np;
179
180 of_populate_phandle_cache();
181
182 /* Create the kset, and register existing nodes */
183 mutex_lock(&of_mutex);
184 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
185 if (!of_kset) {
186 mutex_unlock(&of_mutex);
187 pr_err("failed to register existing nodes\n");
188 return;
189 }
190 for_each_of_allnodes(np)
191 __of_attach_node_sysfs(np);
192 mutex_unlock(&of_mutex);
193
194 /* Symlink in /proc as required by userspace ABI */
195 if (of_root)
196 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
197 }
198
199 static struct property *__of_find_property(const struct device_node *np,
200 const char *name, int *lenp)
201 {
202 struct property *pp;
203
204 if (!np)
205 return NULL;
206
207 for (pp = np->properties; pp; pp = pp->next) {
208 if (of_prop_cmp(pp->name, name) == 0) {
209 if (lenp)
210 *lenp = pp->length;
211 break;
212 }
213 }
214
215 return pp;
216 }
217
218 struct property *of_find_property(const struct device_node *np,
219 const char *name,
220 int *lenp)
221 {
222 struct property *pp;
223 unsigned long flags;
224
225 raw_spin_lock_irqsave(&devtree_lock, flags);
226 pp = __of_find_property(np, name, lenp);
227 raw_spin_unlock_irqrestore(&devtree_lock, flags);
228
229 return pp;
230 }
231 EXPORT_SYMBOL(of_find_property);
232
233 struct device_node *__of_find_all_nodes(struct device_node *prev)
234 {
235 struct device_node *np;
236 if (!prev) {
237 np = of_root;
238 } else if (prev->child) {
239 np = prev->child;
240 } else {
241 /* Walk back up looking for a sibling, or the end of the structure */
242 np = prev;
243 while (np->parent && !np->sibling)
244 np = np->parent;
245 np = np->sibling; /* Might be null at the end of the tree */
246 }
247 return np;
248 }
249
250 /**
251 * of_find_all_nodes - Get next node in global list
252 * @prev: Previous node or NULL to start iteration
253 * of_node_put() will be called on it
254 *
255 * Returns a node pointer with refcount incremented, use
256 * of_node_put() on it when done.
257 */
258 struct device_node *of_find_all_nodes(struct device_node *prev)
259 {
260 struct device_node *np;
261 unsigned long flags;
262
263 raw_spin_lock_irqsave(&devtree_lock, flags);
264 np = __of_find_all_nodes(prev);
265 of_node_get(np);
266 of_node_put(prev);
267 raw_spin_unlock_irqrestore(&devtree_lock, flags);
268 return np;
269 }
270 EXPORT_SYMBOL(of_find_all_nodes);
271
272 /*
273 * Find a property with a given name for a given node
274 * and return the value.
275 */
276 const void *__of_get_property(const struct device_node *np,
277 const char *name, int *lenp)
278 {
279 struct property *pp = __of_find_property(np, name, lenp);
280
281 return pp ? pp->value : NULL;
282 }
283
284 /*
285 * Find a property with a given name for a given node
286 * and return the value.
287 */
288 const void *of_get_property(const struct device_node *np, const char *name,
289 int *lenp)
290 {
291 struct property *pp = of_find_property(np, name, lenp);
292
293 return pp ? pp->value : NULL;
294 }
295 EXPORT_SYMBOL(of_get_property);
296
297 /*
298 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
299 *
300 * @cpu: logical cpu index of a core/thread
301 * @phys_id: physical identifier of a core/thread
302 *
303 * CPU logical to physical index mapping is architecture specific.
304 * However this __weak function provides a default match of physical
305 * id to logical cpu index. phys_id provided here is usually values read
306 * from the device tree which must match the hardware internal registers.
307 *
308 * Returns true if the physical identifier and the logical cpu index
309 * correspond to the same core/thread, false otherwise.
310 */
311 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
312 {
313 return (u32)phys_id == cpu;
314 }
315
316 /**
317 * Checks if the given "prop_name" property holds the physical id of the
318 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
319 * NULL, local thread number within the core is returned in it.
320 */
321 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
322 const char *prop_name, int cpu, unsigned int *thread)
323 {
324 const __be32 *cell;
325 int ac, prop_len, tid;
326 u64 hwid;
327
328 ac = of_n_addr_cells(cpun);
329 cell = of_get_property(cpun, prop_name, &prop_len);
330 if (!cell || !ac)
331 return false;
332 prop_len /= sizeof(*cell) * ac;
333 for (tid = 0; tid < prop_len; tid++) {
334 hwid = of_read_number(cell, ac);
335 if (arch_match_cpu_phys_id(cpu, hwid)) {
336 if (thread)
337 *thread = tid;
338 return true;
339 }
340 cell += ac;
341 }
342 return false;
343 }
344
345 /*
346 * arch_find_n_match_cpu_physical_id - See if the given device node is
347 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
348 * else false. If 'thread' is non-NULL, the local thread number within the
349 * core is returned in it.
350 */
351 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
352 int cpu, unsigned int *thread)
353 {
354 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
355 * for thread ids on PowerPC. If it doesn't exist fallback to
356 * standard "reg" property.
357 */
358 if (IS_ENABLED(CONFIG_PPC) &&
359 __of_find_n_match_cpu_property(cpun,
360 "ibm,ppc-interrupt-server#s",
361 cpu, thread))
362 return true;
363
364 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
365 }
366
367 /**
368 * of_get_cpu_node - Get device node associated with the given logical CPU
369 *
370 * @cpu: CPU number(logical index) for which device node is required
371 * @thread: if not NULL, local thread number within the physical core is
372 * returned
373 *
374 * The main purpose of this function is to retrieve the device node for the
375 * given logical CPU index. It should be used to initialize the of_node in
376 * cpu device. Once of_node in cpu device is populated, all the further
377 * references can use that instead.
378 *
379 * CPU logical to physical index mapping is architecture specific and is built
380 * before booting secondary cores. This function uses arch_match_cpu_phys_id
381 * which can be overridden by architecture specific implementation.
382 *
383 * Returns a node pointer for the logical cpu with refcount incremented, use
384 * of_node_put() on it when done. Returns NULL if not found.
385 */
386 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
387 {
388 struct device_node *cpun;
389
390 for_each_node_by_type(cpun, "cpu") {
391 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
392 return cpun;
393 }
394 return NULL;
395 }
396 EXPORT_SYMBOL(of_get_cpu_node);
397
398 /**
399 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
400 *
401 * @cpu_node: Pointer to the device_node for CPU.
402 *
403 * Returns the logical CPU number of the given CPU device_node.
404 * Returns -ENODEV if the CPU is not found.
405 */
406 int of_cpu_node_to_id(struct device_node *cpu_node)
407 {
408 int cpu;
409 bool found = false;
410 struct device_node *np;
411
412 for_each_possible_cpu(cpu) {
413 np = of_cpu_device_node_get(cpu);
414 found = (cpu_node == np);
415 of_node_put(np);
416 if (found)
417 return cpu;
418 }
419
420 return -ENODEV;
421 }
422 EXPORT_SYMBOL(of_cpu_node_to_id);
423
424 /**
425 * __of_device_is_compatible() - Check if the node matches given constraints
426 * @device: pointer to node
427 * @compat: required compatible string, NULL or "" for any match
428 * @type: required device_type value, NULL or "" for any match
429 * @name: required node name, NULL or "" for any match
430 *
431 * Checks if the given @compat, @type and @name strings match the
432 * properties of the given @device. A constraints can be skipped by
433 * passing NULL or an empty string as the constraint.
434 *
435 * Returns 0 for no match, and a positive integer on match. The return
436 * value is a relative score with larger values indicating better
437 * matches. The score is weighted for the most specific compatible value
438 * to get the highest score. Matching type is next, followed by matching
439 * name. Practically speaking, this results in the following priority
440 * order for matches:
441 *
442 * 1. specific compatible && type && name
443 * 2. specific compatible && type
444 * 3. specific compatible && name
445 * 4. specific compatible
446 * 5. general compatible && type && name
447 * 6. general compatible && type
448 * 7. general compatible && name
449 * 8. general compatible
450 * 9. type && name
451 * 10. type
452 * 11. name
453 */
454 static int __of_device_is_compatible(const struct device_node *device,
455 const char *compat, const char *type, const char *name)
456 {
457 struct property *prop;
458 const char *cp;
459 int index = 0, score = 0;
460
461 /* Compatible match has highest priority */
462 if (compat && compat[0]) {
463 prop = __of_find_property(device, "compatible", NULL);
464 for (cp = of_prop_next_string(prop, NULL); cp;
465 cp = of_prop_next_string(prop, cp), index++) {
466 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
467 score = INT_MAX/2 - (index << 2);
468 break;
469 }
470 }
471 if (!score)
472 return 0;
473 }
474
475 /* Matching type is better than matching name */
476 if (type && type[0]) {
477 if (!device->type || of_node_cmp(type, device->type))
478 return 0;
479 score += 2;
480 }
481
482 /* Matching name is a bit better than not */
483 if (name && name[0]) {
484 if (!device->name || of_node_cmp(name, device->name))
485 return 0;
486 score++;
487 }
488
489 return score;
490 }
491
492 /** Checks if the given "compat" string matches one of the strings in
493 * the device's "compatible" property
494 */
495 int of_device_is_compatible(const struct device_node *device,
496 const char *compat)
497 {
498 unsigned long flags;
499 int res;
500
501 raw_spin_lock_irqsave(&devtree_lock, flags);
502 res = __of_device_is_compatible(device, compat, NULL, NULL);
503 raw_spin_unlock_irqrestore(&devtree_lock, flags);
504 return res;
505 }
506 EXPORT_SYMBOL(of_device_is_compatible);
507
508 /** Checks if the device is compatible with any of the entries in
509 * a NULL terminated array of strings. Returns the best match
510 * score or 0.
511 */
512 int of_device_compatible_match(struct device_node *device,
513 const char *const *compat)
514 {
515 unsigned int tmp, score = 0;
516
517 if (!compat)
518 return 0;
519
520 while (*compat) {
521 tmp = of_device_is_compatible(device, *compat);
522 if (tmp > score)
523 score = tmp;
524 compat++;
525 }
526
527 return score;
528 }
529
530 /**
531 * of_machine_is_compatible - Test root of device tree for a given compatible value
532 * @compat: compatible string to look for in root node's compatible property.
533 *
534 * Returns a positive integer if the root node has the given value in its
535 * compatible property.
536 */
537 int of_machine_is_compatible(const char *compat)
538 {
539 struct device_node *root;
540 int rc = 0;
541
542 root = of_find_node_by_path("/");
543 if (root) {
544 rc = of_device_is_compatible(root, compat);
545 of_node_put(root);
546 }
547 return rc;
548 }
549 EXPORT_SYMBOL(of_machine_is_compatible);
550
551 /**
552 * __of_device_is_available - check if a device is available for use
553 *
554 * @device: Node to check for availability, with locks already held
555 *
556 * Returns true if the status property is absent or set to "okay" or "ok",
557 * false otherwise
558 */
559 static bool __of_device_is_available(const struct device_node *device)
560 {
561 const char *status;
562 int statlen;
563
564 if (!device)
565 return false;
566
567 status = __of_get_property(device, "status", &statlen);
568 if (status == NULL)
569 return true;
570
571 if (statlen > 0) {
572 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
573 return true;
574 }
575
576 return false;
577 }
578
579 /**
580 * of_device_is_available - check if a device is available for use
581 *
582 * @device: Node to check for availability
583 *
584 * Returns true if the status property is absent or set to "okay" or "ok",
585 * false otherwise
586 */
587 bool of_device_is_available(const struct device_node *device)
588 {
589 unsigned long flags;
590 bool res;
591
592 raw_spin_lock_irqsave(&devtree_lock, flags);
593 res = __of_device_is_available(device);
594 raw_spin_unlock_irqrestore(&devtree_lock, flags);
595 return res;
596
597 }
598 EXPORT_SYMBOL(of_device_is_available);
599
600 /**
601 * of_device_is_big_endian - check if a device has BE registers
602 *
603 * @device: Node to check for endianness
604 *
605 * Returns true if the device has a "big-endian" property, or if the kernel
606 * was compiled for BE *and* the device has a "native-endian" property.
607 * Returns false otherwise.
608 *
609 * Callers would nominally use ioread32be/iowrite32be if
610 * of_device_is_big_endian() == true, or readl/writel otherwise.
611 */
612 bool of_device_is_big_endian(const struct device_node *device)
613 {
614 if (of_property_read_bool(device, "big-endian"))
615 return true;
616 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
617 of_property_read_bool(device, "native-endian"))
618 return true;
619 return false;
620 }
621 EXPORT_SYMBOL(of_device_is_big_endian);
622
623 /**
624 * of_get_parent - Get a node's parent if any
625 * @node: Node to get parent
626 *
627 * Returns a node pointer with refcount incremented, use
628 * of_node_put() on it when done.
629 */
630 struct device_node *of_get_parent(const struct device_node *node)
631 {
632 struct device_node *np;
633 unsigned long flags;
634
635 if (!node)
636 return NULL;
637
638 raw_spin_lock_irqsave(&devtree_lock, flags);
639 np = of_node_get(node->parent);
640 raw_spin_unlock_irqrestore(&devtree_lock, flags);
641 return np;
642 }
643 EXPORT_SYMBOL(of_get_parent);
644
645 /**
646 * of_get_next_parent - Iterate to a node's parent
647 * @node: Node to get parent of
648 *
649 * This is like of_get_parent() except that it drops the
650 * refcount on the passed node, making it suitable for iterating
651 * through a node's parents.
652 *
653 * Returns a node pointer with refcount incremented, use
654 * of_node_put() on it when done.
655 */
656 struct device_node *of_get_next_parent(struct device_node *node)
657 {
658 struct device_node *parent;
659 unsigned long flags;
660
661 if (!node)
662 return NULL;
663
664 raw_spin_lock_irqsave(&devtree_lock, flags);
665 parent = of_node_get(node->parent);
666 of_node_put(node);
667 raw_spin_unlock_irqrestore(&devtree_lock, flags);
668 return parent;
669 }
670 EXPORT_SYMBOL(of_get_next_parent);
671
672 static struct device_node *__of_get_next_child(const struct device_node *node,
673 struct device_node *prev)
674 {
675 struct device_node *next;
676
677 if (!node)
678 return NULL;
679
680 next = prev ? prev->sibling : node->child;
681 for (; next; next = next->sibling)
682 if (of_node_get(next))
683 break;
684 of_node_put(prev);
685 return next;
686 }
687 #define __for_each_child_of_node(parent, child) \
688 for (child = __of_get_next_child(parent, NULL); child != NULL; \
689 child = __of_get_next_child(parent, child))
690
691 /**
692 * of_get_next_child - Iterate a node childs
693 * @node: parent node
694 * @prev: previous child of the parent node, or NULL to get first
695 *
696 * Returns a node pointer with refcount incremented, use of_node_put() on
697 * it when done. Returns NULL when prev is the last child. Decrements the
698 * refcount of prev.
699 */
700 struct device_node *of_get_next_child(const struct device_node *node,
701 struct device_node *prev)
702 {
703 struct device_node *next;
704 unsigned long flags;
705
706 raw_spin_lock_irqsave(&devtree_lock, flags);
707 next = __of_get_next_child(node, prev);
708 raw_spin_unlock_irqrestore(&devtree_lock, flags);
709 return next;
710 }
711 EXPORT_SYMBOL(of_get_next_child);
712
713 /**
714 * of_get_next_available_child - Find the next available child node
715 * @node: parent node
716 * @prev: previous child of the parent node, or NULL to get first
717 *
718 * This function is like of_get_next_child(), except that it
719 * automatically skips any disabled nodes (i.e. status = "disabled").
720 */
721 struct device_node *of_get_next_available_child(const struct device_node *node,
722 struct device_node *prev)
723 {
724 struct device_node *next;
725 unsigned long flags;
726
727 if (!node)
728 return NULL;
729
730 raw_spin_lock_irqsave(&devtree_lock, flags);
731 next = prev ? prev->sibling : node->child;
732 for (; next; next = next->sibling) {
733 if (!__of_device_is_available(next))
734 continue;
735 if (of_node_get(next))
736 break;
737 }
738 of_node_put(prev);
739 raw_spin_unlock_irqrestore(&devtree_lock, flags);
740 return next;
741 }
742 EXPORT_SYMBOL(of_get_next_available_child);
743
744 /**
745 * of_get_compatible_child - Find compatible child node
746 * @parent: parent node
747 * @compatible: compatible string
748 *
749 * Lookup child node whose compatible property contains the given compatible
750 * string.
751 *
752 * Returns a node pointer with refcount incremented, use of_node_put() on it
753 * when done; or NULL if not found.
754 */
755 struct device_node *of_get_compatible_child(const struct device_node *parent,
756 const char *compatible)
757 {
758 struct device_node *child;
759
760 for_each_child_of_node(parent, child) {
761 if (of_device_is_compatible(child, compatible))
762 break;
763 }
764
765 return child;
766 }
767 EXPORT_SYMBOL(of_get_compatible_child);
768
769 /**
770 * of_get_child_by_name - Find the child node by name for a given parent
771 * @node: parent node
772 * @name: child name to look for.
773 *
774 * This function looks for child node for given matching name
775 *
776 * Returns a node pointer if found, with refcount incremented, use
777 * of_node_put() on it when done.
778 * Returns NULL if node is not found.
779 */
780 struct device_node *of_get_child_by_name(const struct device_node *node,
781 const char *name)
782 {
783 struct device_node *child;
784
785 for_each_child_of_node(node, child)
786 if (child->name && (of_node_cmp(child->name, name) == 0))
787 break;
788 return child;
789 }
790 EXPORT_SYMBOL(of_get_child_by_name);
791
792 struct device_node *__of_find_node_by_path(struct device_node *parent,
793 const char *path)
794 {
795 struct device_node *child;
796 int len;
797
798 len = strcspn(path, "/:");
799 if (!len)
800 return NULL;
801
802 __for_each_child_of_node(parent, child) {
803 const char *name = kbasename(child->full_name);
804 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
805 return child;
806 }
807 return NULL;
808 }
809
810 struct device_node *__of_find_node_by_full_path(struct device_node *node,
811 const char *path)
812 {
813 const char *separator = strchr(path, ':');
814
815 while (node && *path == '/') {
816 struct device_node *tmp = node;
817
818 path++; /* Increment past '/' delimiter */
819 node = __of_find_node_by_path(node, path);
820 of_node_put(tmp);
821 path = strchrnul(path, '/');
822 if (separator && separator < path)
823 break;
824 }
825 return node;
826 }
827
828 /**
829 * of_find_node_opts_by_path - Find a node matching a full OF path
830 * @path: Either the full path to match, or if the path does not
831 * start with '/', the name of a property of the /aliases
832 * node (an alias). In the case of an alias, the node
833 * matching the alias' value will be returned.
834 * @opts: Address of a pointer into which to store the start of
835 * an options string appended to the end of the path with
836 * a ':' separator.
837 *
838 * Valid paths:
839 * /foo/bar Full path
840 * foo Valid alias
841 * foo/bar Valid alias + relative path
842 *
843 * Returns a node pointer with refcount incremented, use
844 * of_node_put() on it when done.
845 */
846 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
847 {
848 struct device_node *np = NULL;
849 struct property *pp;
850 unsigned long flags;
851 const char *separator = strchr(path, ':');
852
853 if (opts)
854 *opts = separator ? separator + 1 : NULL;
855
856 if (strcmp(path, "/") == 0)
857 return of_node_get(of_root);
858
859 /* The path could begin with an alias */
860 if (*path != '/') {
861 int len;
862 const char *p = separator;
863
864 if (!p)
865 p = strchrnul(path, '/');
866 len = p - path;
867
868 /* of_aliases must not be NULL */
869 if (!of_aliases)
870 return NULL;
871
872 for_each_property_of_node(of_aliases, pp) {
873 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
874 np = of_find_node_by_path(pp->value);
875 break;
876 }
877 }
878 if (!np)
879 return NULL;
880 path = p;
881 }
882
883 /* Step down the tree matching path components */
884 raw_spin_lock_irqsave(&devtree_lock, flags);
885 if (!np)
886 np = of_node_get(of_root);
887 np = __of_find_node_by_full_path(np, path);
888 raw_spin_unlock_irqrestore(&devtree_lock, flags);
889 return np;
890 }
891 EXPORT_SYMBOL(of_find_node_opts_by_path);
892
893 /**
894 * of_find_node_by_name - Find a node by its "name" property
895 * @from: The node to start searching from or NULL; the node
896 * you pass will not be searched, only the next one
897 * will. Typically, you pass what the previous call
898 * returned. of_node_put() will be called on @from.
899 * @name: The name string to match against
900 *
901 * Returns a node pointer with refcount incremented, use
902 * of_node_put() on it when done.
903 */
904 struct device_node *of_find_node_by_name(struct device_node *from,
905 const char *name)
906 {
907 struct device_node *np;
908 unsigned long flags;
909
910 raw_spin_lock_irqsave(&devtree_lock, flags);
911 for_each_of_allnodes_from(from, np)
912 if (np->name && (of_node_cmp(np->name, name) == 0)
913 && of_node_get(np))
914 break;
915 of_node_put(from);
916 raw_spin_unlock_irqrestore(&devtree_lock, flags);
917 return np;
918 }
919 EXPORT_SYMBOL(of_find_node_by_name);
920
921 /**
922 * of_find_node_by_type - Find a node by its "device_type" property
923 * @from: The node to start searching from, or NULL to start searching
924 * the entire device tree. The node you pass will not be
925 * searched, only the next one will; typically, you pass
926 * what the previous call returned. of_node_put() will be
927 * called on from for you.
928 * @type: The type string to match against
929 *
930 * Returns a node pointer with refcount incremented, use
931 * of_node_put() on it when done.
932 */
933 struct device_node *of_find_node_by_type(struct device_node *from,
934 const char *type)
935 {
936 struct device_node *np;
937 unsigned long flags;
938
939 raw_spin_lock_irqsave(&devtree_lock, flags);
940 for_each_of_allnodes_from(from, np)
941 if (np->type && (of_node_cmp(np->type, type) == 0)
942 && of_node_get(np))
943 break;
944 of_node_put(from);
945 raw_spin_unlock_irqrestore(&devtree_lock, flags);
946 return np;
947 }
948 EXPORT_SYMBOL(of_find_node_by_type);
949
950 /**
951 * of_find_compatible_node - Find a node based on type and one of the
952 * tokens in its "compatible" property
953 * @from: The node to start searching from or NULL, the node
954 * you pass will not be searched, only the next one
955 * will; typically, you pass what the previous call
956 * returned. of_node_put() will be called on it
957 * @type: The type string to match "device_type" or NULL to ignore
958 * @compatible: The string to match to one of the tokens in the device
959 * "compatible" list.
960 *
961 * Returns a node pointer with refcount incremented, use
962 * of_node_put() on it when done.
963 */
964 struct device_node *of_find_compatible_node(struct device_node *from,
965 const char *type, const char *compatible)
966 {
967 struct device_node *np;
968 unsigned long flags;
969
970 raw_spin_lock_irqsave(&devtree_lock, flags);
971 for_each_of_allnodes_from(from, np)
972 if (__of_device_is_compatible(np, compatible, type, NULL) &&
973 of_node_get(np))
974 break;
975 of_node_put(from);
976 raw_spin_unlock_irqrestore(&devtree_lock, flags);
977 return np;
978 }
979 EXPORT_SYMBOL(of_find_compatible_node);
980
981 /**
982 * of_find_node_with_property - Find a node which has a property with
983 * the given name.
984 * @from: The node to start searching from or NULL, the node
985 * you pass will not be searched, only the next one
986 * will; typically, you pass what the previous call
987 * returned. of_node_put() will be called on it
988 * @prop_name: The name of the property to look for.
989 *
990 * Returns a node pointer with refcount incremented, use
991 * of_node_put() on it when done.
992 */
993 struct device_node *of_find_node_with_property(struct device_node *from,
994 const char *prop_name)
995 {
996 struct device_node *np;
997 struct property *pp;
998 unsigned long flags;
999
1000 raw_spin_lock_irqsave(&devtree_lock, flags);
1001 for_each_of_allnodes_from(from, np) {
1002 for (pp = np->properties; pp; pp = pp->next) {
1003 if (of_prop_cmp(pp->name, prop_name) == 0) {
1004 of_node_get(np);
1005 goto out;
1006 }
1007 }
1008 }
1009 out:
1010 of_node_put(from);
1011 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1012 return np;
1013 }
1014 EXPORT_SYMBOL(of_find_node_with_property);
1015
1016 static
1017 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1018 const struct device_node *node)
1019 {
1020 const struct of_device_id *best_match = NULL;
1021 int score, best_score = 0;
1022
1023 if (!matches)
1024 return NULL;
1025
1026 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1027 score = __of_device_is_compatible(node, matches->compatible,
1028 matches->type, matches->name);
1029 if (score > best_score) {
1030 best_match = matches;
1031 best_score = score;
1032 }
1033 }
1034
1035 return best_match;
1036 }
1037
1038 /**
1039 * of_match_node - Tell if a device_node has a matching of_match structure
1040 * @matches: array of of device match structures to search in
1041 * @node: the of device structure to match against
1042 *
1043 * Low level utility function used by device matching.
1044 */
1045 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1046 const struct device_node *node)
1047 {
1048 const struct of_device_id *match;
1049 unsigned long flags;
1050
1051 raw_spin_lock_irqsave(&devtree_lock, flags);
1052 match = __of_match_node(matches, node);
1053 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1054 return match;
1055 }
1056 EXPORT_SYMBOL(of_match_node);
1057
1058 /**
1059 * of_find_matching_node_and_match - Find a node based on an of_device_id
1060 * match table.
1061 * @from: The node to start searching from or NULL, the node
1062 * you pass will not be searched, only the next one
1063 * will; typically, you pass what the previous call
1064 * returned. of_node_put() will be called on it
1065 * @matches: array of of device match structures to search in
1066 * @match Updated to point at the matches entry which matched
1067 *
1068 * Returns a node pointer with refcount incremented, use
1069 * of_node_put() on it when done.
1070 */
1071 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1072 const struct of_device_id *matches,
1073 const struct of_device_id **match)
1074 {
1075 struct device_node *np;
1076 const struct of_device_id *m;
1077 unsigned long flags;
1078
1079 if (match)
1080 *match = NULL;
1081
1082 raw_spin_lock_irqsave(&devtree_lock, flags);
1083 for_each_of_allnodes_from(from, np) {
1084 m = __of_match_node(matches, np);
1085 if (m && of_node_get(np)) {
1086 if (match)
1087 *match = m;
1088 break;
1089 }
1090 }
1091 of_node_put(from);
1092 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1093 return np;
1094 }
1095 EXPORT_SYMBOL(of_find_matching_node_and_match);
1096
1097 /**
1098 * of_modalias_node - Lookup appropriate modalias for a device node
1099 * @node: pointer to a device tree node
1100 * @modalias: Pointer to buffer that modalias value will be copied into
1101 * @len: Length of modalias value
1102 *
1103 * Based on the value of the compatible property, this routine will attempt
1104 * to choose an appropriate modalias value for a particular device tree node.
1105 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1106 * from the first entry in the compatible list property.
1107 *
1108 * This routine returns 0 on success, <0 on failure.
1109 */
1110 int of_modalias_node(struct device_node *node, char *modalias, int len)
1111 {
1112 const char *compatible, *p;
1113 int cplen;
1114
1115 compatible = of_get_property(node, "compatible", &cplen);
1116 if (!compatible || strlen(compatible) > cplen)
1117 return -ENODEV;
1118 p = strchr(compatible, ',');
1119 strlcpy(modalias, p ? p + 1 : compatible, len);
1120 return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(of_modalias_node);
1123
1124 /**
1125 * of_find_node_by_phandle - Find a node given a phandle
1126 * @handle: phandle of the node to find
1127 *
1128 * Returns a node pointer with refcount incremented, use
1129 * of_node_put() on it when done.
1130 */
1131 struct device_node *of_find_node_by_phandle(phandle handle)
1132 {
1133 struct device_node *np = NULL;
1134 unsigned long flags;
1135 phandle masked_handle;
1136
1137 if (!handle)
1138 return NULL;
1139
1140 raw_spin_lock_irqsave(&devtree_lock, flags);
1141
1142 masked_handle = handle & phandle_cache_mask;
1143
1144 if (phandle_cache) {
1145 if (phandle_cache[masked_handle] &&
1146 handle == phandle_cache[masked_handle]->phandle)
1147 np = phandle_cache[masked_handle];
1148 }
1149
1150 if (!np) {
1151 for_each_of_allnodes(np)
1152 if (np->phandle == handle) {
1153 if (phandle_cache)
1154 phandle_cache[masked_handle] = np;
1155 break;
1156 }
1157 }
1158
1159 of_node_get(np);
1160 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1161 return np;
1162 }
1163 EXPORT_SYMBOL(of_find_node_by_phandle);
1164
1165 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1166 {
1167 int i;
1168 printk("%s %pOF", msg, args->np);
1169 for (i = 0; i < args->args_count; i++) {
1170 const char delim = i ? ',' : ':';
1171
1172 pr_cont("%c%08x", delim, args->args[i]);
1173 }
1174 pr_cont("\n");
1175 }
1176
1177 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1178 const struct device_node *np,
1179 const char *list_name,
1180 const char *cells_name,
1181 int cell_count)
1182 {
1183 const __be32 *list;
1184 int size;
1185
1186 memset(it, 0, sizeof(*it));
1187
1188 list = of_get_property(np, list_name, &size);
1189 if (!list)
1190 return -ENOENT;
1191
1192 it->cells_name = cells_name;
1193 it->cell_count = cell_count;
1194 it->parent = np;
1195 it->list_end = list + size / sizeof(*list);
1196 it->phandle_end = list;
1197 it->cur = list;
1198
1199 return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1202
1203 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1204 {
1205 uint32_t count = 0;
1206
1207 if (it->node) {
1208 of_node_put(it->node);
1209 it->node = NULL;
1210 }
1211
1212 if (!it->cur || it->phandle_end >= it->list_end)
1213 return -ENOENT;
1214
1215 it->cur = it->phandle_end;
1216
1217 /* If phandle is 0, then it is an empty entry with no arguments. */
1218 it->phandle = be32_to_cpup(it->cur++);
1219
1220 if (it->phandle) {
1221
1222 /*
1223 * Find the provider node and parse the #*-cells property to
1224 * determine the argument length.
1225 */
1226 it->node = of_find_node_by_phandle(it->phandle);
1227
1228 if (it->cells_name) {
1229 if (!it->node) {
1230 pr_err("%pOF: could not find phandle\n",
1231 it->parent);
1232 goto err;
1233 }
1234
1235 if (of_property_read_u32(it->node, it->cells_name,
1236 &count)) {
1237 pr_err("%pOF: could not get %s for %pOF\n",
1238 it->parent,
1239 it->cells_name,
1240 it->node);
1241 goto err;
1242 }
1243 } else {
1244 count = it->cell_count;
1245 }
1246
1247 /*
1248 * Make sure that the arguments actually fit in the remaining
1249 * property data length
1250 */
1251 if (it->cur + count > it->list_end) {
1252 pr_err("%pOF: arguments longer than property\n",
1253 it->parent);
1254 goto err;
1255 }
1256 }
1257
1258 it->phandle_end = it->cur + count;
1259 it->cur_count = count;
1260
1261 return 0;
1262
1263 err:
1264 if (it->node) {
1265 of_node_put(it->node);
1266 it->node = NULL;
1267 }
1268
1269 return -EINVAL;
1270 }
1271 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1272
1273 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1274 uint32_t *args,
1275 int size)
1276 {
1277 int i, count;
1278
1279 count = it->cur_count;
1280
1281 if (WARN_ON(size < count))
1282 count = size;
1283
1284 for (i = 0; i < count; i++)
1285 args[i] = be32_to_cpup(it->cur++);
1286
1287 return count;
1288 }
1289
1290 static int __of_parse_phandle_with_args(const struct device_node *np,
1291 const char *list_name,
1292 const char *cells_name,
1293 int cell_count, int index,
1294 struct of_phandle_args *out_args)
1295 {
1296 struct of_phandle_iterator it;
1297 int rc, cur_index = 0;
1298
1299 /* Loop over the phandles until all the requested entry is found */
1300 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1301 /*
1302 * All of the error cases bail out of the loop, so at
1303 * this point, the parsing is successful. If the requested
1304 * index matches, then fill the out_args structure and return,
1305 * or return -ENOENT for an empty entry.
1306 */
1307 rc = -ENOENT;
1308 if (cur_index == index) {
1309 if (!it.phandle)
1310 goto err;
1311
1312 if (out_args) {
1313 int c;
1314
1315 c = of_phandle_iterator_args(&it,
1316 out_args->args,
1317 MAX_PHANDLE_ARGS);
1318 out_args->np = it.node;
1319 out_args->args_count = c;
1320 } else {
1321 of_node_put(it.node);
1322 }
1323
1324 /* Found it! return success */
1325 return 0;
1326 }
1327
1328 cur_index++;
1329 }
1330
1331 /*
1332 * Unlock node before returning result; will be one of:
1333 * -ENOENT : index is for empty phandle
1334 * -EINVAL : parsing error on data
1335 */
1336
1337 err:
1338 of_node_put(it.node);
1339 return rc;
1340 }
1341
1342 /**
1343 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1344 * @np: Pointer to device node holding phandle property
1345 * @phandle_name: Name of property holding a phandle value
1346 * @index: For properties holding a table of phandles, this is the index into
1347 * the table
1348 *
1349 * Returns the device_node pointer with refcount incremented. Use
1350 * of_node_put() on it when done.
1351 */
1352 struct device_node *of_parse_phandle(const struct device_node *np,
1353 const char *phandle_name, int index)
1354 {
1355 struct of_phandle_args args;
1356
1357 if (index < 0)
1358 return NULL;
1359
1360 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1361 index, &args))
1362 return NULL;
1363
1364 return args.np;
1365 }
1366 EXPORT_SYMBOL(of_parse_phandle);
1367
1368 /**
1369 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1370 * @np: pointer to a device tree node containing a list
1371 * @list_name: property name that contains a list
1372 * @cells_name: property name that specifies phandles' arguments count
1373 * @index: index of a phandle to parse out
1374 * @out_args: optional pointer to output arguments structure (will be filled)
1375 *
1376 * This function is useful to parse lists of phandles and their arguments.
1377 * Returns 0 on success and fills out_args, on error returns appropriate
1378 * errno value.
1379 *
1380 * Caller is responsible to call of_node_put() on the returned out_args->np
1381 * pointer.
1382 *
1383 * Example:
1384 *
1385 * phandle1: node1 {
1386 * #list-cells = <2>;
1387 * }
1388 *
1389 * phandle2: node2 {
1390 * #list-cells = <1>;
1391 * }
1392 *
1393 * node3 {
1394 * list = <&phandle1 1 2 &phandle2 3>;
1395 * }
1396 *
1397 * To get a device_node of the `node2' node you may call this:
1398 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1399 */
1400 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1401 const char *cells_name, int index,
1402 struct of_phandle_args *out_args)
1403 {
1404 if (index < 0)
1405 return -EINVAL;
1406 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1407 index, out_args);
1408 }
1409 EXPORT_SYMBOL(of_parse_phandle_with_args);
1410
1411 /**
1412 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1413 * @np: pointer to a device tree node containing a list
1414 * @list_name: property name that contains a list
1415 * @stem_name: stem of property names that specify phandles' arguments count
1416 * @index: index of a phandle to parse out
1417 * @out_args: optional pointer to output arguments structure (will be filled)
1418 *
1419 * This function is useful to parse lists of phandles and their arguments.
1420 * Returns 0 on success and fills out_args, on error returns appropriate errno
1421 * value. The difference between this function and of_parse_phandle_with_args()
1422 * is that this API remaps a phandle if the node the phandle points to has
1423 * a <@stem_name>-map property.
1424 *
1425 * Caller is responsible to call of_node_put() on the returned out_args->np
1426 * pointer.
1427 *
1428 * Example:
1429 *
1430 * phandle1: node1 {
1431 * #list-cells = <2>;
1432 * }
1433 *
1434 * phandle2: node2 {
1435 * #list-cells = <1>;
1436 * }
1437 *
1438 * phandle3: node3 {
1439 * #list-cells = <1>;
1440 * list-map = <0 &phandle2 3>,
1441 * <1 &phandle2 2>,
1442 * <2 &phandle1 5 1>;
1443 * list-map-mask = <0x3>;
1444 * };
1445 *
1446 * node4 {
1447 * list = <&phandle1 1 2 &phandle3 0>;
1448 * }
1449 *
1450 * To get a device_node of the `node2' node you may call this:
1451 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1452 */
1453 int of_parse_phandle_with_args_map(const struct device_node *np,
1454 const char *list_name,
1455 const char *stem_name,
1456 int index, struct of_phandle_args *out_args)
1457 {
1458 char *cells_name, *map_name = NULL, *mask_name = NULL;
1459 char *pass_name = NULL;
1460 struct device_node *cur, *new = NULL;
1461 const __be32 *map, *mask, *pass;
1462 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1463 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1464 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1465 const __be32 *match_array = initial_match_array;
1466 int i, ret, map_len, match;
1467 u32 list_size, new_size;
1468
1469 if (index < 0)
1470 return -EINVAL;
1471
1472 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1473 if (!cells_name)
1474 return -ENOMEM;
1475
1476 ret = -ENOMEM;
1477 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1478 if (!map_name)
1479 goto free;
1480
1481 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1482 if (!mask_name)
1483 goto free;
1484
1485 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1486 if (!pass_name)
1487 goto free;
1488
1489 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1490 out_args);
1491 if (ret)
1492 goto free;
1493
1494 /* Get the #<list>-cells property */
1495 cur = out_args->np;
1496 ret = of_property_read_u32(cur, cells_name, &list_size);
1497 if (ret < 0)
1498 goto put;
1499
1500 /* Precalculate the match array - this simplifies match loop */
1501 for (i = 0; i < list_size; i++)
1502 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1503
1504 ret = -EINVAL;
1505 while (cur) {
1506 /* Get the <list>-map property */
1507 map = of_get_property(cur, map_name, &map_len);
1508 if (!map) {
1509 ret = 0;
1510 goto free;
1511 }
1512 map_len /= sizeof(u32);
1513
1514 /* Get the <list>-map-mask property (optional) */
1515 mask = of_get_property(cur, mask_name, NULL);
1516 if (!mask)
1517 mask = dummy_mask;
1518 /* Iterate through <list>-map property */
1519 match = 0;
1520 while (map_len > (list_size + 1) && !match) {
1521 /* Compare specifiers */
1522 match = 1;
1523 for (i = 0; i < list_size; i++, map_len--)
1524 match &= !((match_array[i] ^ *map++) & mask[i]);
1525
1526 of_node_put(new);
1527 new = of_find_node_by_phandle(be32_to_cpup(map));
1528 map++;
1529 map_len--;
1530
1531 /* Check if not found */
1532 if (!new)
1533 goto put;
1534
1535 if (!of_device_is_available(new))
1536 match = 0;
1537
1538 ret = of_property_read_u32(new, cells_name, &new_size);
1539 if (ret)
1540 goto put;
1541
1542 /* Check for malformed properties */
1543 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1544 goto put;
1545 if (map_len < new_size)
1546 goto put;
1547
1548 /* Move forward by new node's #<list>-cells amount */
1549 map += new_size;
1550 map_len -= new_size;
1551 }
1552 if (!match)
1553 goto put;
1554
1555 /* Get the <list>-map-pass-thru property (optional) */
1556 pass = of_get_property(cur, pass_name, NULL);
1557 if (!pass)
1558 pass = dummy_pass;
1559
1560 /*
1561 * Successfully parsed a <list>-map translation; copy new
1562 * specifier into the out_args structure, keeping the
1563 * bits specified in <list>-map-pass-thru.
1564 */
1565 match_array = map - new_size;
1566 for (i = 0; i < new_size; i++) {
1567 __be32 val = *(map - new_size + i);
1568
1569 if (i < list_size) {
1570 val &= ~pass[i];
1571 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1572 }
1573
1574 out_args->args[i] = be32_to_cpu(val);
1575 }
1576 out_args->args_count = list_size = new_size;
1577 /* Iterate again with new provider */
1578 out_args->np = new;
1579 of_node_put(cur);
1580 cur = new;
1581 }
1582 put:
1583 of_node_put(cur);
1584 of_node_put(new);
1585 free:
1586 kfree(mask_name);
1587 kfree(map_name);
1588 kfree(cells_name);
1589 kfree(pass_name);
1590
1591 return ret;
1592 }
1593 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1594
1595 /**
1596 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1597 * @np: pointer to a device tree node containing a list
1598 * @list_name: property name that contains a list
1599 * @cell_count: number of argument cells following the phandle
1600 * @index: index of a phandle to parse out
1601 * @out_args: optional pointer to output arguments structure (will be filled)
1602 *
1603 * This function is useful to parse lists of phandles and their arguments.
1604 * Returns 0 on success and fills out_args, on error returns appropriate
1605 * errno value.
1606 *
1607 * Caller is responsible to call of_node_put() on the returned out_args->np
1608 * pointer.
1609 *
1610 * Example:
1611 *
1612 * phandle1: node1 {
1613 * }
1614 *
1615 * phandle2: node2 {
1616 * }
1617 *
1618 * node3 {
1619 * list = <&phandle1 0 2 &phandle2 2 3>;
1620 * }
1621 *
1622 * To get a device_node of the `node2' node you may call this:
1623 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1624 */
1625 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1626 const char *list_name, int cell_count,
1627 int index, struct of_phandle_args *out_args)
1628 {
1629 if (index < 0)
1630 return -EINVAL;
1631 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1632 index, out_args);
1633 }
1634 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1635
1636 /**
1637 * of_count_phandle_with_args() - Find the number of phandles references in a property
1638 * @np: pointer to a device tree node containing a list
1639 * @list_name: property name that contains a list
1640 * @cells_name: property name that specifies phandles' arguments count
1641 *
1642 * Returns the number of phandle + argument tuples within a property. It
1643 * is a typical pattern to encode a list of phandle and variable
1644 * arguments into a single property. The number of arguments is encoded
1645 * by a property in the phandle-target node. For example, a gpios
1646 * property would contain a list of GPIO specifies consisting of a
1647 * phandle and 1 or more arguments. The number of arguments are
1648 * determined by the #gpio-cells property in the node pointed to by the
1649 * phandle.
1650 */
1651 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1652 const char *cells_name)
1653 {
1654 struct of_phandle_iterator it;
1655 int rc, cur_index = 0;
1656
1657 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1658 if (rc)
1659 return rc;
1660
1661 while ((rc = of_phandle_iterator_next(&it)) == 0)
1662 cur_index += 1;
1663
1664 if (rc != -ENOENT)
1665 return rc;
1666
1667 return cur_index;
1668 }
1669 EXPORT_SYMBOL(of_count_phandle_with_args);
1670
1671 /**
1672 * __of_add_property - Add a property to a node without lock operations
1673 */
1674 int __of_add_property(struct device_node *np, struct property *prop)
1675 {
1676 struct property **next;
1677
1678 prop->next = NULL;
1679 next = &np->properties;
1680 while (*next) {
1681 if (strcmp(prop->name, (*next)->name) == 0)
1682 /* duplicate ! don't insert it */
1683 return -EEXIST;
1684
1685 next = &(*next)->next;
1686 }
1687 *next = prop;
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * of_add_property - Add a property to a node
1694 */
1695 int of_add_property(struct device_node *np, struct property *prop)
1696 {
1697 unsigned long flags;
1698 int rc;
1699
1700 mutex_lock(&of_mutex);
1701
1702 raw_spin_lock_irqsave(&devtree_lock, flags);
1703 rc = __of_add_property(np, prop);
1704 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1705
1706 if (!rc)
1707 __of_add_property_sysfs(np, prop);
1708
1709 mutex_unlock(&of_mutex);
1710
1711 if (!rc)
1712 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1713
1714 return rc;
1715 }
1716
1717 int __of_remove_property(struct device_node *np, struct property *prop)
1718 {
1719 struct property **next;
1720
1721 for (next = &np->properties; *next; next = &(*next)->next) {
1722 if (*next == prop)
1723 break;
1724 }
1725 if (*next == NULL)
1726 return -ENODEV;
1727
1728 /* found the node */
1729 *next = prop->next;
1730 prop->next = np->deadprops;
1731 np->deadprops = prop;
1732
1733 return 0;
1734 }
1735
1736 /**
1737 * of_remove_property - Remove a property from a node.
1738 *
1739 * Note that we don't actually remove it, since we have given out
1740 * who-knows-how-many pointers to the data using get-property.
1741 * Instead we just move the property to the "dead properties"
1742 * list, so it won't be found any more.
1743 */
1744 int of_remove_property(struct device_node *np, struct property *prop)
1745 {
1746 unsigned long flags;
1747 int rc;
1748
1749 if (!prop)
1750 return -ENODEV;
1751
1752 mutex_lock(&of_mutex);
1753
1754 raw_spin_lock_irqsave(&devtree_lock, flags);
1755 rc = __of_remove_property(np, prop);
1756 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1757
1758 if (!rc)
1759 __of_remove_property_sysfs(np, prop);
1760
1761 mutex_unlock(&of_mutex);
1762
1763 if (!rc)
1764 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1765
1766 return rc;
1767 }
1768
1769 int __of_update_property(struct device_node *np, struct property *newprop,
1770 struct property **oldpropp)
1771 {
1772 struct property **next, *oldprop;
1773
1774 for (next = &np->properties; *next; next = &(*next)->next) {
1775 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1776 break;
1777 }
1778 *oldpropp = oldprop = *next;
1779
1780 if (oldprop) {
1781 /* replace the node */
1782 newprop->next = oldprop->next;
1783 *next = newprop;
1784 oldprop->next = np->deadprops;
1785 np->deadprops = oldprop;
1786 } else {
1787 /* new node */
1788 newprop->next = NULL;
1789 *next = newprop;
1790 }
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * of_update_property - Update a property in a node, if the property does
1797 * not exist, add it.
1798 *
1799 * Note that we don't actually remove it, since we have given out
1800 * who-knows-how-many pointers to the data using get-property.
1801 * Instead we just move the property to the "dead properties" list,
1802 * and add the new property to the property list
1803 */
1804 int of_update_property(struct device_node *np, struct property *newprop)
1805 {
1806 struct property *oldprop;
1807 unsigned long flags;
1808 int rc;
1809
1810 if (!newprop->name)
1811 return -EINVAL;
1812
1813 mutex_lock(&of_mutex);
1814
1815 raw_spin_lock_irqsave(&devtree_lock, flags);
1816 rc = __of_update_property(np, newprop, &oldprop);
1817 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1818
1819 if (!rc)
1820 __of_update_property_sysfs(np, newprop, oldprop);
1821
1822 mutex_unlock(&of_mutex);
1823
1824 if (!rc)
1825 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1826
1827 return rc;
1828 }
1829
1830 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1831 int id, const char *stem, int stem_len)
1832 {
1833 ap->np = np;
1834 ap->id = id;
1835 strncpy(ap->stem, stem, stem_len);
1836 ap->stem[stem_len] = 0;
1837 list_add_tail(&ap->link, &aliases_lookup);
1838 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1839 ap->alias, ap->stem, ap->id, np);
1840 }
1841
1842 /**
1843 * of_alias_scan - Scan all properties of the 'aliases' node
1844 *
1845 * The function scans all the properties of the 'aliases' node and populates
1846 * the global lookup table with the properties. It returns the
1847 * number of alias properties found, or an error code in case of failure.
1848 *
1849 * @dt_alloc: An allocator that provides a virtual address to memory
1850 * for storing the resulting tree
1851 */
1852 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1853 {
1854 struct property *pp;
1855
1856 of_aliases = of_find_node_by_path("/aliases");
1857 of_chosen = of_find_node_by_path("/chosen");
1858 if (of_chosen == NULL)
1859 of_chosen = of_find_node_by_path("/chosen@0");
1860
1861 if (of_chosen) {
1862 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1863 const char *name = NULL;
1864
1865 if (of_property_read_string(of_chosen, "stdout-path", &name))
1866 of_property_read_string(of_chosen, "linux,stdout-path",
1867 &name);
1868 if (IS_ENABLED(CONFIG_PPC) && !name)
1869 of_property_read_string(of_aliases, "stdout", &name);
1870 if (name)
1871 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1872 }
1873
1874 if (!of_aliases)
1875 return;
1876
1877 for_each_property_of_node(of_aliases, pp) {
1878 const char *start = pp->name;
1879 const char *end = start + strlen(start);
1880 struct device_node *np;
1881 struct alias_prop *ap;
1882 int id, len;
1883
1884 /* Skip those we do not want to proceed */
1885 if (!strcmp(pp->name, "name") ||
1886 !strcmp(pp->name, "phandle") ||
1887 !strcmp(pp->name, "linux,phandle"))
1888 continue;
1889
1890 np = of_find_node_by_path(pp->value);
1891 if (!np)
1892 continue;
1893
1894 /* walk the alias backwards to extract the id and work out
1895 * the 'stem' string */
1896 while (isdigit(*(end-1)) && end > start)
1897 end--;
1898 len = end - start;
1899
1900 if (kstrtoint(end, 10, &id) < 0)
1901 continue;
1902
1903 /* Allocate an alias_prop with enough space for the stem */
1904 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1905 if (!ap)
1906 continue;
1907 memset(ap, 0, sizeof(*ap) + len + 1);
1908 ap->alias = start;
1909 of_alias_add(ap, np, id, start, len);
1910 }
1911 }
1912
1913 /**
1914 * of_alias_get_id - Get alias id for the given device_node
1915 * @np: Pointer to the given device_node
1916 * @stem: Alias stem of the given device_node
1917 *
1918 * The function travels the lookup table to get the alias id for the given
1919 * device_node and alias stem. It returns the alias id if found.
1920 */
1921 int of_alias_get_id(struct device_node *np, const char *stem)
1922 {
1923 struct alias_prop *app;
1924 int id = -ENODEV;
1925
1926 mutex_lock(&of_mutex);
1927 list_for_each_entry(app, &aliases_lookup, link) {
1928 if (strcmp(app->stem, stem) != 0)
1929 continue;
1930
1931 if (np == app->np) {
1932 id = app->id;
1933 break;
1934 }
1935 }
1936 mutex_unlock(&of_mutex);
1937
1938 return id;
1939 }
1940 EXPORT_SYMBOL_GPL(of_alias_get_id);
1941
1942 /**
1943 * of_alias_get_highest_id - Get highest alias id for the given stem
1944 * @stem: Alias stem to be examined
1945 *
1946 * The function travels the lookup table to get the highest alias id for the
1947 * given alias stem. It returns the alias id if found.
1948 */
1949 int of_alias_get_highest_id(const char *stem)
1950 {
1951 struct alias_prop *app;
1952 int id = -ENODEV;
1953
1954 mutex_lock(&of_mutex);
1955 list_for_each_entry(app, &aliases_lookup, link) {
1956 if (strcmp(app->stem, stem) != 0)
1957 continue;
1958
1959 if (app->id > id)
1960 id = app->id;
1961 }
1962 mutex_unlock(&of_mutex);
1963
1964 return id;
1965 }
1966 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1967
1968 /**
1969 * of_console_check() - Test and setup console for DT setup
1970 * @dn - Pointer to device node
1971 * @name - Name to use for preferred console without index. ex. "ttyS"
1972 * @index - Index to use for preferred console.
1973 *
1974 * Check if the given device node matches the stdout-path property in the
1975 * /chosen node. If it does then register it as the preferred console and return
1976 * TRUE. Otherwise return FALSE.
1977 */
1978 bool of_console_check(struct device_node *dn, char *name, int index)
1979 {
1980 if (!dn || dn != of_stdout || console_set_on_cmdline)
1981 return false;
1982
1983 /*
1984 * XXX: cast `options' to char pointer to suppress complication
1985 * warnings: printk, UART and console drivers expect char pointer.
1986 */
1987 return !add_preferred_console(name, index, (char *)of_stdout_options);
1988 }
1989 EXPORT_SYMBOL_GPL(of_console_check);
1990
1991 /**
1992 * of_find_next_cache_node - Find a node's subsidiary cache
1993 * @np: node of type "cpu" or "cache"
1994 *
1995 * Returns a node pointer with refcount incremented, use
1996 * of_node_put() on it when done. Caller should hold a reference
1997 * to np.
1998 */
1999 struct device_node *of_find_next_cache_node(const struct device_node *np)
2000 {
2001 struct device_node *child, *cache_node;
2002
2003 cache_node = of_parse_phandle(np, "l2-cache", 0);
2004 if (!cache_node)
2005 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2006
2007 if (cache_node)
2008 return cache_node;
2009
2010 /* OF on pmac has nodes instead of properties named "l2-cache"
2011 * beneath CPU nodes.
2012 */
2013 if (!strcmp(np->type, "cpu"))
2014 for_each_child_of_node(np, child)
2015 if (!strcmp(child->type, "cache"))
2016 return child;
2017
2018 return NULL;
2019 }
2020
2021 /**
2022 * of_find_last_cache_level - Find the level at which the last cache is
2023 * present for the given logical cpu
2024 *
2025 * @cpu: cpu number(logical index) for which the last cache level is needed
2026 *
2027 * Returns the the level at which the last cache is present. It is exactly
2028 * same as the total number of cache levels for the given logical cpu.
2029 */
2030 int of_find_last_cache_level(unsigned int cpu)
2031 {
2032 u32 cache_level = 0;
2033 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2034
2035 while (np) {
2036 prev = np;
2037 of_node_put(np);
2038 np = of_find_next_cache_node(np);
2039 }
2040
2041 of_property_read_u32(prev, "cache-level", &cache_level);
2042
2043 return cache_level;
2044 }