]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/of/fdt.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / of / fdt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29
30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32
33 #include "of_private.h"
34
35 /*
36 * of_fdt_limit_memory - limit the number of regions in the /memory node
37 * @limit: maximum entries
38 *
39 * Adjust the flattened device tree to have at most 'limit' number of
40 * memory entries in the /memory node. This function may be called
41 * any time after initial_boot_param is set.
42 */
43 void __init of_fdt_limit_memory(int limit)
44 {
45 int memory;
46 int len;
47 const void *val;
48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 const __be32 *addr_prop;
51 const __be32 *size_prop;
52 int root_offset;
53 int cell_size;
54
55 root_offset = fdt_path_offset(initial_boot_params, "/");
56 if (root_offset < 0)
57 return;
58
59 addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 "#address-cells", NULL);
61 if (addr_prop)
62 nr_address_cells = fdt32_to_cpu(*addr_prop);
63
64 size_prop = fdt_getprop(initial_boot_params, root_offset,
65 "#size-cells", NULL);
66 if (size_prop)
67 nr_size_cells = fdt32_to_cpu(*size_prop);
68
69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70
71 memory = fdt_path_offset(initial_boot_params, "/memory");
72 if (memory > 0) {
73 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 if (len > limit*cell_size) {
75 len = limit*cell_size;
76 pr_debug("Limiting number of entries to %d\n", limit);
77 fdt_setprop(initial_boot_params, memory, "reg", val,
78 len);
79 }
80 }
81 }
82
83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 const char *status = fdt_getprop(blob, node, "status", NULL);
86
87 if (!status)
88 return true;
89
90 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 return true;
92
93 return false;
94 }
95
96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 unsigned long align)
98 {
99 void *res;
100
101 *mem = PTR_ALIGN(*mem, align);
102 res = *mem;
103 *mem += size;
104
105 return res;
106 }
107
108 static void populate_properties(const void *blob,
109 int offset,
110 void **mem,
111 struct device_node *np,
112 const char *nodename,
113 bool dryrun)
114 {
115 struct property *pp, **pprev = NULL;
116 int cur;
117 bool has_name = false;
118
119 pprev = &np->properties;
120 for (cur = fdt_first_property_offset(blob, offset);
121 cur >= 0;
122 cur = fdt_next_property_offset(blob, cur)) {
123 const __be32 *val;
124 const char *pname;
125 u32 sz;
126
127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 if (!val) {
129 pr_warn("Cannot locate property at 0x%x\n", cur);
130 continue;
131 }
132
133 if (!pname) {
134 pr_warn("Cannot find property name at 0x%x\n", cur);
135 continue;
136 }
137
138 if (!strcmp(pname, "name"))
139 has_name = true;
140
141 pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 __alignof__(struct property));
143 if (dryrun)
144 continue;
145
146 /* We accept flattened tree phandles either in
147 * ePAPR-style "phandle" properties, or the
148 * legacy "linux,phandle" properties. If both
149 * appear and have different values, things
150 * will get weird. Don't do that.
151 */
152 if (!strcmp(pname, "phandle") ||
153 !strcmp(pname, "linux,phandle")) {
154 if (!np->phandle)
155 np->phandle = be32_to_cpup(val);
156 }
157
158 /* And we process the "ibm,phandle" property
159 * used in pSeries dynamic device tree
160 * stuff
161 */
162 if (!strcmp(pname, "ibm,phandle"))
163 np->phandle = be32_to_cpup(val);
164
165 pp->name = (char *)pname;
166 pp->length = sz;
167 pp->value = (__be32 *)val;
168 *pprev = pp;
169 pprev = &pp->next;
170 }
171
172 /* With version 0x10 we may not have the name property,
173 * recreate it here from the unit name if absent
174 */
175 if (!has_name) {
176 const char *p = nodename, *ps = p, *pa = NULL;
177 int len;
178
179 while (*p) {
180 if ((*p) == '@')
181 pa = p;
182 else if ((*p) == '/')
183 ps = p + 1;
184 p++;
185 }
186
187 if (pa < ps)
188 pa = p;
189 len = (pa - ps) + 1;
190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 __alignof__(struct property));
192 if (!dryrun) {
193 pp->name = "name";
194 pp->length = len;
195 pp->value = pp + 1;
196 *pprev = pp;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203 }
204
205 static int populate_node(const void *blob,
206 int offset,
207 void **mem,
208 struct device_node *dad,
209 struct device_node **pnp,
210 bool dryrun)
211 {
212 struct device_node *np;
213 const char *pathp;
214 int len;
215
216 pathp = fdt_get_name(blob, offset, &len);
217 if (!pathp) {
218 *pnp = NULL;
219 return len;
220 }
221
222 len++;
223
224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 __alignof__(struct device_node));
226 if (!dryrun) {
227 char *fn;
228 of_node_init(np);
229 np->full_name = fn = ((char *)np) + sizeof(*np);
230
231 memcpy(fn, pathp, len);
232
233 if (dad != NULL) {
234 np->parent = dad;
235 np->sibling = dad->child;
236 dad->child = np;
237 }
238 }
239
240 populate_properties(blob, offset, mem, np, pathp, dryrun);
241 if (!dryrun) {
242 np->name = of_get_property(np, "name", NULL);
243 if (!np->name)
244 np->name = "<NULL>";
245 }
246
247 *pnp = np;
248 return true;
249 }
250
251 static void reverse_nodes(struct device_node *parent)
252 {
253 struct device_node *child, *next;
254
255 /* In-depth first */
256 child = parent->child;
257 while (child) {
258 reverse_nodes(child);
259
260 child = child->sibling;
261 }
262
263 /* Reverse the nodes in the child list */
264 child = parent->child;
265 parent->child = NULL;
266 while (child) {
267 next = child->sibling;
268
269 child->sibling = parent->child;
270 parent->child = child;
271 child = next;
272 }
273 }
274
275 /**
276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277 * @blob: The parent device tree blob
278 * @mem: Memory chunk to use for allocating device nodes and properties
279 * @dad: Parent struct device_node
280 * @nodepp: The device_node tree created by the call
281 *
282 * Return: The size of unflattened device tree or error code
283 */
284 static int unflatten_dt_nodes(const void *blob,
285 void *mem,
286 struct device_node *dad,
287 struct device_node **nodepp)
288 {
289 struct device_node *root;
290 int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH 64
292 struct device_node *nps[FDT_MAX_DEPTH];
293 void *base = mem;
294 bool dryrun = !base;
295 int ret;
296
297 if (nodepp)
298 *nodepp = NULL;
299
300 /*
301 * We're unflattening device sub-tree if @dad is valid. There are
302 * possibly multiple nodes in the first level of depth. We need
303 * set @depth to 1 to make fdt_next_node() happy as it bails
304 * immediately when negative @depth is found. Otherwise, the device
305 * nodes except the first one won't be unflattened successfully.
306 */
307 if (dad)
308 depth = initial_depth = 1;
309
310 root = dad;
311 nps[depth] = dad;
312
313 for (offset = 0;
314 offset >= 0 && depth >= initial_depth;
315 offset = fdt_next_node(blob, offset, &depth)) {
316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
317 continue;
318
319 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 !of_fdt_device_is_available(blob, offset))
321 continue;
322
323 ret = populate_node(blob, offset, &mem, nps[depth],
324 &nps[depth+1], dryrun);
325 if (ret < 0)
326 return ret;
327
328 if (!dryrun && nodepp && !*nodepp)
329 *nodepp = nps[depth+1];
330 if (!dryrun && !root)
331 root = nps[depth+1];
332 }
333
334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 pr_err("Error %d processing FDT\n", offset);
336 return -EINVAL;
337 }
338
339 /*
340 * Reverse the child list. Some drivers assumes node order matches .dts
341 * node order
342 */
343 if (!dryrun)
344 reverse_nodes(root);
345
346 return mem - base;
347 }
348
349 /**
350 * __unflatten_device_tree - create tree of device_nodes from flat blob
351 * @blob: The blob to expand
352 * @dad: Parent device node
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
356 * @detached: if true set OF_DETACHED on @mynodes
357 *
358 * unflattens a device-tree, creating the tree of struct device_node. It also
359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
360 * walking functions can be used.
361 *
362 * Return: NULL on failure or the memory chunk containing the unflattened
363 * device tree on success.
364 */
365 void *__unflatten_device_tree(const void *blob,
366 struct device_node *dad,
367 struct device_node **mynodes,
368 void *(*dt_alloc)(u64 size, u64 align),
369 bool detached)
370 {
371 int size;
372 void *mem;
373 int ret;
374
375 if (mynodes)
376 *mynodes = NULL;
377
378 pr_debug(" -> unflatten_device_tree()\n");
379
380 if (!blob) {
381 pr_debug("No device tree pointer\n");
382 return NULL;
383 }
384
385 pr_debug("Unflattening device tree:\n");
386 pr_debug("magic: %08x\n", fdt_magic(blob));
387 pr_debug("size: %08x\n", fdt_totalsize(blob));
388 pr_debug("version: %08x\n", fdt_version(blob));
389
390 if (fdt_check_header(blob)) {
391 pr_err("Invalid device tree blob header\n");
392 return NULL;
393 }
394
395 /* First pass, scan for size */
396 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 if (size <= 0)
398 return NULL;
399
400 size = ALIGN(size, 4);
401 pr_debug(" size is %d, allocating...\n", size);
402
403 /* Allocate memory for the expanded device tree */
404 mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 if (!mem)
406 return NULL;
407
408 memset(mem, 0, size);
409
410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411
412 pr_debug(" unflattening %p...\n", mem);
413
414 /* Second pass, do actual unflattening */
415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416
417 if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 pr_warn("End of tree marker overwritten: %08x\n",
419 be32_to_cpup(mem + size));
420
421 if (ret <= 0)
422 return NULL;
423
424 if (detached && mynodes && *mynodes) {
425 of_node_set_flag(*mynodes, OF_DETACHED);
426 pr_debug("unflattened tree is detached\n");
427 }
428
429 pr_debug(" <- unflatten_device_tree()\n");
430 return mem;
431 }
432
433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 return kzalloc(size, GFP_KERNEL);
436 }
437
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439
440 /**
441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442 * @blob: Flat device tree blob
443 * @dad: Parent device node
444 * @mynodes: The device tree created by the call
445 *
446 * unflattens the device-tree passed by the firmware, creating the
447 * tree of struct device_node. It also fills the "name" and "type"
448 * pointers of the nodes so the normal device-tree walking functions
449 * can be used.
450 *
451 * Return: NULL on failure or the memory chunk containing the unflattened
452 * device tree on success.
453 */
454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 struct device_node *dad,
456 struct device_node **mynodes)
457 {
458 void *mem;
459
460 mutex_lock(&of_fdt_unflatten_mutex);
461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 true);
463 mutex_unlock(&of_fdt_unflatten_mutex);
464
465 return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472
473 void *initial_boot_params __ro_after_init;
474
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476
477 static u32 of_fdt_crc32;
478
479 static int __init early_init_dt_reserve_memory_arch(phys_addr_t base,
480 phys_addr_t size, bool nomap)
481 {
482 if (nomap) {
483 /*
484 * If the memory is already reserved (by another region), we
485 * should not allow it to be marked nomap, but don't worry
486 * if the region isn't memory as it won't be mapped.
487 */
488 if (memblock_overlaps_region(&memblock.memory, base, size) &&
489 memblock_is_region_reserved(base, size))
490 return -EBUSY;
491
492 return memblock_mark_nomap(base, size);
493 }
494 return memblock_reserve(base, size);
495 }
496
497 /*
498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499 */
500 static int __init __reserved_mem_reserve_reg(unsigned long node,
501 const char *uname)
502 {
503 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504 phys_addr_t base, size;
505 int len;
506 const __be32 *prop;
507 int first = 1;
508 bool nomap;
509
510 prop = of_get_flat_dt_prop(node, "reg", &len);
511 if (!prop)
512 return -ENOENT;
513
514 if (len && len % t_len != 0) {
515 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516 uname);
517 return -EINVAL;
518 }
519
520 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521
522 while (len >= t_len) {
523 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524 size = dt_mem_next_cell(dt_root_size_cells, &prop);
525
526 if (size &&
527 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
528 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529 uname, &base, (unsigned long)(size / SZ_1M));
530 else
531 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532 uname, &base, (unsigned long)(size / SZ_1M));
533
534 len -= t_len;
535 if (first) {
536 fdt_reserved_mem_save_node(node, uname, base, size);
537 first = 0;
538 }
539 }
540 return 0;
541 }
542
543 /*
544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545 * in /reserved-memory matches the values supported by the current implementation,
546 * also check if ranges property has been provided
547 */
548 static int __init __reserved_mem_check_root(unsigned long node)
549 {
550 const __be32 *prop;
551
552 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554 return -EINVAL;
555
556 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558 return -EINVAL;
559
560 prop = of_get_flat_dt_prop(node, "ranges", NULL);
561 if (!prop)
562 return -EINVAL;
563 return 0;
564 }
565
566 /*
567 * __fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568 */
569 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
570 int depth, void *data)
571 {
572 static int found;
573 int err;
574
575 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
576 if (__reserved_mem_check_root(node) != 0) {
577 pr_err("Reserved memory: unsupported node format, ignoring\n");
578 /* break scan */
579 return 1;
580 }
581 found = 1;
582 /* scan next node */
583 return 0;
584 } else if (!found) {
585 /* scan next node */
586 return 0;
587 } else if (found && depth < 2) {
588 /* scanning of /reserved-memory has been finished */
589 return 1;
590 }
591
592 if (!of_fdt_device_is_available(initial_boot_params, node))
593 return 0;
594
595 err = __reserved_mem_reserve_reg(node, uname);
596 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
597 fdt_reserved_mem_save_node(node, uname, 0, 0);
598
599 /* scan next node */
600 return 0;
601 }
602
603 /*
604 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
605 *
606 * This function reserves the memory occupied by an elf core header
607 * described in the device tree. This region contains all the
608 * information about primary kernel's core image and is used by a dump
609 * capture kernel to access the system memory on primary kernel.
610 */
611 static void __init fdt_reserve_elfcorehdr(void)
612 {
613 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
614 return;
615
616 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
617 pr_warn("elfcorehdr is overlapped\n");
618 return;
619 }
620
621 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
622
623 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
624 elfcorehdr_size >> 10, elfcorehdr_addr);
625 }
626
627 /**
628 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
629 *
630 * This function grabs memory from early allocator for device exclusive use
631 * defined in device tree structures. It should be called by arch specific code
632 * once the early allocator (i.e. memblock) has been fully activated.
633 */
634 void __init early_init_fdt_scan_reserved_mem(void)
635 {
636 int n;
637 u64 base, size;
638
639 if (!initial_boot_params)
640 return;
641
642 /* Process header /memreserve/ fields */
643 for (n = 0; ; n++) {
644 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
645 if (!size)
646 break;
647 early_init_dt_reserve_memory_arch(base, size, false);
648 }
649
650 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
651 fdt_init_reserved_mem();
652 fdt_reserve_elfcorehdr();
653 }
654
655 /**
656 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
657 */
658 void __init early_init_fdt_reserve_self(void)
659 {
660 if (!initial_boot_params)
661 return;
662
663 /* Reserve the dtb region */
664 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
665 fdt_totalsize(initial_boot_params),
666 false);
667 }
668
669 /**
670 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
671 * @it: callback function
672 * @data: context data pointer
673 *
674 * This function is used to scan the flattened device-tree, it is
675 * used to extract the memory information at boot before we can
676 * unflatten the tree
677 */
678 int __init of_scan_flat_dt(int (*it)(unsigned long node,
679 const char *uname, int depth,
680 void *data),
681 void *data)
682 {
683 const void *blob = initial_boot_params;
684 const char *pathp;
685 int offset, rc = 0, depth = -1;
686
687 if (!blob)
688 return 0;
689
690 for (offset = fdt_next_node(blob, -1, &depth);
691 offset >= 0 && depth >= 0 && !rc;
692 offset = fdt_next_node(blob, offset, &depth)) {
693
694 pathp = fdt_get_name(blob, offset, NULL);
695 rc = it(offset, pathp, depth, data);
696 }
697 return rc;
698 }
699
700 /**
701 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
702 * @parent: parent node
703 * @it: callback function
704 * @data: context data pointer
705 *
706 * This function is used to scan sub-nodes of a node.
707 */
708 int __init of_scan_flat_dt_subnodes(unsigned long parent,
709 int (*it)(unsigned long node,
710 const char *uname,
711 void *data),
712 void *data)
713 {
714 const void *blob = initial_boot_params;
715 int node;
716
717 fdt_for_each_subnode(node, blob, parent) {
718 const char *pathp;
719 int rc;
720
721 pathp = fdt_get_name(blob, node, NULL);
722 rc = it(node, pathp, data);
723 if (rc)
724 return rc;
725 }
726 return 0;
727 }
728
729 /**
730 * of_get_flat_dt_subnode_by_name - get the subnode by given name
731 *
732 * @node: the parent node
733 * @uname: the name of subnode
734 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
735 */
736
737 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
738 {
739 return fdt_subnode_offset(initial_boot_params, node, uname);
740 }
741
742 /*
743 * of_get_flat_dt_root - find the root node in the flat blob
744 */
745 unsigned long __init of_get_flat_dt_root(void)
746 {
747 return 0;
748 }
749
750 /*
751 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
752 *
753 * This function can be used within scan_flattened_dt callback to get
754 * access to properties
755 */
756 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
757 int *size)
758 {
759 return fdt_getprop(initial_boot_params, node, name, size);
760 }
761
762 /**
763 * of_fdt_is_compatible - Return true if given node from the given blob has
764 * compat in its compatible list
765 * @blob: A device tree blob
766 * @node: node to test
767 * @compat: compatible string to compare with compatible list.
768 *
769 * Return: a non-zero value on match with smaller values returned for more
770 * specific compatible values.
771 */
772 static int of_fdt_is_compatible(const void *blob,
773 unsigned long node, const char *compat)
774 {
775 const char *cp;
776 int cplen;
777 unsigned long l, score = 0;
778
779 cp = fdt_getprop(blob, node, "compatible", &cplen);
780 if (cp == NULL)
781 return 0;
782 while (cplen > 0) {
783 score++;
784 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
785 return score;
786 l = strlen(cp) + 1;
787 cp += l;
788 cplen -= l;
789 }
790
791 return 0;
792 }
793
794 /**
795 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
796 * @node: node to test
797 * @compat: compatible string to compare with compatible list.
798 */
799 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
800 {
801 return of_fdt_is_compatible(initial_boot_params, node, compat);
802 }
803
804 /*
805 * of_flat_dt_match - Return true if node matches a list of compatible values
806 */
807 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
808 {
809 unsigned int tmp, score = 0;
810
811 if (!compat)
812 return 0;
813
814 while (*compat) {
815 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
816 if (tmp && (score == 0 || (tmp < score)))
817 score = tmp;
818 compat++;
819 }
820
821 return score;
822 }
823
824 /*
825 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
826 */
827 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
828 {
829 return fdt_get_phandle(initial_boot_params, node);
830 }
831
832 struct fdt_scan_status {
833 const char *name;
834 int namelen;
835 int depth;
836 int found;
837 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
838 void *data;
839 };
840
841 const char * __init of_flat_dt_get_machine_name(void)
842 {
843 const char *name;
844 unsigned long dt_root = of_get_flat_dt_root();
845
846 name = of_get_flat_dt_prop(dt_root, "model", NULL);
847 if (!name)
848 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
849 return name;
850 }
851
852 /**
853 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
854 *
855 * @default_match: A machine specific ptr to return in case of no match.
856 * @get_next_compat: callback function to return next compatible match table.
857 *
858 * Iterate through machine match tables to find the best match for the machine
859 * compatible string in the FDT.
860 */
861 const void * __init of_flat_dt_match_machine(const void *default_match,
862 const void * (*get_next_compat)(const char * const**))
863 {
864 const void *data = NULL;
865 const void *best_data = default_match;
866 const char *const *compat;
867 unsigned long dt_root;
868 unsigned int best_score = ~1, score = 0;
869
870 dt_root = of_get_flat_dt_root();
871 while ((data = get_next_compat(&compat))) {
872 score = of_flat_dt_match(dt_root, compat);
873 if (score > 0 && score < best_score) {
874 best_data = data;
875 best_score = score;
876 }
877 }
878 if (!best_data) {
879 const char *prop;
880 int size;
881
882 pr_err("\n unrecognized device tree list:\n[ ");
883
884 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
885 if (prop) {
886 while (size > 0) {
887 printk("'%s' ", prop);
888 size -= strlen(prop) + 1;
889 prop += strlen(prop) + 1;
890 }
891 }
892 printk("]\n\n");
893 return NULL;
894 }
895
896 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
897
898 return best_data;
899 }
900
901 static void __early_init_dt_declare_initrd(unsigned long start,
902 unsigned long end)
903 {
904 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
905 * enabled since __va() is called too early. ARM64 does make use
906 * of phys_initrd_start/phys_initrd_size so we can skip this
907 * conversion.
908 */
909 if (!IS_ENABLED(CONFIG_ARM64)) {
910 initrd_start = (unsigned long)__va(start);
911 initrd_end = (unsigned long)__va(end);
912 initrd_below_start_ok = 1;
913 }
914 }
915
916 /**
917 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
918 * @node: reference to node containing initrd location ('chosen')
919 */
920 static void __init early_init_dt_check_for_initrd(unsigned long node)
921 {
922 u64 start, end;
923 int len;
924 const __be32 *prop;
925
926 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
927 return;
928
929 pr_debug("Looking for initrd properties... ");
930
931 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
932 if (!prop)
933 return;
934 start = of_read_number(prop, len/4);
935
936 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
937 if (!prop)
938 return;
939 end = of_read_number(prop, len/4);
940
941 __early_init_dt_declare_initrd(start, end);
942 phys_initrd_start = start;
943 phys_initrd_size = end - start;
944
945 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
946 }
947
948 /**
949 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
950 * tree
951 * @node: reference to node containing elfcorehdr location ('chosen')
952 */
953 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
954 {
955 const __be32 *prop;
956 int len;
957
958 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
959 return;
960
961 pr_debug("Looking for elfcorehdr property... ");
962
963 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
964 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
965 return;
966
967 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
968 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
969
970 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
971 elfcorehdr_addr, elfcorehdr_size);
972 }
973
974 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
975
976 /**
977 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
978 * location from flat tree
979 */
980 void __init early_init_dt_check_for_usable_mem_range(void)
981 {
982 const __be32 *prop;
983 int len;
984 phys_addr_t cap_mem_addr;
985 phys_addr_t cap_mem_size;
986 unsigned long node = chosen_node_offset;
987
988 if ((long)node < 0)
989 return;
990
991 pr_debug("Looking for usable-memory-range property... ");
992
993 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
994 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
995 return;
996
997 cap_mem_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
998 cap_mem_size = dt_mem_next_cell(dt_root_size_cells, &prop);
999
1000 pr_debug("cap_mem_start=%pa cap_mem_size=%pa\n", &cap_mem_addr,
1001 &cap_mem_size);
1002
1003 memblock_cap_memory_range(cap_mem_addr, cap_mem_size);
1004 }
1005
1006 #ifdef CONFIG_SERIAL_EARLYCON
1007
1008 int __init early_init_dt_scan_chosen_stdout(void)
1009 {
1010 int offset;
1011 const char *p, *q, *options = NULL;
1012 int l;
1013 const struct earlycon_id *match;
1014 const void *fdt = initial_boot_params;
1015
1016 offset = fdt_path_offset(fdt, "/chosen");
1017 if (offset < 0)
1018 offset = fdt_path_offset(fdt, "/chosen@0");
1019 if (offset < 0)
1020 return -ENOENT;
1021
1022 p = fdt_getprop(fdt, offset, "stdout-path", &l);
1023 if (!p)
1024 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1025 if (!p || !l)
1026 return -ENOENT;
1027
1028 q = strchrnul(p, ':');
1029 if (*q != '\0')
1030 options = q + 1;
1031 l = q - p;
1032
1033 /* Get the node specified by stdout-path */
1034 offset = fdt_path_offset_namelen(fdt, p, l);
1035 if (offset < 0) {
1036 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1037 return 0;
1038 }
1039
1040 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1041 if (!match->compatible[0])
1042 continue;
1043
1044 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1045 continue;
1046
1047 if (of_setup_earlycon(match, offset, options) == 0)
1048 return 0;
1049 }
1050 return -ENODEV;
1051 }
1052 #endif
1053
1054 /*
1055 * early_init_dt_scan_root - fetch the top level address and size cells
1056 */
1057 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
1058 int depth, void *data)
1059 {
1060 const __be32 *prop;
1061
1062 if (depth != 0)
1063 return 0;
1064
1065 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1066 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1067
1068 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1069 if (prop)
1070 dt_root_size_cells = be32_to_cpup(prop);
1071 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1072
1073 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1074 if (prop)
1075 dt_root_addr_cells = be32_to_cpup(prop);
1076 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1077
1078 /* break now */
1079 return 1;
1080 }
1081
1082 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1083 {
1084 const __be32 *p = *cellp;
1085
1086 *cellp = p + s;
1087 return of_read_number(p, s);
1088 }
1089
1090 /*
1091 * early_init_dt_scan_memory - Look for and parse memory nodes
1092 */
1093 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1094 int depth, void *data)
1095 {
1096 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1097 const __be32 *reg, *endp;
1098 int l;
1099 bool hotpluggable;
1100
1101 /* We are scanning "memory" nodes only */
1102 if (type == NULL || strcmp(type, "memory") != 0)
1103 return 0;
1104
1105 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1106 if (reg == NULL)
1107 reg = of_get_flat_dt_prop(node, "reg", &l);
1108 if (reg == NULL)
1109 return 0;
1110
1111 endp = reg + (l / sizeof(__be32));
1112 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1113
1114 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1115
1116 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1117 u64 base, size;
1118
1119 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1120 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1121
1122 if (size == 0)
1123 continue;
1124 pr_debug(" - %llx, %llx\n", base, size);
1125
1126 early_init_dt_add_memory_arch(base, size);
1127
1128 if (!hotpluggable)
1129 continue;
1130
1131 if (memblock_mark_hotplug(base, size))
1132 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1133 base, base + size);
1134 }
1135
1136 return 0;
1137 }
1138
1139 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1140 int depth, void *data)
1141 {
1142 int l;
1143 const char *p;
1144 const void *rng_seed;
1145
1146 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1147
1148 if (depth != 1 || !data ||
1149 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1150 return 0;
1151
1152 chosen_node_offset = node;
1153
1154 early_init_dt_check_for_initrd(node);
1155 early_init_dt_check_for_elfcorehdr(node);
1156
1157 /* Retrieve command line */
1158 p = of_get_flat_dt_prop(node, "bootargs", &l);
1159 if (p != NULL && l > 0)
1160 strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1161
1162 /*
1163 * CONFIG_CMDLINE is meant to be a default in case nothing else
1164 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1165 * is set in which case we override whatever was found earlier.
1166 */
1167 #ifdef CONFIG_CMDLINE
1168 #if defined(CONFIG_CMDLINE_EXTEND)
1169 strlcat(data, " ", COMMAND_LINE_SIZE);
1170 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1171 #elif defined(CONFIG_CMDLINE_FORCE)
1172 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1173 #else
1174 /* No arguments from boot loader, use kernel's cmdl*/
1175 if (!((char *)data)[0])
1176 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1177 #endif
1178 #endif /* CONFIG_CMDLINE */
1179
1180 pr_debug("Command line is: %s\n", (char *)data);
1181
1182 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1183 if (rng_seed && l > 0) {
1184 add_bootloader_randomness(rng_seed, l);
1185
1186 /* try to clear seed so it won't be found. */
1187 fdt_nop_property(initial_boot_params, node, "rng-seed");
1188
1189 /* update CRC check value */
1190 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1191 fdt_totalsize(initial_boot_params));
1192 }
1193
1194 /* break now */
1195 return 1;
1196 }
1197
1198 #ifndef MIN_MEMBLOCK_ADDR
1199 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1200 #endif
1201 #ifndef MAX_MEMBLOCK_ADDR
1202 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1203 #endif
1204
1205 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1206 {
1207 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1208
1209 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1210 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1211 base, base + size);
1212 return;
1213 }
1214
1215 if (!PAGE_ALIGNED(base)) {
1216 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1217 base = PAGE_ALIGN(base);
1218 }
1219 size &= PAGE_MASK;
1220
1221 if (base > MAX_MEMBLOCK_ADDR) {
1222 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1223 base, base + size);
1224 return;
1225 }
1226
1227 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1228 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1229 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1230 size = MAX_MEMBLOCK_ADDR - base + 1;
1231 }
1232
1233 if (base + size < phys_offset) {
1234 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1235 base, base + size);
1236 return;
1237 }
1238 if (base < phys_offset) {
1239 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1240 base, phys_offset);
1241 size -= phys_offset - base;
1242 base = phys_offset;
1243 }
1244 memblock_add(base, size);
1245 }
1246
1247 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1248 {
1249 void *ptr = memblock_alloc(size, align);
1250
1251 if (!ptr)
1252 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1253 __func__, size, align);
1254
1255 return ptr;
1256 }
1257
1258 bool __init early_init_dt_verify(void *params)
1259 {
1260 if (!params)
1261 return false;
1262
1263 /* check device tree validity */
1264 if (fdt_check_header(params))
1265 return false;
1266
1267 /* Setup flat device-tree pointer */
1268 initial_boot_params = params;
1269 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1270 fdt_totalsize(initial_boot_params));
1271 return true;
1272 }
1273
1274
1275 void __init early_init_dt_scan_nodes(void)
1276 {
1277 int rc = 0;
1278
1279 /* Initialize {size,address}-cells info */
1280 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1281
1282 /* Retrieve various information from the /chosen node */
1283 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1284 if (!rc)
1285 pr_warn("No chosen node found, continuing without\n");
1286
1287 /* Setup memory, calling early_init_dt_add_memory_arch */
1288 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1289
1290 /* Handle linux,usable-memory-range property */
1291 early_init_dt_check_for_usable_mem_range();
1292 }
1293
1294 bool __init early_init_dt_scan(void *params)
1295 {
1296 bool status;
1297
1298 status = early_init_dt_verify(params);
1299 if (!status)
1300 return false;
1301
1302 early_init_dt_scan_nodes();
1303 return true;
1304 }
1305
1306 /**
1307 * unflatten_device_tree - create tree of device_nodes from flat blob
1308 *
1309 * unflattens the device-tree passed by the firmware, creating the
1310 * tree of struct device_node. It also fills the "name" and "type"
1311 * pointers of the nodes so the normal device-tree walking functions
1312 * can be used.
1313 */
1314 void __init unflatten_device_tree(void)
1315 {
1316 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1317 early_init_dt_alloc_memory_arch, false);
1318
1319 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1320 of_alias_scan(early_init_dt_alloc_memory_arch);
1321
1322 unittest_unflatten_overlay_base();
1323 }
1324
1325 /**
1326 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1327 *
1328 * Copies and unflattens the device-tree passed by the firmware, creating the
1329 * tree of struct device_node. It also fills the "name" and "type"
1330 * pointers of the nodes so the normal device-tree walking functions
1331 * can be used. This should only be used when the FDT memory has not been
1332 * reserved such is the case when the FDT is built-in to the kernel init
1333 * section. If the FDT memory is reserved already then unflatten_device_tree
1334 * should be used instead.
1335 */
1336 void __init unflatten_and_copy_device_tree(void)
1337 {
1338 int size;
1339 void *dt;
1340
1341 if (!initial_boot_params) {
1342 pr_warn("No valid device tree found, continuing without\n");
1343 return;
1344 }
1345
1346 size = fdt_totalsize(initial_boot_params);
1347 dt = early_init_dt_alloc_memory_arch(size,
1348 roundup_pow_of_two(FDT_V17_SIZE));
1349
1350 if (dt) {
1351 memcpy(dt, initial_boot_params, size);
1352 initial_boot_params = dt;
1353 }
1354 unflatten_device_tree();
1355 }
1356
1357 #ifdef CONFIG_SYSFS
1358 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1359 struct bin_attribute *bin_attr,
1360 char *buf, loff_t off, size_t count)
1361 {
1362 memcpy(buf, initial_boot_params + off, count);
1363 return count;
1364 }
1365
1366 static int __init of_fdt_raw_init(void)
1367 {
1368 static struct bin_attribute of_fdt_raw_attr =
1369 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1370
1371 if (!initial_boot_params)
1372 return 0;
1373
1374 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1375 fdt_totalsize(initial_boot_params))) {
1376 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1377 return 0;
1378 }
1379 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1380 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1381 }
1382 late_initcall(of_fdt_raw_init);
1383 #endif
1384
1385 #endif /* CONFIG_OF_EARLY_FLATTREE */