]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/oprofile/buffer_sync.c
69a732778ba7eb081574127277b4df2b9861a758
[mirror_ubuntu-artful-kernel.git] / drivers / oprofile / buffer_sync.c
1 /**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 *
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
13 *
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
17 *
18 * See fs/dcookies.c for a description of the dentry/offset
19 * objects.
20 */
21
22 #include <linux/mm.h>
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
28 #include <linux/fs.h>
29 #include <linux/oprofile.h>
30 #include <linux/sched.h>
31
32 #include "oprofile_stats.h"
33 #include "event_buffer.h"
34 #include "cpu_buffer.h"
35 #include "buffer_sync.h"
36
37 static LIST_HEAD(dying_tasks);
38 static LIST_HEAD(dead_tasks);
39 static cpumask_t marked_cpus = CPU_MASK_NONE;
40 static DEFINE_SPINLOCK(task_mortuary);
41 static void process_task_mortuary(void);
42
43
44 /* Take ownership of the task struct and place it on the
45 * list for processing. Only after two full buffer syncs
46 * does the task eventually get freed, because by then
47 * we are sure we will not reference it again.
48 * Can be invoked from softirq via RCU callback due to
49 * call_rcu() of the task struct, hence the _irqsave.
50 */
51 static int
52 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
53 {
54 unsigned long flags;
55 struct task_struct *task = data;
56 spin_lock_irqsave(&task_mortuary, flags);
57 list_add(&task->tasks, &dying_tasks);
58 spin_unlock_irqrestore(&task_mortuary, flags);
59 return NOTIFY_OK;
60 }
61
62
63 /* The task is on its way out. A sync of the buffer means we can catch
64 * any remaining samples for this task.
65 */
66 static int
67 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
68 {
69 /* To avoid latency problems, we only process the current CPU,
70 * hoping that most samples for the task are on this CPU
71 */
72 sync_buffer(raw_smp_processor_id());
73 return 0;
74 }
75
76
77 /* The task is about to try a do_munmap(). We peek at what it's going to
78 * do, and if it's an executable region, process the samples first, so
79 * we don't lose any. This does not have to be exact, it's a QoI issue
80 * only.
81 */
82 static int
83 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
84 {
85 unsigned long addr = (unsigned long)data;
86 struct mm_struct *mm = current->mm;
87 struct vm_area_struct *mpnt;
88
89 down_read(&mm->mmap_sem);
90
91 mpnt = find_vma(mm, addr);
92 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
93 up_read(&mm->mmap_sem);
94 /* To avoid latency problems, we only process the current CPU,
95 * hoping that most samples for the task are on this CPU
96 */
97 sync_buffer(raw_smp_processor_id());
98 return 0;
99 }
100
101 up_read(&mm->mmap_sem);
102 return 0;
103 }
104
105
106 /* We need to be told about new modules so we don't attribute to a previously
107 * loaded module, or drop the samples on the floor.
108 */
109 static int
110 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
111 {
112 #ifdef CONFIG_MODULES
113 if (val != MODULE_STATE_COMING)
114 return 0;
115
116 /* FIXME: should we process all CPU buffers ? */
117 mutex_lock(&buffer_mutex);
118 add_event_entry(ESCAPE_CODE);
119 add_event_entry(MODULE_LOADED_CODE);
120 mutex_unlock(&buffer_mutex);
121 #endif
122 return 0;
123 }
124
125
126 static struct notifier_block task_free_nb = {
127 .notifier_call = task_free_notify,
128 };
129
130 static struct notifier_block task_exit_nb = {
131 .notifier_call = task_exit_notify,
132 };
133
134 static struct notifier_block munmap_nb = {
135 .notifier_call = munmap_notify,
136 };
137
138 static struct notifier_block module_load_nb = {
139 .notifier_call = module_load_notify,
140 };
141
142
143 static void end_sync(void)
144 {
145 end_cpu_work();
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
149 }
150
151
152 int sync_start(void)
153 {
154 int err;
155
156 start_cpu_work();
157
158 err = task_handoff_register(&task_free_nb);
159 if (err)
160 goto out1;
161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
162 if (err)
163 goto out2;
164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
165 if (err)
166 goto out3;
167 err = register_module_notifier(&module_load_nb);
168 if (err)
169 goto out4;
170
171 out:
172 return err;
173 out4:
174 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
175 out3:
176 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
177 out2:
178 task_handoff_unregister(&task_free_nb);
179 out1:
180 end_sync();
181 goto out;
182 }
183
184
185 void sync_stop(void)
186 {
187 unregister_module_notifier(&module_load_nb);
188 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
189 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
190 task_handoff_unregister(&task_free_nb);
191 end_sync();
192 }
193
194
195 /* Optimisation. We can manage without taking the dcookie sem
196 * because we cannot reach this code without at least one
197 * dcookie user still being registered (namely, the reader
198 * of the event buffer). */
199 static inline unsigned long fast_get_dcookie(struct path *path)
200 {
201 unsigned long cookie;
202
203 if (path->dentry->d_cookie)
204 return (unsigned long)path->dentry;
205 get_dcookie(path, &cookie);
206 return cookie;
207 }
208
209
210 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
211 * which corresponds loosely to "application name". This is
212 * not strictly necessary but allows oprofile to associate
213 * shared-library samples with particular applications
214 */
215 static unsigned long get_exec_dcookie(struct mm_struct *mm)
216 {
217 unsigned long cookie = NO_COOKIE;
218 struct vm_area_struct *vma;
219
220 if (!mm)
221 goto out;
222
223 for (vma = mm->mmap; vma; vma = vma->vm_next) {
224 if (!vma->vm_file)
225 continue;
226 if (!(vma->vm_flags & VM_EXECUTABLE))
227 continue;
228 cookie = fast_get_dcookie(&vma->vm_file->f_path);
229 break;
230 }
231
232 out:
233 return cookie;
234 }
235
236
237 /* Convert the EIP value of a sample into a persistent dentry/offset
238 * pair that can then be added to the global event buffer. We make
239 * sure to do this lookup before a mm->mmap modification happens so
240 * we don't lose track.
241 */
242 static unsigned long
243 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
244 {
245 unsigned long cookie = NO_COOKIE;
246 struct vm_area_struct *vma;
247
248 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
249
250 if (addr < vma->vm_start || addr >= vma->vm_end)
251 continue;
252
253 if (vma->vm_file) {
254 cookie = fast_get_dcookie(&vma->vm_file->f_path);
255 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
256 vma->vm_start;
257 } else {
258 /* must be an anonymous map */
259 *offset = addr;
260 }
261
262 break;
263 }
264
265 if (!vma)
266 cookie = INVALID_COOKIE;
267
268 return cookie;
269 }
270
271
272 static unsigned long last_cookie = INVALID_COOKIE;
273
274 static void add_cpu_switch(int i)
275 {
276 add_event_entry(ESCAPE_CODE);
277 add_event_entry(CPU_SWITCH_CODE);
278 add_event_entry(i);
279 last_cookie = INVALID_COOKIE;
280 }
281
282 static void add_kernel_ctx_switch(unsigned int in_kernel)
283 {
284 add_event_entry(ESCAPE_CODE);
285 if (in_kernel)
286 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
287 else
288 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
289 }
290
291 static void
292 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
293 {
294 add_event_entry(ESCAPE_CODE);
295 add_event_entry(CTX_SWITCH_CODE);
296 add_event_entry(task->pid);
297 add_event_entry(cookie);
298 /* Another code for daemon back-compat */
299 add_event_entry(ESCAPE_CODE);
300 add_event_entry(CTX_TGID_CODE);
301 add_event_entry(task->tgid);
302 }
303
304
305 static void add_cookie_switch(unsigned long cookie)
306 {
307 add_event_entry(ESCAPE_CODE);
308 add_event_entry(COOKIE_SWITCH_CODE);
309 add_event_entry(cookie);
310 }
311
312
313 static void add_trace_begin(void)
314 {
315 add_event_entry(ESCAPE_CODE);
316 add_event_entry(TRACE_BEGIN_CODE);
317 }
318
319
320 static void add_sample_entry(unsigned long offset, unsigned long event)
321 {
322 add_event_entry(offset);
323 add_event_entry(event);
324 }
325
326
327 static int add_us_sample(struct mm_struct *mm, struct op_sample *s)
328 {
329 unsigned long cookie;
330 off_t offset;
331
332 cookie = lookup_dcookie(mm, s->eip, &offset);
333
334 if (cookie == INVALID_COOKIE) {
335 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
336 return 0;
337 }
338
339 if (cookie != last_cookie) {
340 add_cookie_switch(cookie);
341 last_cookie = cookie;
342 }
343
344 add_sample_entry(offset, s->event);
345
346 return 1;
347 }
348
349
350 /* Add a sample to the global event buffer. If possible the
351 * sample is converted into a persistent dentry/offset pair
352 * for later lookup from userspace.
353 */
354 static int
355 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
356 {
357 if (in_kernel) {
358 add_sample_entry(s->eip, s->event);
359 return 1;
360 } else if (mm) {
361 return add_us_sample(mm, s);
362 } else {
363 atomic_inc(&oprofile_stats.sample_lost_no_mm);
364 }
365 return 0;
366 }
367
368
369 static void release_mm(struct mm_struct *mm)
370 {
371 if (!mm)
372 return;
373 up_read(&mm->mmap_sem);
374 mmput(mm);
375 }
376
377
378 static struct mm_struct *take_tasks_mm(struct task_struct *task)
379 {
380 struct mm_struct *mm = get_task_mm(task);
381 if (mm)
382 down_read(&mm->mmap_sem);
383 return mm;
384 }
385
386
387 static inline int is_code(unsigned long val)
388 {
389 return val == ESCAPE_CODE;
390 }
391
392
393 /* "acquire" as many cpu buffer slots as we can */
394 static unsigned long get_slots(struct oprofile_cpu_buffer *b)
395 {
396 unsigned long head = b->head_pos;
397 unsigned long tail = b->tail_pos;
398
399 /*
400 * Subtle. This resets the persistent last_task
401 * and in_kernel values used for switching notes.
402 * BUT, there is a small window between reading
403 * head_pos, and this call, that means samples
404 * can appear at the new head position, but not
405 * be prefixed with the notes for switching
406 * kernel mode or a task switch. This small hole
407 * can lead to mis-attribution or samples where
408 * we don't know if it's in the kernel or not,
409 * at the start of an event buffer.
410 */
411 cpu_buffer_reset(b);
412
413 if (head >= tail)
414 return head - tail;
415
416 return head + (b->buffer_size - tail);
417 }
418
419
420 static void increment_tail(struct oprofile_cpu_buffer *b)
421 {
422 unsigned long new_tail = b->tail_pos + 1;
423
424 rmb();
425
426 if (new_tail < b->buffer_size)
427 b->tail_pos = new_tail;
428 else
429 b->tail_pos = 0;
430 }
431
432
433 /* Move tasks along towards death. Any tasks on dead_tasks
434 * will definitely have no remaining references in any
435 * CPU buffers at this point, because we use two lists,
436 * and to have reached the list, it must have gone through
437 * one full sync already.
438 */
439 static void process_task_mortuary(void)
440 {
441 unsigned long flags;
442 LIST_HEAD(local_dead_tasks);
443 struct task_struct *task;
444 struct task_struct *ttask;
445
446 spin_lock_irqsave(&task_mortuary, flags);
447
448 list_splice_init(&dead_tasks, &local_dead_tasks);
449 list_splice_init(&dying_tasks, &dead_tasks);
450
451 spin_unlock_irqrestore(&task_mortuary, flags);
452
453 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
454 list_del(&task->tasks);
455 free_task(task);
456 }
457 }
458
459
460 static void mark_done(int cpu)
461 {
462 int i;
463
464 cpu_set(cpu, marked_cpus);
465
466 for_each_online_cpu(i) {
467 if (!cpu_isset(i, marked_cpus))
468 return;
469 }
470
471 /* All CPUs have been processed at least once,
472 * we can process the mortuary once
473 */
474 process_task_mortuary();
475
476 cpus_clear(marked_cpus);
477 }
478
479
480 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
481 * traversal, the code switch to sb_sample_start at first kernel enter/exit
482 * switch so we need a fifth state and some special handling in sync_buffer()
483 */
484 typedef enum {
485 sb_bt_ignore = -2,
486 sb_buffer_start,
487 sb_bt_start,
488 sb_sample_start,
489 } sync_buffer_state;
490
491 /* Sync one of the CPU's buffers into the global event buffer.
492 * Here we need to go through each batch of samples punctuated
493 * by context switch notes, taking the task's mmap_sem and doing
494 * lookup in task->mm->mmap to convert EIP into dcookie/offset
495 * value.
496 */
497 void sync_buffer(int cpu)
498 {
499 struct oprofile_cpu_buffer *cpu_buf = &per_cpu(cpu_buffer, cpu);
500 struct mm_struct *mm = NULL;
501 struct task_struct *new;
502 unsigned long cookie = 0;
503 int in_kernel = 1;
504 unsigned int i;
505 sync_buffer_state state = sb_buffer_start;
506 unsigned long available;
507
508 mutex_lock(&buffer_mutex);
509
510 add_cpu_switch(cpu);
511
512 /* Remember, only we can modify tail_pos */
513
514 available = get_slots(cpu_buf);
515
516 for (i = 0; i < available; ++i) {
517 struct op_sample *s = &cpu_buf->buffer[cpu_buf->tail_pos];
518
519 if (is_code(s->eip)) {
520 if (s->event <= CPU_IS_KERNEL) {
521 /* kernel/userspace switch */
522 in_kernel = s->event;
523 if (state == sb_buffer_start)
524 state = sb_sample_start;
525 add_kernel_ctx_switch(s->event);
526 } else if (s->event == CPU_TRACE_BEGIN) {
527 state = sb_bt_start;
528 add_trace_begin();
529 } else {
530 struct mm_struct *oldmm = mm;
531
532 /* userspace context switch */
533 new = (struct task_struct *)s->event;
534
535 release_mm(oldmm);
536 mm = take_tasks_mm(new);
537 if (mm != oldmm)
538 cookie = get_exec_dcookie(mm);
539 add_user_ctx_switch(new, cookie);
540 }
541 } else if (state >= sb_bt_start &&
542 !add_sample(mm, s, in_kernel)) {
543 if (state == sb_bt_start) {
544 state = sb_bt_ignore;
545 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
546 }
547 }
548
549 increment_tail(cpu_buf);
550 }
551 release_mm(mm);
552
553 mark_done(cpu);
554
555 mutex_unlock(&buffer_mutex);
556 }