]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/oprofile/cpu_buffer.c
x86: apic: changing export symbols to *_GPL
[mirror_ubuntu-bionic-kernel.git] / drivers / oprofile / cpu_buffer.c
1 /**
2 * @file cpu_buffer.c
3 *
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
9 *
10 * Each CPU has a local buffer that stores PC value/event
11 * pairs. We also log context switches when we notice them.
12 * Eventually each CPU's buffer is processed into the global
13 * event buffer by sync_buffer().
14 *
15 * We use a local buffer for two reasons: an NMI or similar
16 * interrupt cannot synchronise, and high sampling rates
17 * would lead to catastrophic global synchronisation if
18 * a global buffer was used.
19 */
20
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
32
33 static void wq_sync_buffer(struct work_struct *work);
34
35 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
36 static int work_enabled;
37
38 void free_cpu_buffers(void)
39 {
40 int i;
41
42 for_each_online_cpu(i)
43 vfree(per_cpu(cpu_buffer, i).buffer);
44 }
45
46 int alloc_cpu_buffers(void)
47 {
48 int i;
49
50 unsigned long buffer_size = fs_cpu_buffer_size;
51
52 for_each_online_cpu(i) {
53 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
54
55 b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
56 cpu_to_node(i));
57 if (!b->buffer)
58 goto fail;
59
60 b->last_task = NULL;
61 b->last_is_kernel = -1;
62 b->tracing = 0;
63 b->buffer_size = buffer_size;
64 b->tail_pos = 0;
65 b->head_pos = 0;
66 b->sample_received = 0;
67 b->sample_lost_overflow = 0;
68 b->backtrace_aborted = 0;
69 b->sample_invalid_eip = 0;
70 b->cpu = i;
71 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
72 }
73 return 0;
74
75 fail:
76 free_cpu_buffers();
77 return -ENOMEM;
78 }
79
80 void start_cpu_work(void)
81 {
82 int i;
83
84 work_enabled = 1;
85
86 for_each_online_cpu(i) {
87 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
88
89 /*
90 * Spread the work by 1 jiffy per cpu so they dont all
91 * fire at once.
92 */
93 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
94 }
95 }
96
97 void end_cpu_work(void)
98 {
99 int i;
100
101 work_enabled = 0;
102
103 for_each_online_cpu(i) {
104 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
105
106 cancel_delayed_work(&b->work);
107 }
108
109 flush_scheduled_work();
110 }
111
112 /* Resets the cpu buffer to a sane state. */
113 void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf)
114 {
115 /* reset these to invalid values; the next sample
116 * collected will populate the buffer with proper
117 * values to initialize the buffer
118 */
119 cpu_buf->last_is_kernel = -1;
120 cpu_buf->last_task = NULL;
121 }
122
123 /* compute number of available slots in cpu_buffer queue */
124 static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b)
125 {
126 unsigned long head = b->head_pos;
127 unsigned long tail = b->tail_pos;
128
129 if (tail > head)
130 return (tail - head) - 1;
131
132 return tail + (b->buffer_size - head) - 1;
133 }
134
135 static void increment_head(struct oprofile_cpu_buffer * b)
136 {
137 unsigned long new_head = b->head_pos + 1;
138
139 /* Ensure anything written to the slot before we
140 * increment is visible */
141 wmb();
142
143 if (new_head < b->buffer_size)
144 b->head_pos = new_head;
145 else
146 b->head_pos = 0;
147 }
148
149 static inline void
150 add_sample(struct oprofile_cpu_buffer * cpu_buf,
151 unsigned long pc, unsigned long event)
152 {
153 struct op_sample * entry = &cpu_buf->buffer[cpu_buf->head_pos];
154 entry->eip = pc;
155 entry->event = event;
156 increment_head(cpu_buf);
157 }
158
159 static inline void
160 add_code(struct oprofile_cpu_buffer * buffer, unsigned long value)
161 {
162 add_sample(buffer, ESCAPE_CODE, value);
163 }
164
165 /* This must be safe from any context. It's safe writing here
166 * because of the head/tail separation of the writer and reader
167 * of the CPU buffer.
168 *
169 * is_kernel is needed because on some architectures you cannot
170 * tell if you are in kernel or user space simply by looking at
171 * pc. We tag this in the buffer by generating kernel enter/exit
172 * events whenever is_kernel changes
173 */
174 static int log_sample(struct oprofile_cpu_buffer * cpu_buf, unsigned long pc,
175 int is_kernel, unsigned long event)
176 {
177 struct task_struct * task;
178
179 cpu_buf->sample_received++;
180
181 if (pc == ESCAPE_CODE) {
182 cpu_buf->sample_invalid_eip++;
183 return 0;
184 }
185
186 if (nr_available_slots(cpu_buf) < 3) {
187 cpu_buf->sample_lost_overflow++;
188 return 0;
189 }
190
191 is_kernel = !!is_kernel;
192
193 task = current;
194
195 /* notice a switch from user->kernel or vice versa */
196 if (cpu_buf->last_is_kernel != is_kernel) {
197 cpu_buf->last_is_kernel = is_kernel;
198 add_code(cpu_buf, is_kernel);
199 }
200
201 /* notice a task switch */
202 if (cpu_buf->last_task != task) {
203 cpu_buf->last_task = task;
204 add_code(cpu_buf, (unsigned long)task);
205 }
206
207 add_sample(cpu_buf, pc, event);
208 return 1;
209 }
210
211 static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
212 {
213 if (nr_available_slots(cpu_buf) < 4) {
214 cpu_buf->sample_lost_overflow++;
215 return 0;
216 }
217
218 add_code(cpu_buf, CPU_TRACE_BEGIN);
219 cpu_buf->tracing = 1;
220 return 1;
221 }
222
223 static void oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)
224 {
225 cpu_buf->tracing = 0;
226 }
227
228 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
229 unsigned long event, int is_kernel)
230 {
231 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
232
233 if (!backtrace_depth) {
234 log_sample(cpu_buf, pc, is_kernel, event);
235 return;
236 }
237
238 if (!oprofile_begin_trace(cpu_buf))
239 return;
240
241 /* if log_sample() fail we can't backtrace since we lost the source
242 * of this event */
243 if (log_sample(cpu_buf, pc, is_kernel, event))
244 oprofile_ops.backtrace(regs, backtrace_depth);
245 oprofile_end_trace(cpu_buf);
246 }
247
248 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
249 {
250 int is_kernel = !user_mode(regs);
251 unsigned long pc = profile_pc(regs);
252
253 oprofile_add_ext_sample(pc, regs, event, is_kernel);
254 }
255
256 #define MAX_IBS_SAMPLE_SIZE 14
257 static int log_ibs_sample(struct oprofile_cpu_buffer *cpu_buf,
258 unsigned long pc, int is_kernel, unsigned int *ibs, int ibs_code)
259 {
260 struct task_struct *task;
261
262 cpu_buf->sample_received++;
263
264 if (nr_available_slots(cpu_buf) < MAX_IBS_SAMPLE_SIZE) {
265 cpu_buf->sample_lost_overflow++;
266 return 0;
267 }
268
269 is_kernel = !!is_kernel;
270
271 /* notice a switch from user->kernel or vice versa */
272 if (cpu_buf->last_is_kernel != is_kernel) {
273 cpu_buf->last_is_kernel = is_kernel;
274 add_code(cpu_buf, is_kernel);
275 }
276
277 /* notice a task switch */
278 if (!is_kernel) {
279 task = current;
280
281 if (cpu_buf->last_task != task) {
282 cpu_buf->last_task = task;
283 add_code(cpu_buf, (unsigned long)task);
284 }
285 }
286
287 add_code(cpu_buf, ibs_code);
288 add_sample(cpu_buf, ibs[0], ibs[1]);
289 add_sample(cpu_buf, ibs[2], ibs[3]);
290 add_sample(cpu_buf, ibs[4], ibs[5]);
291
292 if (ibs_code == IBS_OP_BEGIN) {
293 add_sample(cpu_buf, ibs[6], ibs[7]);
294 add_sample(cpu_buf, ibs[8], ibs[9]);
295 add_sample(cpu_buf, ibs[10], ibs[11]);
296 }
297
298 return 1;
299 }
300
301 void oprofile_add_ibs_sample(struct pt_regs *const regs,
302 unsigned int * const ibs_sample, u8 code)
303 {
304 int is_kernel = !user_mode(regs);
305 unsigned long pc = profile_pc(regs);
306
307 struct oprofile_cpu_buffer *cpu_buf =
308 &per_cpu(cpu_buffer, smp_processor_id());
309
310 if (!backtrace_depth) {
311 log_ibs_sample(cpu_buf, pc, is_kernel, ibs_sample, code);
312 return;
313 }
314
315 /* if log_sample() fails we can't backtrace since we lost the source
316 * of this event */
317 if (log_ibs_sample(cpu_buf, pc, is_kernel, ibs_sample, code))
318 oprofile_ops.backtrace(regs, backtrace_depth);
319 }
320
321 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
322 {
323 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
324 log_sample(cpu_buf, pc, is_kernel, event);
325 }
326
327 void oprofile_add_trace(unsigned long pc)
328 {
329 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
330
331 if (!cpu_buf->tracing)
332 return;
333
334 if (nr_available_slots(cpu_buf) < 1) {
335 cpu_buf->tracing = 0;
336 cpu_buf->sample_lost_overflow++;
337 return;
338 }
339
340 /* broken frame can give an eip with the same value as an escape code,
341 * abort the trace if we get it */
342 if (pc == ESCAPE_CODE) {
343 cpu_buf->tracing = 0;
344 cpu_buf->backtrace_aborted++;
345 return;
346 }
347
348 add_sample(cpu_buf, pc, 0);
349 }
350
351 /*
352 * This serves to avoid cpu buffer overflow, and makes sure
353 * the task mortuary progresses
354 *
355 * By using schedule_delayed_work_on and then schedule_delayed_work
356 * we guarantee this will stay on the correct cpu
357 */
358 static void wq_sync_buffer(struct work_struct *work)
359 {
360 struct oprofile_cpu_buffer * b =
361 container_of(work, struct oprofile_cpu_buffer, work.work);
362 if (b->cpu != smp_processor_id()) {
363 printk("WQ on CPU%d, prefer CPU%d\n",
364 smp_processor_id(), b->cpu);
365 }
366 sync_buffer(b->cpu);
367
368 /* don't re-add the work if we're shutting down */
369 if (work_enabled)
370 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
371 }