]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/parisc/ccio-dma.c
UBUNTU: upstream stable to v4.14.156, v4.19.86
[mirror_ubuntu-bionic-kernel.git] / drivers / parisc / ccio-dma.c
1 /*
2 ** ccio-dma.c:
3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
19 **
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
32 */
33
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47 #include <linux/export.h>
48
49 #include <asm/byteorder.h>
50 #include <asm/cache.h> /* for L1_CACHE_BYTES */
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/dma.h>
54 #include <asm/io.h>
55 #include <asm/hardware.h> /* for register_module() */
56 #include <asm/parisc-device.h>
57
58 /*
59 ** Choose "ccio" since that's what HP-UX calls it.
60 ** Make it easier for folks to migrate from one to the other :^)
61 */
62 #define MODULE_NAME "ccio"
63
64 #undef DEBUG_CCIO_RES
65 #undef DEBUG_CCIO_RUN
66 #undef DEBUG_CCIO_INIT
67 #undef DEBUG_CCIO_RUN_SG
68
69 #ifdef CONFIG_PROC_FS
70 /* depends on proc fs support. But costs CPU performance. */
71 #undef CCIO_COLLECT_STATS
72 #endif
73
74 #include <asm/runway.h> /* for proc_runway_root */
75
76 #ifdef DEBUG_CCIO_INIT
77 #define DBG_INIT(x...) printk(x)
78 #else
79 #define DBG_INIT(x...)
80 #endif
81
82 #ifdef DEBUG_CCIO_RUN
83 #define DBG_RUN(x...) printk(x)
84 #else
85 #define DBG_RUN(x...)
86 #endif
87
88 #ifdef DEBUG_CCIO_RES
89 #define DBG_RES(x...) printk(x)
90 #else
91 #define DBG_RES(x...)
92 #endif
93
94 #ifdef DEBUG_CCIO_RUN_SG
95 #define DBG_RUN_SG(x...) printk(x)
96 #else
97 #define DBG_RUN_SG(x...)
98 #endif
99
100 #define CCIO_INLINE inline
101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
102 #define READ_U32(addr) __raw_readl(addr)
103
104 #define U2_IOA_RUNWAY 0x580
105 #define U2_BC_GSC 0x501
106 #define UTURN_IOA_RUNWAY 0x581
107 #define UTURN_BC_GSC 0x502
108
109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
112
113 #define CCIO_MAPPING_ERROR (~(dma_addr_t)0)
114
115 struct ioa_registers {
116 /* Runway Supervisory Set */
117 int32_t unused1[12];
118 uint32_t io_command; /* Offset 12 */
119 uint32_t io_status; /* Offset 13 */
120 uint32_t io_control; /* Offset 14 */
121 int32_t unused2[1];
122
123 /* Runway Auxiliary Register Set */
124 uint32_t io_err_resp; /* Offset 0 */
125 uint32_t io_err_info; /* Offset 1 */
126 uint32_t io_err_req; /* Offset 2 */
127 uint32_t io_err_resp_hi; /* Offset 3 */
128 uint32_t io_tlb_entry_m; /* Offset 4 */
129 uint32_t io_tlb_entry_l; /* Offset 5 */
130 uint32_t unused3[1];
131 uint32_t io_pdir_base; /* Offset 7 */
132 uint32_t io_io_low_hv; /* Offset 8 */
133 uint32_t io_io_high_hv; /* Offset 9 */
134 uint32_t unused4[1];
135 uint32_t io_chain_id_mask; /* Offset 11 */
136 uint32_t unused5[2];
137 uint32_t io_io_low; /* Offset 14 */
138 uint32_t io_io_high; /* Offset 15 */
139 };
140
141 /*
142 ** IOA Registers
143 ** -------------
144 **
145 ** Runway IO_CONTROL Register (+0x38)
146 **
147 ** The Runway IO_CONTROL register controls the forwarding of transactions.
148 **
149 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
150 ** | HV | TLB | reserved | HV | mode | reserved |
151 **
152 ** o mode field indicates the address translation of transactions
153 ** forwarded from Runway to GSC+:
154 ** Mode Name Value Definition
155 ** Off (default) 0 Opaque to matching addresses.
156 ** Include 1 Transparent for matching addresses.
157 ** Peek 3 Map matching addresses.
158 **
159 ** + "Off" mode: Runway transactions which match the I/O range
160 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
161 ** + "Include" mode: all addresses within the I/O range specified
162 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
163 ** forwarded. This is the I/O Adapter's normal operating mode.
164 ** + "Peek" mode: used during system configuration to initialize the
165 ** GSC+ bus. Runway Write_Shorts in the address range specified by
166 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
167 ** *AND* the GSC+ address is remapped to the Broadcast Physical
168 ** Address space by setting the 14 high order address bits of the
169 ** 32 bit GSC+ address to ones.
170 **
171 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
172 ** "Real" mode is the poweron default.
173 **
174 ** TLB Mode Value Description
175 ** Real 0 No TLB translation. Address is directly mapped and the
176 ** virtual address is composed of selected physical bits.
177 ** Error 1 Software fills the TLB manually.
178 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
179 **
180 **
181 ** IO_IO_LOW_HV +0x60 (HV dependent)
182 ** IO_IO_HIGH_HV +0x64 (HV dependent)
183 ** IO_IO_LOW +0x78 (Architected register)
184 ** IO_IO_HIGH +0x7c (Architected register)
185 **
186 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
187 ** I/O Adapter address space, respectively.
188 **
189 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
190 ** 11111111 | 11111111 | address |
191 **
192 ** Each LOW/HIGH pair describes a disjoint address space region.
193 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
194 ** with both sets of LOW/HIGH registers. If the address is in the range
195 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
196 ** for forwarded to the respective GSC+ bus.
197 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
198 ** an address space region.
199 **
200 ** In order for a Runway address to reside within GSC+ extended address space:
201 ** Runway Address [0:7] must identically compare to 8'b11111111
202 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
203 ** Runway Address [12:23] must be greater than or equal to
204 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
205 ** Runway Address [24:39] is not used in the comparison.
206 **
207 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
208 ** as follows:
209 ** GSC+ Address[0:3] 4'b1111
210 ** GSC+ Address[4:29] Runway Address[12:37]
211 ** GSC+ Address[30:31] 2'b00
212 **
213 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
214 ** is interrogated and address space is defined. The operating system will
215 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
216 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
217 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
218 **
219 ** Writes to both sets of registers will take effect immediately, bypassing
220 ** the queues, which ensures that subsequent Runway transactions are checked
221 ** against the updated bounds values. However reads are queued, introducing
222 ** the possibility of a read being bypassed by a subsequent write to the same
223 ** register. This sequence can be avoided by having software wait for read
224 ** returns before issuing subsequent writes.
225 */
226
227 struct ioc {
228 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
229 u8 *res_map; /* resource map, bit == pdir entry */
230 u64 *pdir_base; /* physical base address */
231 u32 pdir_size; /* bytes, function of IOV Space size */
232 u32 res_hint; /* next available IOVP -
233 circular search */
234 u32 res_size; /* size of resource map in bytes */
235 spinlock_t res_lock;
236
237 #ifdef CCIO_COLLECT_STATS
238 #define CCIO_SEARCH_SAMPLE 0x100
239 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
240 unsigned long avg_idx; /* current index into avg_search */
241 unsigned long used_pages;
242 unsigned long msingle_calls;
243 unsigned long msingle_pages;
244 unsigned long msg_calls;
245 unsigned long msg_pages;
246 unsigned long usingle_calls;
247 unsigned long usingle_pages;
248 unsigned long usg_calls;
249 unsigned long usg_pages;
250 #endif
251 unsigned short cujo20_bug;
252
253 /* STUFF We don't need in performance path */
254 u32 chainid_shift; /* specify bit location of chain_id */
255 struct ioc *next; /* Linked list of discovered iocs */
256 const char *name; /* device name from firmware */
257 unsigned int hw_path; /* the hardware path this ioc is associatd with */
258 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
259 struct resource mmio_region[2]; /* The "routed" MMIO regions */
260 };
261
262 static struct ioc *ioc_list;
263 static int ioc_count;
264
265 /**************************************************************
266 *
267 * I/O Pdir Resource Management
268 *
269 * Bits set in the resource map are in use.
270 * Each bit can represent a number of pages.
271 * LSbs represent lower addresses (IOVA's).
272 *
273 * This was was copied from sba_iommu.c. Don't try to unify
274 * the two resource managers unless a way to have different
275 * allocation policies is also adjusted. We'd like to avoid
276 * I/O TLB thrashing by having resource allocation policy
277 * match the I/O TLB replacement policy.
278 *
279 ***************************************************************/
280 #define IOVP_SIZE PAGE_SIZE
281 #define IOVP_SHIFT PAGE_SHIFT
282 #define IOVP_MASK PAGE_MASK
283
284 /* Convert from IOVP to IOVA and vice versa. */
285 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
286 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
287
288 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
289 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
290 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
291
292 /*
293 ** Don't worry about the 150% average search length on a miss.
294 ** If the search wraps around, and passes the res_hint, it will
295 ** cause the kernel to panic anyhow.
296 */
297 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
298 for(; res_ptr < res_end; ++res_ptr) { \
299 int ret;\
300 unsigned int idx;\
301 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
302 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
303 if ((0 == (*res_ptr & mask)) && !ret) { \
304 *res_ptr |= mask; \
305 res_idx = idx;\
306 ioc->res_hint = res_idx + (size >> 3); \
307 goto resource_found; \
308 } \
309 }
310
311 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
312 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
313 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
314 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
315 res_ptr = (u##size *)&(ioc)->res_map[0]; \
316 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
317
318 /*
319 ** Find available bit in this ioa's resource map.
320 ** Use a "circular" search:
321 ** o Most IOVA's are "temporary" - avg search time should be small.
322 ** o keep a history of what happened for debugging
323 ** o KISS.
324 **
325 ** Perf optimizations:
326 ** o search for log2(size) bits at a time.
327 ** o search for available resource bits using byte/word/whatever.
328 ** o use different search for "large" (eg > 4 pages) or "very large"
329 ** (eg > 16 pages) mappings.
330 */
331
332 /**
333 * ccio_alloc_range - Allocate pages in the ioc's resource map.
334 * @ioc: The I/O Controller.
335 * @pages_needed: The requested number of pages to be mapped into the
336 * I/O Pdir...
337 *
338 * This function searches the resource map of the ioc to locate a range
339 * of available pages for the requested size.
340 */
341 static int
342 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
343 {
344 unsigned int pages_needed = size >> IOVP_SHIFT;
345 unsigned int res_idx;
346 unsigned long boundary_size;
347 #ifdef CCIO_COLLECT_STATS
348 unsigned long cr_start = mfctl(16);
349 #endif
350
351 BUG_ON(pages_needed == 0);
352 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
353
354 DBG_RES("%s() size: %d pages_needed %d\n",
355 __func__, size, pages_needed);
356
357 /*
358 ** "seek and ye shall find"...praying never hurts either...
359 ** ggg sacrifices another 710 to the computer gods.
360 */
361
362 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
363 1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
364
365 if (pages_needed <= 8) {
366 /*
367 * LAN traffic will not thrash the TLB IFF the same NIC
368 * uses 8 adjacent pages to map separate payload data.
369 * ie the same byte in the resource bit map.
370 */
371 #if 0
372 /* FIXME: bit search should shift it's way through
373 * an unsigned long - not byte at a time. As it is now,
374 * we effectively allocate this byte to this mapping.
375 */
376 unsigned long mask = ~(~0UL >> pages_needed);
377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
378 #else
379 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
380 #endif
381 } else if (pages_needed <= 16) {
382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
383 } else if (pages_needed <= 32) {
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
385 #ifdef __LP64__
386 } else if (pages_needed <= 64) {
387 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
388 #endif
389 } else {
390 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
391 __FILE__, __func__, pages_needed);
392 }
393
394 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
395 __func__);
396
397 resource_found:
398
399 DBG_RES("%s() res_idx %d res_hint: %d\n",
400 __func__, res_idx, ioc->res_hint);
401
402 #ifdef CCIO_COLLECT_STATS
403 {
404 unsigned long cr_end = mfctl(16);
405 unsigned long tmp = cr_end - cr_start;
406 /* check for roll over */
407 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
408 }
409 ioc->avg_search[ioc->avg_idx++] = cr_start;
410 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
411 ioc->used_pages += pages_needed;
412 #endif
413 /*
414 ** return the bit address.
415 */
416 return res_idx << 3;
417 }
418
419 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
420 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
421 BUG_ON((*res_ptr & mask) != mask); \
422 *res_ptr &= ~(mask);
423
424 /**
425 * ccio_free_range - Free pages from the ioc's resource map.
426 * @ioc: The I/O Controller.
427 * @iova: The I/O Virtual Address.
428 * @pages_mapped: The requested number of pages to be freed from the
429 * I/O Pdir.
430 *
431 * This function frees the resouces allocated for the iova.
432 */
433 static void
434 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
435 {
436 unsigned long iovp = CCIO_IOVP(iova);
437 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
438
439 BUG_ON(pages_mapped == 0);
440 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
441 BUG_ON(pages_mapped > BITS_PER_LONG);
442
443 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
444 __func__, res_idx, pages_mapped);
445
446 #ifdef CCIO_COLLECT_STATS
447 ioc->used_pages -= pages_mapped;
448 #endif
449
450 if(pages_mapped <= 8) {
451 #if 0
452 /* see matching comments in alloc_range */
453 unsigned long mask = ~(~0UL >> pages_mapped);
454 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
455 #else
456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
457 #endif
458 } else if(pages_mapped <= 16) {
459 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
460 } else if(pages_mapped <= 32) {
461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
462 #ifdef __LP64__
463 } else if(pages_mapped <= 64) {
464 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
465 #endif
466 } else {
467 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
468 __func__);
469 }
470 }
471
472 /****************************************************************
473 **
474 ** CCIO dma_ops support routines
475 **
476 *****************************************************************/
477
478 typedef unsigned long space_t;
479 #define KERNEL_SPACE 0
480
481 /*
482 ** DMA "Page Type" and Hints
483 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
484 ** set for subcacheline DMA transfers since we don't want to damage the
485 ** other part of a cacheline.
486 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
487 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
488 ** data can avoid this if the mapping covers full cache lines.
489 ** o STOP_MOST is needed for atomicity across cachelines.
490 ** Apparently only "some EISA devices" need this.
491 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
492 ** to use this hint iff the EISA devices needs this feature.
493 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
494 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
495 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
496 ** device can be fetched and multiply DMA streams will thrash the
497 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
498 ** and Invalidation of Prefetch Entries".
499 **
500 ** FIXME: the default hints need to be per GSC device - not global.
501 **
502 ** HP-UX dorks: linux device driver programming model is totally different
503 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
504 ** do special things to work on non-coherent platforms...linux has to
505 ** be much more careful with this.
506 */
507 #define IOPDIR_VALID 0x01UL
508 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
509 #ifdef CONFIG_EISA
510 #define HINT_STOP_MOST 0x04UL /* LSL support */
511 #else
512 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
513 #endif
514 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
515 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
516
517
518 /*
519 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
520 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
521 ** when it passes in BIDIRECTIONAL flag.
522 */
523 static u32 hint_lookup[] = {
524 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
525 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
526 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
527 };
528
529 /**
530 * ccio_io_pdir_entry - Initialize an I/O Pdir.
531 * @pdir_ptr: A pointer into I/O Pdir.
532 * @sid: The Space Identifier.
533 * @vba: The virtual address.
534 * @hints: The DMA Hint.
535 *
536 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
537 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
538 * entry consists of 8 bytes as shown below (MSB == bit 0):
539 *
540 *
541 * WORD 0:
542 * +------+----------------+-----------------------------------------------+
543 * | Phys | Virtual Index | Phys |
544 * | 0:3 | 0:11 | 4:19 |
545 * |4 bits| 12 bits | 16 bits |
546 * +------+----------------+-----------------------------------------------+
547 * WORD 1:
548 * +-----------------------+-----------------------------------------------+
549 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
550 * | 20:39 | | Enable |Enable | |Enable|DMA | |
551 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
552 * +-----------------------+-----------------------------------------------+
553 *
554 * The virtual index field is filled with the results of the LCI
555 * (Load Coherence Index) instruction. The 8 bits used for the virtual
556 * index are bits 12:19 of the value returned by LCI.
557 */
558 static void CCIO_INLINE
559 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
560 unsigned long hints)
561 {
562 register unsigned long pa;
563 register unsigned long ci; /* coherent index */
564
565 /* We currently only support kernel addresses */
566 BUG_ON(sid != KERNEL_SPACE);
567
568 /*
569 ** WORD 1 - low order word
570 ** "hints" parm includes the VALID bit!
571 ** "dep" clobbers the physical address offset bits as well.
572 */
573 pa = virt_to_phys(vba);
574 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
575 ((u32 *)pdir_ptr)[1] = (u32) pa;
576
577 /*
578 ** WORD 0 - high order word
579 */
580
581 #ifdef __LP64__
582 /*
583 ** get bits 12:15 of physical address
584 ** shift bits 16:31 of physical address
585 ** and deposit them
586 */
587 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
588 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
589 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
590 #else
591 pa = 0;
592 #endif
593 /*
594 ** get CPU coherency index bits
595 ** Grab virtual index [0:11]
596 ** Deposit virt_idx bits into I/O PDIR word
597 */
598 asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
599 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
600 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
601
602 ((u32 *)pdir_ptr)[0] = (u32) pa;
603
604
605 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606 ** PCX-U/U+ do. (eg C200/C240)
607 ** PCX-T'? Don't know. (eg C110 or similar K-class)
608 **
609 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610 ** Hopefully we can patch (NOP) these out at boot time somehow.
611 **
612 ** "Since PCX-U employs an offset hash that is incompatible with
613 ** the real mode coherence index generation of U2, the PDIR entry
614 ** must be flushed to memory to retain coherence."
615 */
616 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
617 asm volatile("sync");
618 }
619
620 /**
621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
622 * @ioc: The I/O Controller.
623 * @iovp: The I/O Virtual Page.
624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
625 *
626 * Purge invalid I/O PDIR entries from the I/O TLB.
627 *
628 * FIXME: Can we change the byte_cnt to pages_mapped?
629 */
630 static CCIO_INLINE void
631 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
632 {
633 u32 chain_size = 1 << ioc->chainid_shift;
634
635 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
636 byte_cnt += chain_size;
637
638 while(byte_cnt > chain_size) {
639 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
640 iovp += chain_size;
641 byte_cnt -= chain_size;
642 }
643 }
644
645 /**
646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
647 * @ioc: The I/O Controller.
648 * @iova: The I/O Virtual Address.
649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
650 *
651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
652 * TLB entries.
653 *
654 * FIXME: at some threshold it might be "cheaper" to just blow
655 * away the entire I/O TLB instead of individual entries.
656 *
657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
658 * PDIR entry - just once for each possible TLB entry.
659 * (We do need to maker I/O PDIR entries invalid regardless).
660 *
661 * FIXME: Can we change byte_cnt to pages_mapped?
662 */
663 static CCIO_INLINE void
664 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
665 {
666 u32 iovp = (u32)CCIO_IOVP(iova);
667 size_t saved_byte_cnt;
668
669 /* round up to nearest page size */
670 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
671
672 while(byte_cnt > 0) {
673 /* invalidate one page at a time */
674 unsigned int idx = PDIR_INDEX(iovp);
675 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
676
677 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
678 pdir_ptr[7] = 0; /* clear only VALID bit */
679 /*
680 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
681 ** PCX-U/U+ do. (eg C200/C240)
682 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
683 **
684 ** Hopefully someone figures out how to patch (NOP) the
685 ** FDC/SYNC out at boot time.
686 */
687 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
688
689 iovp += IOVP_SIZE;
690 byte_cnt -= IOVP_SIZE;
691 }
692
693 asm volatile("sync");
694 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
695 }
696
697 /****************************************************************
698 **
699 ** CCIO dma_ops
700 **
701 *****************************************************************/
702
703 /**
704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
705 * @dev: The PCI device.
706 * @mask: A bit mask describing the DMA address range of the device.
707 */
708 static int
709 ccio_dma_supported(struct device *dev, u64 mask)
710 {
711 if(dev == NULL) {
712 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
713 BUG();
714 return 0;
715 }
716
717 /* only support 32-bit devices (ie PCI/GSC) */
718 return (int)(mask == 0xffffffffUL);
719 }
720
721 /**
722 * ccio_map_single - Map an address range into the IOMMU.
723 * @dev: The PCI device.
724 * @addr: The start address of the DMA region.
725 * @size: The length of the DMA region.
726 * @direction: The direction of the DMA transaction (to/from device).
727 *
728 * This function implements the pci_map_single function.
729 */
730 static dma_addr_t
731 ccio_map_single(struct device *dev, void *addr, size_t size,
732 enum dma_data_direction direction)
733 {
734 int idx;
735 struct ioc *ioc;
736 unsigned long flags;
737 dma_addr_t iovp;
738 dma_addr_t offset;
739 u64 *pdir_start;
740 unsigned long hint = hint_lookup[(int)direction];
741
742 BUG_ON(!dev);
743 ioc = GET_IOC(dev);
744 if (!ioc)
745 return CCIO_MAPPING_ERROR;
746
747 BUG_ON(size <= 0);
748
749 /* save offset bits */
750 offset = ((unsigned long) addr) & ~IOVP_MASK;
751
752 /* round up to nearest IOVP_SIZE */
753 size = ALIGN(size + offset, IOVP_SIZE);
754 spin_lock_irqsave(&ioc->res_lock, flags);
755
756 #ifdef CCIO_COLLECT_STATS
757 ioc->msingle_calls++;
758 ioc->msingle_pages += size >> IOVP_SHIFT;
759 #endif
760
761 idx = ccio_alloc_range(ioc, dev, size);
762 iovp = (dma_addr_t)MKIOVP(idx);
763
764 pdir_start = &(ioc->pdir_base[idx]);
765
766 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
767 __func__, addr, (long)iovp | offset, size);
768
769 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
770 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
771 hint |= HINT_SAFE_DMA;
772
773 while(size > 0) {
774 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
775
776 DBG_RUN(" pdir %p %08x%08x\n",
777 pdir_start,
778 (u32) (((u32 *) pdir_start)[0]),
779 (u32) (((u32 *) pdir_start)[1]));
780 ++pdir_start;
781 addr += IOVP_SIZE;
782 size -= IOVP_SIZE;
783 }
784
785 spin_unlock_irqrestore(&ioc->res_lock, flags);
786
787 /* form complete address */
788 return CCIO_IOVA(iovp, offset);
789 }
790
791
792 static dma_addr_t
793 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
794 size_t size, enum dma_data_direction direction,
795 unsigned long attrs)
796 {
797 return ccio_map_single(dev, page_address(page) + offset, size,
798 direction);
799 }
800
801
802 /**
803 * ccio_unmap_page - Unmap an address range from the IOMMU.
804 * @dev: The PCI device.
805 * @addr: The start address of the DMA region.
806 * @size: The length of the DMA region.
807 * @direction: The direction of the DMA transaction (to/from device).
808 */
809 static void
810 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
811 enum dma_data_direction direction, unsigned long attrs)
812 {
813 struct ioc *ioc;
814 unsigned long flags;
815 dma_addr_t offset = iova & ~IOVP_MASK;
816
817 BUG_ON(!dev);
818 ioc = GET_IOC(dev);
819 if (!ioc) {
820 WARN_ON(!ioc);
821 return;
822 }
823
824 DBG_RUN("%s() iovp 0x%lx/%x\n",
825 __func__, (long)iova, size);
826
827 iova ^= offset; /* clear offset bits */
828 size += offset;
829 size = ALIGN(size, IOVP_SIZE);
830
831 spin_lock_irqsave(&ioc->res_lock, flags);
832
833 #ifdef CCIO_COLLECT_STATS
834 ioc->usingle_calls++;
835 ioc->usingle_pages += size >> IOVP_SHIFT;
836 #endif
837
838 ccio_mark_invalid(ioc, iova, size);
839 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
840 spin_unlock_irqrestore(&ioc->res_lock, flags);
841 }
842
843 /**
844 * ccio_alloc - Allocate a consistent DMA mapping.
845 * @dev: The PCI device.
846 * @size: The length of the DMA region.
847 * @dma_handle: The DMA address handed back to the device (not the cpu).
848 *
849 * This function implements the pci_alloc_consistent function.
850 */
851 static void *
852 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
853 unsigned long attrs)
854 {
855 void *ret;
856 #if 0
857 /* GRANT Need to establish hierarchy for non-PCI devs as well
858 ** and then provide matching gsc_map_xxx() functions for them as well.
859 */
860 if(!hwdev) {
861 /* only support PCI */
862 *dma_handle = 0;
863 return 0;
864 }
865 #endif
866 ret = (void *) __get_free_pages(flag, get_order(size));
867
868 if (ret) {
869 memset(ret, 0, size);
870 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
871 }
872
873 return ret;
874 }
875
876 /**
877 * ccio_free - Free a consistent DMA mapping.
878 * @dev: The PCI device.
879 * @size: The length of the DMA region.
880 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
881 * @dma_handle: The device address returned from the ccio_alloc_consistent.
882 *
883 * This function implements the pci_free_consistent function.
884 */
885 static void
886 ccio_free(struct device *dev, size_t size, void *cpu_addr,
887 dma_addr_t dma_handle, unsigned long attrs)
888 {
889 ccio_unmap_page(dev, dma_handle, size, 0, 0);
890 free_pages((unsigned long)cpu_addr, get_order(size));
891 }
892
893 /*
894 ** Since 0 is a valid pdir_base index value, can't use that
895 ** to determine if a value is valid or not. Use a flag to indicate
896 ** the SG list entry contains a valid pdir index.
897 */
898 #define PIDE_FLAG 0x80000000UL
899
900 #ifdef CCIO_COLLECT_STATS
901 #define IOMMU_MAP_STATS
902 #endif
903 #include "iommu-helpers.h"
904
905 /**
906 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
907 * @dev: The PCI device.
908 * @sglist: The scatter/gather list to be mapped in the IOMMU.
909 * @nents: The number of entries in the scatter/gather list.
910 * @direction: The direction of the DMA transaction (to/from device).
911 *
912 * This function implements the pci_map_sg function.
913 */
914 static int
915 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
916 enum dma_data_direction direction, unsigned long attrs)
917 {
918 struct ioc *ioc;
919 int coalesced, filled = 0;
920 unsigned long flags;
921 unsigned long hint = hint_lookup[(int)direction];
922 unsigned long prev_len = 0, current_len = 0;
923 int i;
924
925 BUG_ON(!dev);
926 ioc = GET_IOC(dev);
927 if (!ioc)
928 return 0;
929
930 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
931
932 /* Fast path single entry scatterlists. */
933 if (nents == 1) {
934 sg_dma_address(sglist) = ccio_map_single(dev,
935 sg_virt(sglist), sglist->length,
936 direction);
937 sg_dma_len(sglist) = sglist->length;
938 return 1;
939 }
940
941 for(i = 0; i < nents; i++)
942 prev_len += sglist[i].length;
943
944 spin_lock_irqsave(&ioc->res_lock, flags);
945
946 #ifdef CCIO_COLLECT_STATS
947 ioc->msg_calls++;
948 #endif
949
950 /*
951 ** First coalesce the chunks and allocate I/O pdir space
952 **
953 ** If this is one DMA stream, we can properly map using the
954 ** correct virtual address associated with each DMA page.
955 ** w/o this association, we wouldn't have coherent DMA!
956 ** Access to the virtual address is what forces a two pass algorithm.
957 */
958 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
959
960 /*
961 ** Program the I/O Pdir
962 **
963 ** map the virtual addresses to the I/O Pdir
964 ** o dma_address will contain the pdir index
965 ** o dma_len will contain the number of bytes to map
966 ** o page/offset contain the virtual address.
967 */
968 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
969
970 spin_unlock_irqrestore(&ioc->res_lock, flags);
971
972 BUG_ON(coalesced != filled);
973
974 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
975
976 for (i = 0; i < filled; i++)
977 current_len += sg_dma_len(sglist + i);
978
979 BUG_ON(current_len != prev_len);
980
981 return filled;
982 }
983
984 /**
985 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
986 * @dev: The PCI device.
987 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
988 * @nents: The number of entries in the scatter/gather list.
989 * @direction: The direction of the DMA transaction (to/from device).
990 *
991 * This function implements the pci_unmap_sg function.
992 */
993 static void
994 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
995 enum dma_data_direction direction, unsigned long attrs)
996 {
997 struct ioc *ioc;
998
999 BUG_ON(!dev);
1000 ioc = GET_IOC(dev);
1001 if (!ioc) {
1002 WARN_ON(!ioc);
1003 return;
1004 }
1005
1006 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1007 __func__, nents, sg_virt(sglist), sglist->length);
1008
1009 #ifdef CCIO_COLLECT_STATS
1010 ioc->usg_calls++;
1011 #endif
1012
1013 while(sg_dma_len(sglist) && nents--) {
1014
1015 #ifdef CCIO_COLLECT_STATS
1016 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1017 #endif
1018 ccio_unmap_page(dev, sg_dma_address(sglist),
1019 sg_dma_len(sglist), direction, 0);
1020 ++sglist;
1021 }
1022
1023 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1024 }
1025
1026 static int ccio_mapping_error(struct device *dev, dma_addr_t dma_addr)
1027 {
1028 return dma_addr == CCIO_MAPPING_ERROR;
1029 }
1030
1031 static const struct dma_map_ops ccio_ops = {
1032 .dma_supported = ccio_dma_supported,
1033 .alloc = ccio_alloc,
1034 .free = ccio_free,
1035 .map_page = ccio_map_page,
1036 .unmap_page = ccio_unmap_page,
1037 .map_sg = ccio_map_sg,
1038 .unmap_sg = ccio_unmap_sg,
1039 .mapping_error = ccio_mapping_error,
1040 };
1041
1042 #ifdef CONFIG_PROC_FS
1043 static int ccio_proc_info(struct seq_file *m, void *p)
1044 {
1045 struct ioc *ioc = ioc_list;
1046
1047 while (ioc != NULL) {
1048 unsigned int total_pages = ioc->res_size << 3;
1049 #ifdef CCIO_COLLECT_STATS
1050 unsigned long avg = 0, min, max;
1051 int j;
1052 #endif
1053
1054 seq_printf(m, "%s\n", ioc->name);
1055
1056 seq_printf(m, "Cujo 2.0 bug : %s\n",
1057 (ioc->cujo20_bug ? "yes" : "no"));
1058
1059 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1060 total_pages * 8, total_pages);
1061
1062 #ifdef CCIO_COLLECT_STATS
1063 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1064 total_pages - ioc->used_pages, ioc->used_pages,
1065 (int)(ioc->used_pages * 100 / total_pages));
1066 #endif
1067
1068 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1069 ioc->res_size, total_pages);
1070
1071 #ifdef CCIO_COLLECT_STATS
1072 min = max = ioc->avg_search[0];
1073 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1074 avg += ioc->avg_search[j];
1075 if(ioc->avg_search[j] > max)
1076 max = ioc->avg_search[j];
1077 if(ioc->avg_search[j] < min)
1078 min = ioc->avg_search[j];
1079 }
1080 avg /= CCIO_SEARCH_SAMPLE;
1081 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1082 min, avg, max);
1083
1084 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1085 ioc->msingle_calls, ioc->msingle_pages,
1086 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1087
1088 /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1089 min = ioc->usingle_calls - ioc->usg_calls;
1090 max = ioc->usingle_pages - ioc->usg_pages;
1091 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1092 min, max, (int)((max * 1000)/min));
1093
1094 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1095 ioc->msg_calls, ioc->msg_pages,
1096 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1097
1098 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1099 ioc->usg_calls, ioc->usg_pages,
1100 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1101 #endif /* CCIO_COLLECT_STATS */
1102
1103 ioc = ioc->next;
1104 }
1105
1106 return 0;
1107 }
1108
1109 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1110 {
1111 return single_open(file, &ccio_proc_info, NULL);
1112 }
1113
1114 static const struct file_operations ccio_proc_info_fops = {
1115 .owner = THIS_MODULE,
1116 .open = ccio_proc_info_open,
1117 .read = seq_read,
1118 .llseek = seq_lseek,
1119 .release = single_release,
1120 };
1121
1122 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1123 {
1124 struct ioc *ioc = ioc_list;
1125
1126 while (ioc != NULL) {
1127 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1128 ioc->res_size, false);
1129 seq_putc(m, '\n');
1130 ioc = ioc->next;
1131 break; /* XXX - remove me */
1132 }
1133
1134 return 0;
1135 }
1136
1137 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1138 {
1139 return single_open(file, &ccio_proc_bitmap_info, NULL);
1140 }
1141
1142 static const struct file_operations ccio_proc_bitmap_fops = {
1143 .owner = THIS_MODULE,
1144 .open = ccio_proc_bitmap_open,
1145 .read = seq_read,
1146 .llseek = seq_lseek,
1147 .release = single_release,
1148 };
1149 #endif /* CONFIG_PROC_FS */
1150
1151 /**
1152 * ccio_find_ioc - Find the ioc in the ioc_list
1153 * @hw_path: The hardware path of the ioc.
1154 *
1155 * This function searches the ioc_list for an ioc that matches
1156 * the provide hardware path.
1157 */
1158 static struct ioc * ccio_find_ioc(int hw_path)
1159 {
1160 int i;
1161 struct ioc *ioc;
1162
1163 ioc = ioc_list;
1164 for (i = 0; i < ioc_count; i++) {
1165 if (ioc->hw_path == hw_path)
1166 return ioc;
1167
1168 ioc = ioc->next;
1169 }
1170
1171 return NULL;
1172 }
1173
1174 /**
1175 * ccio_get_iommu - Find the iommu which controls this device
1176 * @dev: The parisc device.
1177 *
1178 * This function searches through the registered IOMMU's and returns
1179 * the appropriate IOMMU for the device based on its hardware path.
1180 */
1181 void * ccio_get_iommu(const struct parisc_device *dev)
1182 {
1183 dev = find_pa_parent_type(dev, HPHW_IOA);
1184 if (!dev)
1185 return NULL;
1186
1187 return ccio_find_ioc(dev->hw_path);
1188 }
1189
1190 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1191
1192 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1193 * to/from certain pages. To avoid this happening, we mark these pages
1194 * as `used', and ensure that nothing will try to allocate from them.
1195 */
1196 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1197 {
1198 unsigned int idx;
1199 struct parisc_device *dev = parisc_parent(cujo);
1200 struct ioc *ioc = ccio_get_iommu(dev);
1201 u8 *res_ptr;
1202
1203 ioc->cujo20_bug = 1;
1204 res_ptr = ioc->res_map;
1205 idx = PDIR_INDEX(iovp) >> 3;
1206
1207 while (idx < ioc->res_size) {
1208 res_ptr[idx] |= 0xff;
1209 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1210 }
1211 }
1212
1213 #if 0
1214 /* GRANT - is this needed for U2 or not? */
1215
1216 /*
1217 ** Get the size of the I/O TLB for this I/O MMU.
1218 **
1219 ** If spa_shift is non-zero (ie probably U2),
1220 ** then calculate the I/O TLB size using spa_shift.
1221 **
1222 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1223 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1224 ** I think only Java (K/D/R-class too?) systems don't do this.
1225 */
1226 static int
1227 ccio_get_iotlb_size(struct parisc_device *dev)
1228 {
1229 if (dev->spa_shift == 0) {
1230 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1231 }
1232 return (1 << dev->spa_shift);
1233 }
1234 #else
1235
1236 /* Uturn supports 256 TLB entries */
1237 #define CCIO_CHAINID_SHIFT 8
1238 #define CCIO_CHAINID_MASK 0xff
1239 #endif /* 0 */
1240
1241 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1242 static const struct parisc_device_id ccio_tbl[] __initconst = {
1243 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1244 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1245 { 0, }
1246 };
1247
1248 static int ccio_probe(struct parisc_device *dev);
1249
1250 static struct parisc_driver ccio_driver __refdata = {
1251 .name = "ccio",
1252 .id_table = ccio_tbl,
1253 .probe = ccio_probe,
1254 };
1255
1256 /**
1257 * ccio_ioc_init - Initialize the I/O Controller
1258 * @ioc: The I/O Controller.
1259 *
1260 * Initialize the I/O Controller which includes setting up the
1261 * I/O Page Directory, the resource map, and initalizing the
1262 * U2/Uturn chip into virtual mode.
1263 */
1264 static void
1265 ccio_ioc_init(struct ioc *ioc)
1266 {
1267 int i;
1268 unsigned int iov_order;
1269 u32 iova_space_size;
1270
1271 /*
1272 ** Determine IOVA Space size from memory size.
1273 **
1274 ** Ideally, PCI drivers would register the maximum number
1275 ** of DMA they can have outstanding for each device they
1276 ** own. Next best thing would be to guess how much DMA
1277 ** can be outstanding based on PCI Class/sub-class. Both
1278 ** methods still require some "extra" to support PCI
1279 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1280 */
1281
1282 iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1283
1284 /* limit IOVA space size to 1MB-1GB */
1285
1286 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1287 iova_space_size = 1 << (20 - PAGE_SHIFT);
1288 #ifdef __LP64__
1289 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1290 iova_space_size = 1 << (30 - PAGE_SHIFT);
1291 #endif
1292 }
1293
1294 /*
1295 ** iova space must be log2() in size.
1296 ** thus, pdir/res_map will also be log2().
1297 */
1298
1299 /* We could use larger page sizes in order to *decrease* the number
1300 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1301 **
1302 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1303 ** since the pages must also be physically contiguous - typically
1304 ** this is the case under linux."
1305 */
1306
1307 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1308
1309 /* iova_space_size is now bytes, not pages */
1310 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1311
1312 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1313
1314 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1315
1316 /* Verify it's a power of two */
1317 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1318
1319 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1320 __func__, ioc->ioc_regs,
1321 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1322 iova_space_size>>20,
1323 iov_order + PAGE_SHIFT);
1324
1325 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1326 get_order(ioc->pdir_size));
1327 if(NULL == ioc->pdir_base) {
1328 panic("%s() could not allocate I/O Page Table\n", __func__);
1329 }
1330 memset(ioc->pdir_base, 0, ioc->pdir_size);
1331
1332 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1333 DBG_INIT(" base %p\n", ioc->pdir_base);
1334
1335 /* resource map size dictated by pdir_size */
1336 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1337 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1338
1339 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1340 get_order(ioc->res_size));
1341 if(NULL == ioc->res_map) {
1342 panic("%s() could not allocate resource map\n", __func__);
1343 }
1344 memset(ioc->res_map, 0, ioc->res_size);
1345
1346 /* Initialize the res_hint to 16 */
1347 ioc->res_hint = 16;
1348
1349 /* Initialize the spinlock */
1350 spin_lock_init(&ioc->res_lock);
1351
1352 /*
1353 ** Chainid is the upper most bits of an IOVP used to determine
1354 ** which TLB entry an IOVP will use.
1355 */
1356 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1357 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1358
1359 /*
1360 ** Initialize IOA hardware
1361 */
1362 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1363 &ioc->ioc_regs->io_chain_id_mask);
1364
1365 WRITE_U32(virt_to_phys(ioc->pdir_base),
1366 &ioc->ioc_regs->io_pdir_base);
1367
1368 /*
1369 ** Go to "Virtual Mode"
1370 */
1371 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1372
1373 /*
1374 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1375 */
1376 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1377 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1378
1379 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1380 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1381 &ioc->ioc_regs->io_command);
1382 }
1383 }
1384
1385 static void __init
1386 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1387 {
1388 int result;
1389
1390 res->parent = NULL;
1391 res->flags = IORESOURCE_MEM;
1392 /*
1393 * bracing ((signed) ...) are required for 64bit kernel because
1394 * we only want to sign extend the lower 16 bits of the register.
1395 * The upper 16-bits of range registers are hardcoded to 0xffff.
1396 */
1397 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1398 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1399 res->name = name;
1400 /*
1401 * Check if this MMIO range is disable
1402 */
1403 if (res->end + 1 == res->start)
1404 return;
1405
1406 /* On some platforms (e.g. K-Class), we have already registered
1407 * resources for devices reported by firmware. Some are children
1408 * of ccio.
1409 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1410 */
1411 result = insert_resource(&iomem_resource, res);
1412 if (result < 0) {
1413 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1414 __func__, (unsigned long)res->start, (unsigned long)res->end);
1415 }
1416 }
1417
1418 static void __init ccio_init_resources(struct ioc *ioc)
1419 {
1420 struct resource *res = ioc->mmio_region;
1421 char *name = kmalloc(14, GFP_KERNEL);
1422
1423 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1424
1425 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1426 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1427 }
1428
1429 static int new_ioc_area(struct resource *res, unsigned long size,
1430 unsigned long min, unsigned long max, unsigned long align)
1431 {
1432 if (max <= min)
1433 return -EBUSY;
1434
1435 res->start = (max - size + 1) &~ (align - 1);
1436 res->end = res->start + size;
1437
1438 /* We might be trying to expand the MMIO range to include
1439 * a child device that has already registered it's MMIO space.
1440 * Use "insert" instead of request_resource().
1441 */
1442 if (!insert_resource(&iomem_resource, res))
1443 return 0;
1444
1445 return new_ioc_area(res, size, min, max - size, align);
1446 }
1447
1448 static int expand_ioc_area(struct resource *res, unsigned long size,
1449 unsigned long min, unsigned long max, unsigned long align)
1450 {
1451 unsigned long start, len;
1452
1453 if (!res->parent)
1454 return new_ioc_area(res, size, min, max, align);
1455
1456 start = (res->start - size) &~ (align - 1);
1457 len = res->end - start + 1;
1458 if (start >= min) {
1459 if (!adjust_resource(res, start, len))
1460 return 0;
1461 }
1462
1463 start = res->start;
1464 len = ((size + res->end + align) &~ (align - 1)) - start;
1465 if (start + len <= max) {
1466 if (!adjust_resource(res, start, len))
1467 return 0;
1468 }
1469
1470 return -EBUSY;
1471 }
1472
1473 /*
1474 * Dino calls this function. Beware that we may get called on systems
1475 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1476 * So it's legal to find no parent IOC.
1477 *
1478 * Some other issues: one of the resources in the ioc may be unassigned.
1479 */
1480 int ccio_allocate_resource(const struct parisc_device *dev,
1481 struct resource *res, unsigned long size,
1482 unsigned long min, unsigned long max, unsigned long align)
1483 {
1484 struct resource *parent = &iomem_resource;
1485 struct ioc *ioc = ccio_get_iommu(dev);
1486 if (!ioc)
1487 goto out;
1488
1489 parent = ioc->mmio_region;
1490 if (parent->parent &&
1491 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1492 return 0;
1493
1494 if ((parent + 1)->parent &&
1495 !allocate_resource(parent + 1, res, size, min, max, align,
1496 NULL, NULL))
1497 return 0;
1498
1499 if (!expand_ioc_area(parent, size, min, max, align)) {
1500 __raw_writel(((parent->start)>>16) | 0xffff0000,
1501 &ioc->ioc_regs->io_io_low);
1502 __raw_writel(((parent->end)>>16) | 0xffff0000,
1503 &ioc->ioc_regs->io_io_high);
1504 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1505 parent++;
1506 __raw_writel(((parent->start)>>16) | 0xffff0000,
1507 &ioc->ioc_regs->io_io_low_hv);
1508 __raw_writel(((parent->end)>>16) | 0xffff0000,
1509 &ioc->ioc_regs->io_io_high_hv);
1510 } else {
1511 return -EBUSY;
1512 }
1513
1514 out:
1515 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1516 }
1517
1518 int ccio_request_resource(const struct parisc_device *dev,
1519 struct resource *res)
1520 {
1521 struct resource *parent;
1522 struct ioc *ioc = ccio_get_iommu(dev);
1523
1524 if (!ioc) {
1525 parent = &iomem_resource;
1526 } else if ((ioc->mmio_region->start <= res->start) &&
1527 (res->end <= ioc->mmio_region->end)) {
1528 parent = ioc->mmio_region;
1529 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1530 (res->end <= (ioc->mmio_region + 1)->end)) {
1531 parent = ioc->mmio_region + 1;
1532 } else {
1533 return -EBUSY;
1534 }
1535
1536 /* "transparent" bus bridges need to register MMIO resources
1537 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1538 * registered their resources in the PDC "bus walk" (See
1539 * arch/parisc/kernel/inventory.c).
1540 */
1541 return insert_resource(parent, res);
1542 }
1543
1544 /**
1545 * ccio_probe - Determine if ccio should claim this device.
1546 * @dev: The device which has been found
1547 *
1548 * Determine if ccio should claim this chip (return 0) or not (return 1).
1549 * If so, initialize the chip and tell other partners in crime they
1550 * have work to do.
1551 */
1552 static int __init ccio_probe(struct parisc_device *dev)
1553 {
1554 int i;
1555 struct ioc *ioc, **ioc_p = &ioc_list;
1556
1557 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1558 if (ioc == NULL) {
1559 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1560 return -ENOMEM;
1561 }
1562
1563 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1564
1565 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1566 (unsigned long)dev->hpa.start);
1567
1568 for (i = 0; i < ioc_count; i++) {
1569 ioc_p = &(*ioc_p)->next;
1570 }
1571 *ioc_p = ioc;
1572
1573 ioc->hw_path = dev->hw_path;
1574 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1575 if (!ioc->ioc_regs) {
1576 kfree(ioc);
1577 return -ENOMEM;
1578 }
1579 ccio_ioc_init(ioc);
1580 ccio_init_resources(ioc);
1581 hppa_dma_ops = &ccio_ops;
1582 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1583
1584 /* if this fails, no I/O cards will work, so may as well bug */
1585 BUG_ON(dev->dev.platform_data == NULL);
1586 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1587
1588 #ifdef CONFIG_PROC_FS
1589 if (ioc_count == 0) {
1590 proc_create(MODULE_NAME, 0, proc_runway_root,
1591 &ccio_proc_info_fops);
1592 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1593 &ccio_proc_bitmap_fops);
1594 }
1595 #endif
1596 ioc_count++;
1597
1598 parisc_has_iommu();
1599 return 0;
1600 }
1601
1602 /**
1603 * ccio_init - ccio initialization procedure.
1604 *
1605 * Register this driver.
1606 */
1607 void __init ccio_init(void)
1608 {
1609 register_parisc_driver(&ccio_driver);
1610 }
1611