]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/access.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / access.c
1 #include <linux/delay.h>
2 #include <linux/pci.h>
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/slab.h>
6 #include <linux/ioport.h>
7 #include <linux/wait.h>
8
9 #include "pci.h"
10
11 /*
12 * This interrupt-safe spinlock protects all accesses to PCI
13 * configuration space.
14 */
15
16 DEFINE_RAW_SPINLOCK(pci_lock);
17
18 /*
19 * Wrappers for all PCI configuration access functions. They just check
20 * alignment, do locking and call the low-level functions pointed to
21 * by pci_dev->ops.
22 */
23
24 #define PCI_byte_BAD 0
25 #define PCI_word_BAD (pos & 1)
26 #define PCI_dword_BAD (pos & 3)
27
28 #define PCI_OP_READ(size, type, len) \
29 int pci_bus_read_config_##size \
30 (struct pci_bus *bus, unsigned int devfn, int pos, type *value) \
31 { \
32 int res; \
33 unsigned long flags; \
34 u32 data = 0; \
35 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
36 raw_spin_lock_irqsave(&pci_lock, flags); \
37 res = bus->ops->read(bus, devfn, pos, len, &data); \
38 *value = (type)data; \
39 raw_spin_unlock_irqrestore(&pci_lock, flags); \
40 return res; \
41 }
42
43 #define PCI_OP_WRITE(size, type, len) \
44 int pci_bus_write_config_##size \
45 (struct pci_bus *bus, unsigned int devfn, int pos, type value) \
46 { \
47 int res; \
48 unsigned long flags; \
49 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
50 raw_spin_lock_irqsave(&pci_lock, flags); \
51 res = bus->ops->write(bus, devfn, pos, len, value); \
52 raw_spin_unlock_irqrestore(&pci_lock, flags); \
53 return res; \
54 }
55
56 PCI_OP_READ(byte, u8, 1)
57 PCI_OP_READ(word, u16, 2)
58 PCI_OP_READ(dword, u32, 4)
59 PCI_OP_WRITE(byte, u8, 1)
60 PCI_OP_WRITE(word, u16, 2)
61 PCI_OP_WRITE(dword, u32, 4)
62
63 EXPORT_SYMBOL(pci_bus_read_config_byte);
64 EXPORT_SYMBOL(pci_bus_read_config_word);
65 EXPORT_SYMBOL(pci_bus_read_config_dword);
66 EXPORT_SYMBOL(pci_bus_write_config_byte);
67 EXPORT_SYMBOL(pci_bus_write_config_word);
68 EXPORT_SYMBOL(pci_bus_write_config_dword);
69
70 int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
71 int where, int size, u32 *val)
72 {
73 void __iomem *addr;
74
75 addr = bus->ops->map_bus(bus, devfn, where);
76 if (!addr) {
77 *val = ~0;
78 return PCIBIOS_DEVICE_NOT_FOUND;
79 }
80
81 if (size == 1)
82 *val = readb(addr);
83 else if (size == 2)
84 *val = readw(addr);
85 else
86 *val = readl(addr);
87
88 return PCIBIOS_SUCCESSFUL;
89 }
90 EXPORT_SYMBOL_GPL(pci_generic_config_read);
91
92 int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
93 int where, int size, u32 val)
94 {
95 void __iomem *addr;
96
97 addr = bus->ops->map_bus(bus, devfn, where);
98 if (!addr)
99 return PCIBIOS_DEVICE_NOT_FOUND;
100
101 if (size == 1)
102 writeb(val, addr);
103 else if (size == 2)
104 writew(val, addr);
105 else
106 writel(val, addr);
107
108 return PCIBIOS_SUCCESSFUL;
109 }
110 EXPORT_SYMBOL_GPL(pci_generic_config_write);
111
112 int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
113 int where, int size, u32 *val)
114 {
115 void __iomem *addr;
116
117 addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
118 if (!addr) {
119 *val = ~0;
120 return PCIBIOS_DEVICE_NOT_FOUND;
121 }
122
123 *val = readl(addr);
124
125 if (size <= 2)
126 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
127
128 return PCIBIOS_SUCCESSFUL;
129 }
130 EXPORT_SYMBOL_GPL(pci_generic_config_read32);
131
132 int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
133 int where, int size, u32 val)
134 {
135 void __iomem *addr;
136 u32 mask, tmp;
137
138 addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
139 if (!addr)
140 return PCIBIOS_DEVICE_NOT_FOUND;
141
142 if (size == 4) {
143 writel(val, addr);
144 return PCIBIOS_SUCCESSFUL;
145 } else {
146 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
147 }
148
149 tmp = readl(addr) & mask;
150 tmp |= val << ((where & 0x3) * 8);
151 writel(tmp, addr);
152
153 return PCIBIOS_SUCCESSFUL;
154 }
155 EXPORT_SYMBOL_GPL(pci_generic_config_write32);
156
157 /**
158 * pci_bus_set_ops - Set raw operations of pci bus
159 * @bus: pci bus struct
160 * @ops: new raw operations
161 *
162 * Return previous raw operations
163 */
164 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
165 {
166 struct pci_ops *old_ops;
167 unsigned long flags;
168
169 raw_spin_lock_irqsave(&pci_lock, flags);
170 old_ops = bus->ops;
171 bus->ops = ops;
172 raw_spin_unlock_irqrestore(&pci_lock, flags);
173 return old_ops;
174 }
175 EXPORT_SYMBOL(pci_bus_set_ops);
176
177 /*
178 * The following routines are to prevent the user from accessing PCI config
179 * space when it's unsafe to do so. Some devices require this during BIST and
180 * we're required to prevent it during D-state transitions.
181 *
182 * We have a bit per device to indicate it's blocked and a global wait queue
183 * for callers to sleep on until devices are unblocked.
184 */
185 static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
186
187 static noinline void pci_wait_cfg(struct pci_dev *dev)
188 {
189 DECLARE_WAITQUEUE(wait, current);
190
191 __add_wait_queue(&pci_cfg_wait, &wait);
192 do {
193 set_current_state(TASK_UNINTERRUPTIBLE);
194 raw_spin_unlock_irq(&pci_lock);
195 schedule();
196 raw_spin_lock_irq(&pci_lock);
197 } while (dev->block_cfg_access);
198 __remove_wait_queue(&pci_cfg_wait, &wait);
199 }
200
201 /* Returns 0 on success, negative values indicate error. */
202 #define PCI_USER_READ_CONFIG(size, type) \
203 int pci_user_read_config_##size \
204 (struct pci_dev *dev, int pos, type *val) \
205 { \
206 int ret = PCIBIOS_SUCCESSFUL; \
207 u32 data = -1; \
208 if (PCI_##size##_BAD) \
209 return -EINVAL; \
210 raw_spin_lock_irq(&pci_lock); \
211 if (unlikely(dev->block_cfg_access)) \
212 pci_wait_cfg(dev); \
213 ret = dev->bus->ops->read(dev->bus, dev->devfn, \
214 pos, sizeof(type), &data); \
215 raw_spin_unlock_irq(&pci_lock); \
216 *val = (type)data; \
217 return pcibios_err_to_errno(ret); \
218 } \
219 EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
220
221 /* Returns 0 on success, negative values indicate error. */
222 #define PCI_USER_WRITE_CONFIG(size, type) \
223 int pci_user_write_config_##size \
224 (struct pci_dev *dev, int pos, type val) \
225 { \
226 int ret = PCIBIOS_SUCCESSFUL; \
227 if (PCI_##size##_BAD) \
228 return -EINVAL; \
229 raw_spin_lock_irq(&pci_lock); \
230 if (unlikely(dev->block_cfg_access)) \
231 pci_wait_cfg(dev); \
232 ret = dev->bus->ops->write(dev->bus, dev->devfn, \
233 pos, sizeof(type), val); \
234 raw_spin_unlock_irq(&pci_lock); \
235 return pcibios_err_to_errno(ret); \
236 } \
237 EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
238
239 PCI_USER_READ_CONFIG(byte, u8)
240 PCI_USER_READ_CONFIG(word, u16)
241 PCI_USER_READ_CONFIG(dword, u32)
242 PCI_USER_WRITE_CONFIG(byte, u8)
243 PCI_USER_WRITE_CONFIG(word, u16)
244 PCI_USER_WRITE_CONFIG(dword, u32)
245
246 /* VPD access through PCI 2.2+ VPD capability */
247
248 /**
249 * pci_read_vpd - Read one entry from Vital Product Data
250 * @dev: pci device struct
251 * @pos: offset in vpd space
252 * @count: number of bytes to read
253 * @buf: pointer to where to store result
254 */
255 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
256 {
257 if (!dev->vpd || !dev->vpd->ops)
258 return -ENODEV;
259 return dev->vpd->ops->read(dev, pos, count, buf);
260 }
261 EXPORT_SYMBOL(pci_read_vpd);
262
263 /**
264 * pci_write_vpd - Write entry to Vital Product Data
265 * @dev: pci device struct
266 * @pos: offset in vpd space
267 * @count: number of bytes to write
268 * @buf: buffer containing write data
269 */
270 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
271 {
272 if (!dev->vpd || !dev->vpd->ops)
273 return -ENODEV;
274 return dev->vpd->ops->write(dev, pos, count, buf);
275 }
276 EXPORT_SYMBOL(pci_write_vpd);
277
278 /**
279 * pci_set_vpd_size - Set size of Vital Product Data space
280 * @dev: pci device struct
281 * @len: size of vpd space
282 */
283 int pci_set_vpd_size(struct pci_dev *dev, size_t len)
284 {
285 if (!dev->vpd || !dev->vpd->ops)
286 return -ENODEV;
287 return dev->vpd->ops->set_size(dev, len);
288 }
289 EXPORT_SYMBOL(pci_set_vpd_size);
290
291 #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
292
293 /**
294 * pci_vpd_size - determine actual size of Vital Product Data
295 * @dev: pci device struct
296 * @old_size: current assumed size, also maximum allowed size
297 */
298 static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
299 {
300 size_t off = 0;
301 unsigned char header[1+2]; /* 1 byte tag, 2 bytes length */
302
303 while (off < old_size &&
304 pci_read_vpd(dev, off, 1, header) == 1) {
305 unsigned char tag;
306
307 if (header[0] & PCI_VPD_LRDT) {
308 /* Large Resource Data Type Tag */
309 tag = pci_vpd_lrdt_tag(header);
310 /* Only read length from known tag items */
311 if ((tag == PCI_VPD_LTIN_ID_STRING) ||
312 (tag == PCI_VPD_LTIN_RO_DATA) ||
313 (tag == PCI_VPD_LTIN_RW_DATA)) {
314 if (pci_read_vpd(dev, off+1, 2,
315 &header[1]) != 2) {
316 dev_warn(&dev->dev,
317 "invalid large VPD tag %02x size at offset %zu",
318 tag, off + 1);
319 return 0;
320 }
321 off += PCI_VPD_LRDT_TAG_SIZE +
322 pci_vpd_lrdt_size(header);
323 }
324 } else {
325 /* Short Resource Data Type Tag */
326 off += PCI_VPD_SRDT_TAG_SIZE +
327 pci_vpd_srdt_size(header);
328 tag = pci_vpd_srdt_tag(header);
329 }
330
331 if (tag == PCI_VPD_STIN_END) /* End tag descriptor */
332 return off;
333
334 if ((tag != PCI_VPD_LTIN_ID_STRING) &&
335 (tag != PCI_VPD_LTIN_RO_DATA) &&
336 (tag != PCI_VPD_LTIN_RW_DATA)) {
337 dev_warn(&dev->dev,
338 "invalid %s VPD tag %02x at offset %zu",
339 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
340 tag, off);
341 return 0;
342 }
343 }
344 return 0;
345 }
346
347 /*
348 * Wait for last operation to complete.
349 * This code has to spin since there is no other notification from the PCI
350 * hardware. Since the VPD is often implemented by serial attachment to an
351 * EEPROM, it may take many milliseconds to complete.
352 *
353 * Returns 0 on success, negative values indicate error.
354 */
355 static int pci_vpd_wait(struct pci_dev *dev)
356 {
357 struct pci_vpd *vpd = dev->vpd;
358 unsigned long timeout = jiffies + msecs_to_jiffies(50);
359 unsigned long max_sleep = 16;
360 u16 status;
361 int ret;
362
363 if (!vpd->busy)
364 return 0;
365
366 while (time_before(jiffies, timeout)) {
367 ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
368 &status);
369 if (ret < 0)
370 return ret;
371
372 if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
373 vpd->busy = 0;
374 return 0;
375 }
376
377 if (fatal_signal_pending(current))
378 return -EINTR;
379
380 usleep_range(10, max_sleep);
381 if (max_sleep < 1024)
382 max_sleep *= 2;
383 }
384
385 dev_warn(&dev->dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n");
386 return -ETIMEDOUT;
387 }
388
389 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
390 void *arg)
391 {
392 struct pci_vpd *vpd = dev->vpd;
393 int ret;
394 loff_t end = pos + count;
395 u8 *buf = arg;
396
397 if (pos < 0)
398 return -EINVAL;
399
400 if (!vpd->valid) {
401 vpd->valid = 1;
402 vpd->len = pci_vpd_size(dev, vpd->len);
403 }
404
405 if (vpd->len == 0)
406 return -EIO;
407
408 if (pos > vpd->len)
409 return 0;
410
411 if (end > vpd->len) {
412 end = vpd->len;
413 count = end - pos;
414 }
415
416 if (mutex_lock_killable(&vpd->lock))
417 return -EINTR;
418
419 ret = pci_vpd_wait(dev);
420 if (ret < 0)
421 goto out;
422
423 while (pos < end) {
424 u32 val;
425 unsigned int i, skip;
426
427 ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
428 pos & ~3);
429 if (ret < 0)
430 break;
431 vpd->busy = 1;
432 vpd->flag = PCI_VPD_ADDR_F;
433 ret = pci_vpd_wait(dev);
434 if (ret < 0)
435 break;
436
437 ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
438 if (ret < 0)
439 break;
440
441 skip = pos & 3;
442 for (i = 0; i < sizeof(u32); i++) {
443 if (i >= skip) {
444 *buf++ = val;
445 if (++pos == end)
446 break;
447 }
448 val >>= 8;
449 }
450 }
451 out:
452 mutex_unlock(&vpd->lock);
453 return ret ? ret : count;
454 }
455
456 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
457 const void *arg)
458 {
459 struct pci_vpd *vpd = dev->vpd;
460 const u8 *buf = arg;
461 loff_t end = pos + count;
462 int ret = 0;
463
464 if (pos < 0 || (pos & 3) || (count & 3))
465 return -EINVAL;
466
467 if (!vpd->valid) {
468 vpd->valid = 1;
469 vpd->len = pci_vpd_size(dev, vpd->len);
470 }
471
472 if (vpd->len == 0)
473 return -EIO;
474
475 if (end > vpd->len)
476 return -EINVAL;
477
478 if (mutex_lock_killable(&vpd->lock))
479 return -EINTR;
480
481 ret = pci_vpd_wait(dev);
482 if (ret < 0)
483 goto out;
484
485 while (pos < end) {
486 u32 val;
487
488 val = *buf++;
489 val |= *buf++ << 8;
490 val |= *buf++ << 16;
491 val |= *buf++ << 24;
492
493 ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
494 if (ret < 0)
495 break;
496 ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
497 pos | PCI_VPD_ADDR_F);
498 if (ret < 0)
499 break;
500
501 vpd->busy = 1;
502 vpd->flag = 0;
503 ret = pci_vpd_wait(dev);
504 if (ret < 0)
505 break;
506
507 pos += sizeof(u32);
508 }
509 out:
510 mutex_unlock(&vpd->lock);
511 return ret ? ret : count;
512 }
513
514 static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
515 {
516 struct pci_vpd *vpd = dev->vpd;
517
518 if (len == 0 || len > PCI_VPD_MAX_SIZE)
519 return -EIO;
520
521 vpd->valid = 1;
522 vpd->len = len;
523
524 return 0;
525 }
526
527 static const struct pci_vpd_ops pci_vpd_ops = {
528 .read = pci_vpd_read,
529 .write = pci_vpd_write,
530 .set_size = pci_vpd_set_size,
531 };
532
533 static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
534 void *arg)
535 {
536 struct pci_dev *tdev = pci_get_slot(dev->bus,
537 PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
538 ssize_t ret;
539
540 if (!tdev)
541 return -ENODEV;
542
543 ret = pci_read_vpd(tdev, pos, count, arg);
544 pci_dev_put(tdev);
545 return ret;
546 }
547
548 static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
549 const void *arg)
550 {
551 struct pci_dev *tdev = pci_get_slot(dev->bus,
552 PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
553 ssize_t ret;
554
555 if (!tdev)
556 return -ENODEV;
557
558 ret = pci_write_vpd(tdev, pos, count, arg);
559 pci_dev_put(tdev);
560 return ret;
561 }
562
563 static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
564 {
565 struct pci_dev *tdev = pci_get_slot(dev->bus,
566 PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
567 int ret;
568
569 if (!tdev)
570 return -ENODEV;
571
572 ret = pci_set_vpd_size(tdev, len);
573 pci_dev_put(tdev);
574 return ret;
575 }
576
577 static const struct pci_vpd_ops pci_vpd_f0_ops = {
578 .read = pci_vpd_f0_read,
579 .write = pci_vpd_f0_write,
580 .set_size = pci_vpd_f0_set_size,
581 };
582
583 int pci_vpd_init(struct pci_dev *dev)
584 {
585 struct pci_vpd *vpd;
586 u8 cap;
587
588 cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
589 if (!cap)
590 return -ENODEV;
591
592 vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
593 if (!vpd)
594 return -ENOMEM;
595
596 vpd->len = PCI_VPD_MAX_SIZE;
597 if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
598 vpd->ops = &pci_vpd_f0_ops;
599 else
600 vpd->ops = &pci_vpd_ops;
601 mutex_init(&vpd->lock);
602 vpd->cap = cap;
603 vpd->busy = 0;
604 vpd->valid = 0;
605 dev->vpd = vpd;
606 return 0;
607 }
608
609 void pci_vpd_release(struct pci_dev *dev)
610 {
611 kfree(dev->vpd);
612 }
613
614 /**
615 * pci_cfg_access_lock - Lock PCI config reads/writes
616 * @dev: pci device struct
617 *
618 * When access is locked, any userspace reads or writes to config
619 * space and concurrent lock requests will sleep until access is
620 * allowed via pci_cfg_access_unlocked again.
621 */
622 void pci_cfg_access_lock(struct pci_dev *dev)
623 {
624 might_sleep();
625
626 raw_spin_lock_irq(&pci_lock);
627 if (dev->block_cfg_access)
628 pci_wait_cfg(dev);
629 dev->block_cfg_access = 1;
630 raw_spin_unlock_irq(&pci_lock);
631 }
632 EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
633
634 /**
635 * pci_cfg_access_trylock - try to lock PCI config reads/writes
636 * @dev: pci device struct
637 *
638 * Same as pci_cfg_access_lock, but will return 0 if access is
639 * already locked, 1 otherwise. This function can be used from
640 * atomic contexts.
641 */
642 bool pci_cfg_access_trylock(struct pci_dev *dev)
643 {
644 unsigned long flags;
645 bool locked = true;
646
647 raw_spin_lock_irqsave(&pci_lock, flags);
648 if (dev->block_cfg_access)
649 locked = false;
650 else
651 dev->block_cfg_access = 1;
652 raw_spin_unlock_irqrestore(&pci_lock, flags);
653
654 return locked;
655 }
656 EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
657
658 /**
659 * pci_cfg_access_unlock - Unlock PCI config reads/writes
660 * @dev: pci device struct
661 *
662 * This function allows PCI config accesses to resume.
663 */
664 void pci_cfg_access_unlock(struct pci_dev *dev)
665 {
666 unsigned long flags;
667
668 raw_spin_lock_irqsave(&pci_lock, flags);
669
670 /* This indicates a problem in the caller, but we don't need
671 * to kill them, unlike a double-block above. */
672 WARN_ON(!dev->block_cfg_access);
673
674 dev->block_cfg_access = 0;
675 wake_up_all(&pci_cfg_wait);
676 raw_spin_unlock_irqrestore(&pci_lock, flags);
677 }
678 EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
679
680 static inline int pcie_cap_version(const struct pci_dev *dev)
681 {
682 return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
683 }
684
685 static bool pcie_downstream_port(const struct pci_dev *dev)
686 {
687 int type = pci_pcie_type(dev);
688
689 return type == PCI_EXP_TYPE_ROOT_PORT ||
690 type == PCI_EXP_TYPE_DOWNSTREAM;
691 }
692
693 bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
694 {
695 int type = pci_pcie_type(dev);
696
697 return type == PCI_EXP_TYPE_ENDPOINT ||
698 type == PCI_EXP_TYPE_LEG_END ||
699 type == PCI_EXP_TYPE_ROOT_PORT ||
700 type == PCI_EXP_TYPE_UPSTREAM ||
701 type == PCI_EXP_TYPE_DOWNSTREAM ||
702 type == PCI_EXP_TYPE_PCI_BRIDGE ||
703 type == PCI_EXP_TYPE_PCIE_BRIDGE;
704 }
705
706 static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
707 {
708 return pcie_downstream_port(dev) &&
709 pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
710 }
711
712 static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
713 {
714 int type = pci_pcie_type(dev);
715
716 return type == PCI_EXP_TYPE_ROOT_PORT ||
717 type == PCI_EXP_TYPE_RC_EC;
718 }
719
720 static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
721 {
722 if (!pci_is_pcie(dev))
723 return false;
724
725 switch (pos) {
726 case PCI_EXP_FLAGS:
727 return true;
728 case PCI_EXP_DEVCAP:
729 case PCI_EXP_DEVCTL:
730 case PCI_EXP_DEVSTA:
731 return true;
732 case PCI_EXP_LNKCAP:
733 case PCI_EXP_LNKCTL:
734 case PCI_EXP_LNKSTA:
735 return pcie_cap_has_lnkctl(dev);
736 case PCI_EXP_SLTCAP:
737 case PCI_EXP_SLTCTL:
738 case PCI_EXP_SLTSTA:
739 return pcie_cap_has_sltctl(dev);
740 case PCI_EXP_RTCTL:
741 case PCI_EXP_RTCAP:
742 case PCI_EXP_RTSTA:
743 return pcie_cap_has_rtctl(dev);
744 case PCI_EXP_DEVCAP2:
745 case PCI_EXP_DEVCTL2:
746 case PCI_EXP_LNKCAP2:
747 case PCI_EXP_LNKCTL2:
748 case PCI_EXP_LNKSTA2:
749 return pcie_cap_version(dev) > 1;
750 default:
751 return false;
752 }
753 }
754
755 /*
756 * Note that these accessor functions are only for the "PCI Express
757 * Capability" (see PCIe spec r3.0, sec 7.8). They do not apply to the
758 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
759 */
760 int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
761 {
762 int ret;
763
764 *val = 0;
765 if (pos & 1)
766 return -EINVAL;
767
768 if (pcie_capability_reg_implemented(dev, pos)) {
769 ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
770 /*
771 * Reset *val to 0 if pci_read_config_word() fails, it may
772 * have been written as 0xFFFF if hardware error happens
773 * during pci_read_config_word().
774 */
775 if (ret)
776 *val = 0;
777 return ret;
778 }
779
780 /*
781 * For Functions that do not implement the Slot Capabilities,
782 * Slot Status, and Slot Control registers, these spaces must
783 * be hardwired to 0b, with the exception of the Presence Detect
784 * State bit in the Slot Status register of Downstream Ports,
785 * which must be hardwired to 1b. (PCIe Base Spec 3.0, sec 7.8)
786 */
787 if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
788 pos == PCI_EXP_SLTSTA)
789 *val = PCI_EXP_SLTSTA_PDS;
790
791 return 0;
792 }
793 EXPORT_SYMBOL(pcie_capability_read_word);
794
795 int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
796 {
797 int ret;
798
799 *val = 0;
800 if (pos & 3)
801 return -EINVAL;
802
803 if (pcie_capability_reg_implemented(dev, pos)) {
804 ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
805 /*
806 * Reset *val to 0 if pci_read_config_dword() fails, it may
807 * have been written as 0xFFFFFFFF if hardware error happens
808 * during pci_read_config_dword().
809 */
810 if (ret)
811 *val = 0;
812 return ret;
813 }
814
815 if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
816 pos == PCI_EXP_SLTSTA)
817 *val = PCI_EXP_SLTSTA_PDS;
818
819 return 0;
820 }
821 EXPORT_SYMBOL(pcie_capability_read_dword);
822
823 int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
824 {
825 if (pos & 1)
826 return -EINVAL;
827
828 if (!pcie_capability_reg_implemented(dev, pos))
829 return 0;
830
831 return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
832 }
833 EXPORT_SYMBOL(pcie_capability_write_word);
834
835 int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
836 {
837 if (pos & 3)
838 return -EINVAL;
839
840 if (!pcie_capability_reg_implemented(dev, pos))
841 return 0;
842
843 return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
844 }
845 EXPORT_SYMBOL(pcie_capability_write_dword);
846
847 int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
848 u16 clear, u16 set)
849 {
850 int ret;
851 u16 val;
852
853 ret = pcie_capability_read_word(dev, pos, &val);
854 if (!ret) {
855 val &= ~clear;
856 val |= set;
857 ret = pcie_capability_write_word(dev, pos, val);
858 }
859
860 return ret;
861 }
862 EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
863
864 int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
865 u32 clear, u32 set)
866 {
867 int ret;
868 u32 val;
869
870 ret = pcie_capability_read_dword(dev, pos, &val);
871 if (!ret) {
872 val &= ~clear;
873 val |= set;
874 ret = pcie_capability_write_dword(dev, pos, val);
875 }
876
877 return ret;
878 }
879 EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);