]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/pci/controller/pci-hyperv.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / drivers / pci / controller / pci-hyperv.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53
54 /*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63 enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 };
67
68 #define CPU_AFFINITY_ALL -1ULL
69
70 /*
71 * Supported protocol versions in the order of probing - highest go
72 * first.
73 */
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 PCI_PROTOCOL_VERSION_1_2,
76 PCI_PROTOCOL_VERSION_1_1,
77 };
78
79 /*
80 * Protocol version negotiated by hv_pci_protocol_negotiation().
81 */
82 static enum pci_protocol_version_t pci_protocol_version;
83
84 #define PCI_CONFIG_MMIO_LENGTH 0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
94
95 /*
96 * Message Types
97 */
98
99 enum pci_message_type {
100 /*
101 * Version 1.1
102 */
103 PCI_MESSAGE_BASE = 0x42490000,
104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
127 PCI_MESSAGE_MAXIMUM
128 };
129
130 /*
131 * Structures defining the virtual PCI Express protocol.
132 */
133
134 union pci_version {
135 struct {
136 u16 minor_version;
137 u16 major_version;
138 } parts;
139 u32 version;
140 } __packed;
141
142 /*
143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
144 * which is all this driver does. This representation is the one used in
145 * Windows, which is what is expected when sending this back and forth with
146 * the Hyper-V parent partition.
147 */
148 union win_slot_encoding {
149 struct {
150 u32 dev:5;
151 u32 func:3;
152 u32 reserved:24;
153 } bits;
154 u32 slot;
155 } __packed;
156
157 /*
158 * Pretty much as defined in the PCI Specifications.
159 */
160 struct pci_function_description {
161 u16 v_id; /* vendor ID */
162 u16 d_id; /* device ID */
163 u8 rev;
164 u8 prog_intf;
165 u8 subclass;
166 u8 base_class;
167 u32 subsystem_id;
168 union win_slot_encoding win_slot;
169 u32 ser; /* serial number */
170 } __packed;
171
172 /**
173 * struct hv_msi_desc
174 * @vector: IDT entry
175 * @delivery_mode: As defined in Intel's Programmer's
176 * Reference Manual, Volume 3, Chapter 8.
177 * @vector_count: Number of contiguous entries in the
178 * Interrupt Descriptor Table that are
179 * occupied by this Message-Signaled
180 * Interrupt. For "MSI", as first defined
181 * in PCI 2.2, this can be between 1 and
182 * 32. For "MSI-X," as first defined in PCI
183 * 3.0, this must be 1, as each MSI-X table
184 * entry would have its own descriptor.
185 * @reserved: Empty space
186 * @cpu_mask: All the target virtual processors.
187 */
188 struct hv_msi_desc {
189 u8 vector;
190 u8 delivery_mode;
191 u16 vector_count;
192 u32 reserved;
193 u64 cpu_mask;
194 } __packed;
195
196 /**
197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
198 * @vector: IDT entry
199 * @delivery_mode: As defined in Intel's Programmer's
200 * Reference Manual, Volume 3, Chapter 8.
201 * @vector_count: Number of contiguous entries in the
202 * Interrupt Descriptor Table that are
203 * occupied by this Message-Signaled
204 * Interrupt. For "MSI", as first defined
205 * in PCI 2.2, this can be between 1 and
206 * 32. For "MSI-X," as first defined in PCI
207 * 3.0, this must be 1, as each MSI-X table
208 * entry would have its own descriptor.
209 * @processor_count: number of bits enabled in array.
210 * @processor_array: All the target virtual processors.
211 */
212 struct hv_msi_desc2 {
213 u8 vector;
214 u8 delivery_mode;
215 u16 vector_count;
216 u16 processor_count;
217 u16 processor_array[32];
218 } __packed;
219
220 /**
221 * struct tran_int_desc
222 * @reserved: unused, padding
223 * @vector_count: same as in hv_msi_desc
224 * @data: This is the "data payload" value that is
225 * written by the device when it generates
226 * a message-signaled interrupt, either MSI
227 * or MSI-X.
228 * @address: This is the address to which the data
229 * payload is written on interrupt
230 * generation.
231 */
232 struct tran_int_desc {
233 u16 reserved;
234 u16 vector_count;
235 u32 data;
236 u64 address;
237 } __packed;
238
239 /*
240 * A generic message format for virtual PCI.
241 * Specific message formats are defined later in the file.
242 */
243
244 struct pci_message {
245 u32 type;
246 } __packed;
247
248 struct pci_child_message {
249 struct pci_message message_type;
250 union win_slot_encoding wslot;
251 } __packed;
252
253 struct pci_incoming_message {
254 struct vmpacket_descriptor hdr;
255 struct pci_message message_type;
256 } __packed;
257
258 struct pci_response {
259 struct vmpacket_descriptor hdr;
260 s32 status; /* negative values are failures */
261 } __packed;
262
263 struct pci_packet {
264 void (*completion_func)(void *context, struct pci_response *resp,
265 int resp_packet_size);
266 void *compl_ctxt;
267
268 struct pci_message message[0];
269 };
270
271 /*
272 * Specific message types supporting the PCI protocol.
273 */
274
275 /*
276 * Version negotiation message. Sent from the guest to the host.
277 * The guest is free to try different versions until the host
278 * accepts the version.
279 *
280 * pci_version: The protocol version requested.
281 * is_last_attempt: If TRUE, this is the last version guest will request.
282 * reservedz: Reserved field, set to zero.
283 */
284
285 struct pci_version_request {
286 struct pci_message message_type;
287 u32 protocol_version;
288 } __packed;
289
290 /*
291 * Bus D0 Entry. This is sent from the guest to the host when the virtual
292 * bus (PCI Express port) is ready for action.
293 */
294
295 struct pci_bus_d0_entry {
296 struct pci_message message_type;
297 u32 reserved;
298 u64 mmio_base;
299 } __packed;
300
301 struct pci_bus_relations {
302 struct pci_incoming_message incoming;
303 u32 device_count;
304 struct pci_function_description func[0];
305 } __packed;
306
307 struct pci_q_res_req_response {
308 struct vmpacket_descriptor hdr;
309 s32 status; /* negative values are failures */
310 u32 probed_bar[6];
311 } __packed;
312
313 struct pci_set_power {
314 struct pci_message message_type;
315 union win_slot_encoding wslot;
316 u32 power_state; /* In Windows terms */
317 u32 reserved;
318 } __packed;
319
320 struct pci_set_power_response {
321 struct vmpacket_descriptor hdr;
322 s32 status; /* negative values are failures */
323 union win_slot_encoding wslot;
324 u32 resultant_state; /* In Windows terms */
325 u32 reserved;
326 } __packed;
327
328 struct pci_resources_assigned {
329 struct pci_message message_type;
330 union win_slot_encoding wslot;
331 u8 memory_range[0x14][6]; /* not used here */
332 u32 msi_descriptors;
333 u32 reserved[4];
334 } __packed;
335
336 struct pci_resources_assigned2 {
337 struct pci_message message_type;
338 union win_slot_encoding wslot;
339 u8 memory_range[0x14][6]; /* not used here */
340 u32 msi_descriptor_count;
341 u8 reserved[70];
342 } __packed;
343
344 struct pci_create_interrupt {
345 struct pci_message message_type;
346 union win_slot_encoding wslot;
347 struct hv_msi_desc int_desc;
348 } __packed;
349
350 struct pci_create_int_response {
351 struct pci_response response;
352 u32 reserved;
353 struct tran_int_desc int_desc;
354 } __packed;
355
356 struct pci_create_interrupt2 {
357 struct pci_message message_type;
358 union win_slot_encoding wslot;
359 struct hv_msi_desc2 int_desc;
360 } __packed;
361
362 struct pci_delete_interrupt {
363 struct pci_message message_type;
364 union win_slot_encoding wslot;
365 struct tran_int_desc int_desc;
366 } __packed;
367
368 struct pci_dev_incoming {
369 struct pci_incoming_message incoming;
370 union win_slot_encoding wslot;
371 } __packed;
372
373 struct pci_eject_response {
374 struct pci_message message_type;
375 union win_slot_encoding wslot;
376 u32 status;
377 } __packed;
378
379 static int pci_ring_size = (4 * PAGE_SIZE);
380
381 /*
382 * Definitions or interrupt steering hypercall.
383 */
384 #define HV_PARTITION_ID_SELF ((u64)-1)
385 #define HVCALL_RETARGET_INTERRUPT 0x7e
386
387 struct hv_interrupt_entry {
388 u32 source; /* 1 for MSI(-X) */
389 u32 reserved1;
390 u32 address;
391 u32 data;
392 };
393
394 /*
395 * flags for hv_device_interrupt_target.flags
396 */
397 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
398 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
399
400 struct hv_device_interrupt_target {
401 u32 vector;
402 u32 flags;
403 union {
404 u64 vp_mask;
405 struct hv_vpset vp_set;
406 };
407 };
408
409 struct retarget_msi_interrupt {
410 u64 partition_id; /* use "self" */
411 u64 device_id;
412 struct hv_interrupt_entry int_entry;
413 u64 reserved2;
414 struct hv_device_interrupt_target int_target;
415 } __packed __aligned(8);
416
417 /*
418 * Driver specific state.
419 */
420
421 enum hv_pcibus_state {
422 hv_pcibus_init = 0,
423 hv_pcibus_probed,
424 hv_pcibus_installed,
425 hv_pcibus_removed,
426 hv_pcibus_maximum
427 };
428
429 struct hv_pcibus_device {
430 struct pci_sysdata sysdata;
431 enum hv_pcibus_state state;
432 refcount_t remove_lock;
433 struct hv_device *hdev;
434 resource_size_t low_mmio_space;
435 resource_size_t high_mmio_space;
436 struct resource *mem_config;
437 struct resource *low_mmio_res;
438 struct resource *high_mmio_res;
439 struct completion *survey_event;
440 struct completion remove_event;
441 struct pci_bus *pci_bus;
442 spinlock_t config_lock; /* Avoid two threads writing index page */
443 spinlock_t device_list_lock; /* Protect lists below */
444 void __iomem *cfg_addr;
445
446 struct list_head resources_for_children;
447
448 struct list_head children;
449 struct list_head dr_list;
450
451 struct msi_domain_info msi_info;
452 struct msi_controller msi_chip;
453 struct irq_domain *irq_domain;
454
455 spinlock_t retarget_msi_interrupt_lock;
456
457 struct workqueue_struct *wq;
458
459 /* hypercall arg, must not cross page boundary */
460 struct retarget_msi_interrupt retarget_msi_interrupt_params;
461
462 /*
463 * Don't put anything here: retarget_msi_interrupt_params must be last
464 */
465 };
466
467 /*
468 * Tracks "Device Relations" messages from the host, which must be both
469 * processed in order and deferred so that they don't run in the context
470 * of the incoming packet callback.
471 */
472 struct hv_dr_work {
473 struct work_struct wrk;
474 struct hv_pcibus_device *bus;
475 };
476
477 struct hv_dr_state {
478 struct list_head list_entry;
479 u32 device_count;
480 struct pci_function_description func[0];
481 };
482
483 enum hv_pcichild_state {
484 hv_pcichild_init = 0,
485 hv_pcichild_requirements,
486 hv_pcichild_resourced,
487 hv_pcichild_ejecting,
488 hv_pcichild_maximum
489 };
490
491 struct hv_pci_dev {
492 /* List protected by pci_rescan_remove_lock */
493 struct list_head list_entry;
494 refcount_t refs;
495 enum hv_pcichild_state state;
496 struct pci_slot *pci_slot;
497 struct pci_function_description desc;
498 bool reported_missing;
499 struct hv_pcibus_device *hbus;
500 struct work_struct wrk;
501
502 /*
503 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
504 * read it back, for each of the BAR offsets within config space.
505 */
506 u32 probed_bar[6];
507 };
508
509 struct hv_pci_compl {
510 struct completion host_event;
511 s32 completion_status;
512 };
513
514 static void hv_pci_onchannelcallback(void *context);
515
516 /**
517 * hv_pci_generic_compl() - Invoked for a completion packet
518 * @context: Set up by the sender of the packet.
519 * @resp: The response packet
520 * @resp_packet_size: Size in bytes of the packet
521 *
522 * This function is used to trigger an event and report status
523 * for any message for which the completion packet contains a
524 * status and nothing else.
525 */
526 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
527 int resp_packet_size)
528 {
529 struct hv_pci_compl *comp_pkt = context;
530
531 if (resp_packet_size >= offsetofend(struct pci_response, status))
532 comp_pkt->completion_status = resp->status;
533 else
534 comp_pkt->completion_status = -1;
535
536 complete(&comp_pkt->host_event);
537 }
538
539 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
540 u32 wslot);
541
542 static void get_pcichild(struct hv_pci_dev *hpdev)
543 {
544 refcount_inc(&hpdev->refs);
545 }
546
547 static void put_pcichild(struct hv_pci_dev *hpdev)
548 {
549 if (refcount_dec_and_test(&hpdev->refs))
550 kfree(hpdev);
551 }
552
553 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
554 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
555
556 /*
557 * There is no good way to get notified from vmbus_onoffer_rescind(),
558 * so let's use polling here, since this is not a hot path.
559 */
560 static int wait_for_response(struct hv_device *hdev,
561 struct completion *comp)
562 {
563 while (true) {
564 if (hdev->channel->rescind) {
565 dev_warn_once(&hdev->device, "The device is gone.\n");
566 return -ENODEV;
567 }
568
569 if (wait_for_completion_timeout(comp, HZ / 10))
570 break;
571 }
572
573 return 0;
574 }
575
576 /**
577 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
578 * @devfn: The Linux representation of PCI slot
579 *
580 * Windows uses a slightly different representation of PCI slot.
581 *
582 * Return: The Windows representation
583 */
584 static u32 devfn_to_wslot(int devfn)
585 {
586 union win_slot_encoding wslot;
587
588 wslot.slot = 0;
589 wslot.bits.dev = PCI_SLOT(devfn);
590 wslot.bits.func = PCI_FUNC(devfn);
591
592 return wslot.slot;
593 }
594
595 /**
596 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
597 * @wslot: The Windows representation of PCI slot
598 *
599 * Windows uses a slightly different representation of PCI slot.
600 *
601 * Return: The Linux representation
602 */
603 static int wslot_to_devfn(u32 wslot)
604 {
605 union win_slot_encoding slot_no;
606
607 slot_no.slot = wslot;
608 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
609 }
610
611 /*
612 * PCI Configuration Space for these root PCI buses is implemented as a pair
613 * of pages in memory-mapped I/O space. Writing to the first page chooses
614 * the PCI function being written or read. Once the first page has been
615 * written to, the following page maps in the entire configuration space of
616 * the function.
617 */
618
619 /**
620 * _hv_pcifront_read_config() - Internal PCI config read
621 * @hpdev: The PCI driver's representation of the device
622 * @where: Offset within config space
623 * @size: Size of the transfer
624 * @val: Pointer to the buffer receiving the data
625 */
626 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
627 int size, u32 *val)
628 {
629 unsigned long flags;
630 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
631
632 /*
633 * If the attempt is to read the IDs or the ROM BAR, simulate that.
634 */
635 if (where + size <= PCI_COMMAND) {
636 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
637 } else if (where >= PCI_CLASS_REVISION && where + size <=
638 PCI_CACHE_LINE_SIZE) {
639 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
640 PCI_CLASS_REVISION, size);
641 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
642 PCI_ROM_ADDRESS) {
643 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
644 PCI_SUBSYSTEM_VENDOR_ID, size);
645 } else if (where >= PCI_ROM_ADDRESS && where + size <=
646 PCI_CAPABILITY_LIST) {
647 /* ROM BARs are unimplemented */
648 *val = 0;
649 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
650 PCI_INTERRUPT_PIN) {
651 /*
652 * Interrupt Line and Interrupt PIN are hard-wired to zero
653 * because this front-end only supports message-signaled
654 * interrupts.
655 */
656 *val = 0;
657 } else if (where + size <= CFG_PAGE_SIZE) {
658 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
659 /* Choose the function to be read. (See comment above) */
660 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
661 /* Make sure the function was chosen before we start reading. */
662 mb();
663 /* Read from that function's config space. */
664 switch (size) {
665 case 1:
666 *val = readb(addr);
667 break;
668 case 2:
669 *val = readw(addr);
670 break;
671 default:
672 *val = readl(addr);
673 break;
674 }
675 /*
676 * Make sure the read was done before we release the spinlock
677 * allowing consecutive reads/writes.
678 */
679 mb();
680 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
681 } else {
682 dev_err(&hpdev->hbus->hdev->device,
683 "Attempt to read beyond a function's config space.\n");
684 }
685 }
686
687 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
688 {
689 u16 ret;
690 unsigned long flags;
691 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
692 PCI_VENDOR_ID;
693
694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695
696 /* Choose the function to be read. (See comment above) */
697 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
698 /* Make sure the function was chosen before we start reading. */
699 mb();
700 /* Read from that function's config space. */
701 ret = readw(addr);
702 /*
703 * mb() is not required here, because the spin_unlock_irqrestore()
704 * is a barrier.
705 */
706
707 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
708
709 return ret;
710 }
711
712 /**
713 * _hv_pcifront_write_config() - Internal PCI config write
714 * @hpdev: The PCI driver's representation of the device
715 * @where: Offset within config space
716 * @size: Size of the transfer
717 * @val: The data being transferred
718 */
719 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
720 int size, u32 val)
721 {
722 unsigned long flags;
723 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
724
725 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
726 where + size <= PCI_CAPABILITY_LIST) {
727 /* SSIDs and ROM BARs are read-only */
728 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
729 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
730 /* Choose the function to be written. (See comment above) */
731 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
732 /* Make sure the function was chosen before we start writing. */
733 wmb();
734 /* Write to that function's config space. */
735 switch (size) {
736 case 1:
737 writeb(val, addr);
738 break;
739 case 2:
740 writew(val, addr);
741 break;
742 default:
743 writel(val, addr);
744 break;
745 }
746 /*
747 * Make sure the write was done before we release the spinlock
748 * allowing consecutive reads/writes.
749 */
750 mb();
751 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
752 } else {
753 dev_err(&hpdev->hbus->hdev->device,
754 "Attempt to write beyond a function's config space.\n");
755 }
756 }
757
758 /**
759 * hv_pcifront_read_config() - Read configuration space
760 * @bus: PCI Bus structure
761 * @devfn: Device/function
762 * @where: Offset from base
763 * @size: Byte/word/dword
764 * @val: Value to be read
765 *
766 * Return: PCIBIOS_SUCCESSFUL on success
767 * PCIBIOS_DEVICE_NOT_FOUND on failure
768 */
769 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
770 int where, int size, u32 *val)
771 {
772 struct hv_pcibus_device *hbus =
773 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
774 struct hv_pci_dev *hpdev;
775
776 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
777 if (!hpdev)
778 return PCIBIOS_DEVICE_NOT_FOUND;
779
780 _hv_pcifront_read_config(hpdev, where, size, val);
781
782 put_pcichild(hpdev);
783 return PCIBIOS_SUCCESSFUL;
784 }
785
786 /**
787 * hv_pcifront_write_config() - Write configuration space
788 * @bus: PCI Bus structure
789 * @devfn: Device/function
790 * @where: Offset from base
791 * @size: Byte/word/dword
792 * @val: Value to be written to device
793 *
794 * Return: PCIBIOS_SUCCESSFUL on success
795 * PCIBIOS_DEVICE_NOT_FOUND on failure
796 */
797 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
798 int where, int size, u32 val)
799 {
800 struct hv_pcibus_device *hbus =
801 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
802 struct hv_pci_dev *hpdev;
803
804 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
805 if (!hpdev)
806 return PCIBIOS_DEVICE_NOT_FOUND;
807
808 _hv_pcifront_write_config(hpdev, where, size, val);
809
810 put_pcichild(hpdev);
811 return PCIBIOS_SUCCESSFUL;
812 }
813
814 /* PCIe operations */
815 static struct pci_ops hv_pcifront_ops = {
816 .read = hv_pcifront_read_config,
817 .write = hv_pcifront_write_config,
818 };
819
820 /* Interrupt management hooks */
821 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
822 struct tran_int_desc *int_desc)
823 {
824 struct pci_delete_interrupt *int_pkt;
825 struct {
826 struct pci_packet pkt;
827 u8 buffer[sizeof(struct pci_delete_interrupt)];
828 } ctxt;
829
830 memset(&ctxt, 0, sizeof(ctxt));
831 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
832 int_pkt->message_type.type =
833 PCI_DELETE_INTERRUPT_MESSAGE;
834 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
835 int_pkt->int_desc = *int_desc;
836 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
837 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
838 kfree(int_desc);
839 }
840
841 /**
842 * hv_msi_free() - Free the MSI.
843 * @domain: The interrupt domain pointer
844 * @info: Extra MSI-related context
845 * @irq: Identifies the IRQ.
846 *
847 * The Hyper-V parent partition and hypervisor are tracking the
848 * messages that are in use, keeping the interrupt redirection
849 * table up to date. This callback sends a message that frees
850 * the IRT entry and related tracking nonsense.
851 */
852 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
853 unsigned int irq)
854 {
855 struct hv_pcibus_device *hbus;
856 struct hv_pci_dev *hpdev;
857 struct pci_dev *pdev;
858 struct tran_int_desc *int_desc;
859 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
860 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
861
862 pdev = msi_desc_to_pci_dev(msi);
863 hbus = info->data;
864 int_desc = irq_data_get_irq_chip_data(irq_data);
865 if (!int_desc)
866 return;
867
868 irq_data->chip_data = NULL;
869 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
870 if (!hpdev) {
871 kfree(int_desc);
872 return;
873 }
874
875 hv_int_desc_free(hpdev, int_desc);
876 put_pcichild(hpdev);
877 }
878
879 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
880 bool force)
881 {
882 struct irq_data *parent = data->parent_data;
883
884 return parent->chip->irq_set_affinity(parent, dest, force);
885 }
886
887 static void hv_irq_mask(struct irq_data *data)
888 {
889 pci_msi_mask_irq(data);
890 }
891
892 /**
893 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
894 * affinity.
895 * @data: Describes the IRQ
896 *
897 * Build new a destination for the MSI and make a hypercall to
898 * update the Interrupt Redirection Table. "Device Logical ID"
899 * is built out of this PCI bus's instance GUID and the function
900 * number of the device.
901 */
902 static void hv_irq_unmask(struct irq_data *data)
903 {
904 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
905 struct irq_cfg *cfg = irqd_cfg(data);
906 struct retarget_msi_interrupt *params;
907 struct hv_pcibus_device *hbus;
908 struct cpumask *dest;
909 cpumask_var_t tmp;
910 struct pci_bus *pbus;
911 struct pci_dev *pdev;
912 unsigned long flags;
913 u32 var_size = 0;
914 int cpu, nr_bank;
915 u64 res;
916
917 dest = irq_data_get_effective_affinity_mask(data);
918 pdev = msi_desc_to_pci_dev(msi_desc);
919 pbus = pdev->bus;
920 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
921
922 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
923
924 params = &hbus->retarget_msi_interrupt_params;
925 memset(params, 0, sizeof(*params));
926 params->partition_id = HV_PARTITION_ID_SELF;
927 params->int_entry.source = 1; /* MSI(-X) */
928 params->int_entry.address = msi_desc->msg.address_lo;
929 params->int_entry.data = msi_desc->msg.data;
930 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
931 (hbus->hdev->dev_instance.b[4] << 16) |
932 (hbus->hdev->dev_instance.b[7] << 8) |
933 (hbus->hdev->dev_instance.b[6] & 0xf8) |
934 PCI_FUNC(pdev->devfn);
935 params->int_target.vector = cfg->vector;
936
937 /*
938 * Honoring apic->irq_delivery_mode set to dest_Fixed by
939 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
940 * spurious interrupt storm. Not doing so does not seem to have a
941 * negative effect (yet?).
942 */
943
944 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
945 /*
946 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
947 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
948 * with >64 VP support.
949 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
950 * is not sufficient for this hypercall.
951 */
952 params->int_target.flags |=
953 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
954
955 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
956 res = 1;
957 goto exit_unlock;
958 }
959
960 cpumask_and(tmp, dest, cpu_online_mask);
961 nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
962 free_cpumask_var(tmp);
963
964 if (nr_bank <= 0) {
965 res = 1;
966 goto exit_unlock;
967 }
968
969 /*
970 * var-sized hypercall, var-size starts after vp_mask (thus
971 * vp_set.format does not count, but vp_set.valid_bank_mask
972 * does).
973 */
974 var_size = 1 + nr_bank;
975 } else {
976 for_each_cpu_and(cpu, dest, cpu_online_mask) {
977 params->int_target.vp_mask |=
978 (1ULL << hv_cpu_number_to_vp_number(cpu));
979 }
980 }
981
982 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
983 params, NULL);
984
985 exit_unlock:
986 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
987
988 if (res) {
989 dev_err(&hbus->hdev->device,
990 "%s() failed: %#llx", __func__, res);
991 return;
992 }
993
994 pci_msi_unmask_irq(data);
995 }
996
997 struct compose_comp_ctxt {
998 struct hv_pci_compl comp_pkt;
999 struct tran_int_desc int_desc;
1000 };
1001
1002 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1003 int resp_packet_size)
1004 {
1005 struct compose_comp_ctxt *comp_pkt = context;
1006 struct pci_create_int_response *int_resp =
1007 (struct pci_create_int_response *)resp;
1008
1009 comp_pkt->comp_pkt.completion_status = resp->status;
1010 comp_pkt->int_desc = int_resp->int_desc;
1011 complete(&comp_pkt->comp_pkt.host_event);
1012 }
1013
1014 static u32 hv_compose_msi_req_v1(
1015 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1016 u32 slot, u8 vector)
1017 {
1018 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1019 int_pkt->wslot.slot = slot;
1020 int_pkt->int_desc.vector = vector;
1021 int_pkt->int_desc.vector_count = 1;
1022 int_pkt->int_desc.delivery_mode = dest_Fixed;
1023
1024 /*
1025 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1026 * hv_irq_unmask().
1027 */
1028 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1029
1030 return sizeof(*int_pkt);
1031 }
1032
1033 static u32 hv_compose_msi_req_v2(
1034 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1035 u32 slot, u8 vector)
1036 {
1037 int cpu;
1038
1039 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1040 int_pkt->wslot.slot = slot;
1041 int_pkt->int_desc.vector = vector;
1042 int_pkt->int_desc.vector_count = 1;
1043 int_pkt->int_desc.delivery_mode = dest_Fixed;
1044
1045 /*
1046 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1047 * by subsequent retarget in hv_irq_unmask().
1048 */
1049 cpu = cpumask_first_and(affinity, cpu_online_mask);
1050 int_pkt->int_desc.processor_array[0] =
1051 hv_cpu_number_to_vp_number(cpu);
1052 int_pkt->int_desc.processor_count = 1;
1053
1054 return sizeof(*int_pkt);
1055 }
1056
1057 /**
1058 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1059 * @data: Everything about this MSI
1060 * @msg: Buffer that is filled in by this function
1061 *
1062 * This function unpacks the IRQ looking for target CPU set, IDT
1063 * vector and mode and sends a message to the parent partition
1064 * asking for a mapping for that tuple in this partition. The
1065 * response supplies a data value and address to which that data
1066 * should be written to trigger that interrupt.
1067 */
1068 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1069 {
1070 struct irq_cfg *cfg = irqd_cfg(data);
1071 struct hv_pcibus_device *hbus;
1072 struct hv_pci_dev *hpdev;
1073 struct pci_bus *pbus;
1074 struct pci_dev *pdev;
1075 struct cpumask *dest;
1076 unsigned long flags;
1077 struct compose_comp_ctxt comp;
1078 struct tran_int_desc *int_desc;
1079 struct {
1080 struct pci_packet pci_pkt;
1081 union {
1082 struct pci_create_interrupt v1;
1083 struct pci_create_interrupt2 v2;
1084 } int_pkts;
1085 } __packed ctxt;
1086
1087 u32 size;
1088 int ret;
1089
1090 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1091 dest = irq_data_get_effective_affinity_mask(data);
1092 pbus = pdev->bus;
1093 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1094 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1095 if (!hpdev)
1096 goto return_null_message;
1097
1098 /* Free any previous message that might have already been composed. */
1099 if (data->chip_data) {
1100 int_desc = data->chip_data;
1101 data->chip_data = NULL;
1102 hv_int_desc_free(hpdev, int_desc);
1103 }
1104
1105 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1106 if (!int_desc)
1107 goto drop_reference;
1108
1109 memset(&ctxt, 0, sizeof(ctxt));
1110 init_completion(&comp.comp_pkt.host_event);
1111 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1112 ctxt.pci_pkt.compl_ctxt = &comp;
1113
1114 switch (pci_protocol_version) {
1115 case PCI_PROTOCOL_VERSION_1_1:
1116 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1117 dest,
1118 hpdev->desc.win_slot.slot,
1119 cfg->vector);
1120 break;
1121
1122 case PCI_PROTOCOL_VERSION_1_2:
1123 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1124 dest,
1125 hpdev->desc.win_slot.slot,
1126 cfg->vector);
1127 break;
1128
1129 default:
1130 /* As we only negotiate protocol versions known to this driver,
1131 * this path should never hit. However, this is it not a hot
1132 * path so we print a message to aid future updates.
1133 */
1134 dev_err(&hbus->hdev->device,
1135 "Unexpected vPCI protocol, update driver.");
1136 goto free_int_desc;
1137 }
1138
1139 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1140 size, (unsigned long)&ctxt.pci_pkt,
1141 VM_PKT_DATA_INBAND,
1142 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1143 if (ret) {
1144 dev_err(&hbus->hdev->device,
1145 "Sending request for interrupt failed: 0x%x",
1146 comp.comp_pkt.completion_status);
1147 goto free_int_desc;
1148 }
1149
1150 /*
1151 * Since this function is called with IRQ locks held, can't
1152 * do normal wait for completion; instead poll.
1153 */
1154 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1155 /* 0xFFFF means an invalid PCI VENDOR ID. */
1156 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1157 dev_err_once(&hbus->hdev->device,
1158 "the device has gone\n");
1159 goto free_int_desc;
1160 }
1161
1162 /*
1163 * When the higher level interrupt code calls us with
1164 * interrupt disabled, we must poll the channel by calling
1165 * the channel callback directly when channel->target_cpu is
1166 * the current CPU. When the higher level interrupt code
1167 * calls us with interrupt enabled, let's add the
1168 * local_irq_save()/restore() to avoid race:
1169 * hv_pci_onchannelcallback() can also run in tasklet.
1170 */
1171 local_irq_save(flags);
1172
1173 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1174 hv_pci_onchannelcallback(hbus);
1175
1176 local_irq_restore(flags);
1177
1178 if (hpdev->state == hv_pcichild_ejecting) {
1179 dev_err_once(&hbus->hdev->device,
1180 "the device is being ejected\n");
1181 goto free_int_desc;
1182 }
1183
1184 udelay(100);
1185 }
1186
1187 if (comp.comp_pkt.completion_status < 0) {
1188 dev_err(&hbus->hdev->device,
1189 "Request for interrupt failed: 0x%x",
1190 comp.comp_pkt.completion_status);
1191 goto free_int_desc;
1192 }
1193
1194 /*
1195 * Record the assignment so that this can be unwound later. Using
1196 * irq_set_chip_data() here would be appropriate, but the lock it takes
1197 * is already held.
1198 */
1199 *int_desc = comp.int_desc;
1200 data->chip_data = int_desc;
1201
1202 /* Pass up the result. */
1203 msg->address_hi = comp.int_desc.address >> 32;
1204 msg->address_lo = comp.int_desc.address & 0xffffffff;
1205 msg->data = comp.int_desc.data;
1206
1207 put_pcichild(hpdev);
1208 return;
1209
1210 free_int_desc:
1211 kfree(int_desc);
1212 drop_reference:
1213 put_pcichild(hpdev);
1214 return_null_message:
1215 msg->address_hi = 0;
1216 msg->address_lo = 0;
1217 msg->data = 0;
1218 }
1219
1220 /* HW Interrupt Chip Descriptor */
1221 static struct irq_chip hv_msi_irq_chip = {
1222 .name = "Hyper-V PCIe MSI",
1223 .irq_compose_msi_msg = hv_compose_msi_msg,
1224 .irq_set_affinity = hv_set_affinity,
1225 .irq_ack = irq_chip_ack_parent,
1226 .irq_mask = hv_irq_mask,
1227 .irq_unmask = hv_irq_unmask,
1228 };
1229
1230 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1231 msi_alloc_info_t *arg)
1232 {
1233 return arg->msi_hwirq;
1234 }
1235
1236 static struct msi_domain_ops hv_msi_ops = {
1237 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1238 .msi_prepare = pci_msi_prepare,
1239 .set_desc = pci_msi_set_desc,
1240 .msi_free = hv_msi_free,
1241 };
1242
1243 /**
1244 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1245 * @hbus: The root PCI bus
1246 *
1247 * This function creates an IRQ domain which will be used for
1248 * interrupts from devices that have been passed through. These
1249 * devices only support MSI and MSI-X, not line-based interrupts
1250 * or simulations of line-based interrupts through PCIe's
1251 * fabric-layer messages. Because interrupts are remapped, we
1252 * can support multi-message MSI here.
1253 *
1254 * Return: '0' on success and error value on failure
1255 */
1256 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1257 {
1258 hbus->msi_info.chip = &hv_msi_irq_chip;
1259 hbus->msi_info.ops = &hv_msi_ops;
1260 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1261 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1262 MSI_FLAG_PCI_MSIX);
1263 hbus->msi_info.handler = handle_edge_irq;
1264 hbus->msi_info.handler_name = "edge";
1265 hbus->msi_info.data = hbus;
1266 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1267 &hbus->msi_info,
1268 x86_vector_domain);
1269 if (!hbus->irq_domain) {
1270 dev_err(&hbus->hdev->device,
1271 "Failed to build an MSI IRQ domain\n");
1272 return -ENODEV;
1273 }
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * get_bar_size() - Get the address space consumed by a BAR
1280 * @bar_val: Value that a BAR returned after -1 was written
1281 * to it.
1282 *
1283 * This function returns the size of the BAR, rounded up to 1
1284 * page. It has to be rounded up because the hypervisor's page
1285 * table entry that maps the BAR into the VM can't specify an
1286 * offset within a page. The invariant is that the hypervisor
1287 * must place any BARs of smaller than page length at the
1288 * beginning of a page.
1289 *
1290 * Return: Size in bytes of the consumed MMIO space.
1291 */
1292 static u64 get_bar_size(u64 bar_val)
1293 {
1294 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1295 PAGE_SIZE);
1296 }
1297
1298 /**
1299 * survey_child_resources() - Total all MMIO requirements
1300 * @hbus: Root PCI bus, as understood by this driver
1301 */
1302 static void survey_child_resources(struct hv_pcibus_device *hbus)
1303 {
1304 struct hv_pci_dev *hpdev;
1305 resource_size_t bar_size = 0;
1306 unsigned long flags;
1307 struct completion *event;
1308 u64 bar_val;
1309 int i;
1310
1311 /* If nobody is waiting on the answer, don't compute it. */
1312 event = xchg(&hbus->survey_event, NULL);
1313 if (!event)
1314 return;
1315
1316 /* If the answer has already been computed, go with it. */
1317 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1318 complete(event);
1319 return;
1320 }
1321
1322 spin_lock_irqsave(&hbus->device_list_lock, flags);
1323
1324 /*
1325 * Due to an interesting quirk of the PCI spec, all memory regions
1326 * for a child device are a power of 2 in size and aligned in memory,
1327 * so it's sufficient to just add them up without tracking alignment.
1328 */
1329 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1330 for (i = 0; i < 6; i++) {
1331 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1332 dev_err(&hbus->hdev->device,
1333 "There's an I/O BAR in this list!\n");
1334
1335 if (hpdev->probed_bar[i] != 0) {
1336 /*
1337 * A probed BAR has all the upper bits set that
1338 * can be changed.
1339 */
1340
1341 bar_val = hpdev->probed_bar[i];
1342 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1343 bar_val |=
1344 ((u64)hpdev->probed_bar[++i] << 32);
1345 else
1346 bar_val |= 0xffffffff00000000ULL;
1347
1348 bar_size = get_bar_size(bar_val);
1349
1350 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1351 hbus->high_mmio_space += bar_size;
1352 else
1353 hbus->low_mmio_space += bar_size;
1354 }
1355 }
1356 }
1357
1358 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1359 complete(event);
1360 }
1361
1362 /**
1363 * prepopulate_bars() - Fill in BARs with defaults
1364 * @hbus: Root PCI bus, as understood by this driver
1365 *
1366 * The core PCI driver code seems much, much happier if the BARs
1367 * for a device have values upon first scan. So fill them in.
1368 * The algorithm below works down from large sizes to small,
1369 * attempting to pack the assignments optimally. The assumption,
1370 * enforced in other parts of the code, is that the beginning of
1371 * the memory-mapped I/O space will be aligned on the largest
1372 * BAR size.
1373 */
1374 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1375 {
1376 resource_size_t high_size = 0;
1377 resource_size_t low_size = 0;
1378 resource_size_t high_base = 0;
1379 resource_size_t low_base = 0;
1380 resource_size_t bar_size;
1381 struct hv_pci_dev *hpdev;
1382 unsigned long flags;
1383 u64 bar_val;
1384 u32 command;
1385 bool high;
1386 int i;
1387
1388 if (hbus->low_mmio_space) {
1389 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1390 low_base = hbus->low_mmio_res->start;
1391 }
1392
1393 if (hbus->high_mmio_space) {
1394 high_size = 1ULL <<
1395 (63 - __builtin_clzll(hbus->high_mmio_space));
1396 high_base = hbus->high_mmio_res->start;
1397 }
1398
1399 spin_lock_irqsave(&hbus->device_list_lock, flags);
1400
1401 /* Pick addresses for the BARs. */
1402 do {
1403 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1404 for (i = 0; i < 6; i++) {
1405 bar_val = hpdev->probed_bar[i];
1406 if (bar_val == 0)
1407 continue;
1408 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1409 if (high) {
1410 bar_val |=
1411 ((u64)hpdev->probed_bar[i + 1]
1412 << 32);
1413 } else {
1414 bar_val |= 0xffffffffULL << 32;
1415 }
1416 bar_size = get_bar_size(bar_val);
1417 if (high) {
1418 if (high_size != bar_size) {
1419 i++;
1420 continue;
1421 }
1422 _hv_pcifront_write_config(hpdev,
1423 PCI_BASE_ADDRESS_0 + (4 * i),
1424 4,
1425 (u32)(high_base & 0xffffff00));
1426 i++;
1427 _hv_pcifront_write_config(hpdev,
1428 PCI_BASE_ADDRESS_0 + (4 * i),
1429 4, (u32)(high_base >> 32));
1430 high_base += bar_size;
1431 } else {
1432 if (low_size != bar_size)
1433 continue;
1434 _hv_pcifront_write_config(hpdev,
1435 PCI_BASE_ADDRESS_0 + (4 * i),
1436 4,
1437 (u32)(low_base & 0xffffff00));
1438 low_base += bar_size;
1439 }
1440 }
1441 if (high_size <= 1 && low_size <= 1) {
1442 /* Set the memory enable bit. */
1443 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1444 &command);
1445 command |= PCI_COMMAND_MEMORY;
1446 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1447 command);
1448 break;
1449 }
1450 }
1451
1452 high_size >>= 1;
1453 low_size >>= 1;
1454 } while (high_size || low_size);
1455
1456 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1457 }
1458
1459 /*
1460 * Assign entries in sysfs pci slot directory.
1461 *
1462 * Note that this function does not need to lock the children list
1463 * because it is called from pci_devices_present_work which
1464 * is serialized with hv_eject_device_work because they are on the
1465 * same ordered workqueue. Therefore hbus->children list will not change
1466 * even when pci_create_slot sleeps.
1467 */
1468 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1469 {
1470 struct hv_pci_dev *hpdev;
1471 char name[SLOT_NAME_SIZE];
1472 int slot_nr;
1473
1474 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1475 if (hpdev->pci_slot)
1476 continue;
1477
1478 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1479 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1480 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1481 name, NULL);
1482 if (IS_ERR(hpdev->pci_slot)) {
1483 pr_warn("pci_create slot %s failed\n", name);
1484 hpdev->pci_slot = NULL;
1485 }
1486 }
1487 }
1488
1489 /*
1490 * Remove entries in sysfs pci slot directory.
1491 */
1492 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1493 {
1494 struct hv_pci_dev *hpdev;
1495
1496 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1497 if (!hpdev->pci_slot)
1498 continue;
1499 pci_destroy_slot(hpdev->pci_slot);
1500 hpdev->pci_slot = NULL;
1501 }
1502 }
1503
1504 /**
1505 * create_root_hv_pci_bus() - Expose a new root PCI bus
1506 * @hbus: Root PCI bus, as understood by this driver
1507 *
1508 * Return: 0 on success, -errno on failure
1509 */
1510 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1511 {
1512 /* Register the device */
1513 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1514 0, /* bus number is always zero */
1515 &hv_pcifront_ops,
1516 &hbus->sysdata,
1517 &hbus->resources_for_children);
1518 if (!hbus->pci_bus)
1519 return -ENODEV;
1520
1521 hbus->pci_bus->msi = &hbus->msi_chip;
1522 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1523
1524 pci_lock_rescan_remove();
1525 pci_scan_child_bus(hbus->pci_bus);
1526 pci_bus_assign_resources(hbus->pci_bus);
1527 hv_pci_assign_slots(hbus);
1528 pci_bus_add_devices(hbus->pci_bus);
1529 pci_unlock_rescan_remove();
1530 hbus->state = hv_pcibus_installed;
1531 return 0;
1532 }
1533
1534 struct q_res_req_compl {
1535 struct completion host_event;
1536 struct hv_pci_dev *hpdev;
1537 };
1538
1539 /**
1540 * q_resource_requirements() - Query Resource Requirements
1541 * @context: The completion context.
1542 * @resp: The response that came from the host.
1543 * @resp_packet_size: The size in bytes of resp.
1544 *
1545 * This function is invoked on completion of a Query Resource
1546 * Requirements packet.
1547 */
1548 static void q_resource_requirements(void *context, struct pci_response *resp,
1549 int resp_packet_size)
1550 {
1551 struct q_res_req_compl *completion = context;
1552 struct pci_q_res_req_response *q_res_req =
1553 (struct pci_q_res_req_response *)resp;
1554 int i;
1555
1556 if (resp->status < 0) {
1557 dev_err(&completion->hpdev->hbus->hdev->device,
1558 "query resource requirements failed: %x\n",
1559 resp->status);
1560 } else {
1561 for (i = 0; i < 6; i++) {
1562 completion->hpdev->probed_bar[i] =
1563 q_res_req->probed_bar[i];
1564 }
1565 }
1566
1567 complete(&completion->host_event);
1568 }
1569
1570 /**
1571 * new_pcichild_device() - Create a new child device
1572 * @hbus: The internal struct tracking this root PCI bus.
1573 * @desc: The information supplied so far from the host
1574 * about the device.
1575 *
1576 * This function creates the tracking structure for a new child
1577 * device and kicks off the process of figuring out what it is.
1578 *
1579 * Return: Pointer to the new tracking struct
1580 */
1581 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1582 struct pci_function_description *desc)
1583 {
1584 struct hv_pci_dev *hpdev;
1585 struct pci_child_message *res_req;
1586 struct q_res_req_compl comp_pkt;
1587 struct {
1588 struct pci_packet init_packet;
1589 u8 buffer[sizeof(struct pci_child_message)];
1590 } pkt;
1591 unsigned long flags;
1592 int ret;
1593
1594 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1595 if (!hpdev)
1596 return NULL;
1597
1598 hpdev->hbus = hbus;
1599
1600 memset(&pkt, 0, sizeof(pkt));
1601 init_completion(&comp_pkt.host_event);
1602 comp_pkt.hpdev = hpdev;
1603 pkt.init_packet.compl_ctxt = &comp_pkt;
1604 pkt.init_packet.completion_func = q_resource_requirements;
1605 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1606 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1607 res_req->wslot.slot = desc->win_slot.slot;
1608
1609 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1610 sizeof(struct pci_child_message),
1611 (unsigned long)&pkt.init_packet,
1612 VM_PKT_DATA_INBAND,
1613 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1614 if (ret)
1615 goto error;
1616
1617 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1618 goto error;
1619
1620 hpdev->desc = *desc;
1621 refcount_set(&hpdev->refs, 1);
1622 get_pcichild(hpdev);
1623 spin_lock_irqsave(&hbus->device_list_lock, flags);
1624
1625 list_add_tail(&hpdev->list_entry, &hbus->children);
1626 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1627 return hpdev;
1628
1629 error:
1630 kfree(hpdev);
1631 return NULL;
1632 }
1633
1634 /**
1635 * get_pcichild_wslot() - Find device from slot
1636 * @hbus: Root PCI bus, as understood by this driver
1637 * @wslot: Location on the bus
1638 *
1639 * This function looks up a PCI device and returns the internal
1640 * representation of it. It acquires a reference on it, so that
1641 * the device won't be deleted while somebody is using it. The
1642 * caller is responsible for calling put_pcichild() to release
1643 * this reference.
1644 *
1645 * Return: Internal representation of a PCI device
1646 */
1647 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1648 u32 wslot)
1649 {
1650 unsigned long flags;
1651 struct hv_pci_dev *iter, *hpdev = NULL;
1652
1653 spin_lock_irqsave(&hbus->device_list_lock, flags);
1654 list_for_each_entry(iter, &hbus->children, list_entry) {
1655 if (iter->desc.win_slot.slot == wslot) {
1656 hpdev = iter;
1657 get_pcichild(hpdev);
1658 break;
1659 }
1660 }
1661 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1662
1663 return hpdev;
1664 }
1665
1666 /**
1667 * pci_devices_present_work() - Handle new list of child devices
1668 * @work: Work struct embedded in struct hv_dr_work
1669 *
1670 * "Bus Relations" is the Windows term for "children of this
1671 * bus." The terminology is preserved here for people trying to
1672 * debug the interaction between Hyper-V and Linux. This
1673 * function is called when the parent partition reports a list
1674 * of functions that should be observed under this PCI Express
1675 * port (bus).
1676 *
1677 * This function updates the list, and must tolerate being
1678 * called multiple times with the same information. The typical
1679 * number of child devices is one, with very atypical cases
1680 * involving three or four, so the algorithms used here can be
1681 * simple and inefficient.
1682 *
1683 * It must also treat the omission of a previously observed device as
1684 * notification that the device no longer exists.
1685 *
1686 * Note that this function is serialized with hv_eject_device_work(),
1687 * because both are pushed to the ordered workqueue hbus->wq.
1688 */
1689 static void pci_devices_present_work(struct work_struct *work)
1690 {
1691 u32 child_no;
1692 bool found;
1693 struct pci_function_description *new_desc;
1694 struct hv_pci_dev *hpdev;
1695 struct hv_pcibus_device *hbus;
1696 struct list_head removed;
1697 struct hv_dr_work *dr_wrk;
1698 struct hv_dr_state *dr = NULL;
1699 unsigned long flags;
1700
1701 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1702 hbus = dr_wrk->bus;
1703 kfree(dr_wrk);
1704
1705 INIT_LIST_HEAD(&removed);
1706
1707 /* Pull this off the queue and process it if it was the last one. */
1708 spin_lock_irqsave(&hbus->device_list_lock, flags);
1709 while (!list_empty(&hbus->dr_list)) {
1710 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1711 list_entry);
1712 list_del(&dr->list_entry);
1713
1714 /* Throw this away if the list still has stuff in it. */
1715 if (!list_empty(&hbus->dr_list)) {
1716 kfree(dr);
1717 continue;
1718 }
1719 }
1720 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1721
1722 if (!dr) {
1723 put_hvpcibus(hbus);
1724 return;
1725 }
1726
1727 /* First, mark all existing children as reported missing. */
1728 spin_lock_irqsave(&hbus->device_list_lock, flags);
1729 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1730 hpdev->reported_missing = true;
1731 }
1732 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1733
1734 /* Next, add back any reported devices. */
1735 for (child_no = 0; child_no < dr->device_count; child_no++) {
1736 found = false;
1737 new_desc = &dr->func[child_no];
1738
1739 spin_lock_irqsave(&hbus->device_list_lock, flags);
1740 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1741 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1742 (hpdev->desc.v_id == new_desc->v_id) &&
1743 (hpdev->desc.d_id == new_desc->d_id) &&
1744 (hpdev->desc.ser == new_desc->ser)) {
1745 hpdev->reported_missing = false;
1746 found = true;
1747 }
1748 }
1749 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1750
1751 if (!found) {
1752 hpdev = new_pcichild_device(hbus, new_desc);
1753 if (!hpdev)
1754 dev_err(&hbus->hdev->device,
1755 "couldn't record a child device.\n");
1756 }
1757 }
1758
1759 /* Move missing children to a list on the stack. */
1760 spin_lock_irqsave(&hbus->device_list_lock, flags);
1761 do {
1762 found = false;
1763 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1764 if (hpdev->reported_missing) {
1765 found = true;
1766 put_pcichild(hpdev);
1767 list_move_tail(&hpdev->list_entry, &removed);
1768 break;
1769 }
1770 }
1771 } while (found);
1772 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1773
1774 /* Delete everything that should no longer exist. */
1775 while (!list_empty(&removed)) {
1776 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1777 list_entry);
1778 list_del(&hpdev->list_entry);
1779
1780 if (hpdev->pci_slot)
1781 pci_destroy_slot(hpdev->pci_slot);
1782
1783 put_pcichild(hpdev);
1784 }
1785
1786 switch (hbus->state) {
1787 case hv_pcibus_installed:
1788 /*
1789 * Tell the core to rescan bus
1790 * because there may have been changes.
1791 */
1792 pci_lock_rescan_remove();
1793 pci_scan_child_bus(hbus->pci_bus);
1794 hv_pci_assign_slots(hbus);
1795 pci_unlock_rescan_remove();
1796 break;
1797
1798 case hv_pcibus_init:
1799 case hv_pcibus_probed:
1800 survey_child_resources(hbus);
1801 break;
1802
1803 default:
1804 break;
1805 }
1806
1807 put_hvpcibus(hbus);
1808 kfree(dr);
1809 }
1810
1811 /**
1812 * hv_pci_devices_present() - Handles list of new children
1813 * @hbus: Root PCI bus, as understood by this driver
1814 * @relations: Packet from host listing children
1815 *
1816 * This function is invoked whenever a new list of devices for
1817 * this bus appears.
1818 */
1819 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1820 struct pci_bus_relations *relations)
1821 {
1822 struct hv_dr_state *dr;
1823 struct hv_dr_work *dr_wrk;
1824 unsigned long flags;
1825 bool pending_dr;
1826
1827 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1828 if (!dr_wrk)
1829 return;
1830
1831 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1832 (sizeof(struct pci_function_description) *
1833 (relations->device_count)), GFP_NOWAIT);
1834 if (!dr) {
1835 kfree(dr_wrk);
1836 return;
1837 }
1838
1839 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1840 dr_wrk->bus = hbus;
1841 dr->device_count = relations->device_count;
1842 if (dr->device_count != 0) {
1843 memcpy(dr->func, relations->func,
1844 sizeof(struct pci_function_description) *
1845 dr->device_count);
1846 }
1847
1848 spin_lock_irqsave(&hbus->device_list_lock, flags);
1849 /*
1850 * If pending_dr is true, we have already queued a work,
1851 * which will see the new dr. Otherwise, we need to
1852 * queue a new work.
1853 */
1854 pending_dr = !list_empty(&hbus->dr_list);
1855 list_add_tail(&dr->list_entry, &hbus->dr_list);
1856 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1857
1858 if (pending_dr) {
1859 kfree(dr_wrk);
1860 } else {
1861 get_hvpcibus(hbus);
1862 queue_work(hbus->wq, &dr_wrk->wrk);
1863 }
1864 }
1865
1866 /**
1867 * hv_eject_device_work() - Asynchronously handles ejection
1868 * @work: Work struct embedded in internal device struct
1869 *
1870 * This function handles ejecting a device. Windows will
1871 * attempt to gracefully eject a device, waiting 60 seconds to
1872 * hear back from the guest OS that this completed successfully.
1873 * If this timer expires, the device will be forcibly removed.
1874 */
1875 static void hv_eject_device_work(struct work_struct *work)
1876 {
1877 struct pci_eject_response *ejct_pkt;
1878 struct hv_pci_dev *hpdev;
1879 struct pci_dev *pdev;
1880 unsigned long flags;
1881 int wslot;
1882 struct {
1883 struct pci_packet pkt;
1884 u8 buffer[sizeof(struct pci_eject_response)];
1885 } ctxt;
1886
1887 hpdev = container_of(work, struct hv_pci_dev, wrk);
1888
1889 WARN_ON(hpdev->state != hv_pcichild_ejecting);
1890
1891 /*
1892 * Ejection can come before or after the PCI bus has been set up, so
1893 * attempt to find it and tear down the bus state, if it exists. This
1894 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1895 * because hbus->pci_bus may not exist yet.
1896 */
1897 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1898 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1899 wslot);
1900 if (pdev) {
1901 pci_lock_rescan_remove();
1902 pci_stop_and_remove_bus_device(pdev);
1903 pci_dev_put(pdev);
1904 pci_unlock_rescan_remove();
1905 }
1906
1907 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1908 list_del(&hpdev->list_entry);
1909 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1910
1911 if (hpdev->pci_slot)
1912 pci_destroy_slot(hpdev->pci_slot);
1913
1914 memset(&ctxt, 0, sizeof(ctxt));
1915 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1916 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1917 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1918 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1919 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1920 VM_PKT_DATA_INBAND, 0);
1921
1922 /* For the get_pcichild() in hv_pci_eject_device() */
1923 put_pcichild(hpdev);
1924 /* For the two refs got in new_pcichild_device() */
1925 put_pcichild(hpdev);
1926 put_pcichild(hpdev);
1927 put_hvpcibus(hpdev->hbus);
1928 }
1929
1930 /**
1931 * hv_pci_eject_device() - Handles device ejection
1932 * @hpdev: Internal device tracking struct
1933 *
1934 * This function is invoked when an ejection packet arrives. It
1935 * just schedules work so that we don't re-enter the packet
1936 * delivery code handling the ejection.
1937 */
1938 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1939 {
1940 hpdev->state = hv_pcichild_ejecting;
1941 get_pcichild(hpdev);
1942 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1943 get_hvpcibus(hpdev->hbus);
1944 queue_work(hpdev->hbus->wq, &hpdev->wrk);
1945 }
1946
1947 /**
1948 * hv_pci_onchannelcallback() - Handles incoming packets
1949 * @context: Internal bus tracking struct
1950 *
1951 * This function is invoked whenever the host sends a packet to
1952 * this channel (which is private to this root PCI bus).
1953 */
1954 static void hv_pci_onchannelcallback(void *context)
1955 {
1956 const int packet_size = 0x100;
1957 int ret;
1958 struct hv_pcibus_device *hbus = context;
1959 u32 bytes_recvd;
1960 u64 req_id;
1961 struct vmpacket_descriptor *desc;
1962 unsigned char *buffer;
1963 int bufferlen = packet_size;
1964 struct pci_packet *comp_packet;
1965 struct pci_response *response;
1966 struct pci_incoming_message *new_message;
1967 struct pci_bus_relations *bus_rel;
1968 struct pci_dev_incoming *dev_message;
1969 struct hv_pci_dev *hpdev;
1970
1971 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1972 if (!buffer)
1973 return;
1974
1975 while (1) {
1976 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1977 bufferlen, &bytes_recvd, &req_id);
1978
1979 if (ret == -ENOBUFS) {
1980 kfree(buffer);
1981 /* Handle large packet */
1982 bufferlen = bytes_recvd;
1983 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1984 if (!buffer)
1985 return;
1986 continue;
1987 }
1988
1989 /* Zero length indicates there are no more packets. */
1990 if (ret || !bytes_recvd)
1991 break;
1992
1993 /*
1994 * All incoming packets must be at least as large as a
1995 * response.
1996 */
1997 if (bytes_recvd <= sizeof(struct pci_response))
1998 continue;
1999 desc = (struct vmpacket_descriptor *)buffer;
2000
2001 switch (desc->type) {
2002 case VM_PKT_COMP:
2003
2004 /*
2005 * The host is trusted, and thus it's safe to interpret
2006 * this transaction ID as a pointer.
2007 */
2008 comp_packet = (struct pci_packet *)req_id;
2009 response = (struct pci_response *)buffer;
2010 comp_packet->completion_func(comp_packet->compl_ctxt,
2011 response,
2012 bytes_recvd);
2013 break;
2014
2015 case VM_PKT_DATA_INBAND:
2016
2017 new_message = (struct pci_incoming_message *)buffer;
2018 switch (new_message->message_type.type) {
2019 case PCI_BUS_RELATIONS:
2020
2021 bus_rel = (struct pci_bus_relations *)buffer;
2022 if (bytes_recvd <
2023 offsetof(struct pci_bus_relations, func) +
2024 (sizeof(struct pci_function_description) *
2025 (bus_rel->device_count))) {
2026 dev_err(&hbus->hdev->device,
2027 "bus relations too small\n");
2028 break;
2029 }
2030
2031 hv_pci_devices_present(hbus, bus_rel);
2032 break;
2033
2034 case PCI_EJECT:
2035
2036 dev_message = (struct pci_dev_incoming *)buffer;
2037 hpdev = get_pcichild_wslot(hbus,
2038 dev_message->wslot.slot);
2039 if (hpdev) {
2040 hv_pci_eject_device(hpdev);
2041 put_pcichild(hpdev);
2042 }
2043 break;
2044
2045 default:
2046 dev_warn(&hbus->hdev->device,
2047 "Unimplemented protocol message %x\n",
2048 new_message->message_type.type);
2049 break;
2050 }
2051 break;
2052
2053 default:
2054 dev_err(&hbus->hdev->device,
2055 "unhandled packet type %d, tid %llx len %d\n",
2056 desc->type, req_id, bytes_recvd);
2057 break;
2058 }
2059 }
2060
2061 kfree(buffer);
2062 }
2063
2064 /**
2065 * hv_pci_protocol_negotiation() - Set up protocol
2066 * @hdev: VMBus's tracking struct for this root PCI bus
2067 *
2068 * This driver is intended to support running on Windows 10
2069 * (server) and later versions. It will not run on earlier
2070 * versions, as they assume that many of the operations which
2071 * Linux needs accomplished with a spinlock held were done via
2072 * asynchronous messaging via VMBus. Windows 10 increases the
2073 * surface area of PCI emulation so that these actions can take
2074 * place by suspending a virtual processor for their duration.
2075 *
2076 * This function negotiates the channel protocol version,
2077 * failing if the host doesn't support the necessary protocol
2078 * level.
2079 */
2080 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2081 {
2082 struct pci_version_request *version_req;
2083 struct hv_pci_compl comp_pkt;
2084 struct pci_packet *pkt;
2085 int ret;
2086 int i;
2087
2088 /*
2089 * Initiate the handshake with the host and negotiate
2090 * a version that the host can support. We start with the
2091 * highest version number and go down if the host cannot
2092 * support it.
2093 */
2094 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2095 if (!pkt)
2096 return -ENOMEM;
2097
2098 init_completion(&comp_pkt.host_event);
2099 pkt->completion_func = hv_pci_generic_compl;
2100 pkt->compl_ctxt = &comp_pkt;
2101 version_req = (struct pci_version_request *)&pkt->message;
2102 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2103
2104 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2105 version_req->protocol_version = pci_protocol_versions[i];
2106 ret = vmbus_sendpacket(hdev->channel, version_req,
2107 sizeof(struct pci_version_request),
2108 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2109 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2110 if (!ret)
2111 ret = wait_for_response(hdev, &comp_pkt.host_event);
2112
2113 if (ret) {
2114 dev_err(&hdev->device,
2115 "PCI Pass-through VSP failed to request version: %d",
2116 ret);
2117 goto exit;
2118 }
2119
2120 if (comp_pkt.completion_status >= 0) {
2121 pci_protocol_version = pci_protocol_versions[i];
2122 dev_info(&hdev->device,
2123 "PCI VMBus probing: Using version %#x\n",
2124 pci_protocol_version);
2125 goto exit;
2126 }
2127
2128 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2129 dev_err(&hdev->device,
2130 "PCI Pass-through VSP failed version request: %#x",
2131 comp_pkt.completion_status);
2132 ret = -EPROTO;
2133 goto exit;
2134 }
2135
2136 reinit_completion(&comp_pkt.host_event);
2137 }
2138
2139 dev_err(&hdev->device,
2140 "PCI pass-through VSP failed to find supported version");
2141 ret = -EPROTO;
2142
2143 exit:
2144 kfree(pkt);
2145 return ret;
2146 }
2147
2148 /**
2149 * hv_pci_free_bridge_windows() - Release memory regions for the
2150 * bus
2151 * @hbus: Root PCI bus, as understood by this driver
2152 */
2153 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2154 {
2155 /*
2156 * Set the resources back to the way they looked when they
2157 * were allocated by setting IORESOURCE_BUSY again.
2158 */
2159
2160 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2161 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2162 vmbus_free_mmio(hbus->low_mmio_res->start,
2163 resource_size(hbus->low_mmio_res));
2164 }
2165
2166 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2167 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2168 vmbus_free_mmio(hbus->high_mmio_res->start,
2169 resource_size(hbus->high_mmio_res));
2170 }
2171 }
2172
2173 /**
2174 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2175 * for the bus
2176 * @hbus: Root PCI bus, as understood by this driver
2177 *
2178 * This function calls vmbus_allocate_mmio(), which is itself a
2179 * bit of a compromise. Ideally, we might change the pnp layer
2180 * in the kernel such that it comprehends either PCI devices
2181 * which are "grandchildren of ACPI," with some intermediate bus
2182 * node (in this case, VMBus) or change it such that it
2183 * understands VMBus. The pnp layer, however, has been declared
2184 * deprecated, and not subject to change.
2185 *
2186 * The workaround, implemented here, is to ask VMBus to allocate
2187 * MMIO space for this bus. VMBus itself knows which ranges are
2188 * appropriate by looking at its own ACPI objects. Then, after
2189 * these ranges are claimed, they're modified to look like they
2190 * would have looked if the ACPI and pnp code had allocated
2191 * bridge windows. These descriptors have to exist in this form
2192 * in order to satisfy the code which will get invoked when the
2193 * endpoint PCI function driver calls request_mem_region() or
2194 * request_mem_region_exclusive().
2195 *
2196 * Return: 0 on success, -errno on failure
2197 */
2198 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2199 {
2200 resource_size_t align;
2201 int ret;
2202
2203 if (hbus->low_mmio_space) {
2204 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2205 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2206 (u64)(u32)0xffffffff,
2207 hbus->low_mmio_space,
2208 align, false);
2209 if (ret) {
2210 dev_err(&hbus->hdev->device,
2211 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2212 hbus->low_mmio_space);
2213 return ret;
2214 }
2215
2216 /* Modify this resource to become a bridge window. */
2217 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2218 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2219 pci_add_resource(&hbus->resources_for_children,
2220 hbus->low_mmio_res);
2221 }
2222
2223 if (hbus->high_mmio_space) {
2224 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2225 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2226 0x100000000, -1,
2227 hbus->high_mmio_space, align,
2228 false);
2229 if (ret) {
2230 dev_err(&hbus->hdev->device,
2231 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2232 hbus->high_mmio_space);
2233 goto release_low_mmio;
2234 }
2235
2236 /* Modify this resource to become a bridge window. */
2237 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2238 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2239 pci_add_resource(&hbus->resources_for_children,
2240 hbus->high_mmio_res);
2241 }
2242
2243 return 0;
2244
2245 release_low_mmio:
2246 if (hbus->low_mmio_res) {
2247 vmbus_free_mmio(hbus->low_mmio_res->start,
2248 resource_size(hbus->low_mmio_res));
2249 }
2250
2251 return ret;
2252 }
2253
2254 /**
2255 * hv_allocate_config_window() - Find MMIO space for PCI Config
2256 * @hbus: Root PCI bus, as understood by this driver
2257 *
2258 * This function claims memory-mapped I/O space for accessing
2259 * configuration space for the functions on this bus.
2260 *
2261 * Return: 0 on success, -errno on failure
2262 */
2263 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2264 {
2265 int ret;
2266
2267 /*
2268 * Set up a region of MMIO space to use for accessing configuration
2269 * space.
2270 */
2271 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2272 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2273 if (ret)
2274 return ret;
2275
2276 /*
2277 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2278 * resource claims (those which cannot be overlapped) and the ranges
2279 * which are valid for the children of this bus, which are intended
2280 * to be overlapped by those children. Set the flag on this claim
2281 * meaning that this region can't be overlapped.
2282 */
2283
2284 hbus->mem_config->flags |= IORESOURCE_BUSY;
2285
2286 return 0;
2287 }
2288
2289 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2290 {
2291 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2292 }
2293
2294 /**
2295 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2296 * @hdev: VMBus's tracking struct for this root PCI bus
2297 *
2298 * Return: 0 on success, -errno on failure
2299 */
2300 static int hv_pci_enter_d0(struct hv_device *hdev)
2301 {
2302 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2303 struct pci_bus_d0_entry *d0_entry;
2304 struct hv_pci_compl comp_pkt;
2305 struct pci_packet *pkt;
2306 int ret;
2307
2308 /*
2309 * Tell the host that the bus is ready to use, and moved into the
2310 * powered-on state. This includes telling the host which region
2311 * of memory-mapped I/O space has been chosen for configuration space
2312 * access.
2313 */
2314 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2315 if (!pkt)
2316 return -ENOMEM;
2317
2318 init_completion(&comp_pkt.host_event);
2319 pkt->completion_func = hv_pci_generic_compl;
2320 pkt->compl_ctxt = &comp_pkt;
2321 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2322 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2323 d0_entry->mmio_base = hbus->mem_config->start;
2324
2325 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2326 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2327 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2328 if (!ret)
2329 ret = wait_for_response(hdev, &comp_pkt.host_event);
2330
2331 if (ret)
2332 goto exit;
2333
2334 if (comp_pkt.completion_status < 0) {
2335 dev_err(&hdev->device,
2336 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2337 comp_pkt.completion_status);
2338 ret = -EPROTO;
2339 goto exit;
2340 }
2341
2342 ret = 0;
2343
2344 exit:
2345 kfree(pkt);
2346 return ret;
2347 }
2348
2349 /**
2350 * hv_pci_query_relations() - Ask host to send list of child
2351 * devices
2352 * @hdev: VMBus's tracking struct for this root PCI bus
2353 *
2354 * Return: 0 on success, -errno on failure
2355 */
2356 static int hv_pci_query_relations(struct hv_device *hdev)
2357 {
2358 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2359 struct pci_message message;
2360 struct completion comp;
2361 int ret;
2362
2363 /* Ask the host to send along the list of child devices */
2364 init_completion(&comp);
2365 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2366 return -ENOTEMPTY;
2367
2368 memset(&message, 0, sizeof(message));
2369 message.type = PCI_QUERY_BUS_RELATIONS;
2370
2371 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2372 0, VM_PKT_DATA_INBAND, 0);
2373 if (!ret)
2374 ret = wait_for_response(hdev, &comp);
2375
2376 return ret;
2377 }
2378
2379 /**
2380 * hv_send_resources_allocated() - Report local resource choices
2381 * @hdev: VMBus's tracking struct for this root PCI bus
2382 *
2383 * The host OS is expecting to be sent a request as a message
2384 * which contains all the resources that the device will use.
2385 * The response contains those same resources, "translated"
2386 * which is to say, the values which should be used by the
2387 * hardware, when it delivers an interrupt. (MMIO resources are
2388 * used in local terms.) This is nice for Windows, and lines up
2389 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2390 * is deeply expecting to scan an emulated PCI configuration
2391 * space. So this message is sent here only to drive the state
2392 * machine on the host forward.
2393 *
2394 * Return: 0 on success, -errno on failure
2395 */
2396 static int hv_send_resources_allocated(struct hv_device *hdev)
2397 {
2398 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2399 struct pci_resources_assigned *res_assigned;
2400 struct pci_resources_assigned2 *res_assigned2;
2401 struct hv_pci_compl comp_pkt;
2402 struct hv_pci_dev *hpdev;
2403 struct pci_packet *pkt;
2404 size_t size_res;
2405 u32 wslot;
2406 int ret;
2407
2408 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2409 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2410
2411 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2412 if (!pkt)
2413 return -ENOMEM;
2414
2415 ret = 0;
2416
2417 for (wslot = 0; wslot < 256; wslot++) {
2418 hpdev = get_pcichild_wslot(hbus, wslot);
2419 if (!hpdev)
2420 continue;
2421
2422 memset(pkt, 0, sizeof(*pkt) + size_res);
2423 init_completion(&comp_pkt.host_event);
2424 pkt->completion_func = hv_pci_generic_compl;
2425 pkt->compl_ctxt = &comp_pkt;
2426
2427 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2428 res_assigned =
2429 (struct pci_resources_assigned *)&pkt->message;
2430 res_assigned->message_type.type =
2431 PCI_RESOURCES_ASSIGNED;
2432 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2433 } else {
2434 res_assigned2 =
2435 (struct pci_resources_assigned2 *)&pkt->message;
2436 res_assigned2->message_type.type =
2437 PCI_RESOURCES_ASSIGNED2;
2438 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2439 }
2440 put_pcichild(hpdev);
2441
2442 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2443 size_res, (unsigned long)pkt,
2444 VM_PKT_DATA_INBAND,
2445 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2446 if (!ret)
2447 ret = wait_for_response(hdev, &comp_pkt.host_event);
2448 if (ret)
2449 break;
2450
2451 if (comp_pkt.completion_status < 0) {
2452 ret = -EPROTO;
2453 dev_err(&hdev->device,
2454 "resource allocated returned 0x%x",
2455 comp_pkt.completion_status);
2456 break;
2457 }
2458 }
2459
2460 kfree(pkt);
2461 return ret;
2462 }
2463
2464 /**
2465 * hv_send_resources_released() - Report local resources
2466 * released
2467 * @hdev: VMBus's tracking struct for this root PCI bus
2468 *
2469 * Return: 0 on success, -errno on failure
2470 */
2471 static int hv_send_resources_released(struct hv_device *hdev)
2472 {
2473 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2474 struct pci_child_message pkt;
2475 struct hv_pci_dev *hpdev;
2476 u32 wslot;
2477 int ret;
2478
2479 for (wslot = 0; wslot < 256; wslot++) {
2480 hpdev = get_pcichild_wslot(hbus, wslot);
2481 if (!hpdev)
2482 continue;
2483
2484 memset(&pkt, 0, sizeof(pkt));
2485 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2486 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2487
2488 put_pcichild(hpdev);
2489
2490 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2491 VM_PKT_DATA_INBAND, 0);
2492 if (ret)
2493 return ret;
2494 }
2495
2496 return 0;
2497 }
2498
2499 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2500 {
2501 refcount_inc(&hbus->remove_lock);
2502 }
2503
2504 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2505 {
2506 if (refcount_dec_and_test(&hbus->remove_lock))
2507 complete(&hbus->remove_event);
2508 }
2509
2510 /**
2511 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2512 * @hdev: VMBus's tracking struct for this root PCI bus
2513 * @dev_id: Identifies the device itself
2514 *
2515 * Return: 0 on success, -errno on failure
2516 */
2517 static int hv_pci_probe(struct hv_device *hdev,
2518 const struct hv_vmbus_device_id *dev_id)
2519 {
2520 struct hv_pcibus_device *hbus;
2521 int ret;
2522
2523 /*
2524 * hv_pcibus_device contains the hypercall arguments for retargeting in
2525 * hv_irq_unmask(). Those must not cross a page boundary.
2526 */
2527 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2528
2529 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2530 if (!hbus)
2531 return -ENOMEM;
2532 hbus->state = hv_pcibus_init;
2533
2534 /*
2535 * The PCI bus "domain" is what is called "segment" in ACPI and
2536 * other specs. Pull it from the instance ID, to get something
2537 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2538 * do the same thing for consistency. Note that, since this code
2539 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2540 * that (1) the only domain in use for something that looks like
2541 * a physical PCI bus (which is actually emulated by the
2542 * hypervisor) is domain 0 and (2) there will be no overlap
2543 * between domains derived from these instance IDs in the same
2544 * VM.
2545 */
2546 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2547 hdev->dev_instance.b[8] << 8;
2548
2549 hbus->hdev = hdev;
2550 refcount_set(&hbus->remove_lock, 1);
2551 INIT_LIST_HEAD(&hbus->children);
2552 INIT_LIST_HEAD(&hbus->dr_list);
2553 INIT_LIST_HEAD(&hbus->resources_for_children);
2554 spin_lock_init(&hbus->config_lock);
2555 spin_lock_init(&hbus->device_list_lock);
2556 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2557 init_completion(&hbus->remove_event);
2558 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2559 hbus->sysdata.domain);
2560 if (!hbus->wq) {
2561 ret = -ENOMEM;
2562 goto free_bus;
2563 }
2564
2565 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2566 hv_pci_onchannelcallback, hbus);
2567 if (ret)
2568 goto destroy_wq;
2569
2570 hv_set_drvdata(hdev, hbus);
2571
2572 ret = hv_pci_protocol_negotiation(hdev);
2573 if (ret)
2574 goto close;
2575
2576 ret = hv_allocate_config_window(hbus);
2577 if (ret)
2578 goto close;
2579
2580 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2581 PCI_CONFIG_MMIO_LENGTH);
2582 if (!hbus->cfg_addr) {
2583 dev_err(&hdev->device,
2584 "Unable to map a virtual address for config space\n");
2585 ret = -ENOMEM;
2586 goto free_config;
2587 }
2588
2589 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2590 if (!hbus->sysdata.fwnode) {
2591 ret = -ENOMEM;
2592 goto unmap;
2593 }
2594
2595 ret = hv_pcie_init_irq_domain(hbus);
2596 if (ret)
2597 goto free_fwnode;
2598
2599 ret = hv_pci_query_relations(hdev);
2600 if (ret)
2601 goto free_irq_domain;
2602
2603 ret = hv_pci_enter_d0(hdev);
2604 if (ret)
2605 goto free_irq_domain;
2606
2607 ret = hv_pci_allocate_bridge_windows(hbus);
2608 if (ret)
2609 goto free_irq_domain;
2610
2611 ret = hv_send_resources_allocated(hdev);
2612 if (ret)
2613 goto free_windows;
2614
2615 prepopulate_bars(hbus);
2616
2617 hbus->state = hv_pcibus_probed;
2618
2619 ret = create_root_hv_pci_bus(hbus);
2620 if (ret)
2621 goto free_windows;
2622
2623 return 0;
2624
2625 free_windows:
2626 hv_pci_free_bridge_windows(hbus);
2627 free_irq_domain:
2628 irq_domain_remove(hbus->irq_domain);
2629 free_fwnode:
2630 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2631 unmap:
2632 iounmap(hbus->cfg_addr);
2633 free_config:
2634 hv_free_config_window(hbus);
2635 close:
2636 vmbus_close(hdev->channel);
2637 destroy_wq:
2638 destroy_workqueue(hbus->wq);
2639 free_bus:
2640 free_page((unsigned long)hbus);
2641 return ret;
2642 }
2643
2644 static void hv_pci_bus_exit(struct hv_device *hdev)
2645 {
2646 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2647 struct {
2648 struct pci_packet teardown_packet;
2649 u8 buffer[sizeof(struct pci_message)];
2650 } pkt;
2651 struct pci_bus_relations relations;
2652 struct hv_pci_compl comp_pkt;
2653 int ret;
2654
2655 /*
2656 * After the host sends the RESCIND_CHANNEL message, it doesn't
2657 * access the per-channel ringbuffer any longer.
2658 */
2659 if (hdev->channel->rescind)
2660 return;
2661
2662 /* Delete any children which might still exist. */
2663 memset(&relations, 0, sizeof(relations));
2664 hv_pci_devices_present(hbus, &relations);
2665
2666 ret = hv_send_resources_released(hdev);
2667 if (ret)
2668 dev_err(&hdev->device,
2669 "Couldn't send resources released packet(s)\n");
2670
2671 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2672 init_completion(&comp_pkt.host_event);
2673 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2674 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2675 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2676
2677 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2678 sizeof(struct pci_message),
2679 (unsigned long)&pkt.teardown_packet,
2680 VM_PKT_DATA_INBAND,
2681 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2682 if (!ret)
2683 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2684 }
2685
2686 /**
2687 * hv_pci_remove() - Remove routine for this VMBus channel
2688 * @hdev: VMBus's tracking struct for this root PCI bus
2689 *
2690 * Return: 0 on success, -errno on failure
2691 */
2692 static int hv_pci_remove(struct hv_device *hdev)
2693 {
2694 struct hv_pcibus_device *hbus;
2695
2696 hbus = hv_get_drvdata(hdev);
2697 if (hbus->state == hv_pcibus_installed) {
2698 /* Remove the bus from PCI's point of view. */
2699 pci_lock_rescan_remove();
2700 pci_stop_root_bus(hbus->pci_bus);
2701 pci_remove_root_bus(hbus->pci_bus);
2702 hv_pci_remove_slots(hbus);
2703 pci_unlock_rescan_remove();
2704 hbus->state = hv_pcibus_removed;
2705 }
2706
2707 hv_pci_bus_exit(hdev);
2708
2709 vmbus_close(hdev->channel);
2710
2711 iounmap(hbus->cfg_addr);
2712 hv_free_config_window(hbus);
2713 pci_free_resource_list(&hbus->resources_for_children);
2714 hv_pci_free_bridge_windows(hbus);
2715 irq_domain_remove(hbus->irq_domain);
2716 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2717 put_hvpcibus(hbus);
2718 wait_for_completion(&hbus->remove_event);
2719 destroy_workqueue(hbus->wq);
2720 free_page((unsigned long)hbus);
2721 return 0;
2722 }
2723
2724 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2725 /* PCI Pass-through Class ID */
2726 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2727 { HV_PCIE_GUID, },
2728 { },
2729 };
2730
2731 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2732
2733 static struct hv_driver hv_pci_drv = {
2734 .name = "hv_pci",
2735 .id_table = hv_pci_id_table,
2736 .probe = hv_pci_probe,
2737 .remove = hv_pci_remove,
2738 };
2739
2740 static void __exit exit_hv_pci_drv(void)
2741 {
2742 vmbus_driver_unregister(&hv_pci_drv);
2743 }
2744
2745 static int __init init_hv_pci_drv(void)
2746 {
2747 return vmbus_driver_register(&hv_pci_drv);
2748 }
2749
2750 module_init(init_hv_pci_drv);
2751 module_exit(exit_hv_pci_drv);
2752
2753 MODULE_DESCRIPTION("Hyper-V PCI");
2754 MODULE_LICENSE("GPL v2");