]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pci/dmar.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38
39 #define PREFIX "DMAR: "
40
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
44 */
45 LIST_HEAD(dmar_drhd_units);
46
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
49
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
51 {
52 /*
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
55 */
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
60 }
61
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
64 {
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
69
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
74
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
78 /*
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
81 */
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
87 }
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
94 }
95 path ++;
96 count --;
97 bus = pdev->subordinate;
98 }
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
105 }
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
114 }
115 *dev = pdev;
116 return 0;
117 }
118
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
121 {
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
126
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
137 }
138 if (*cnt == 0)
139 return 0;
140
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
144
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
156 }
157 index ++;
158 }
159 start += scope->length;
160 }
161
162 return 0;
163 }
164
165 /**
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
169 */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
176
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 if (!drhd->address) {
179 /* Promote an attitude of violence to a BIOS engineer today */
180 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
181 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
182 dmi_get_system_info(DMI_BIOS_VENDOR),
183 dmi_get_system_info(DMI_BIOS_VERSION),
184 dmi_get_system_info(DMI_PRODUCT_VERSION));
185 return -ENODEV;
186 }
187 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
188 if (!dmaru)
189 return -ENOMEM;
190
191 dmaru->hdr = header;
192 dmaru->reg_base_addr = drhd->address;
193 dmaru->segment = drhd->segment;
194 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
195
196 ret = alloc_iommu(dmaru);
197 if (ret) {
198 kfree(dmaru);
199 return ret;
200 }
201 dmar_register_drhd_unit(dmaru);
202 return 0;
203 }
204
205 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 {
207 struct acpi_dmar_hardware_unit *drhd;
208 int ret = 0;
209
210 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
211
212 if (dmaru->include_all)
213 return 0;
214
215 ret = dmar_parse_dev_scope((void *)(drhd + 1),
216 ((void *)drhd) + drhd->header.length,
217 &dmaru->devices_cnt, &dmaru->devices,
218 drhd->segment);
219 if (ret) {
220 list_del(&dmaru->list);
221 kfree(dmaru);
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_DMAR
227 LIST_HEAD(dmar_rmrr_units);
228
229 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
230 {
231 list_add(&rmrr->list, &dmar_rmrr_units);
232 }
233
234
235 static int __init
236 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
237 {
238 struct acpi_dmar_reserved_memory *rmrr;
239 struct dmar_rmrr_unit *rmrru;
240
241 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
242 if (!rmrru)
243 return -ENOMEM;
244
245 rmrru->hdr = header;
246 rmrr = (struct acpi_dmar_reserved_memory *)header;
247 rmrru->base_address = rmrr->base_address;
248 rmrru->end_address = rmrr->end_address;
249
250 dmar_register_rmrr_unit(rmrru);
251 return 0;
252 }
253
254 static int __init
255 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
256 {
257 struct acpi_dmar_reserved_memory *rmrr;
258 int ret;
259
260 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262 ((void *)rmrr) + rmrr->header.length,
263 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
264
265 if (ret || (rmrru->devices_cnt == 0)) {
266 list_del(&rmrru->list);
267 kfree(rmrru);
268 }
269 return ret;
270 }
271
272 static LIST_HEAD(dmar_atsr_units);
273
274 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
275 {
276 struct acpi_dmar_atsr *atsr;
277 struct dmar_atsr_unit *atsru;
278
279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
280 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
281 if (!atsru)
282 return -ENOMEM;
283
284 atsru->hdr = hdr;
285 atsru->include_all = atsr->flags & 0x1;
286
287 list_add(&atsru->list, &dmar_atsr_units);
288
289 return 0;
290 }
291
292 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
293 {
294 int rc;
295 struct acpi_dmar_atsr *atsr;
296
297 if (atsru->include_all)
298 return 0;
299
300 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
301 rc = dmar_parse_dev_scope((void *)(atsr + 1),
302 (void *)atsr + atsr->header.length,
303 &atsru->devices_cnt, &atsru->devices,
304 atsr->segment);
305 if (rc || !atsru->devices_cnt) {
306 list_del(&atsru->list);
307 kfree(atsru);
308 }
309
310 return rc;
311 }
312
313 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
314 {
315 int i;
316 struct pci_bus *bus;
317 struct acpi_dmar_atsr *atsr;
318 struct dmar_atsr_unit *atsru;
319
320 list_for_each_entry(atsru, &dmar_atsr_units, list) {
321 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
322 if (atsr->segment == pci_domain_nr(dev->bus))
323 goto found;
324 }
325
326 return 0;
327
328 found:
329 for (bus = dev->bus; bus; bus = bus->parent) {
330 struct pci_dev *bridge = bus->self;
331
332 if (!bridge || !bridge->is_pcie ||
333 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
334 return 0;
335
336 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
337 for (i = 0; i < atsru->devices_cnt; i++)
338 if (atsru->devices[i] == bridge)
339 return 1;
340 break;
341 }
342 }
343
344 if (atsru->include_all)
345 return 1;
346
347 return 0;
348 }
349 #endif
350
351 static void __init
352 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
353 {
354 struct acpi_dmar_hardware_unit *drhd;
355 struct acpi_dmar_reserved_memory *rmrr;
356 struct acpi_dmar_atsr *atsr;
357
358 switch (header->type) {
359 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
360 drhd = container_of(header, struct acpi_dmar_hardware_unit,
361 header);
362 printk (KERN_INFO PREFIX
363 "DRHD base: %#016Lx flags: %#x\n",
364 (unsigned long long)drhd->address, drhd->flags);
365 break;
366 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
367 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
368 header);
369 printk (KERN_INFO PREFIX
370 "RMRR base: %#016Lx end: %#016Lx\n",
371 (unsigned long long)rmrr->base_address,
372 (unsigned long long)rmrr->end_address);
373 break;
374 case ACPI_DMAR_TYPE_ATSR:
375 atsr = container_of(header, struct acpi_dmar_atsr, header);
376 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
377 break;
378 }
379 }
380
381 /**
382 * dmar_table_detect - checks to see if the platform supports DMAR devices
383 */
384 static int __init dmar_table_detect(void)
385 {
386 acpi_status status = AE_OK;
387
388 /* if we could find DMAR table, then there are DMAR devices */
389 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
390 (struct acpi_table_header **)&dmar_tbl,
391 &dmar_tbl_size);
392
393 if (ACPI_SUCCESS(status) && !dmar_tbl) {
394 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
395 status = AE_NOT_FOUND;
396 }
397
398 return (ACPI_SUCCESS(status) ? 1 : 0);
399 }
400
401 /**
402 * parse_dmar_table - parses the DMA reporting table
403 */
404 static int __init
405 parse_dmar_table(void)
406 {
407 struct acpi_table_dmar *dmar;
408 struct acpi_dmar_header *entry_header;
409 int ret = 0;
410
411 /*
412 * Do it again, earlier dmar_tbl mapping could be mapped with
413 * fixed map.
414 */
415 dmar_table_detect();
416
417 /*
418 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
419 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
420 */
421 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
422
423 dmar = (struct acpi_table_dmar *)dmar_tbl;
424 if (!dmar)
425 return -ENODEV;
426
427 if (dmar->width < PAGE_SHIFT - 1) {
428 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
429 return -EINVAL;
430 }
431
432 printk (KERN_INFO PREFIX "Host address width %d\n",
433 dmar->width + 1);
434
435 entry_header = (struct acpi_dmar_header *)(dmar + 1);
436 while (((unsigned long)entry_header) <
437 (((unsigned long)dmar) + dmar_tbl->length)) {
438 /* Avoid looping forever on bad ACPI tables */
439 if (entry_header->length == 0) {
440 printk(KERN_WARNING PREFIX
441 "Invalid 0-length structure\n");
442 ret = -EINVAL;
443 break;
444 }
445
446 dmar_table_print_dmar_entry(entry_header);
447
448 switch (entry_header->type) {
449 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
450 ret = dmar_parse_one_drhd(entry_header);
451 break;
452 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
453 #ifdef CONFIG_DMAR
454 ret = dmar_parse_one_rmrr(entry_header);
455 #endif
456 break;
457 case ACPI_DMAR_TYPE_ATSR:
458 #ifdef CONFIG_DMAR
459 ret = dmar_parse_one_atsr(entry_header);
460 #endif
461 break;
462 default:
463 printk(KERN_WARNING PREFIX
464 "Unknown DMAR structure type\n");
465 ret = 0; /* for forward compatibility */
466 break;
467 }
468 if (ret)
469 break;
470
471 entry_header = ((void *)entry_header + entry_header->length);
472 }
473 return ret;
474 }
475
476 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
477 struct pci_dev *dev)
478 {
479 int index;
480
481 while (dev) {
482 for (index = 0; index < cnt; index++)
483 if (dev == devices[index])
484 return 1;
485
486 /* Check our parent */
487 dev = dev->bus->self;
488 }
489
490 return 0;
491 }
492
493 struct dmar_drhd_unit *
494 dmar_find_matched_drhd_unit(struct pci_dev *dev)
495 {
496 struct dmar_drhd_unit *dmaru = NULL;
497 struct acpi_dmar_hardware_unit *drhd;
498
499 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
500 drhd = container_of(dmaru->hdr,
501 struct acpi_dmar_hardware_unit,
502 header);
503
504 if (dmaru->include_all &&
505 drhd->segment == pci_domain_nr(dev->bus))
506 return dmaru;
507
508 if (dmar_pci_device_match(dmaru->devices,
509 dmaru->devices_cnt, dev))
510 return dmaru;
511 }
512
513 return NULL;
514 }
515
516 int __init dmar_dev_scope_init(void)
517 {
518 struct dmar_drhd_unit *drhd, *drhd_n;
519 int ret = -ENODEV;
520
521 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
522 ret = dmar_parse_dev(drhd);
523 if (ret)
524 return ret;
525 }
526
527 #ifdef CONFIG_DMAR
528 {
529 struct dmar_rmrr_unit *rmrr, *rmrr_n;
530 struct dmar_atsr_unit *atsr, *atsr_n;
531
532 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
533 ret = rmrr_parse_dev(rmrr);
534 if (ret)
535 return ret;
536 }
537
538 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
539 ret = atsr_parse_dev(atsr);
540 if (ret)
541 return ret;
542 }
543 }
544 #endif
545
546 return ret;
547 }
548
549
550 int __init dmar_table_init(void)
551 {
552 static int dmar_table_initialized;
553 int ret;
554
555 if (dmar_table_initialized)
556 return 0;
557
558 dmar_table_initialized = 1;
559
560 ret = parse_dmar_table();
561 if (ret) {
562 if (ret != -ENODEV)
563 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
564 return ret;
565 }
566
567 if (list_empty(&dmar_drhd_units)) {
568 printk(KERN_INFO PREFIX "No DMAR devices found\n");
569 return -ENODEV;
570 }
571
572 #ifdef CONFIG_DMAR
573 if (list_empty(&dmar_rmrr_units))
574 printk(KERN_INFO PREFIX "No RMRR found\n");
575
576 if (list_empty(&dmar_atsr_units))
577 printk(KERN_INFO PREFIX "No ATSR found\n");
578 #endif
579
580 return 0;
581 }
582
583 void __init detect_intel_iommu(void)
584 {
585 int ret;
586
587 ret = dmar_table_detect();
588
589 {
590 #ifdef CONFIG_INTR_REMAP
591 struct acpi_table_dmar *dmar;
592 /*
593 * for now we will disable dma-remapping when interrupt
594 * remapping is enabled.
595 * When support for queued invalidation for IOTLB invalidation
596 * is added, we will not need this any more.
597 */
598 dmar = (struct acpi_table_dmar *) dmar_tbl;
599 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
600 printk(KERN_INFO
601 "Queued invalidation will be enabled to support "
602 "x2apic and Intr-remapping.\n");
603 #endif
604 #ifdef CONFIG_DMAR
605 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
606 !dmar_disabled)
607 iommu_detected = 1;
608 #endif
609 }
610 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
611 dmar_tbl = NULL;
612 }
613
614
615 int alloc_iommu(struct dmar_drhd_unit *drhd)
616 {
617 struct intel_iommu *iommu;
618 int map_size;
619 u32 ver;
620 static int iommu_allocated = 0;
621 int agaw = 0;
622 int msagaw = 0;
623
624 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
625 if (!iommu)
626 return -ENOMEM;
627
628 iommu->seq_id = iommu_allocated++;
629 sprintf (iommu->name, "dmar%d", iommu->seq_id);
630
631 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
632 if (!iommu->reg) {
633 printk(KERN_ERR "IOMMU: can't map the region\n");
634 goto error;
635 }
636 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
637 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
638
639 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
640 /* Promote an attitude of violence to a BIOS engineer today */
641 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
642 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
643 drhd->reg_base_addr,
644 dmi_get_system_info(DMI_BIOS_VENDOR),
645 dmi_get_system_info(DMI_BIOS_VERSION),
646 dmi_get_system_info(DMI_PRODUCT_VERSION));
647 goto err_unmap;
648 }
649
650 #ifdef CONFIG_DMAR
651 agaw = iommu_calculate_agaw(iommu);
652 if (agaw < 0) {
653 printk(KERN_ERR
654 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
655 iommu->seq_id);
656 goto err_unmap;
657 }
658 msagaw = iommu_calculate_max_sagaw(iommu);
659 if (msagaw < 0) {
660 printk(KERN_ERR
661 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
662 iommu->seq_id);
663 goto err_unmap;
664 }
665 #endif
666 iommu->agaw = agaw;
667 iommu->msagaw = msagaw;
668
669 /* the registers might be more than one page */
670 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
671 cap_max_fault_reg_offset(iommu->cap));
672 map_size = VTD_PAGE_ALIGN(map_size);
673 if (map_size > VTD_PAGE_SIZE) {
674 iounmap(iommu->reg);
675 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
676 if (!iommu->reg) {
677 printk(KERN_ERR "IOMMU: can't map the region\n");
678 goto error;
679 }
680 }
681
682 ver = readl(iommu->reg + DMAR_VER_REG);
683 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
684 (unsigned long long)drhd->reg_base_addr,
685 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
686 (unsigned long long)iommu->cap,
687 (unsigned long long)iommu->ecap);
688
689 spin_lock_init(&iommu->register_lock);
690
691 drhd->iommu = iommu;
692 return 0;
693
694 err_unmap:
695 iounmap(iommu->reg);
696 error:
697 kfree(iommu);
698 return -1;
699 }
700
701 void free_iommu(struct intel_iommu *iommu)
702 {
703 if (!iommu)
704 return;
705
706 #ifdef CONFIG_DMAR
707 free_dmar_iommu(iommu);
708 #endif
709
710 if (iommu->reg)
711 iounmap(iommu->reg);
712 kfree(iommu);
713 }
714
715 /*
716 * Reclaim all the submitted descriptors which have completed its work.
717 */
718 static inline void reclaim_free_desc(struct q_inval *qi)
719 {
720 while (qi->desc_status[qi->free_tail] == QI_DONE ||
721 qi->desc_status[qi->free_tail] == QI_ABORT) {
722 qi->desc_status[qi->free_tail] = QI_FREE;
723 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
724 qi->free_cnt++;
725 }
726 }
727
728 static int qi_check_fault(struct intel_iommu *iommu, int index)
729 {
730 u32 fault;
731 int head, tail;
732 struct q_inval *qi = iommu->qi;
733 int wait_index = (index + 1) % QI_LENGTH;
734
735 if (qi->desc_status[wait_index] == QI_ABORT)
736 return -EAGAIN;
737
738 fault = readl(iommu->reg + DMAR_FSTS_REG);
739
740 /*
741 * If IQE happens, the head points to the descriptor associated
742 * with the error. No new descriptors are fetched until the IQE
743 * is cleared.
744 */
745 if (fault & DMA_FSTS_IQE) {
746 head = readl(iommu->reg + DMAR_IQH_REG);
747 if ((head >> DMAR_IQ_SHIFT) == index) {
748 printk(KERN_ERR "VT-d detected invalid descriptor: "
749 "low=%llx, high=%llx\n",
750 (unsigned long long)qi->desc[index].low,
751 (unsigned long long)qi->desc[index].high);
752 memcpy(&qi->desc[index], &qi->desc[wait_index],
753 sizeof(struct qi_desc));
754 __iommu_flush_cache(iommu, &qi->desc[index],
755 sizeof(struct qi_desc));
756 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
757 return -EINVAL;
758 }
759 }
760
761 /*
762 * If ITE happens, all pending wait_desc commands are aborted.
763 * No new descriptors are fetched until the ITE is cleared.
764 */
765 if (fault & DMA_FSTS_ITE) {
766 head = readl(iommu->reg + DMAR_IQH_REG);
767 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
768 head |= 1;
769 tail = readl(iommu->reg + DMAR_IQT_REG);
770 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
771
772 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
773
774 do {
775 if (qi->desc_status[head] == QI_IN_USE)
776 qi->desc_status[head] = QI_ABORT;
777 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
778 } while (head != tail);
779
780 if (qi->desc_status[wait_index] == QI_ABORT)
781 return -EAGAIN;
782 }
783
784 if (fault & DMA_FSTS_ICE)
785 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
786
787 return 0;
788 }
789
790 /*
791 * Submit the queued invalidation descriptor to the remapping
792 * hardware unit and wait for its completion.
793 */
794 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
795 {
796 int rc;
797 struct q_inval *qi = iommu->qi;
798 struct qi_desc *hw, wait_desc;
799 int wait_index, index;
800 unsigned long flags;
801
802 if (!qi)
803 return 0;
804
805 hw = qi->desc;
806
807 restart:
808 rc = 0;
809
810 spin_lock_irqsave(&qi->q_lock, flags);
811 while (qi->free_cnt < 3) {
812 spin_unlock_irqrestore(&qi->q_lock, flags);
813 cpu_relax();
814 spin_lock_irqsave(&qi->q_lock, flags);
815 }
816
817 index = qi->free_head;
818 wait_index = (index + 1) % QI_LENGTH;
819
820 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
821
822 hw[index] = *desc;
823
824 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
825 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
826 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
827
828 hw[wait_index] = wait_desc;
829
830 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
831 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
832
833 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
834 qi->free_cnt -= 2;
835
836 /*
837 * update the HW tail register indicating the presence of
838 * new descriptors.
839 */
840 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
841
842 while (qi->desc_status[wait_index] != QI_DONE) {
843 /*
844 * We will leave the interrupts disabled, to prevent interrupt
845 * context to queue another cmd while a cmd is already submitted
846 * and waiting for completion on this cpu. This is to avoid
847 * a deadlock where the interrupt context can wait indefinitely
848 * for free slots in the queue.
849 */
850 rc = qi_check_fault(iommu, index);
851 if (rc)
852 break;
853
854 spin_unlock(&qi->q_lock);
855 cpu_relax();
856 spin_lock(&qi->q_lock);
857 }
858
859 qi->desc_status[index] = QI_DONE;
860
861 reclaim_free_desc(qi);
862 spin_unlock_irqrestore(&qi->q_lock, flags);
863
864 if (rc == -EAGAIN)
865 goto restart;
866
867 return rc;
868 }
869
870 /*
871 * Flush the global interrupt entry cache.
872 */
873 void qi_global_iec(struct intel_iommu *iommu)
874 {
875 struct qi_desc desc;
876
877 desc.low = QI_IEC_TYPE;
878 desc.high = 0;
879
880 /* should never fail */
881 qi_submit_sync(&desc, iommu);
882 }
883
884 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
885 u64 type)
886 {
887 struct qi_desc desc;
888
889 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
890 | QI_CC_GRAN(type) | QI_CC_TYPE;
891 desc.high = 0;
892
893 qi_submit_sync(&desc, iommu);
894 }
895
896 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
897 unsigned int size_order, u64 type)
898 {
899 u8 dw = 0, dr = 0;
900
901 struct qi_desc desc;
902 int ih = 0;
903
904 if (cap_write_drain(iommu->cap))
905 dw = 1;
906
907 if (cap_read_drain(iommu->cap))
908 dr = 1;
909
910 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
911 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
912 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
913 | QI_IOTLB_AM(size_order);
914
915 qi_submit_sync(&desc, iommu);
916 }
917
918 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
919 u64 addr, unsigned mask)
920 {
921 struct qi_desc desc;
922
923 if (mask) {
924 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
925 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
926 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
927 } else
928 desc.high = QI_DEV_IOTLB_ADDR(addr);
929
930 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
931 qdep = 0;
932
933 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
934 QI_DIOTLB_TYPE;
935
936 qi_submit_sync(&desc, iommu);
937 }
938
939 /*
940 * Disable Queued Invalidation interface.
941 */
942 void dmar_disable_qi(struct intel_iommu *iommu)
943 {
944 unsigned long flags;
945 u32 sts;
946 cycles_t start_time = get_cycles();
947
948 if (!ecap_qis(iommu->ecap))
949 return;
950
951 spin_lock_irqsave(&iommu->register_lock, flags);
952
953 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
954 if (!(sts & DMA_GSTS_QIES))
955 goto end;
956
957 /*
958 * Give a chance to HW to complete the pending invalidation requests.
959 */
960 while ((readl(iommu->reg + DMAR_IQT_REG) !=
961 readl(iommu->reg + DMAR_IQH_REG)) &&
962 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
963 cpu_relax();
964
965 iommu->gcmd &= ~DMA_GCMD_QIE;
966 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
967
968 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
969 !(sts & DMA_GSTS_QIES), sts);
970 end:
971 spin_unlock_irqrestore(&iommu->register_lock, flags);
972 }
973
974 /*
975 * Enable queued invalidation.
976 */
977 static void __dmar_enable_qi(struct intel_iommu *iommu)
978 {
979 u32 sts;
980 unsigned long flags;
981 struct q_inval *qi = iommu->qi;
982
983 qi->free_head = qi->free_tail = 0;
984 qi->free_cnt = QI_LENGTH;
985
986 spin_lock_irqsave(&iommu->register_lock, flags);
987
988 /* write zero to the tail reg */
989 writel(0, iommu->reg + DMAR_IQT_REG);
990
991 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
992
993 iommu->gcmd |= DMA_GCMD_QIE;
994 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
995
996 /* Make sure hardware complete it */
997 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
998
999 spin_unlock_irqrestore(&iommu->register_lock, flags);
1000 }
1001
1002 /*
1003 * Enable Queued Invalidation interface. This is a must to support
1004 * interrupt-remapping. Also used by DMA-remapping, which replaces
1005 * register based IOTLB invalidation.
1006 */
1007 int dmar_enable_qi(struct intel_iommu *iommu)
1008 {
1009 struct q_inval *qi;
1010
1011 if (!ecap_qis(iommu->ecap))
1012 return -ENOENT;
1013
1014 /*
1015 * queued invalidation is already setup and enabled.
1016 */
1017 if (iommu->qi)
1018 return 0;
1019
1020 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1021 if (!iommu->qi)
1022 return -ENOMEM;
1023
1024 qi = iommu->qi;
1025
1026 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1027 if (!qi->desc) {
1028 kfree(qi);
1029 iommu->qi = 0;
1030 return -ENOMEM;
1031 }
1032
1033 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1034 if (!qi->desc_status) {
1035 free_page((unsigned long) qi->desc);
1036 kfree(qi);
1037 iommu->qi = 0;
1038 return -ENOMEM;
1039 }
1040
1041 qi->free_head = qi->free_tail = 0;
1042 qi->free_cnt = QI_LENGTH;
1043
1044 spin_lock_init(&qi->q_lock);
1045
1046 __dmar_enable_qi(iommu);
1047
1048 return 0;
1049 }
1050
1051 /* iommu interrupt handling. Most stuff are MSI-like. */
1052
1053 enum faulttype {
1054 DMA_REMAP,
1055 INTR_REMAP,
1056 UNKNOWN,
1057 };
1058
1059 static const char *dma_remap_fault_reasons[] =
1060 {
1061 "Software",
1062 "Present bit in root entry is clear",
1063 "Present bit in context entry is clear",
1064 "Invalid context entry",
1065 "Access beyond MGAW",
1066 "PTE Write access is not set",
1067 "PTE Read access is not set",
1068 "Next page table ptr is invalid",
1069 "Root table address invalid",
1070 "Context table ptr is invalid",
1071 "non-zero reserved fields in RTP",
1072 "non-zero reserved fields in CTP",
1073 "non-zero reserved fields in PTE",
1074 };
1075
1076 static const char *intr_remap_fault_reasons[] =
1077 {
1078 "Detected reserved fields in the decoded interrupt-remapped request",
1079 "Interrupt index exceeded the interrupt-remapping table size",
1080 "Present field in the IRTE entry is clear",
1081 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1082 "Detected reserved fields in the IRTE entry",
1083 "Blocked a compatibility format interrupt request",
1084 "Blocked an interrupt request due to source-id verification failure",
1085 };
1086
1087 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1088
1089 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1090 {
1091 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1092 ARRAY_SIZE(intr_remap_fault_reasons))) {
1093 *fault_type = INTR_REMAP;
1094 return intr_remap_fault_reasons[fault_reason - 0x20];
1095 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1096 *fault_type = DMA_REMAP;
1097 return dma_remap_fault_reasons[fault_reason];
1098 } else {
1099 *fault_type = UNKNOWN;
1100 return "Unknown";
1101 }
1102 }
1103
1104 void dmar_msi_unmask(unsigned int irq)
1105 {
1106 struct intel_iommu *iommu = get_irq_data(irq);
1107 unsigned long flag;
1108
1109 /* unmask it */
1110 spin_lock_irqsave(&iommu->register_lock, flag);
1111 writel(0, iommu->reg + DMAR_FECTL_REG);
1112 /* Read a reg to force flush the post write */
1113 readl(iommu->reg + DMAR_FECTL_REG);
1114 spin_unlock_irqrestore(&iommu->register_lock, flag);
1115 }
1116
1117 void dmar_msi_mask(unsigned int irq)
1118 {
1119 unsigned long flag;
1120 struct intel_iommu *iommu = get_irq_data(irq);
1121
1122 /* mask it */
1123 spin_lock_irqsave(&iommu->register_lock, flag);
1124 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1125 /* Read a reg to force flush the post write */
1126 readl(iommu->reg + DMAR_FECTL_REG);
1127 spin_unlock_irqrestore(&iommu->register_lock, flag);
1128 }
1129
1130 void dmar_msi_write(int irq, struct msi_msg *msg)
1131 {
1132 struct intel_iommu *iommu = get_irq_data(irq);
1133 unsigned long flag;
1134
1135 spin_lock_irqsave(&iommu->register_lock, flag);
1136 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1137 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1138 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1139 spin_unlock_irqrestore(&iommu->register_lock, flag);
1140 }
1141
1142 void dmar_msi_read(int irq, struct msi_msg *msg)
1143 {
1144 struct intel_iommu *iommu = get_irq_data(irq);
1145 unsigned long flag;
1146
1147 spin_lock_irqsave(&iommu->register_lock, flag);
1148 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1149 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1150 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1151 spin_unlock_irqrestore(&iommu->register_lock, flag);
1152 }
1153
1154 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1155 u8 fault_reason, u16 source_id, unsigned long long addr)
1156 {
1157 const char *reason;
1158 int fault_type;
1159
1160 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1161
1162 if (fault_type == INTR_REMAP)
1163 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1164 "fault index %llx\n"
1165 "INTR-REMAP:[fault reason %02d] %s\n",
1166 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1167 PCI_FUNC(source_id & 0xFF), addr >> 48,
1168 fault_reason, reason);
1169 else
1170 printk(KERN_ERR
1171 "DMAR:[%s] Request device [%02x:%02x.%d] "
1172 "fault addr %llx \n"
1173 "DMAR:[fault reason %02d] %s\n",
1174 (type ? "DMA Read" : "DMA Write"),
1175 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1176 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1177 return 0;
1178 }
1179
1180 #define PRIMARY_FAULT_REG_LEN (16)
1181 irqreturn_t dmar_fault(int irq, void *dev_id)
1182 {
1183 struct intel_iommu *iommu = dev_id;
1184 int reg, fault_index;
1185 u32 fault_status;
1186 unsigned long flag;
1187
1188 spin_lock_irqsave(&iommu->register_lock, flag);
1189 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1190 if (fault_status)
1191 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1192 fault_status);
1193
1194 /* TBD: ignore advanced fault log currently */
1195 if (!(fault_status & DMA_FSTS_PPF))
1196 goto clear_rest;
1197
1198 fault_index = dma_fsts_fault_record_index(fault_status);
1199 reg = cap_fault_reg_offset(iommu->cap);
1200 while (1) {
1201 u8 fault_reason;
1202 u16 source_id;
1203 u64 guest_addr;
1204 int type;
1205 u32 data;
1206
1207 /* highest 32 bits */
1208 data = readl(iommu->reg + reg +
1209 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1210 if (!(data & DMA_FRCD_F))
1211 break;
1212
1213 fault_reason = dma_frcd_fault_reason(data);
1214 type = dma_frcd_type(data);
1215
1216 data = readl(iommu->reg + reg +
1217 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1218 source_id = dma_frcd_source_id(data);
1219
1220 guest_addr = dmar_readq(iommu->reg + reg +
1221 fault_index * PRIMARY_FAULT_REG_LEN);
1222 guest_addr = dma_frcd_page_addr(guest_addr);
1223 /* clear the fault */
1224 writel(DMA_FRCD_F, iommu->reg + reg +
1225 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1226
1227 spin_unlock_irqrestore(&iommu->register_lock, flag);
1228
1229 dmar_fault_do_one(iommu, type, fault_reason,
1230 source_id, guest_addr);
1231
1232 fault_index++;
1233 if (fault_index >= cap_num_fault_regs(iommu->cap))
1234 fault_index = 0;
1235 spin_lock_irqsave(&iommu->register_lock, flag);
1236 }
1237 clear_rest:
1238 /* clear all the other faults */
1239 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1240 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1241
1242 spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 return IRQ_HANDLED;
1244 }
1245
1246 int dmar_set_interrupt(struct intel_iommu *iommu)
1247 {
1248 int irq, ret;
1249
1250 /*
1251 * Check if the fault interrupt is already initialized.
1252 */
1253 if (iommu->irq)
1254 return 0;
1255
1256 irq = create_irq();
1257 if (!irq) {
1258 printk(KERN_ERR "IOMMU: no free vectors\n");
1259 return -EINVAL;
1260 }
1261
1262 set_irq_data(irq, iommu);
1263 iommu->irq = irq;
1264
1265 ret = arch_setup_dmar_msi(irq);
1266 if (ret) {
1267 set_irq_data(irq, NULL);
1268 iommu->irq = 0;
1269 destroy_irq(irq);
1270 return ret;
1271 }
1272
1273 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1274 if (ret)
1275 printk(KERN_ERR "IOMMU: can't request irq\n");
1276 return ret;
1277 }
1278
1279 int __init enable_drhd_fault_handling(void)
1280 {
1281 struct dmar_drhd_unit *drhd;
1282
1283 /*
1284 * Enable fault control interrupt.
1285 */
1286 for_each_drhd_unit(drhd) {
1287 int ret;
1288 struct intel_iommu *iommu = drhd->iommu;
1289 ret = dmar_set_interrupt(iommu);
1290
1291 if (ret) {
1292 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1293 " interrupt, ret %d\n",
1294 (unsigned long long)drhd->reg_base_addr, ret);
1295 return -1;
1296 }
1297 }
1298
1299 return 0;
1300 }
1301
1302 /*
1303 * Re-enable Queued Invalidation interface.
1304 */
1305 int dmar_reenable_qi(struct intel_iommu *iommu)
1306 {
1307 if (!ecap_qis(iommu->ecap))
1308 return -ENOENT;
1309
1310 if (!iommu->qi)
1311 return -ENOENT;
1312
1313 /*
1314 * First disable queued invalidation.
1315 */
1316 dmar_disable_qi(iommu);
1317 /*
1318 * Then enable queued invalidation again. Since there is no pending
1319 * invalidation requests now, it's safe to re-enable queued
1320 * invalidation.
1321 */
1322 __dmar_enable_qi(iommu);
1323
1324 return 0;
1325 }
1326
1327 /*
1328 * Check interrupt remapping support in DMAR table description.
1329 */
1330 int dmar_ir_support(void)
1331 {
1332 struct acpi_table_dmar *dmar;
1333 dmar = (struct acpi_table_dmar *)dmar_tbl;
1334 return dmar->flags & 0x1;
1335 }