]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/dmar.c
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38
39 #define PREFIX "DMAR: "
40
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
44 */
45 LIST_HEAD(dmar_drhd_units);
46
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
49
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
51 {
52 /*
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
55 */
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
60 }
61
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
64 {
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
69
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
74
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
78 /*
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
81 */
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
87 }
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
94 }
95 path ++;
96 count --;
97 bus = pdev->subordinate;
98 }
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
105 }
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
114 }
115 *dev = pdev;
116 return 0;
117 }
118
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
121 {
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
126
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
137 }
138 if (*cnt == 0)
139 return 0;
140
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
144
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
156 }
157 index ++;
158 }
159 start += scope->length;
160 }
161
162 return 0;
163 }
164
165 /**
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
169 */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
176
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 if (!drhd->address) {
179 /* Promote an attitude of violence to a BIOS engineer today */
180 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
181 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
182 dmi_get_system_info(DMI_BIOS_VENDOR),
183 dmi_get_system_info(DMI_BIOS_VERSION),
184 dmi_get_system_info(DMI_PRODUCT_VERSION));
185 return -ENODEV;
186 }
187 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
188 if (!dmaru)
189 return -ENOMEM;
190
191 dmaru->hdr = header;
192 dmaru->reg_base_addr = drhd->address;
193 dmaru->segment = drhd->segment;
194 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
195
196 ret = alloc_iommu(dmaru);
197 if (ret) {
198 kfree(dmaru);
199 return ret;
200 }
201 dmar_register_drhd_unit(dmaru);
202 return 0;
203 }
204
205 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 {
207 struct acpi_dmar_hardware_unit *drhd;
208 int ret = 0;
209
210 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
211
212 if (dmaru->include_all)
213 return 0;
214
215 ret = dmar_parse_dev_scope((void *)(drhd + 1),
216 ((void *)drhd) + drhd->header.length,
217 &dmaru->devices_cnt, &dmaru->devices,
218 drhd->segment);
219 if (ret) {
220 list_del(&dmaru->list);
221 kfree(dmaru);
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_DMAR
227 LIST_HEAD(dmar_rmrr_units);
228
229 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
230 {
231 list_add(&rmrr->list, &dmar_rmrr_units);
232 }
233
234
235 static int __init
236 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
237 {
238 struct acpi_dmar_reserved_memory *rmrr;
239 struct dmar_rmrr_unit *rmrru;
240
241 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
242 if (!rmrru)
243 return -ENOMEM;
244
245 rmrru->hdr = header;
246 rmrr = (struct acpi_dmar_reserved_memory *)header;
247 rmrru->base_address = rmrr->base_address;
248 rmrru->end_address = rmrr->end_address;
249
250 dmar_register_rmrr_unit(rmrru);
251 return 0;
252 }
253
254 static int __init
255 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
256 {
257 struct acpi_dmar_reserved_memory *rmrr;
258 int ret;
259
260 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262 ((void *)rmrr) + rmrr->header.length,
263 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
264
265 if (ret || (rmrru->devices_cnt == 0)) {
266 list_del(&rmrru->list);
267 kfree(rmrru);
268 }
269 return ret;
270 }
271
272 static LIST_HEAD(dmar_atsr_units);
273
274 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
275 {
276 struct acpi_dmar_atsr *atsr;
277 struct dmar_atsr_unit *atsru;
278
279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
280 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
281 if (!atsru)
282 return -ENOMEM;
283
284 atsru->hdr = hdr;
285 atsru->include_all = atsr->flags & 0x1;
286
287 list_add(&atsru->list, &dmar_atsr_units);
288
289 return 0;
290 }
291
292 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
293 {
294 int rc;
295 struct acpi_dmar_atsr *atsr;
296
297 if (atsru->include_all)
298 return 0;
299
300 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
301 rc = dmar_parse_dev_scope((void *)(atsr + 1),
302 (void *)atsr + atsr->header.length,
303 &atsru->devices_cnt, &atsru->devices,
304 atsr->segment);
305 if (rc || !atsru->devices_cnt) {
306 list_del(&atsru->list);
307 kfree(atsru);
308 }
309
310 return rc;
311 }
312
313 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
314 {
315 int i;
316 struct pci_bus *bus;
317 struct acpi_dmar_atsr *atsr;
318 struct dmar_atsr_unit *atsru;
319
320 list_for_each_entry(atsru, &dmar_atsr_units, list) {
321 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
322 if (atsr->segment == pci_domain_nr(dev->bus))
323 goto found;
324 }
325
326 return 0;
327
328 found:
329 for (bus = dev->bus; bus; bus = bus->parent) {
330 struct pci_dev *bridge = bus->self;
331
332 if (!bridge || !bridge->is_pcie ||
333 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
334 return 0;
335
336 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
337 for (i = 0; i < atsru->devices_cnt; i++)
338 if (atsru->devices[i] == bridge)
339 return 1;
340 break;
341 }
342 }
343
344 if (atsru->include_all)
345 return 1;
346
347 return 0;
348 }
349 #endif
350
351 static void __init
352 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
353 {
354 struct acpi_dmar_hardware_unit *drhd;
355 struct acpi_dmar_reserved_memory *rmrr;
356 struct acpi_dmar_atsr *atsr;
357 struct acpi_dmar_rhsa *rhsa;
358
359 switch (header->type) {
360 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
361 drhd = container_of(header, struct acpi_dmar_hardware_unit,
362 header);
363 printk (KERN_INFO PREFIX
364 "DRHD base: %#016Lx flags: %#x\n",
365 (unsigned long long)drhd->address, drhd->flags);
366 break;
367 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
368 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
369 header);
370 printk (KERN_INFO PREFIX
371 "RMRR base: %#016Lx end: %#016Lx\n",
372 (unsigned long long)rmrr->base_address,
373 (unsigned long long)rmrr->end_address);
374 break;
375 case ACPI_DMAR_TYPE_ATSR:
376 atsr = container_of(header, struct acpi_dmar_atsr, header);
377 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
378 break;
379 case ACPI_DMAR_HARDWARE_AFFINITY:
380 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
381 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
382 (unsigned long long)rhsa->base_address,
383 rhsa->proximity_domain);
384 break;
385 }
386 }
387
388 /**
389 * dmar_table_detect - checks to see if the platform supports DMAR devices
390 */
391 static int __init dmar_table_detect(void)
392 {
393 acpi_status status = AE_OK;
394
395 /* if we could find DMAR table, then there are DMAR devices */
396 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
397 (struct acpi_table_header **)&dmar_tbl,
398 &dmar_tbl_size);
399
400 if (ACPI_SUCCESS(status) && !dmar_tbl) {
401 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
402 status = AE_NOT_FOUND;
403 }
404
405 return (ACPI_SUCCESS(status) ? 1 : 0);
406 }
407
408 /**
409 * parse_dmar_table - parses the DMA reporting table
410 */
411 static int __init
412 parse_dmar_table(void)
413 {
414 struct acpi_table_dmar *dmar;
415 struct acpi_dmar_header *entry_header;
416 int ret = 0;
417
418 /*
419 * Do it again, earlier dmar_tbl mapping could be mapped with
420 * fixed map.
421 */
422 dmar_table_detect();
423
424 /*
425 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
426 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
427 */
428 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
429
430 dmar = (struct acpi_table_dmar *)dmar_tbl;
431 if (!dmar)
432 return -ENODEV;
433
434 if (dmar->width < PAGE_SHIFT - 1) {
435 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
436 return -EINVAL;
437 }
438
439 printk (KERN_INFO PREFIX "Host address width %d\n",
440 dmar->width + 1);
441
442 entry_header = (struct acpi_dmar_header *)(dmar + 1);
443 while (((unsigned long)entry_header) <
444 (((unsigned long)dmar) + dmar_tbl->length)) {
445 /* Avoid looping forever on bad ACPI tables */
446 if (entry_header->length == 0) {
447 printk(KERN_WARNING PREFIX
448 "Invalid 0-length structure\n");
449 ret = -EINVAL;
450 break;
451 }
452
453 dmar_table_print_dmar_entry(entry_header);
454
455 switch (entry_header->type) {
456 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
457 ret = dmar_parse_one_drhd(entry_header);
458 break;
459 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
460 #ifdef CONFIG_DMAR
461 ret = dmar_parse_one_rmrr(entry_header);
462 #endif
463 break;
464 case ACPI_DMAR_TYPE_ATSR:
465 #ifdef CONFIG_DMAR
466 ret = dmar_parse_one_atsr(entry_header);
467 #endif
468 break;
469 case ACPI_DMAR_HARDWARE_AFFINITY:
470 /* We don't do anything with RHSA (yet?) */
471 break;
472 default:
473 printk(KERN_WARNING PREFIX
474 "Unknown DMAR structure type %d\n",
475 entry_header->type);
476 ret = 0; /* for forward compatibility */
477 break;
478 }
479 if (ret)
480 break;
481
482 entry_header = ((void *)entry_header + entry_header->length);
483 }
484 return ret;
485 }
486
487 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
488 struct pci_dev *dev)
489 {
490 int index;
491
492 while (dev) {
493 for (index = 0; index < cnt; index++)
494 if (dev == devices[index])
495 return 1;
496
497 /* Check our parent */
498 dev = dev->bus->self;
499 }
500
501 return 0;
502 }
503
504 struct dmar_drhd_unit *
505 dmar_find_matched_drhd_unit(struct pci_dev *dev)
506 {
507 struct dmar_drhd_unit *dmaru = NULL;
508 struct acpi_dmar_hardware_unit *drhd;
509
510 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
511 drhd = container_of(dmaru->hdr,
512 struct acpi_dmar_hardware_unit,
513 header);
514
515 if (dmaru->include_all &&
516 drhd->segment == pci_domain_nr(dev->bus))
517 return dmaru;
518
519 if (dmar_pci_device_match(dmaru->devices,
520 dmaru->devices_cnt, dev))
521 return dmaru;
522 }
523
524 return NULL;
525 }
526
527 int __init dmar_dev_scope_init(void)
528 {
529 struct dmar_drhd_unit *drhd, *drhd_n;
530 int ret = -ENODEV;
531
532 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
533 ret = dmar_parse_dev(drhd);
534 if (ret)
535 return ret;
536 }
537
538 #ifdef CONFIG_DMAR
539 {
540 struct dmar_rmrr_unit *rmrr, *rmrr_n;
541 struct dmar_atsr_unit *atsr, *atsr_n;
542
543 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
544 ret = rmrr_parse_dev(rmrr);
545 if (ret)
546 return ret;
547 }
548
549 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
550 ret = atsr_parse_dev(atsr);
551 if (ret)
552 return ret;
553 }
554 }
555 #endif
556
557 return ret;
558 }
559
560
561 int __init dmar_table_init(void)
562 {
563 static int dmar_table_initialized;
564 int ret;
565
566 if (dmar_table_initialized)
567 return 0;
568
569 dmar_table_initialized = 1;
570
571 ret = parse_dmar_table();
572 if (ret) {
573 if (ret != -ENODEV)
574 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
575 return ret;
576 }
577
578 if (list_empty(&dmar_drhd_units)) {
579 printk(KERN_INFO PREFIX "No DMAR devices found\n");
580 return -ENODEV;
581 }
582
583 #ifdef CONFIG_DMAR
584 if (list_empty(&dmar_rmrr_units))
585 printk(KERN_INFO PREFIX "No RMRR found\n");
586
587 if (list_empty(&dmar_atsr_units))
588 printk(KERN_INFO PREFIX "No ATSR found\n");
589 #endif
590
591 return 0;
592 }
593
594 void __init detect_intel_iommu(void)
595 {
596 int ret;
597
598 ret = dmar_table_detect();
599
600 {
601 #ifdef CONFIG_INTR_REMAP
602 struct acpi_table_dmar *dmar;
603 /*
604 * for now we will disable dma-remapping when interrupt
605 * remapping is enabled.
606 * When support for queued invalidation for IOTLB invalidation
607 * is added, we will not need this any more.
608 */
609 dmar = (struct acpi_table_dmar *) dmar_tbl;
610 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
611 printk(KERN_INFO
612 "Queued invalidation will be enabled to support "
613 "x2apic and Intr-remapping.\n");
614 #endif
615 #ifdef CONFIG_DMAR
616 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
617 !dmar_disabled)
618 iommu_detected = 1;
619 #endif
620 }
621 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
622 dmar_tbl = NULL;
623 }
624
625
626 int alloc_iommu(struct dmar_drhd_unit *drhd)
627 {
628 struct intel_iommu *iommu;
629 int map_size;
630 u32 ver;
631 static int iommu_allocated = 0;
632 int agaw = 0;
633 int msagaw = 0;
634
635 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
636 if (!iommu)
637 return -ENOMEM;
638
639 iommu->seq_id = iommu_allocated++;
640 sprintf (iommu->name, "dmar%d", iommu->seq_id);
641
642 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
643 if (!iommu->reg) {
644 printk(KERN_ERR "IOMMU: can't map the region\n");
645 goto error;
646 }
647 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
648 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
649
650 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
651 /* Promote an attitude of violence to a BIOS engineer today */
652 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
653 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
654 drhd->reg_base_addr,
655 dmi_get_system_info(DMI_BIOS_VENDOR),
656 dmi_get_system_info(DMI_BIOS_VERSION),
657 dmi_get_system_info(DMI_PRODUCT_VERSION));
658 goto err_unmap;
659 }
660
661 #ifdef CONFIG_DMAR
662 agaw = iommu_calculate_agaw(iommu);
663 if (agaw < 0) {
664 printk(KERN_ERR
665 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
666 iommu->seq_id);
667 goto err_unmap;
668 }
669 msagaw = iommu_calculate_max_sagaw(iommu);
670 if (msagaw < 0) {
671 printk(KERN_ERR
672 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
673 iommu->seq_id);
674 goto err_unmap;
675 }
676 #endif
677 iommu->agaw = agaw;
678 iommu->msagaw = msagaw;
679
680 /* the registers might be more than one page */
681 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
682 cap_max_fault_reg_offset(iommu->cap));
683 map_size = VTD_PAGE_ALIGN(map_size);
684 if (map_size > VTD_PAGE_SIZE) {
685 iounmap(iommu->reg);
686 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
687 if (!iommu->reg) {
688 printk(KERN_ERR "IOMMU: can't map the region\n");
689 goto error;
690 }
691 }
692
693 ver = readl(iommu->reg + DMAR_VER_REG);
694 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
695 (unsigned long long)drhd->reg_base_addr,
696 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
697 (unsigned long long)iommu->cap,
698 (unsigned long long)iommu->ecap);
699
700 spin_lock_init(&iommu->register_lock);
701
702 drhd->iommu = iommu;
703 return 0;
704
705 err_unmap:
706 iounmap(iommu->reg);
707 error:
708 kfree(iommu);
709 return -1;
710 }
711
712 void free_iommu(struct intel_iommu *iommu)
713 {
714 if (!iommu)
715 return;
716
717 #ifdef CONFIG_DMAR
718 free_dmar_iommu(iommu);
719 #endif
720
721 if (iommu->reg)
722 iounmap(iommu->reg);
723 kfree(iommu);
724 }
725
726 /*
727 * Reclaim all the submitted descriptors which have completed its work.
728 */
729 static inline void reclaim_free_desc(struct q_inval *qi)
730 {
731 while (qi->desc_status[qi->free_tail] == QI_DONE ||
732 qi->desc_status[qi->free_tail] == QI_ABORT) {
733 qi->desc_status[qi->free_tail] = QI_FREE;
734 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
735 qi->free_cnt++;
736 }
737 }
738
739 static int qi_check_fault(struct intel_iommu *iommu, int index)
740 {
741 u32 fault;
742 int head, tail;
743 struct q_inval *qi = iommu->qi;
744 int wait_index = (index + 1) % QI_LENGTH;
745
746 if (qi->desc_status[wait_index] == QI_ABORT)
747 return -EAGAIN;
748
749 fault = readl(iommu->reg + DMAR_FSTS_REG);
750
751 /*
752 * If IQE happens, the head points to the descriptor associated
753 * with the error. No new descriptors are fetched until the IQE
754 * is cleared.
755 */
756 if (fault & DMA_FSTS_IQE) {
757 head = readl(iommu->reg + DMAR_IQH_REG);
758 if ((head >> DMAR_IQ_SHIFT) == index) {
759 printk(KERN_ERR "VT-d detected invalid descriptor: "
760 "low=%llx, high=%llx\n",
761 (unsigned long long)qi->desc[index].low,
762 (unsigned long long)qi->desc[index].high);
763 memcpy(&qi->desc[index], &qi->desc[wait_index],
764 sizeof(struct qi_desc));
765 __iommu_flush_cache(iommu, &qi->desc[index],
766 sizeof(struct qi_desc));
767 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
768 return -EINVAL;
769 }
770 }
771
772 /*
773 * If ITE happens, all pending wait_desc commands are aborted.
774 * No new descriptors are fetched until the ITE is cleared.
775 */
776 if (fault & DMA_FSTS_ITE) {
777 head = readl(iommu->reg + DMAR_IQH_REG);
778 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
779 head |= 1;
780 tail = readl(iommu->reg + DMAR_IQT_REG);
781 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
782
783 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
784
785 do {
786 if (qi->desc_status[head] == QI_IN_USE)
787 qi->desc_status[head] = QI_ABORT;
788 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
789 } while (head != tail);
790
791 if (qi->desc_status[wait_index] == QI_ABORT)
792 return -EAGAIN;
793 }
794
795 if (fault & DMA_FSTS_ICE)
796 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
797
798 return 0;
799 }
800
801 /*
802 * Submit the queued invalidation descriptor to the remapping
803 * hardware unit and wait for its completion.
804 */
805 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
806 {
807 int rc;
808 struct q_inval *qi = iommu->qi;
809 struct qi_desc *hw, wait_desc;
810 int wait_index, index;
811 unsigned long flags;
812
813 if (!qi)
814 return 0;
815
816 hw = qi->desc;
817
818 restart:
819 rc = 0;
820
821 spin_lock_irqsave(&qi->q_lock, flags);
822 while (qi->free_cnt < 3) {
823 spin_unlock_irqrestore(&qi->q_lock, flags);
824 cpu_relax();
825 spin_lock_irqsave(&qi->q_lock, flags);
826 }
827
828 index = qi->free_head;
829 wait_index = (index + 1) % QI_LENGTH;
830
831 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
832
833 hw[index] = *desc;
834
835 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
836 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
837 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
838
839 hw[wait_index] = wait_desc;
840
841 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
842 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
843
844 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
845 qi->free_cnt -= 2;
846
847 /*
848 * update the HW tail register indicating the presence of
849 * new descriptors.
850 */
851 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
852
853 while (qi->desc_status[wait_index] != QI_DONE) {
854 /*
855 * We will leave the interrupts disabled, to prevent interrupt
856 * context to queue another cmd while a cmd is already submitted
857 * and waiting for completion on this cpu. This is to avoid
858 * a deadlock where the interrupt context can wait indefinitely
859 * for free slots in the queue.
860 */
861 rc = qi_check_fault(iommu, index);
862 if (rc)
863 break;
864
865 spin_unlock(&qi->q_lock);
866 cpu_relax();
867 spin_lock(&qi->q_lock);
868 }
869
870 qi->desc_status[index] = QI_DONE;
871
872 reclaim_free_desc(qi);
873 spin_unlock_irqrestore(&qi->q_lock, flags);
874
875 if (rc == -EAGAIN)
876 goto restart;
877
878 return rc;
879 }
880
881 /*
882 * Flush the global interrupt entry cache.
883 */
884 void qi_global_iec(struct intel_iommu *iommu)
885 {
886 struct qi_desc desc;
887
888 desc.low = QI_IEC_TYPE;
889 desc.high = 0;
890
891 /* should never fail */
892 qi_submit_sync(&desc, iommu);
893 }
894
895 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
896 u64 type)
897 {
898 struct qi_desc desc;
899
900 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
901 | QI_CC_GRAN(type) | QI_CC_TYPE;
902 desc.high = 0;
903
904 qi_submit_sync(&desc, iommu);
905 }
906
907 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
908 unsigned int size_order, u64 type)
909 {
910 u8 dw = 0, dr = 0;
911
912 struct qi_desc desc;
913 int ih = 0;
914
915 if (cap_write_drain(iommu->cap))
916 dw = 1;
917
918 if (cap_read_drain(iommu->cap))
919 dr = 1;
920
921 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
922 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
923 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
924 | QI_IOTLB_AM(size_order);
925
926 qi_submit_sync(&desc, iommu);
927 }
928
929 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
930 u64 addr, unsigned mask)
931 {
932 struct qi_desc desc;
933
934 if (mask) {
935 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
936 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
937 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
938 } else
939 desc.high = QI_DEV_IOTLB_ADDR(addr);
940
941 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
942 qdep = 0;
943
944 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
945 QI_DIOTLB_TYPE;
946
947 qi_submit_sync(&desc, iommu);
948 }
949
950 /*
951 * Disable Queued Invalidation interface.
952 */
953 void dmar_disable_qi(struct intel_iommu *iommu)
954 {
955 unsigned long flags;
956 u32 sts;
957 cycles_t start_time = get_cycles();
958
959 if (!ecap_qis(iommu->ecap))
960 return;
961
962 spin_lock_irqsave(&iommu->register_lock, flags);
963
964 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
965 if (!(sts & DMA_GSTS_QIES))
966 goto end;
967
968 /*
969 * Give a chance to HW to complete the pending invalidation requests.
970 */
971 while ((readl(iommu->reg + DMAR_IQT_REG) !=
972 readl(iommu->reg + DMAR_IQH_REG)) &&
973 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
974 cpu_relax();
975
976 iommu->gcmd &= ~DMA_GCMD_QIE;
977 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
978
979 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
980 !(sts & DMA_GSTS_QIES), sts);
981 end:
982 spin_unlock_irqrestore(&iommu->register_lock, flags);
983 }
984
985 /*
986 * Enable queued invalidation.
987 */
988 static void __dmar_enable_qi(struct intel_iommu *iommu)
989 {
990 u32 sts;
991 unsigned long flags;
992 struct q_inval *qi = iommu->qi;
993
994 qi->free_head = qi->free_tail = 0;
995 qi->free_cnt = QI_LENGTH;
996
997 spin_lock_irqsave(&iommu->register_lock, flags);
998
999 /* write zero to the tail reg */
1000 writel(0, iommu->reg + DMAR_IQT_REG);
1001
1002 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1003
1004 iommu->gcmd |= DMA_GCMD_QIE;
1005 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1006
1007 /* Make sure hardware complete it */
1008 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1009
1010 spin_unlock_irqrestore(&iommu->register_lock, flags);
1011 }
1012
1013 /*
1014 * Enable Queued Invalidation interface. This is a must to support
1015 * interrupt-remapping. Also used by DMA-remapping, which replaces
1016 * register based IOTLB invalidation.
1017 */
1018 int dmar_enable_qi(struct intel_iommu *iommu)
1019 {
1020 struct q_inval *qi;
1021
1022 if (!ecap_qis(iommu->ecap))
1023 return -ENOENT;
1024
1025 /*
1026 * queued invalidation is already setup and enabled.
1027 */
1028 if (iommu->qi)
1029 return 0;
1030
1031 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1032 if (!iommu->qi)
1033 return -ENOMEM;
1034
1035 qi = iommu->qi;
1036
1037 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1038 if (!qi->desc) {
1039 kfree(qi);
1040 iommu->qi = 0;
1041 return -ENOMEM;
1042 }
1043
1044 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1045 if (!qi->desc_status) {
1046 free_page((unsigned long) qi->desc);
1047 kfree(qi);
1048 iommu->qi = 0;
1049 return -ENOMEM;
1050 }
1051
1052 qi->free_head = qi->free_tail = 0;
1053 qi->free_cnt = QI_LENGTH;
1054
1055 spin_lock_init(&qi->q_lock);
1056
1057 __dmar_enable_qi(iommu);
1058
1059 return 0;
1060 }
1061
1062 /* iommu interrupt handling. Most stuff are MSI-like. */
1063
1064 enum faulttype {
1065 DMA_REMAP,
1066 INTR_REMAP,
1067 UNKNOWN,
1068 };
1069
1070 static const char *dma_remap_fault_reasons[] =
1071 {
1072 "Software",
1073 "Present bit in root entry is clear",
1074 "Present bit in context entry is clear",
1075 "Invalid context entry",
1076 "Access beyond MGAW",
1077 "PTE Write access is not set",
1078 "PTE Read access is not set",
1079 "Next page table ptr is invalid",
1080 "Root table address invalid",
1081 "Context table ptr is invalid",
1082 "non-zero reserved fields in RTP",
1083 "non-zero reserved fields in CTP",
1084 "non-zero reserved fields in PTE",
1085 };
1086
1087 static const char *intr_remap_fault_reasons[] =
1088 {
1089 "Detected reserved fields in the decoded interrupt-remapped request",
1090 "Interrupt index exceeded the interrupt-remapping table size",
1091 "Present field in the IRTE entry is clear",
1092 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1093 "Detected reserved fields in the IRTE entry",
1094 "Blocked a compatibility format interrupt request",
1095 "Blocked an interrupt request due to source-id verification failure",
1096 };
1097
1098 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1099
1100 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1101 {
1102 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1103 ARRAY_SIZE(intr_remap_fault_reasons))) {
1104 *fault_type = INTR_REMAP;
1105 return intr_remap_fault_reasons[fault_reason - 0x20];
1106 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1107 *fault_type = DMA_REMAP;
1108 return dma_remap_fault_reasons[fault_reason];
1109 } else {
1110 *fault_type = UNKNOWN;
1111 return "Unknown";
1112 }
1113 }
1114
1115 void dmar_msi_unmask(unsigned int irq)
1116 {
1117 struct intel_iommu *iommu = get_irq_data(irq);
1118 unsigned long flag;
1119
1120 /* unmask it */
1121 spin_lock_irqsave(&iommu->register_lock, flag);
1122 writel(0, iommu->reg + DMAR_FECTL_REG);
1123 /* Read a reg to force flush the post write */
1124 readl(iommu->reg + DMAR_FECTL_REG);
1125 spin_unlock_irqrestore(&iommu->register_lock, flag);
1126 }
1127
1128 void dmar_msi_mask(unsigned int irq)
1129 {
1130 unsigned long flag;
1131 struct intel_iommu *iommu = get_irq_data(irq);
1132
1133 /* mask it */
1134 spin_lock_irqsave(&iommu->register_lock, flag);
1135 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1136 /* Read a reg to force flush the post write */
1137 readl(iommu->reg + DMAR_FECTL_REG);
1138 spin_unlock_irqrestore(&iommu->register_lock, flag);
1139 }
1140
1141 void dmar_msi_write(int irq, struct msi_msg *msg)
1142 {
1143 struct intel_iommu *iommu = get_irq_data(irq);
1144 unsigned long flag;
1145
1146 spin_lock_irqsave(&iommu->register_lock, flag);
1147 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1148 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1149 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1150 spin_unlock_irqrestore(&iommu->register_lock, flag);
1151 }
1152
1153 void dmar_msi_read(int irq, struct msi_msg *msg)
1154 {
1155 struct intel_iommu *iommu = get_irq_data(irq);
1156 unsigned long flag;
1157
1158 spin_lock_irqsave(&iommu->register_lock, flag);
1159 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1160 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1161 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1162 spin_unlock_irqrestore(&iommu->register_lock, flag);
1163 }
1164
1165 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1166 u8 fault_reason, u16 source_id, unsigned long long addr)
1167 {
1168 const char *reason;
1169 int fault_type;
1170
1171 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1172
1173 if (fault_type == INTR_REMAP)
1174 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1175 "fault index %llx\n"
1176 "INTR-REMAP:[fault reason %02d] %s\n",
1177 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1178 PCI_FUNC(source_id & 0xFF), addr >> 48,
1179 fault_reason, reason);
1180 else
1181 printk(KERN_ERR
1182 "DMAR:[%s] Request device [%02x:%02x.%d] "
1183 "fault addr %llx \n"
1184 "DMAR:[fault reason %02d] %s\n",
1185 (type ? "DMA Read" : "DMA Write"),
1186 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1187 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1188 return 0;
1189 }
1190
1191 #define PRIMARY_FAULT_REG_LEN (16)
1192 irqreturn_t dmar_fault(int irq, void *dev_id)
1193 {
1194 struct intel_iommu *iommu = dev_id;
1195 int reg, fault_index;
1196 u32 fault_status;
1197 unsigned long flag;
1198
1199 spin_lock_irqsave(&iommu->register_lock, flag);
1200 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1201 if (fault_status)
1202 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1203 fault_status);
1204
1205 /* TBD: ignore advanced fault log currently */
1206 if (!(fault_status & DMA_FSTS_PPF))
1207 goto clear_rest;
1208
1209 fault_index = dma_fsts_fault_record_index(fault_status);
1210 reg = cap_fault_reg_offset(iommu->cap);
1211 while (1) {
1212 u8 fault_reason;
1213 u16 source_id;
1214 u64 guest_addr;
1215 int type;
1216 u32 data;
1217
1218 /* highest 32 bits */
1219 data = readl(iommu->reg + reg +
1220 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1221 if (!(data & DMA_FRCD_F))
1222 break;
1223
1224 fault_reason = dma_frcd_fault_reason(data);
1225 type = dma_frcd_type(data);
1226
1227 data = readl(iommu->reg + reg +
1228 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1229 source_id = dma_frcd_source_id(data);
1230
1231 guest_addr = dmar_readq(iommu->reg + reg +
1232 fault_index * PRIMARY_FAULT_REG_LEN);
1233 guest_addr = dma_frcd_page_addr(guest_addr);
1234 /* clear the fault */
1235 writel(DMA_FRCD_F, iommu->reg + reg +
1236 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1237
1238 spin_unlock_irqrestore(&iommu->register_lock, flag);
1239
1240 dmar_fault_do_one(iommu, type, fault_reason,
1241 source_id, guest_addr);
1242
1243 fault_index++;
1244 if (fault_index >= cap_num_fault_regs(iommu->cap))
1245 fault_index = 0;
1246 spin_lock_irqsave(&iommu->register_lock, flag);
1247 }
1248 clear_rest:
1249 /* clear all the other faults */
1250 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1251 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1252
1253 spin_unlock_irqrestore(&iommu->register_lock, flag);
1254 return IRQ_HANDLED;
1255 }
1256
1257 int dmar_set_interrupt(struct intel_iommu *iommu)
1258 {
1259 int irq, ret;
1260
1261 /*
1262 * Check if the fault interrupt is already initialized.
1263 */
1264 if (iommu->irq)
1265 return 0;
1266
1267 irq = create_irq();
1268 if (!irq) {
1269 printk(KERN_ERR "IOMMU: no free vectors\n");
1270 return -EINVAL;
1271 }
1272
1273 set_irq_data(irq, iommu);
1274 iommu->irq = irq;
1275
1276 ret = arch_setup_dmar_msi(irq);
1277 if (ret) {
1278 set_irq_data(irq, NULL);
1279 iommu->irq = 0;
1280 destroy_irq(irq);
1281 return ret;
1282 }
1283
1284 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1285 if (ret)
1286 printk(KERN_ERR "IOMMU: can't request irq\n");
1287 return ret;
1288 }
1289
1290 int __init enable_drhd_fault_handling(void)
1291 {
1292 struct dmar_drhd_unit *drhd;
1293
1294 /*
1295 * Enable fault control interrupt.
1296 */
1297 for_each_drhd_unit(drhd) {
1298 int ret;
1299 struct intel_iommu *iommu = drhd->iommu;
1300 ret = dmar_set_interrupt(iommu);
1301
1302 if (ret) {
1303 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1304 " interrupt, ret %d\n",
1305 (unsigned long long)drhd->reg_base_addr, ret);
1306 return -1;
1307 }
1308 }
1309
1310 return 0;
1311 }
1312
1313 /*
1314 * Re-enable Queued Invalidation interface.
1315 */
1316 int dmar_reenable_qi(struct intel_iommu *iommu)
1317 {
1318 if (!ecap_qis(iommu->ecap))
1319 return -ENOENT;
1320
1321 if (!iommu->qi)
1322 return -ENOENT;
1323
1324 /*
1325 * First disable queued invalidation.
1326 */
1327 dmar_disable_qi(iommu);
1328 /*
1329 * Then enable queued invalidation again. Since there is no pending
1330 * invalidation requests now, it's safe to re-enable queued
1331 * invalidation.
1332 */
1333 __dmar_enable_qi(iommu);
1334
1335 return 0;
1336 }
1337
1338 /*
1339 * Check interrupt remapping support in DMAR table description.
1340 */
1341 int dmar_ir_support(void)
1342 {
1343 struct acpi_table_dmar *dmar;
1344 dmar = (struct acpi_table_dmar *)dmar_tbl;
1345 return dmar->flags & 0x1;
1346 }