]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/host/pci-hyperv.c
Merge tag 'pci-v4.14-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / host / pci-hyperv.c
1 /*
2 * Copyright (c) Microsoft Corporation.
3 *
4 * Author:
5 * Jake Oshins <jakeo@microsoft.com>
6 *
7 * This driver acts as a paravirtual front-end for PCI Express root buses.
8 * When a PCI Express function (either an entire device or an SR-IOV
9 * Virtual Function) is being passed through to the VM, this driver exposes
10 * a new bus to the guest VM. This is modeled as a root PCI bus because
11 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
12 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
13 * until a device as been exposed using this driver.
14 *
15 * Each root PCI bus has its own PCI domain, which is called "Segment" in
16 * the PCI Firmware Specifications. Thus while each device passed through
17 * to the VM using this front-end will appear at "device 0", the domain will
18 * be unique. Typically, each bus will have one PCI function on it, though
19 * this driver does support more than one.
20 *
21 * In order to map the interrupts from the device through to the guest VM,
22 * this driver also implements an IRQ Domain, which handles interrupts (either
23 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
24 * set up, torn down, or reaffined, this driver communicates with the
25 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
26 * interrupt will be delivered to the correct virtual processor at the right
27 * vector. This driver does not support level-triggered (line-based)
28 * interrupts, and will report that the Interrupt Line register in the
29 * function's configuration space is zero.
30 *
31 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
32 * facilities. For instance, the configuration space of a function exposed
33 * by Hyper-V is mapped into a single page of memory space, and the
34 * read and write handlers for config space must be aware of this mechanism.
35 * Similarly, device setup and teardown involves messages sent to and from
36 * the PCI back-end driver in Hyper-V.
37 *
38 * This program is free software; you can redistribute it and/or modify it
39 * under the terms of the GNU General Public License version 2 as published
40 * by the Free Software Foundation.
41 *
42 * This program is distributed in the hope that it will be useful, but
43 * WITHOUT ANY WARRANTY; without even the implied warranty of
44 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
45 * NON INFRINGEMENT. See the GNU General Public License for more
46 * details.
47 *
48 */
49
50 #include <linux/kernel.h>
51 #include <linux/module.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/semaphore.h>
55 #include <linux/irqdomain.h>
56 #include <asm/irqdomain.h>
57 #include <asm/apic.h>
58 #include <linux/msi.h>
59 #include <linux/hyperv.h>
60 #include <linux/refcount.h>
61 #include <asm/mshyperv.h>
62
63 /*
64 * Protocol versions. The low word is the minor version, the high word the
65 * major version.
66 */
67
68 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
69 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
70 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
71
72 enum pci_protocol_version_t {
73 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
74 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
75 };
76
77 #define CPU_AFFINITY_ALL -1ULL
78
79 /*
80 * Supported protocol versions in the order of probing - highest go
81 * first.
82 */
83 static enum pci_protocol_version_t pci_protocol_versions[] = {
84 PCI_PROTOCOL_VERSION_1_2,
85 PCI_PROTOCOL_VERSION_1_1,
86 };
87
88 /*
89 * Protocol version negotiated by hv_pci_protocol_negotiation().
90 */
91 static enum pci_protocol_version_t pci_protocol_version;
92
93 #define PCI_CONFIG_MMIO_LENGTH 0x2000
94 #define CFG_PAGE_OFFSET 0x1000
95 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
96
97 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
98
99 #define STATUS_REVISION_MISMATCH 0xC0000059
100
101 /*
102 * Message Types
103 */
104
105 enum pci_message_type {
106 /*
107 * Version 1.1
108 */
109 PCI_MESSAGE_BASE = 0x42490000,
110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
133 PCI_MESSAGE_MAXIMUM
134 };
135
136 /*
137 * Structures defining the virtual PCI Express protocol.
138 */
139
140 union pci_version {
141 struct {
142 u16 minor_version;
143 u16 major_version;
144 } parts;
145 u32 version;
146 } __packed;
147
148 /*
149 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
150 * which is all this driver does. This representation is the one used in
151 * Windows, which is what is expected when sending this back and forth with
152 * the Hyper-V parent partition.
153 */
154 union win_slot_encoding {
155 struct {
156 u32 dev:5;
157 u32 func:3;
158 u32 reserved:24;
159 } bits;
160 u32 slot;
161 } __packed;
162
163 /*
164 * Pretty much as defined in the PCI Specifications.
165 */
166 struct pci_function_description {
167 u16 v_id; /* vendor ID */
168 u16 d_id; /* device ID */
169 u8 rev;
170 u8 prog_intf;
171 u8 subclass;
172 u8 base_class;
173 u32 subsystem_id;
174 union win_slot_encoding win_slot;
175 u32 ser; /* serial number */
176 } __packed;
177
178 /**
179 * struct hv_msi_desc
180 * @vector: IDT entry
181 * @delivery_mode: As defined in Intel's Programmer's
182 * Reference Manual, Volume 3, Chapter 8.
183 * @vector_count: Number of contiguous entries in the
184 * Interrupt Descriptor Table that are
185 * occupied by this Message-Signaled
186 * Interrupt. For "MSI", as first defined
187 * in PCI 2.2, this can be between 1 and
188 * 32. For "MSI-X," as first defined in PCI
189 * 3.0, this must be 1, as each MSI-X table
190 * entry would have its own descriptor.
191 * @reserved: Empty space
192 * @cpu_mask: All the target virtual processors.
193 */
194 struct hv_msi_desc {
195 u8 vector;
196 u8 delivery_mode;
197 u16 vector_count;
198 u32 reserved;
199 u64 cpu_mask;
200 } __packed;
201
202 /**
203 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
204 * @vector: IDT entry
205 * @delivery_mode: As defined in Intel's Programmer's
206 * Reference Manual, Volume 3, Chapter 8.
207 * @vector_count: Number of contiguous entries in the
208 * Interrupt Descriptor Table that are
209 * occupied by this Message-Signaled
210 * Interrupt. For "MSI", as first defined
211 * in PCI 2.2, this can be between 1 and
212 * 32. For "MSI-X," as first defined in PCI
213 * 3.0, this must be 1, as each MSI-X table
214 * entry would have its own descriptor.
215 * @processor_count: number of bits enabled in array.
216 * @processor_array: All the target virtual processors.
217 */
218 struct hv_msi_desc2 {
219 u8 vector;
220 u8 delivery_mode;
221 u16 vector_count;
222 u16 processor_count;
223 u16 processor_array[32];
224 } __packed;
225
226 /**
227 * struct tran_int_desc
228 * @reserved: unused, padding
229 * @vector_count: same as in hv_msi_desc
230 * @data: This is the "data payload" value that is
231 * written by the device when it generates
232 * a message-signaled interrupt, either MSI
233 * or MSI-X.
234 * @address: This is the address to which the data
235 * payload is written on interrupt
236 * generation.
237 */
238 struct tran_int_desc {
239 u16 reserved;
240 u16 vector_count;
241 u32 data;
242 u64 address;
243 } __packed;
244
245 /*
246 * A generic message format for virtual PCI.
247 * Specific message formats are defined later in the file.
248 */
249
250 struct pci_message {
251 u32 type;
252 } __packed;
253
254 struct pci_child_message {
255 struct pci_message message_type;
256 union win_slot_encoding wslot;
257 } __packed;
258
259 struct pci_incoming_message {
260 struct vmpacket_descriptor hdr;
261 struct pci_message message_type;
262 } __packed;
263
264 struct pci_response {
265 struct vmpacket_descriptor hdr;
266 s32 status; /* negative values are failures */
267 } __packed;
268
269 struct pci_packet {
270 void (*completion_func)(void *context, struct pci_response *resp,
271 int resp_packet_size);
272 void *compl_ctxt;
273
274 struct pci_message message[0];
275 };
276
277 /*
278 * Specific message types supporting the PCI protocol.
279 */
280
281 /*
282 * Version negotiation message. Sent from the guest to the host.
283 * The guest is free to try different versions until the host
284 * accepts the version.
285 *
286 * pci_version: The protocol version requested.
287 * is_last_attempt: If TRUE, this is the last version guest will request.
288 * reservedz: Reserved field, set to zero.
289 */
290
291 struct pci_version_request {
292 struct pci_message message_type;
293 u32 protocol_version;
294 } __packed;
295
296 /*
297 * Bus D0 Entry. This is sent from the guest to the host when the virtual
298 * bus (PCI Express port) is ready for action.
299 */
300
301 struct pci_bus_d0_entry {
302 struct pci_message message_type;
303 u32 reserved;
304 u64 mmio_base;
305 } __packed;
306
307 struct pci_bus_relations {
308 struct pci_incoming_message incoming;
309 u32 device_count;
310 struct pci_function_description func[0];
311 } __packed;
312
313 struct pci_q_res_req_response {
314 struct vmpacket_descriptor hdr;
315 s32 status; /* negative values are failures */
316 u32 probed_bar[6];
317 } __packed;
318
319 struct pci_set_power {
320 struct pci_message message_type;
321 union win_slot_encoding wslot;
322 u32 power_state; /* In Windows terms */
323 u32 reserved;
324 } __packed;
325
326 struct pci_set_power_response {
327 struct vmpacket_descriptor hdr;
328 s32 status; /* negative values are failures */
329 union win_slot_encoding wslot;
330 u32 resultant_state; /* In Windows terms */
331 u32 reserved;
332 } __packed;
333
334 struct pci_resources_assigned {
335 struct pci_message message_type;
336 union win_slot_encoding wslot;
337 u8 memory_range[0x14][6]; /* not used here */
338 u32 msi_descriptors;
339 u32 reserved[4];
340 } __packed;
341
342 struct pci_resources_assigned2 {
343 struct pci_message message_type;
344 union win_slot_encoding wslot;
345 u8 memory_range[0x14][6]; /* not used here */
346 u32 msi_descriptor_count;
347 u8 reserved[70];
348 } __packed;
349
350 struct pci_create_interrupt {
351 struct pci_message message_type;
352 union win_slot_encoding wslot;
353 struct hv_msi_desc int_desc;
354 } __packed;
355
356 struct pci_create_int_response {
357 struct pci_response response;
358 u32 reserved;
359 struct tran_int_desc int_desc;
360 } __packed;
361
362 struct pci_create_interrupt2 {
363 struct pci_message message_type;
364 union win_slot_encoding wslot;
365 struct hv_msi_desc2 int_desc;
366 } __packed;
367
368 struct pci_delete_interrupt {
369 struct pci_message message_type;
370 union win_slot_encoding wslot;
371 struct tran_int_desc int_desc;
372 } __packed;
373
374 struct pci_dev_incoming {
375 struct pci_incoming_message incoming;
376 union win_slot_encoding wslot;
377 } __packed;
378
379 struct pci_eject_response {
380 struct pci_message message_type;
381 union win_slot_encoding wslot;
382 u32 status;
383 } __packed;
384
385 static int pci_ring_size = (4 * PAGE_SIZE);
386
387 /*
388 * Definitions or interrupt steering hypercall.
389 */
390 #define HV_PARTITION_ID_SELF ((u64)-1)
391 #define HVCALL_RETARGET_INTERRUPT 0x7e
392
393 struct hv_interrupt_entry {
394 u32 source; /* 1 for MSI(-X) */
395 u32 reserved1;
396 u32 address;
397 u32 data;
398 };
399
400 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
401
402 struct hv_vp_set {
403 u64 format; /* 0 (HvGenericSetSparse4k) */
404 u64 valid_banks;
405 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
406 };
407
408 /*
409 * flags for hv_device_interrupt_target.flags
410 */
411 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
412 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
413
414 struct hv_device_interrupt_target {
415 u32 vector;
416 u32 flags;
417 union {
418 u64 vp_mask;
419 struct hv_vp_set vp_set;
420 };
421 };
422
423 struct retarget_msi_interrupt {
424 u64 partition_id; /* use "self" */
425 u64 device_id;
426 struct hv_interrupt_entry int_entry;
427 u64 reserved2;
428 struct hv_device_interrupt_target int_target;
429 } __packed;
430
431 /*
432 * Driver specific state.
433 */
434
435 enum hv_pcibus_state {
436 hv_pcibus_init = 0,
437 hv_pcibus_probed,
438 hv_pcibus_installed,
439 hv_pcibus_removed,
440 hv_pcibus_maximum
441 };
442
443 struct hv_pcibus_device {
444 struct pci_sysdata sysdata;
445 enum hv_pcibus_state state;
446 atomic_t remove_lock;
447 struct hv_device *hdev;
448 resource_size_t low_mmio_space;
449 resource_size_t high_mmio_space;
450 struct resource *mem_config;
451 struct resource *low_mmio_res;
452 struct resource *high_mmio_res;
453 struct completion *survey_event;
454 struct completion remove_event;
455 struct pci_bus *pci_bus;
456 spinlock_t config_lock; /* Avoid two threads writing index page */
457 spinlock_t device_list_lock; /* Protect lists below */
458 void __iomem *cfg_addr;
459
460 struct semaphore enum_sem;
461 struct list_head resources_for_children;
462
463 struct list_head children;
464 struct list_head dr_list;
465
466 struct msi_domain_info msi_info;
467 struct msi_controller msi_chip;
468 struct irq_domain *irq_domain;
469
470 /* hypercall arg, must not cross page boundary */
471 struct retarget_msi_interrupt retarget_msi_interrupt_params;
472
473 spinlock_t retarget_msi_interrupt_lock;
474 };
475
476 /*
477 * Tracks "Device Relations" messages from the host, which must be both
478 * processed in order and deferred so that they don't run in the context
479 * of the incoming packet callback.
480 */
481 struct hv_dr_work {
482 struct work_struct wrk;
483 struct hv_pcibus_device *bus;
484 };
485
486 struct hv_dr_state {
487 struct list_head list_entry;
488 u32 device_count;
489 struct pci_function_description func[0];
490 };
491
492 enum hv_pcichild_state {
493 hv_pcichild_init = 0,
494 hv_pcichild_requirements,
495 hv_pcichild_resourced,
496 hv_pcichild_ejecting,
497 hv_pcichild_maximum
498 };
499
500 enum hv_pcidev_ref_reason {
501 hv_pcidev_ref_invalid = 0,
502 hv_pcidev_ref_initial,
503 hv_pcidev_ref_by_slot,
504 hv_pcidev_ref_packet,
505 hv_pcidev_ref_pnp,
506 hv_pcidev_ref_childlist,
507 hv_pcidev_irqdata,
508 hv_pcidev_ref_max
509 };
510
511 struct hv_pci_dev {
512 /* List protected by pci_rescan_remove_lock */
513 struct list_head list_entry;
514 refcount_t refs;
515 enum hv_pcichild_state state;
516 struct pci_function_description desc;
517 bool reported_missing;
518 struct hv_pcibus_device *hbus;
519 struct work_struct wrk;
520
521 /*
522 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
523 * read it back, for each of the BAR offsets within config space.
524 */
525 u32 probed_bar[6];
526 };
527
528 struct hv_pci_compl {
529 struct completion host_event;
530 s32 completion_status;
531 };
532
533 /**
534 * hv_pci_generic_compl() - Invoked for a completion packet
535 * @context: Set up by the sender of the packet.
536 * @resp: The response packet
537 * @resp_packet_size: Size in bytes of the packet
538 *
539 * This function is used to trigger an event and report status
540 * for any message for which the completion packet contains a
541 * status and nothing else.
542 */
543 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
544 int resp_packet_size)
545 {
546 struct hv_pci_compl *comp_pkt = context;
547
548 if (resp_packet_size >= offsetofend(struct pci_response, status))
549 comp_pkt->completion_status = resp->status;
550 else
551 comp_pkt->completion_status = -1;
552
553 complete(&comp_pkt->host_event);
554 }
555
556 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
557 u32 wslot);
558 static void get_pcichild(struct hv_pci_dev *hv_pcidev,
559 enum hv_pcidev_ref_reason reason);
560 static void put_pcichild(struct hv_pci_dev *hv_pcidev,
561 enum hv_pcidev_ref_reason reason);
562
563 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
564 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
565
566 /**
567 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
568 * @devfn: The Linux representation of PCI slot
569 *
570 * Windows uses a slightly different representation of PCI slot.
571 *
572 * Return: The Windows representation
573 */
574 static u32 devfn_to_wslot(int devfn)
575 {
576 union win_slot_encoding wslot;
577
578 wslot.slot = 0;
579 wslot.bits.dev = PCI_SLOT(devfn);
580 wslot.bits.func = PCI_FUNC(devfn);
581
582 return wslot.slot;
583 }
584
585 /**
586 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
587 * @wslot: The Windows representation of PCI slot
588 *
589 * Windows uses a slightly different representation of PCI slot.
590 *
591 * Return: The Linux representation
592 */
593 static int wslot_to_devfn(u32 wslot)
594 {
595 union win_slot_encoding slot_no;
596
597 slot_no.slot = wslot;
598 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
599 }
600
601 /*
602 * PCI Configuration Space for these root PCI buses is implemented as a pair
603 * of pages in memory-mapped I/O space. Writing to the first page chooses
604 * the PCI function being written or read. Once the first page has been
605 * written to, the following page maps in the entire configuration space of
606 * the function.
607 */
608
609 /**
610 * _hv_pcifront_read_config() - Internal PCI config read
611 * @hpdev: The PCI driver's representation of the device
612 * @where: Offset within config space
613 * @size: Size of the transfer
614 * @val: Pointer to the buffer receiving the data
615 */
616 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
617 int size, u32 *val)
618 {
619 unsigned long flags;
620 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
621
622 /*
623 * If the attempt is to read the IDs or the ROM BAR, simulate that.
624 */
625 if (where + size <= PCI_COMMAND) {
626 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
627 } else if (where >= PCI_CLASS_REVISION && where + size <=
628 PCI_CACHE_LINE_SIZE) {
629 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
630 PCI_CLASS_REVISION, size);
631 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
632 PCI_ROM_ADDRESS) {
633 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
634 PCI_SUBSYSTEM_VENDOR_ID, size);
635 } else if (where >= PCI_ROM_ADDRESS && where + size <=
636 PCI_CAPABILITY_LIST) {
637 /* ROM BARs are unimplemented */
638 *val = 0;
639 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
640 PCI_INTERRUPT_PIN) {
641 /*
642 * Interrupt Line and Interrupt PIN are hard-wired to zero
643 * because this front-end only supports message-signaled
644 * interrupts.
645 */
646 *val = 0;
647 } else if (where + size <= CFG_PAGE_SIZE) {
648 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
649 /* Choose the function to be read. (See comment above) */
650 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
651 /* Make sure the function was chosen before we start reading. */
652 mb();
653 /* Read from that function's config space. */
654 switch (size) {
655 case 1:
656 *val = readb(addr);
657 break;
658 case 2:
659 *val = readw(addr);
660 break;
661 default:
662 *val = readl(addr);
663 break;
664 }
665 /*
666 * Make sure the write was done before we release the spinlock
667 * allowing consecutive reads/writes.
668 */
669 mb();
670 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
671 } else {
672 dev_err(&hpdev->hbus->hdev->device,
673 "Attempt to read beyond a function's config space.\n");
674 }
675 }
676
677 /**
678 * _hv_pcifront_write_config() - Internal PCI config write
679 * @hpdev: The PCI driver's representation of the device
680 * @where: Offset within config space
681 * @size: Size of the transfer
682 * @val: The data being transferred
683 */
684 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
685 int size, u32 val)
686 {
687 unsigned long flags;
688 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
689
690 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
691 where + size <= PCI_CAPABILITY_LIST) {
692 /* SSIDs and ROM BARs are read-only */
693 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695 /* Choose the function to be written. (See comment above) */
696 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 /* Make sure the function was chosen before we start writing. */
698 wmb();
699 /* Write to that function's config space. */
700 switch (size) {
701 case 1:
702 writeb(val, addr);
703 break;
704 case 2:
705 writew(val, addr);
706 break;
707 default:
708 writel(val, addr);
709 break;
710 }
711 /*
712 * Make sure the write was done before we release the spinlock
713 * allowing consecutive reads/writes.
714 */
715 mb();
716 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
717 } else {
718 dev_err(&hpdev->hbus->hdev->device,
719 "Attempt to write beyond a function's config space.\n");
720 }
721 }
722
723 /**
724 * hv_pcifront_read_config() - Read configuration space
725 * @bus: PCI Bus structure
726 * @devfn: Device/function
727 * @where: Offset from base
728 * @size: Byte/word/dword
729 * @val: Value to be read
730 *
731 * Return: PCIBIOS_SUCCESSFUL on success
732 * PCIBIOS_DEVICE_NOT_FOUND on failure
733 */
734 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
735 int where, int size, u32 *val)
736 {
737 struct hv_pcibus_device *hbus =
738 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
739 struct hv_pci_dev *hpdev;
740
741 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
742 if (!hpdev)
743 return PCIBIOS_DEVICE_NOT_FOUND;
744
745 _hv_pcifront_read_config(hpdev, where, size, val);
746
747 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
748 return PCIBIOS_SUCCESSFUL;
749 }
750
751 /**
752 * hv_pcifront_write_config() - Write configuration space
753 * @bus: PCI Bus structure
754 * @devfn: Device/function
755 * @where: Offset from base
756 * @size: Byte/word/dword
757 * @val: Value to be written to device
758 *
759 * Return: PCIBIOS_SUCCESSFUL on success
760 * PCIBIOS_DEVICE_NOT_FOUND on failure
761 */
762 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
763 int where, int size, u32 val)
764 {
765 struct hv_pcibus_device *hbus =
766 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
767 struct hv_pci_dev *hpdev;
768
769 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
770 if (!hpdev)
771 return PCIBIOS_DEVICE_NOT_FOUND;
772
773 _hv_pcifront_write_config(hpdev, where, size, val);
774
775 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
776 return PCIBIOS_SUCCESSFUL;
777 }
778
779 /* PCIe operations */
780 static struct pci_ops hv_pcifront_ops = {
781 .read = hv_pcifront_read_config,
782 .write = hv_pcifront_write_config,
783 };
784
785 /* Interrupt management hooks */
786 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
787 struct tran_int_desc *int_desc)
788 {
789 struct pci_delete_interrupt *int_pkt;
790 struct {
791 struct pci_packet pkt;
792 u8 buffer[sizeof(struct pci_delete_interrupt)];
793 } ctxt;
794
795 memset(&ctxt, 0, sizeof(ctxt));
796 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
797 int_pkt->message_type.type =
798 PCI_DELETE_INTERRUPT_MESSAGE;
799 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
800 int_pkt->int_desc = *int_desc;
801 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
802 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
803 kfree(int_desc);
804 }
805
806 /**
807 * hv_msi_free() - Free the MSI.
808 * @domain: The interrupt domain pointer
809 * @info: Extra MSI-related context
810 * @irq: Identifies the IRQ.
811 *
812 * The Hyper-V parent partition and hypervisor are tracking the
813 * messages that are in use, keeping the interrupt redirection
814 * table up to date. This callback sends a message that frees
815 * the IRT entry and related tracking nonsense.
816 */
817 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
818 unsigned int irq)
819 {
820 struct hv_pcibus_device *hbus;
821 struct hv_pci_dev *hpdev;
822 struct pci_dev *pdev;
823 struct tran_int_desc *int_desc;
824 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
825 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
826
827 pdev = msi_desc_to_pci_dev(msi);
828 hbus = info->data;
829 int_desc = irq_data_get_irq_chip_data(irq_data);
830 if (!int_desc)
831 return;
832
833 irq_data->chip_data = NULL;
834 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
835 if (!hpdev) {
836 kfree(int_desc);
837 return;
838 }
839
840 hv_int_desc_free(hpdev, int_desc);
841 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
842 }
843
844 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
845 bool force)
846 {
847 struct irq_data *parent = data->parent_data;
848
849 return parent->chip->irq_set_affinity(parent, dest, force);
850 }
851
852 static void hv_irq_mask(struct irq_data *data)
853 {
854 pci_msi_mask_irq(data);
855 }
856
857 /**
858 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
859 * affinity.
860 * @data: Describes the IRQ
861 *
862 * Build new a destination for the MSI and make a hypercall to
863 * update the Interrupt Redirection Table. "Device Logical ID"
864 * is built out of this PCI bus's instance GUID and the function
865 * number of the device.
866 */
867 static void hv_irq_unmask(struct irq_data *data)
868 {
869 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
870 struct irq_cfg *cfg = irqd_cfg(data);
871 struct retarget_msi_interrupt *params;
872 struct hv_pcibus_device *hbus;
873 struct cpumask *dest;
874 struct pci_bus *pbus;
875 struct pci_dev *pdev;
876 unsigned long flags;
877 u32 var_size = 0;
878 int cpu_vmbus;
879 int cpu;
880 u64 res;
881
882 dest = irq_data_get_affinity_mask(data);
883 pdev = msi_desc_to_pci_dev(msi_desc);
884 pbus = pdev->bus;
885 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
886
887 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
888
889 params = &hbus->retarget_msi_interrupt_params;
890 memset(params, 0, sizeof(*params));
891 params->partition_id = HV_PARTITION_ID_SELF;
892 params->int_entry.source = 1; /* MSI(-X) */
893 params->int_entry.address = msi_desc->msg.address_lo;
894 params->int_entry.data = msi_desc->msg.data;
895 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
896 (hbus->hdev->dev_instance.b[4] << 16) |
897 (hbus->hdev->dev_instance.b[7] << 8) |
898 (hbus->hdev->dev_instance.b[6] & 0xf8) |
899 PCI_FUNC(pdev->devfn);
900 params->int_target.vector = cfg->vector;
901
902 /*
903 * Honoring apic->irq_delivery_mode set to dest_Fixed by
904 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
905 * spurious interrupt storm. Not doing so does not seem to have a
906 * negative effect (yet?).
907 */
908
909 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
910 /*
911 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
912 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
913 * with >64 VP support.
914 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
915 * is not sufficient for this hypercall.
916 */
917 params->int_target.flags |=
918 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
919 params->int_target.vp_set.valid_banks =
920 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
921
922 /*
923 * var-sized hypercall, var-size starts after vp_mask (thus
924 * vp_set.format does not count, but vp_set.valid_banks does).
925 */
926 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
927
928 for_each_cpu_and(cpu, dest, cpu_online_mask) {
929 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
930
931 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
932 dev_err(&hbus->hdev->device,
933 "too high CPU %d", cpu_vmbus);
934 res = 1;
935 goto exit_unlock;
936 }
937
938 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
939 (1ULL << (cpu_vmbus & 63));
940 }
941 } else {
942 for_each_cpu_and(cpu, dest, cpu_online_mask) {
943 params->int_target.vp_mask |=
944 (1ULL << hv_cpu_number_to_vp_number(cpu));
945 }
946 }
947
948 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
949 params, NULL);
950
951 exit_unlock:
952 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
953
954 if (res) {
955 dev_err(&hbus->hdev->device,
956 "%s() failed: %#llx", __func__, res);
957 return;
958 }
959
960 pci_msi_unmask_irq(data);
961 }
962
963 struct compose_comp_ctxt {
964 struct hv_pci_compl comp_pkt;
965 struct tran_int_desc int_desc;
966 };
967
968 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
969 int resp_packet_size)
970 {
971 struct compose_comp_ctxt *comp_pkt = context;
972 struct pci_create_int_response *int_resp =
973 (struct pci_create_int_response *)resp;
974
975 comp_pkt->comp_pkt.completion_status = resp->status;
976 comp_pkt->int_desc = int_resp->int_desc;
977 complete(&comp_pkt->comp_pkt.host_event);
978 }
979
980 static u32 hv_compose_msi_req_v1(
981 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
982 u32 slot, u8 vector)
983 {
984 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
985 int_pkt->wslot.slot = slot;
986 int_pkt->int_desc.vector = vector;
987 int_pkt->int_desc.vector_count = 1;
988 int_pkt->int_desc.delivery_mode =
989 (apic->irq_delivery_mode == dest_LowestPrio) ?
990 dest_LowestPrio : dest_Fixed;
991
992 /*
993 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
994 * hv_irq_unmask().
995 */
996 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
997
998 return sizeof(*int_pkt);
999 }
1000
1001 static u32 hv_compose_msi_req_v2(
1002 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1003 u32 slot, u8 vector)
1004 {
1005 int cpu;
1006
1007 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1008 int_pkt->wslot.slot = slot;
1009 int_pkt->int_desc.vector = vector;
1010 int_pkt->int_desc.vector_count = 1;
1011 int_pkt->int_desc.delivery_mode =
1012 (apic->irq_delivery_mode == dest_LowestPrio) ?
1013 dest_LowestPrio : dest_Fixed;
1014
1015 /*
1016 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1017 * by subsequent retarget in hv_irq_unmask().
1018 */
1019 cpu = cpumask_first_and(affinity, cpu_online_mask);
1020 int_pkt->int_desc.processor_array[0] =
1021 hv_cpu_number_to_vp_number(cpu);
1022 int_pkt->int_desc.processor_count = 1;
1023
1024 return sizeof(*int_pkt);
1025 }
1026
1027 /**
1028 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1029 * @data: Everything about this MSI
1030 * @msg: Buffer that is filled in by this function
1031 *
1032 * This function unpacks the IRQ looking for target CPU set, IDT
1033 * vector and mode and sends a message to the parent partition
1034 * asking for a mapping for that tuple in this partition. The
1035 * response supplies a data value and address to which that data
1036 * should be written to trigger that interrupt.
1037 */
1038 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1039 {
1040 struct irq_cfg *cfg = irqd_cfg(data);
1041 struct hv_pcibus_device *hbus;
1042 struct hv_pci_dev *hpdev;
1043 struct pci_bus *pbus;
1044 struct pci_dev *pdev;
1045 struct compose_comp_ctxt comp;
1046 struct tran_int_desc *int_desc;
1047 struct {
1048 struct pci_packet pci_pkt;
1049 union {
1050 struct pci_create_interrupt v1;
1051 struct pci_create_interrupt2 v2;
1052 } int_pkts;
1053 } __packed ctxt;
1054
1055 u32 size;
1056 int ret;
1057
1058 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1059 pbus = pdev->bus;
1060 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1061 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1062 if (!hpdev)
1063 goto return_null_message;
1064
1065 /* Free any previous message that might have already been composed. */
1066 if (data->chip_data) {
1067 int_desc = data->chip_data;
1068 data->chip_data = NULL;
1069 hv_int_desc_free(hpdev, int_desc);
1070 }
1071
1072 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1073 if (!int_desc)
1074 goto drop_reference;
1075
1076 memset(&ctxt, 0, sizeof(ctxt));
1077 init_completion(&comp.comp_pkt.host_event);
1078 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1079 ctxt.pci_pkt.compl_ctxt = &comp;
1080
1081 switch (pci_protocol_version) {
1082 case PCI_PROTOCOL_VERSION_1_1:
1083 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1084 irq_data_get_affinity_mask(data),
1085 hpdev->desc.win_slot.slot,
1086 cfg->vector);
1087 break;
1088
1089 case PCI_PROTOCOL_VERSION_1_2:
1090 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1091 irq_data_get_affinity_mask(data),
1092 hpdev->desc.win_slot.slot,
1093 cfg->vector);
1094 break;
1095
1096 default:
1097 /* As we only negotiate protocol versions known to this driver,
1098 * this path should never hit. However, this is it not a hot
1099 * path so we print a message to aid future updates.
1100 */
1101 dev_err(&hbus->hdev->device,
1102 "Unexpected vPCI protocol, update driver.");
1103 goto free_int_desc;
1104 }
1105
1106 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1107 size, (unsigned long)&ctxt.pci_pkt,
1108 VM_PKT_DATA_INBAND,
1109 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1110 if (ret) {
1111 dev_err(&hbus->hdev->device,
1112 "Sending request for interrupt failed: 0x%x",
1113 comp.comp_pkt.completion_status);
1114 goto free_int_desc;
1115 }
1116
1117 /*
1118 * Since this function is called with IRQ locks held, can't
1119 * do normal wait for completion; instead poll.
1120 */
1121 while (!try_wait_for_completion(&comp.comp_pkt.host_event))
1122 udelay(100);
1123
1124 if (comp.comp_pkt.completion_status < 0) {
1125 dev_err(&hbus->hdev->device,
1126 "Request for interrupt failed: 0x%x",
1127 comp.comp_pkt.completion_status);
1128 goto free_int_desc;
1129 }
1130
1131 /*
1132 * Record the assignment so that this can be unwound later. Using
1133 * irq_set_chip_data() here would be appropriate, but the lock it takes
1134 * is already held.
1135 */
1136 *int_desc = comp.int_desc;
1137 data->chip_data = int_desc;
1138
1139 /* Pass up the result. */
1140 msg->address_hi = comp.int_desc.address >> 32;
1141 msg->address_lo = comp.int_desc.address & 0xffffffff;
1142 msg->data = comp.int_desc.data;
1143
1144 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1145 return;
1146
1147 free_int_desc:
1148 kfree(int_desc);
1149 drop_reference:
1150 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1151 return_null_message:
1152 msg->address_hi = 0;
1153 msg->address_lo = 0;
1154 msg->data = 0;
1155 }
1156
1157 /* HW Interrupt Chip Descriptor */
1158 static struct irq_chip hv_msi_irq_chip = {
1159 .name = "Hyper-V PCIe MSI",
1160 .irq_compose_msi_msg = hv_compose_msi_msg,
1161 .irq_set_affinity = hv_set_affinity,
1162 .irq_ack = irq_chip_ack_parent,
1163 .irq_mask = hv_irq_mask,
1164 .irq_unmask = hv_irq_unmask,
1165 };
1166
1167 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1168 msi_alloc_info_t *arg)
1169 {
1170 return arg->msi_hwirq;
1171 }
1172
1173 static struct msi_domain_ops hv_msi_ops = {
1174 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1175 .msi_prepare = pci_msi_prepare,
1176 .set_desc = pci_msi_set_desc,
1177 .msi_free = hv_msi_free,
1178 };
1179
1180 /**
1181 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1182 * @hbus: The root PCI bus
1183 *
1184 * This function creates an IRQ domain which will be used for
1185 * interrupts from devices that have been passed through. These
1186 * devices only support MSI and MSI-X, not line-based interrupts
1187 * or simulations of line-based interrupts through PCIe's
1188 * fabric-layer messages. Because interrupts are remapped, we
1189 * can support multi-message MSI here.
1190 *
1191 * Return: '0' on success and error value on failure
1192 */
1193 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1194 {
1195 hbus->msi_info.chip = &hv_msi_irq_chip;
1196 hbus->msi_info.ops = &hv_msi_ops;
1197 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1198 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1199 MSI_FLAG_PCI_MSIX);
1200 hbus->msi_info.handler = handle_edge_irq;
1201 hbus->msi_info.handler_name = "edge";
1202 hbus->msi_info.data = hbus;
1203 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1204 &hbus->msi_info,
1205 x86_vector_domain);
1206 if (!hbus->irq_domain) {
1207 dev_err(&hbus->hdev->device,
1208 "Failed to build an MSI IRQ domain\n");
1209 return -ENODEV;
1210 }
1211
1212 return 0;
1213 }
1214
1215 /**
1216 * get_bar_size() - Get the address space consumed by a BAR
1217 * @bar_val: Value that a BAR returned after -1 was written
1218 * to it.
1219 *
1220 * This function returns the size of the BAR, rounded up to 1
1221 * page. It has to be rounded up because the hypervisor's page
1222 * table entry that maps the BAR into the VM can't specify an
1223 * offset within a page. The invariant is that the hypervisor
1224 * must place any BARs of smaller than page length at the
1225 * beginning of a page.
1226 *
1227 * Return: Size in bytes of the consumed MMIO space.
1228 */
1229 static u64 get_bar_size(u64 bar_val)
1230 {
1231 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1232 PAGE_SIZE);
1233 }
1234
1235 /**
1236 * survey_child_resources() - Total all MMIO requirements
1237 * @hbus: Root PCI bus, as understood by this driver
1238 */
1239 static void survey_child_resources(struct hv_pcibus_device *hbus)
1240 {
1241 struct list_head *iter;
1242 struct hv_pci_dev *hpdev;
1243 resource_size_t bar_size = 0;
1244 unsigned long flags;
1245 struct completion *event;
1246 u64 bar_val;
1247 int i;
1248
1249 /* If nobody is waiting on the answer, don't compute it. */
1250 event = xchg(&hbus->survey_event, NULL);
1251 if (!event)
1252 return;
1253
1254 /* If the answer has already been computed, go with it. */
1255 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1256 complete(event);
1257 return;
1258 }
1259
1260 spin_lock_irqsave(&hbus->device_list_lock, flags);
1261
1262 /*
1263 * Due to an interesting quirk of the PCI spec, all memory regions
1264 * for a child device are a power of 2 in size and aligned in memory,
1265 * so it's sufficient to just add them up without tracking alignment.
1266 */
1267 list_for_each(iter, &hbus->children) {
1268 hpdev = container_of(iter, struct hv_pci_dev, list_entry);
1269 for (i = 0; i < 6; i++) {
1270 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1271 dev_err(&hbus->hdev->device,
1272 "There's an I/O BAR in this list!\n");
1273
1274 if (hpdev->probed_bar[i] != 0) {
1275 /*
1276 * A probed BAR has all the upper bits set that
1277 * can be changed.
1278 */
1279
1280 bar_val = hpdev->probed_bar[i];
1281 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1282 bar_val |=
1283 ((u64)hpdev->probed_bar[++i] << 32);
1284 else
1285 bar_val |= 0xffffffff00000000ULL;
1286
1287 bar_size = get_bar_size(bar_val);
1288
1289 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1290 hbus->high_mmio_space += bar_size;
1291 else
1292 hbus->low_mmio_space += bar_size;
1293 }
1294 }
1295 }
1296
1297 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1298 complete(event);
1299 }
1300
1301 /**
1302 * prepopulate_bars() - Fill in BARs with defaults
1303 * @hbus: Root PCI bus, as understood by this driver
1304 *
1305 * The core PCI driver code seems much, much happier if the BARs
1306 * for a device have values upon first scan. So fill them in.
1307 * The algorithm below works down from large sizes to small,
1308 * attempting to pack the assignments optimally. The assumption,
1309 * enforced in other parts of the code, is that the beginning of
1310 * the memory-mapped I/O space will be aligned on the largest
1311 * BAR size.
1312 */
1313 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1314 {
1315 resource_size_t high_size = 0;
1316 resource_size_t low_size = 0;
1317 resource_size_t high_base = 0;
1318 resource_size_t low_base = 0;
1319 resource_size_t bar_size;
1320 struct hv_pci_dev *hpdev;
1321 struct list_head *iter;
1322 unsigned long flags;
1323 u64 bar_val;
1324 u32 command;
1325 bool high;
1326 int i;
1327
1328 if (hbus->low_mmio_space) {
1329 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1330 low_base = hbus->low_mmio_res->start;
1331 }
1332
1333 if (hbus->high_mmio_space) {
1334 high_size = 1ULL <<
1335 (63 - __builtin_clzll(hbus->high_mmio_space));
1336 high_base = hbus->high_mmio_res->start;
1337 }
1338
1339 spin_lock_irqsave(&hbus->device_list_lock, flags);
1340
1341 /* Pick addresses for the BARs. */
1342 do {
1343 list_for_each(iter, &hbus->children) {
1344 hpdev = container_of(iter, struct hv_pci_dev,
1345 list_entry);
1346 for (i = 0; i < 6; i++) {
1347 bar_val = hpdev->probed_bar[i];
1348 if (bar_val == 0)
1349 continue;
1350 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1351 if (high) {
1352 bar_val |=
1353 ((u64)hpdev->probed_bar[i + 1]
1354 << 32);
1355 } else {
1356 bar_val |= 0xffffffffULL << 32;
1357 }
1358 bar_size = get_bar_size(bar_val);
1359 if (high) {
1360 if (high_size != bar_size) {
1361 i++;
1362 continue;
1363 }
1364 _hv_pcifront_write_config(hpdev,
1365 PCI_BASE_ADDRESS_0 + (4 * i),
1366 4,
1367 (u32)(high_base & 0xffffff00));
1368 i++;
1369 _hv_pcifront_write_config(hpdev,
1370 PCI_BASE_ADDRESS_0 + (4 * i),
1371 4, (u32)(high_base >> 32));
1372 high_base += bar_size;
1373 } else {
1374 if (low_size != bar_size)
1375 continue;
1376 _hv_pcifront_write_config(hpdev,
1377 PCI_BASE_ADDRESS_0 + (4 * i),
1378 4,
1379 (u32)(low_base & 0xffffff00));
1380 low_base += bar_size;
1381 }
1382 }
1383 if (high_size <= 1 && low_size <= 1) {
1384 /* Set the memory enable bit. */
1385 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1386 &command);
1387 command |= PCI_COMMAND_MEMORY;
1388 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1389 command);
1390 break;
1391 }
1392 }
1393
1394 high_size >>= 1;
1395 low_size >>= 1;
1396 } while (high_size || low_size);
1397
1398 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1399 }
1400
1401 /**
1402 * create_root_hv_pci_bus() - Expose a new root PCI bus
1403 * @hbus: Root PCI bus, as understood by this driver
1404 *
1405 * Return: 0 on success, -errno on failure
1406 */
1407 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1408 {
1409 /* Register the device */
1410 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1411 0, /* bus number is always zero */
1412 &hv_pcifront_ops,
1413 &hbus->sysdata,
1414 &hbus->resources_for_children);
1415 if (!hbus->pci_bus)
1416 return -ENODEV;
1417
1418 hbus->pci_bus->msi = &hbus->msi_chip;
1419 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1420
1421 pci_lock_rescan_remove();
1422 pci_scan_child_bus(hbus->pci_bus);
1423 pci_bus_assign_resources(hbus->pci_bus);
1424 pci_bus_add_devices(hbus->pci_bus);
1425 pci_unlock_rescan_remove();
1426 hbus->state = hv_pcibus_installed;
1427 return 0;
1428 }
1429
1430 struct q_res_req_compl {
1431 struct completion host_event;
1432 struct hv_pci_dev *hpdev;
1433 };
1434
1435 /**
1436 * q_resource_requirements() - Query Resource Requirements
1437 * @context: The completion context.
1438 * @resp: The response that came from the host.
1439 * @resp_packet_size: The size in bytes of resp.
1440 *
1441 * This function is invoked on completion of a Query Resource
1442 * Requirements packet.
1443 */
1444 static void q_resource_requirements(void *context, struct pci_response *resp,
1445 int resp_packet_size)
1446 {
1447 struct q_res_req_compl *completion = context;
1448 struct pci_q_res_req_response *q_res_req =
1449 (struct pci_q_res_req_response *)resp;
1450 int i;
1451
1452 if (resp->status < 0) {
1453 dev_err(&completion->hpdev->hbus->hdev->device,
1454 "query resource requirements failed: %x\n",
1455 resp->status);
1456 } else {
1457 for (i = 0; i < 6; i++) {
1458 completion->hpdev->probed_bar[i] =
1459 q_res_req->probed_bar[i];
1460 }
1461 }
1462
1463 complete(&completion->host_event);
1464 }
1465
1466 static void get_pcichild(struct hv_pci_dev *hpdev,
1467 enum hv_pcidev_ref_reason reason)
1468 {
1469 refcount_inc(&hpdev->refs);
1470 }
1471
1472 static void put_pcichild(struct hv_pci_dev *hpdev,
1473 enum hv_pcidev_ref_reason reason)
1474 {
1475 if (refcount_dec_and_test(&hpdev->refs))
1476 kfree(hpdev);
1477 }
1478
1479 /**
1480 * new_pcichild_device() - Create a new child device
1481 * @hbus: The internal struct tracking this root PCI bus.
1482 * @desc: The information supplied so far from the host
1483 * about the device.
1484 *
1485 * This function creates the tracking structure for a new child
1486 * device and kicks off the process of figuring out what it is.
1487 *
1488 * Return: Pointer to the new tracking struct
1489 */
1490 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1491 struct pci_function_description *desc)
1492 {
1493 struct hv_pci_dev *hpdev;
1494 struct pci_child_message *res_req;
1495 struct q_res_req_compl comp_pkt;
1496 struct {
1497 struct pci_packet init_packet;
1498 u8 buffer[sizeof(struct pci_child_message)];
1499 } pkt;
1500 unsigned long flags;
1501 int ret;
1502
1503 hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1504 if (!hpdev)
1505 return NULL;
1506
1507 hpdev->hbus = hbus;
1508
1509 memset(&pkt, 0, sizeof(pkt));
1510 init_completion(&comp_pkt.host_event);
1511 comp_pkt.hpdev = hpdev;
1512 pkt.init_packet.compl_ctxt = &comp_pkt;
1513 pkt.init_packet.completion_func = q_resource_requirements;
1514 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1515 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1516 res_req->wslot.slot = desc->win_slot.slot;
1517
1518 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1519 sizeof(struct pci_child_message),
1520 (unsigned long)&pkt.init_packet,
1521 VM_PKT_DATA_INBAND,
1522 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1523 if (ret)
1524 goto error;
1525
1526 wait_for_completion(&comp_pkt.host_event);
1527
1528 hpdev->desc = *desc;
1529 refcount_set(&hpdev->refs, 1);
1530 get_pcichild(hpdev, hv_pcidev_ref_childlist);
1531 spin_lock_irqsave(&hbus->device_list_lock, flags);
1532
1533 /*
1534 * When a device is being added to the bus, we set the PCI domain
1535 * number to be the device serial number, which is non-zero and
1536 * unique on the same VM. The serial numbers start with 1, and
1537 * increase by 1 for each device. So device names including this
1538 * can have shorter names than based on the bus instance UUID.
1539 * Only the first device serial number is used for domain, so the
1540 * domain number will not change after the first device is added.
1541 */
1542 if (list_empty(&hbus->children))
1543 hbus->sysdata.domain = desc->ser;
1544 list_add_tail(&hpdev->list_entry, &hbus->children);
1545 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1546 return hpdev;
1547
1548 error:
1549 kfree(hpdev);
1550 return NULL;
1551 }
1552
1553 /**
1554 * get_pcichild_wslot() - Find device from slot
1555 * @hbus: Root PCI bus, as understood by this driver
1556 * @wslot: Location on the bus
1557 *
1558 * This function looks up a PCI device and returns the internal
1559 * representation of it. It acquires a reference on it, so that
1560 * the device won't be deleted while somebody is using it. The
1561 * caller is responsible for calling put_pcichild() to release
1562 * this reference.
1563 *
1564 * Return: Internal representation of a PCI device
1565 */
1566 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1567 u32 wslot)
1568 {
1569 unsigned long flags;
1570 struct hv_pci_dev *iter, *hpdev = NULL;
1571
1572 spin_lock_irqsave(&hbus->device_list_lock, flags);
1573 list_for_each_entry(iter, &hbus->children, list_entry) {
1574 if (iter->desc.win_slot.slot == wslot) {
1575 hpdev = iter;
1576 get_pcichild(hpdev, hv_pcidev_ref_by_slot);
1577 break;
1578 }
1579 }
1580 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1581
1582 return hpdev;
1583 }
1584
1585 /**
1586 * pci_devices_present_work() - Handle new list of child devices
1587 * @work: Work struct embedded in struct hv_dr_work
1588 *
1589 * "Bus Relations" is the Windows term for "children of this
1590 * bus." The terminology is preserved here for people trying to
1591 * debug the interaction between Hyper-V and Linux. This
1592 * function is called when the parent partition reports a list
1593 * of functions that should be observed under this PCI Express
1594 * port (bus).
1595 *
1596 * This function updates the list, and must tolerate being
1597 * called multiple times with the same information. The typical
1598 * number of child devices is one, with very atypical cases
1599 * involving three or four, so the algorithms used here can be
1600 * simple and inefficient.
1601 *
1602 * It must also treat the omission of a previously observed device as
1603 * notification that the device no longer exists.
1604 *
1605 * Note that this function is a work item, and it may not be
1606 * invoked in the order that it was queued. Back to back
1607 * updates of the list of present devices may involve queuing
1608 * multiple work items, and this one may run before ones that
1609 * were sent later. As such, this function only does something
1610 * if is the last one in the queue.
1611 */
1612 static void pci_devices_present_work(struct work_struct *work)
1613 {
1614 u32 child_no;
1615 bool found;
1616 struct list_head *iter;
1617 struct pci_function_description *new_desc;
1618 struct hv_pci_dev *hpdev;
1619 struct hv_pcibus_device *hbus;
1620 struct list_head removed;
1621 struct hv_dr_work *dr_wrk;
1622 struct hv_dr_state *dr = NULL;
1623 unsigned long flags;
1624
1625 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1626 hbus = dr_wrk->bus;
1627 kfree(dr_wrk);
1628
1629 INIT_LIST_HEAD(&removed);
1630
1631 if (down_interruptible(&hbus->enum_sem)) {
1632 put_hvpcibus(hbus);
1633 return;
1634 }
1635
1636 /* Pull this off the queue and process it if it was the last one. */
1637 spin_lock_irqsave(&hbus->device_list_lock, flags);
1638 while (!list_empty(&hbus->dr_list)) {
1639 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1640 list_entry);
1641 list_del(&dr->list_entry);
1642
1643 /* Throw this away if the list still has stuff in it. */
1644 if (!list_empty(&hbus->dr_list)) {
1645 kfree(dr);
1646 continue;
1647 }
1648 }
1649 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1650
1651 if (!dr) {
1652 up(&hbus->enum_sem);
1653 put_hvpcibus(hbus);
1654 return;
1655 }
1656
1657 /* First, mark all existing children as reported missing. */
1658 spin_lock_irqsave(&hbus->device_list_lock, flags);
1659 list_for_each(iter, &hbus->children) {
1660 hpdev = container_of(iter, struct hv_pci_dev,
1661 list_entry);
1662 hpdev->reported_missing = true;
1663 }
1664 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1665
1666 /* Next, add back any reported devices. */
1667 for (child_no = 0; child_no < dr->device_count; child_no++) {
1668 found = false;
1669 new_desc = &dr->func[child_no];
1670
1671 spin_lock_irqsave(&hbus->device_list_lock, flags);
1672 list_for_each(iter, &hbus->children) {
1673 hpdev = container_of(iter, struct hv_pci_dev,
1674 list_entry);
1675 if ((hpdev->desc.win_slot.slot ==
1676 new_desc->win_slot.slot) &&
1677 (hpdev->desc.v_id == new_desc->v_id) &&
1678 (hpdev->desc.d_id == new_desc->d_id) &&
1679 (hpdev->desc.ser == new_desc->ser)) {
1680 hpdev->reported_missing = false;
1681 found = true;
1682 }
1683 }
1684 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1685
1686 if (!found) {
1687 hpdev = new_pcichild_device(hbus, new_desc);
1688 if (!hpdev)
1689 dev_err(&hbus->hdev->device,
1690 "couldn't record a child device.\n");
1691 }
1692 }
1693
1694 /* Move missing children to a list on the stack. */
1695 spin_lock_irqsave(&hbus->device_list_lock, flags);
1696 do {
1697 found = false;
1698 list_for_each(iter, &hbus->children) {
1699 hpdev = container_of(iter, struct hv_pci_dev,
1700 list_entry);
1701 if (hpdev->reported_missing) {
1702 found = true;
1703 put_pcichild(hpdev, hv_pcidev_ref_childlist);
1704 list_move_tail(&hpdev->list_entry, &removed);
1705 break;
1706 }
1707 }
1708 } while (found);
1709 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1710
1711 /* Delete everything that should no longer exist. */
1712 while (!list_empty(&removed)) {
1713 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1714 list_entry);
1715 list_del(&hpdev->list_entry);
1716 put_pcichild(hpdev, hv_pcidev_ref_initial);
1717 }
1718
1719 switch (hbus->state) {
1720 case hv_pcibus_installed:
1721 /*
1722 * Tell the core to rescan bus
1723 * because there may have been changes.
1724 */
1725 pci_lock_rescan_remove();
1726 pci_scan_child_bus(hbus->pci_bus);
1727 pci_unlock_rescan_remove();
1728 break;
1729
1730 case hv_pcibus_init:
1731 case hv_pcibus_probed:
1732 survey_child_resources(hbus);
1733 break;
1734
1735 default:
1736 break;
1737 }
1738
1739 up(&hbus->enum_sem);
1740 put_hvpcibus(hbus);
1741 kfree(dr);
1742 }
1743
1744 /**
1745 * hv_pci_devices_present() - Handles list of new children
1746 * @hbus: Root PCI bus, as understood by this driver
1747 * @relations: Packet from host listing children
1748 *
1749 * This function is invoked whenever a new list of devices for
1750 * this bus appears.
1751 */
1752 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1753 struct pci_bus_relations *relations)
1754 {
1755 struct hv_dr_state *dr;
1756 struct hv_dr_work *dr_wrk;
1757 unsigned long flags;
1758
1759 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1760 if (!dr_wrk)
1761 return;
1762
1763 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1764 (sizeof(struct pci_function_description) *
1765 (relations->device_count)), GFP_NOWAIT);
1766 if (!dr) {
1767 kfree(dr_wrk);
1768 return;
1769 }
1770
1771 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1772 dr_wrk->bus = hbus;
1773 dr->device_count = relations->device_count;
1774 if (dr->device_count != 0) {
1775 memcpy(dr->func, relations->func,
1776 sizeof(struct pci_function_description) *
1777 dr->device_count);
1778 }
1779
1780 spin_lock_irqsave(&hbus->device_list_lock, flags);
1781 list_add_tail(&dr->list_entry, &hbus->dr_list);
1782 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1783
1784 get_hvpcibus(hbus);
1785 schedule_work(&dr_wrk->wrk);
1786 }
1787
1788 /**
1789 * hv_eject_device_work() - Asynchronously handles ejection
1790 * @work: Work struct embedded in internal device struct
1791 *
1792 * This function handles ejecting a device. Windows will
1793 * attempt to gracefully eject a device, waiting 60 seconds to
1794 * hear back from the guest OS that this completed successfully.
1795 * If this timer expires, the device will be forcibly removed.
1796 */
1797 static void hv_eject_device_work(struct work_struct *work)
1798 {
1799 struct pci_eject_response *ejct_pkt;
1800 struct hv_pci_dev *hpdev;
1801 struct pci_dev *pdev;
1802 unsigned long flags;
1803 int wslot;
1804 struct {
1805 struct pci_packet pkt;
1806 u8 buffer[sizeof(struct pci_eject_response)];
1807 } ctxt;
1808
1809 hpdev = container_of(work, struct hv_pci_dev, wrk);
1810
1811 if (hpdev->state != hv_pcichild_ejecting) {
1812 put_pcichild(hpdev, hv_pcidev_ref_pnp);
1813 return;
1814 }
1815
1816 /*
1817 * Ejection can come before or after the PCI bus has been set up, so
1818 * attempt to find it and tear down the bus state, if it exists. This
1819 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1820 * because hbus->pci_bus may not exist yet.
1821 */
1822 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1823 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1824 wslot);
1825 if (pdev) {
1826 pci_lock_rescan_remove();
1827 pci_stop_and_remove_bus_device(pdev);
1828 pci_dev_put(pdev);
1829 pci_unlock_rescan_remove();
1830 }
1831
1832 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1833 list_del(&hpdev->list_entry);
1834 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1835
1836 memset(&ctxt, 0, sizeof(ctxt));
1837 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1838 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1839 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1840 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1841 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1842 VM_PKT_DATA_INBAND, 0);
1843
1844 put_pcichild(hpdev, hv_pcidev_ref_childlist);
1845 put_pcichild(hpdev, hv_pcidev_ref_pnp);
1846 put_hvpcibus(hpdev->hbus);
1847 }
1848
1849 /**
1850 * hv_pci_eject_device() - Handles device ejection
1851 * @hpdev: Internal device tracking struct
1852 *
1853 * This function is invoked when an ejection packet arrives. It
1854 * just schedules work so that we don't re-enter the packet
1855 * delivery code handling the ejection.
1856 */
1857 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1858 {
1859 hpdev->state = hv_pcichild_ejecting;
1860 get_pcichild(hpdev, hv_pcidev_ref_pnp);
1861 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1862 get_hvpcibus(hpdev->hbus);
1863 schedule_work(&hpdev->wrk);
1864 }
1865
1866 /**
1867 * hv_pci_onchannelcallback() - Handles incoming packets
1868 * @context: Internal bus tracking struct
1869 *
1870 * This function is invoked whenever the host sends a packet to
1871 * this channel (which is private to this root PCI bus).
1872 */
1873 static void hv_pci_onchannelcallback(void *context)
1874 {
1875 const int packet_size = 0x100;
1876 int ret;
1877 struct hv_pcibus_device *hbus = context;
1878 u32 bytes_recvd;
1879 u64 req_id;
1880 struct vmpacket_descriptor *desc;
1881 unsigned char *buffer;
1882 int bufferlen = packet_size;
1883 struct pci_packet *comp_packet;
1884 struct pci_response *response;
1885 struct pci_incoming_message *new_message;
1886 struct pci_bus_relations *bus_rel;
1887 struct pci_dev_incoming *dev_message;
1888 struct hv_pci_dev *hpdev;
1889
1890 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1891 if (!buffer)
1892 return;
1893
1894 while (1) {
1895 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1896 bufferlen, &bytes_recvd, &req_id);
1897
1898 if (ret == -ENOBUFS) {
1899 kfree(buffer);
1900 /* Handle large packet */
1901 bufferlen = bytes_recvd;
1902 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1903 if (!buffer)
1904 return;
1905 continue;
1906 }
1907
1908 /* Zero length indicates there are no more packets. */
1909 if (ret || !bytes_recvd)
1910 break;
1911
1912 /*
1913 * All incoming packets must be at least as large as a
1914 * response.
1915 */
1916 if (bytes_recvd <= sizeof(struct pci_response))
1917 continue;
1918 desc = (struct vmpacket_descriptor *)buffer;
1919
1920 switch (desc->type) {
1921 case VM_PKT_COMP:
1922
1923 /*
1924 * The host is trusted, and thus it's safe to interpret
1925 * this transaction ID as a pointer.
1926 */
1927 comp_packet = (struct pci_packet *)req_id;
1928 response = (struct pci_response *)buffer;
1929 comp_packet->completion_func(comp_packet->compl_ctxt,
1930 response,
1931 bytes_recvd);
1932 break;
1933
1934 case VM_PKT_DATA_INBAND:
1935
1936 new_message = (struct pci_incoming_message *)buffer;
1937 switch (new_message->message_type.type) {
1938 case PCI_BUS_RELATIONS:
1939
1940 bus_rel = (struct pci_bus_relations *)buffer;
1941 if (bytes_recvd <
1942 offsetof(struct pci_bus_relations, func) +
1943 (sizeof(struct pci_function_description) *
1944 (bus_rel->device_count))) {
1945 dev_err(&hbus->hdev->device,
1946 "bus relations too small\n");
1947 break;
1948 }
1949
1950 hv_pci_devices_present(hbus, bus_rel);
1951 break;
1952
1953 case PCI_EJECT:
1954
1955 dev_message = (struct pci_dev_incoming *)buffer;
1956 hpdev = get_pcichild_wslot(hbus,
1957 dev_message->wslot.slot);
1958 if (hpdev) {
1959 hv_pci_eject_device(hpdev);
1960 put_pcichild(hpdev,
1961 hv_pcidev_ref_by_slot);
1962 }
1963 break;
1964
1965 default:
1966 dev_warn(&hbus->hdev->device,
1967 "Unimplemented protocol message %x\n",
1968 new_message->message_type.type);
1969 break;
1970 }
1971 break;
1972
1973 default:
1974 dev_err(&hbus->hdev->device,
1975 "unhandled packet type %d, tid %llx len %d\n",
1976 desc->type, req_id, bytes_recvd);
1977 break;
1978 }
1979 }
1980
1981 kfree(buffer);
1982 }
1983
1984 /**
1985 * hv_pci_protocol_negotiation() - Set up protocol
1986 * @hdev: VMBus's tracking struct for this root PCI bus
1987 *
1988 * This driver is intended to support running on Windows 10
1989 * (server) and later versions. It will not run on earlier
1990 * versions, as they assume that many of the operations which
1991 * Linux needs accomplished with a spinlock held were done via
1992 * asynchronous messaging via VMBus. Windows 10 increases the
1993 * surface area of PCI emulation so that these actions can take
1994 * place by suspending a virtual processor for their duration.
1995 *
1996 * This function negotiates the channel protocol version,
1997 * failing if the host doesn't support the necessary protocol
1998 * level.
1999 */
2000 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2001 {
2002 struct pci_version_request *version_req;
2003 struct hv_pci_compl comp_pkt;
2004 struct pci_packet *pkt;
2005 int ret;
2006 int i;
2007
2008 /*
2009 * Initiate the handshake with the host and negotiate
2010 * a version that the host can support. We start with the
2011 * highest version number and go down if the host cannot
2012 * support it.
2013 */
2014 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2015 if (!pkt)
2016 return -ENOMEM;
2017
2018 init_completion(&comp_pkt.host_event);
2019 pkt->completion_func = hv_pci_generic_compl;
2020 pkt->compl_ctxt = &comp_pkt;
2021 version_req = (struct pci_version_request *)&pkt->message;
2022 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2023
2024 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2025 version_req->protocol_version = pci_protocol_versions[i];
2026 ret = vmbus_sendpacket(hdev->channel, version_req,
2027 sizeof(struct pci_version_request),
2028 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2029 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2030 if (ret) {
2031 dev_err(&hdev->device,
2032 "PCI Pass-through VSP failed sending version reqquest: %#x",
2033 ret);
2034 goto exit;
2035 }
2036
2037 wait_for_completion(&comp_pkt.host_event);
2038
2039 if (comp_pkt.completion_status >= 0) {
2040 pci_protocol_version = pci_protocol_versions[i];
2041 dev_info(&hdev->device,
2042 "PCI VMBus probing: Using version %#x\n",
2043 pci_protocol_version);
2044 goto exit;
2045 }
2046
2047 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2048 dev_err(&hdev->device,
2049 "PCI Pass-through VSP failed version request: %#x",
2050 comp_pkt.completion_status);
2051 ret = -EPROTO;
2052 goto exit;
2053 }
2054
2055 reinit_completion(&comp_pkt.host_event);
2056 }
2057
2058 dev_err(&hdev->device,
2059 "PCI pass-through VSP failed to find supported version");
2060 ret = -EPROTO;
2061
2062 exit:
2063 kfree(pkt);
2064 return ret;
2065 }
2066
2067 /**
2068 * hv_pci_free_bridge_windows() - Release memory regions for the
2069 * bus
2070 * @hbus: Root PCI bus, as understood by this driver
2071 */
2072 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2073 {
2074 /*
2075 * Set the resources back to the way they looked when they
2076 * were allocated by setting IORESOURCE_BUSY again.
2077 */
2078
2079 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2080 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2081 vmbus_free_mmio(hbus->low_mmio_res->start,
2082 resource_size(hbus->low_mmio_res));
2083 }
2084
2085 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2086 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2087 vmbus_free_mmio(hbus->high_mmio_res->start,
2088 resource_size(hbus->high_mmio_res));
2089 }
2090 }
2091
2092 /**
2093 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2094 * for the bus
2095 * @hbus: Root PCI bus, as understood by this driver
2096 *
2097 * This function calls vmbus_allocate_mmio(), which is itself a
2098 * bit of a compromise. Ideally, we might change the pnp layer
2099 * in the kernel such that it comprehends either PCI devices
2100 * which are "grandchildren of ACPI," with some intermediate bus
2101 * node (in this case, VMBus) or change it such that it
2102 * understands VMBus. The pnp layer, however, has been declared
2103 * deprecated, and not subject to change.
2104 *
2105 * The workaround, implemented here, is to ask VMBus to allocate
2106 * MMIO space for this bus. VMBus itself knows which ranges are
2107 * appropriate by looking at its own ACPI objects. Then, after
2108 * these ranges are claimed, they're modified to look like they
2109 * would have looked if the ACPI and pnp code had allocated
2110 * bridge windows. These descriptors have to exist in this form
2111 * in order to satisfy the code which will get invoked when the
2112 * endpoint PCI function driver calls request_mem_region() or
2113 * request_mem_region_exclusive().
2114 *
2115 * Return: 0 on success, -errno on failure
2116 */
2117 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2118 {
2119 resource_size_t align;
2120 int ret;
2121
2122 if (hbus->low_mmio_space) {
2123 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2124 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2125 (u64)(u32)0xffffffff,
2126 hbus->low_mmio_space,
2127 align, false);
2128 if (ret) {
2129 dev_err(&hbus->hdev->device,
2130 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2131 hbus->low_mmio_space);
2132 return ret;
2133 }
2134
2135 /* Modify this resource to become a bridge window. */
2136 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2137 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2138 pci_add_resource(&hbus->resources_for_children,
2139 hbus->low_mmio_res);
2140 }
2141
2142 if (hbus->high_mmio_space) {
2143 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2144 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2145 0x100000000, -1,
2146 hbus->high_mmio_space, align,
2147 false);
2148 if (ret) {
2149 dev_err(&hbus->hdev->device,
2150 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2151 hbus->high_mmio_space);
2152 goto release_low_mmio;
2153 }
2154
2155 /* Modify this resource to become a bridge window. */
2156 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2157 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2158 pci_add_resource(&hbus->resources_for_children,
2159 hbus->high_mmio_res);
2160 }
2161
2162 return 0;
2163
2164 release_low_mmio:
2165 if (hbus->low_mmio_res) {
2166 vmbus_free_mmio(hbus->low_mmio_res->start,
2167 resource_size(hbus->low_mmio_res));
2168 }
2169
2170 return ret;
2171 }
2172
2173 /**
2174 * hv_allocate_config_window() - Find MMIO space for PCI Config
2175 * @hbus: Root PCI bus, as understood by this driver
2176 *
2177 * This function claims memory-mapped I/O space for accessing
2178 * configuration space for the functions on this bus.
2179 *
2180 * Return: 0 on success, -errno on failure
2181 */
2182 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2183 {
2184 int ret;
2185
2186 /*
2187 * Set up a region of MMIO space to use for accessing configuration
2188 * space.
2189 */
2190 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2191 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2192 if (ret)
2193 return ret;
2194
2195 /*
2196 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2197 * resource claims (those which cannot be overlapped) and the ranges
2198 * which are valid for the children of this bus, which are intended
2199 * to be overlapped by those children. Set the flag on this claim
2200 * meaning that this region can't be overlapped.
2201 */
2202
2203 hbus->mem_config->flags |= IORESOURCE_BUSY;
2204
2205 return 0;
2206 }
2207
2208 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2209 {
2210 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2211 }
2212
2213 /**
2214 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2215 * @hdev: VMBus's tracking struct for this root PCI bus
2216 *
2217 * Return: 0 on success, -errno on failure
2218 */
2219 static int hv_pci_enter_d0(struct hv_device *hdev)
2220 {
2221 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2222 struct pci_bus_d0_entry *d0_entry;
2223 struct hv_pci_compl comp_pkt;
2224 struct pci_packet *pkt;
2225 int ret;
2226
2227 /*
2228 * Tell the host that the bus is ready to use, and moved into the
2229 * powered-on state. This includes telling the host which region
2230 * of memory-mapped I/O space has been chosen for configuration space
2231 * access.
2232 */
2233 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2234 if (!pkt)
2235 return -ENOMEM;
2236
2237 init_completion(&comp_pkt.host_event);
2238 pkt->completion_func = hv_pci_generic_compl;
2239 pkt->compl_ctxt = &comp_pkt;
2240 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2241 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2242 d0_entry->mmio_base = hbus->mem_config->start;
2243
2244 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2245 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2246 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2247 if (ret)
2248 goto exit;
2249
2250 wait_for_completion(&comp_pkt.host_event);
2251
2252 if (comp_pkt.completion_status < 0) {
2253 dev_err(&hdev->device,
2254 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2255 comp_pkt.completion_status);
2256 ret = -EPROTO;
2257 goto exit;
2258 }
2259
2260 ret = 0;
2261
2262 exit:
2263 kfree(pkt);
2264 return ret;
2265 }
2266
2267 /**
2268 * hv_pci_query_relations() - Ask host to send list of child
2269 * devices
2270 * @hdev: VMBus's tracking struct for this root PCI bus
2271 *
2272 * Return: 0 on success, -errno on failure
2273 */
2274 static int hv_pci_query_relations(struct hv_device *hdev)
2275 {
2276 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2277 struct pci_message message;
2278 struct completion comp;
2279 int ret;
2280
2281 /* Ask the host to send along the list of child devices */
2282 init_completion(&comp);
2283 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2284 return -ENOTEMPTY;
2285
2286 memset(&message, 0, sizeof(message));
2287 message.type = PCI_QUERY_BUS_RELATIONS;
2288
2289 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2290 0, VM_PKT_DATA_INBAND, 0);
2291 if (ret)
2292 return ret;
2293
2294 wait_for_completion(&comp);
2295 return 0;
2296 }
2297
2298 /**
2299 * hv_send_resources_allocated() - Report local resource choices
2300 * @hdev: VMBus's tracking struct for this root PCI bus
2301 *
2302 * The host OS is expecting to be sent a request as a message
2303 * which contains all the resources that the device will use.
2304 * The response contains those same resources, "translated"
2305 * which is to say, the values which should be used by the
2306 * hardware, when it delivers an interrupt. (MMIO resources are
2307 * used in local terms.) This is nice for Windows, and lines up
2308 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2309 * is deeply expecting to scan an emulated PCI configuration
2310 * space. So this message is sent here only to drive the state
2311 * machine on the host forward.
2312 *
2313 * Return: 0 on success, -errno on failure
2314 */
2315 static int hv_send_resources_allocated(struct hv_device *hdev)
2316 {
2317 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2318 struct pci_resources_assigned *res_assigned;
2319 struct pci_resources_assigned2 *res_assigned2;
2320 struct hv_pci_compl comp_pkt;
2321 struct hv_pci_dev *hpdev;
2322 struct pci_packet *pkt;
2323 size_t size_res;
2324 u32 wslot;
2325 int ret;
2326
2327 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2328 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2329
2330 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2331 if (!pkt)
2332 return -ENOMEM;
2333
2334 ret = 0;
2335
2336 for (wslot = 0; wslot < 256; wslot++) {
2337 hpdev = get_pcichild_wslot(hbus, wslot);
2338 if (!hpdev)
2339 continue;
2340
2341 memset(pkt, 0, sizeof(*pkt) + size_res);
2342 init_completion(&comp_pkt.host_event);
2343 pkt->completion_func = hv_pci_generic_compl;
2344 pkt->compl_ctxt = &comp_pkt;
2345
2346 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2347 res_assigned =
2348 (struct pci_resources_assigned *)&pkt->message;
2349 res_assigned->message_type.type =
2350 PCI_RESOURCES_ASSIGNED;
2351 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2352 } else {
2353 res_assigned2 =
2354 (struct pci_resources_assigned2 *)&pkt->message;
2355 res_assigned2->message_type.type =
2356 PCI_RESOURCES_ASSIGNED2;
2357 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2358 }
2359 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2360
2361 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2362 size_res, (unsigned long)pkt,
2363 VM_PKT_DATA_INBAND,
2364 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2365 if (ret)
2366 break;
2367
2368 wait_for_completion(&comp_pkt.host_event);
2369
2370 if (comp_pkt.completion_status < 0) {
2371 ret = -EPROTO;
2372 dev_err(&hdev->device,
2373 "resource allocated returned 0x%x",
2374 comp_pkt.completion_status);
2375 break;
2376 }
2377 }
2378
2379 kfree(pkt);
2380 return ret;
2381 }
2382
2383 /**
2384 * hv_send_resources_released() - Report local resources
2385 * released
2386 * @hdev: VMBus's tracking struct for this root PCI bus
2387 *
2388 * Return: 0 on success, -errno on failure
2389 */
2390 static int hv_send_resources_released(struct hv_device *hdev)
2391 {
2392 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2393 struct pci_child_message pkt;
2394 struct hv_pci_dev *hpdev;
2395 u32 wslot;
2396 int ret;
2397
2398 for (wslot = 0; wslot < 256; wslot++) {
2399 hpdev = get_pcichild_wslot(hbus, wslot);
2400 if (!hpdev)
2401 continue;
2402
2403 memset(&pkt, 0, sizeof(pkt));
2404 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2405 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2406
2407 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2408
2409 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2410 VM_PKT_DATA_INBAND, 0);
2411 if (ret)
2412 return ret;
2413 }
2414
2415 return 0;
2416 }
2417
2418 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2419 {
2420 atomic_inc(&hbus->remove_lock);
2421 }
2422
2423 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2424 {
2425 if (atomic_dec_and_test(&hbus->remove_lock))
2426 complete(&hbus->remove_event);
2427 }
2428
2429 /**
2430 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2431 * @hdev: VMBus's tracking struct for this root PCI bus
2432 * @dev_id: Identifies the device itself
2433 *
2434 * Return: 0 on success, -errno on failure
2435 */
2436 static int hv_pci_probe(struct hv_device *hdev,
2437 const struct hv_vmbus_device_id *dev_id)
2438 {
2439 struct hv_pcibus_device *hbus;
2440 int ret;
2441
2442 /*
2443 * hv_pcibus_device contains the hypercall arguments for retargeting in
2444 * hv_irq_unmask(). Those must not cross a page boundary.
2445 */
2446 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2447
2448 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2449 if (!hbus)
2450 return -ENOMEM;
2451 hbus->state = hv_pcibus_init;
2452
2453 /*
2454 * The PCI bus "domain" is what is called "segment" in ACPI and
2455 * other specs. Pull it from the instance ID, to get something
2456 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2457 * do the same thing for consistency. Note that, since this code
2458 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2459 * that (1) the only domain in use for something that looks like
2460 * a physical PCI bus (which is actually emulated by the
2461 * hypervisor) is domain 0 and (2) there will be no overlap
2462 * between domains derived from these instance IDs in the same
2463 * VM.
2464 */
2465 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2466 hdev->dev_instance.b[8] << 8;
2467
2468 hbus->hdev = hdev;
2469 atomic_inc(&hbus->remove_lock);
2470 INIT_LIST_HEAD(&hbus->children);
2471 INIT_LIST_HEAD(&hbus->dr_list);
2472 INIT_LIST_HEAD(&hbus->resources_for_children);
2473 spin_lock_init(&hbus->config_lock);
2474 spin_lock_init(&hbus->device_list_lock);
2475 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2476 sema_init(&hbus->enum_sem, 1);
2477 init_completion(&hbus->remove_event);
2478
2479 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2480 hv_pci_onchannelcallback, hbus);
2481 if (ret)
2482 goto free_bus;
2483
2484 hv_set_drvdata(hdev, hbus);
2485
2486 ret = hv_pci_protocol_negotiation(hdev);
2487 if (ret)
2488 goto close;
2489
2490 ret = hv_allocate_config_window(hbus);
2491 if (ret)
2492 goto close;
2493
2494 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2495 PCI_CONFIG_MMIO_LENGTH);
2496 if (!hbus->cfg_addr) {
2497 dev_err(&hdev->device,
2498 "Unable to map a virtual address for config space\n");
2499 ret = -ENOMEM;
2500 goto free_config;
2501 }
2502
2503 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2504 if (!hbus->sysdata.fwnode) {
2505 ret = -ENOMEM;
2506 goto unmap;
2507 }
2508
2509 ret = hv_pcie_init_irq_domain(hbus);
2510 if (ret)
2511 goto free_fwnode;
2512
2513 ret = hv_pci_query_relations(hdev);
2514 if (ret)
2515 goto free_irq_domain;
2516
2517 ret = hv_pci_enter_d0(hdev);
2518 if (ret)
2519 goto free_irq_domain;
2520
2521 ret = hv_pci_allocate_bridge_windows(hbus);
2522 if (ret)
2523 goto free_irq_domain;
2524
2525 ret = hv_send_resources_allocated(hdev);
2526 if (ret)
2527 goto free_windows;
2528
2529 prepopulate_bars(hbus);
2530
2531 hbus->state = hv_pcibus_probed;
2532
2533 ret = create_root_hv_pci_bus(hbus);
2534 if (ret)
2535 goto free_windows;
2536
2537 return 0;
2538
2539 free_windows:
2540 hv_pci_free_bridge_windows(hbus);
2541 free_irq_domain:
2542 irq_domain_remove(hbus->irq_domain);
2543 free_fwnode:
2544 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2545 unmap:
2546 iounmap(hbus->cfg_addr);
2547 free_config:
2548 hv_free_config_window(hbus);
2549 close:
2550 vmbus_close(hdev->channel);
2551 free_bus:
2552 free_page((unsigned long)hbus);
2553 return ret;
2554 }
2555
2556 static void hv_pci_bus_exit(struct hv_device *hdev)
2557 {
2558 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2559 struct {
2560 struct pci_packet teardown_packet;
2561 u8 buffer[sizeof(struct pci_message)];
2562 } pkt;
2563 struct pci_bus_relations relations;
2564 struct hv_pci_compl comp_pkt;
2565 int ret;
2566
2567 /*
2568 * After the host sends the RESCIND_CHANNEL message, it doesn't
2569 * access the per-channel ringbuffer any longer.
2570 */
2571 if (hdev->channel->rescind)
2572 return;
2573
2574 /* Delete any children which might still exist. */
2575 memset(&relations, 0, sizeof(relations));
2576 hv_pci_devices_present(hbus, &relations);
2577
2578 ret = hv_send_resources_released(hdev);
2579 if (ret)
2580 dev_err(&hdev->device,
2581 "Couldn't send resources released packet(s)\n");
2582
2583 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2584 init_completion(&comp_pkt.host_event);
2585 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2586 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2587 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2588
2589 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2590 sizeof(struct pci_message),
2591 (unsigned long)&pkt.teardown_packet,
2592 VM_PKT_DATA_INBAND,
2593 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2594 if (!ret)
2595 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2596 }
2597
2598 /**
2599 * hv_pci_remove() - Remove routine for this VMBus channel
2600 * @hdev: VMBus's tracking struct for this root PCI bus
2601 *
2602 * Return: 0 on success, -errno on failure
2603 */
2604 static int hv_pci_remove(struct hv_device *hdev)
2605 {
2606 struct hv_pcibus_device *hbus;
2607
2608 hbus = hv_get_drvdata(hdev);
2609 if (hbus->state == hv_pcibus_installed) {
2610 /* Remove the bus from PCI's point of view. */
2611 pci_lock_rescan_remove();
2612 pci_stop_root_bus(hbus->pci_bus);
2613 pci_remove_root_bus(hbus->pci_bus);
2614 pci_unlock_rescan_remove();
2615 hbus->state = hv_pcibus_removed;
2616 }
2617
2618 hv_pci_bus_exit(hdev);
2619
2620 vmbus_close(hdev->channel);
2621
2622 iounmap(hbus->cfg_addr);
2623 hv_free_config_window(hbus);
2624 pci_free_resource_list(&hbus->resources_for_children);
2625 hv_pci_free_bridge_windows(hbus);
2626 irq_domain_remove(hbus->irq_domain);
2627 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2628 put_hvpcibus(hbus);
2629 wait_for_completion(&hbus->remove_event);
2630 free_page((unsigned long)hbus);
2631 return 0;
2632 }
2633
2634 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2635 /* PCI Pass-through Class ID */
2636 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2637 { HV_PCIE_GUID, },
2638 { },
2639 };
2640
2641 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2642
2643 static struct hv_driver hv_pci_drv = {
2644 .name = "hv_pci",
2645 .id_table = hv_pci_id_table,
2646 .probe = hv_pci_probe,
2647 .remove = hv_pci_remove,
2648 };
2649
2650 static void __exit exit_hv_pci_drv(void)
2651 {
2652 vmbus_driver_unregister(&hv_pci_drv);
2653 }
2654
2655 static int __init init_hv_pci_drv(void)
2656 {
2657 return vmbus_driver_register(&hv_pci_drv);
2658 }
2659
2660 module_init(init_hv_pci_drv);
2661 module_exit(exit_hv_pci_drv);
2662
2663 MODULE_DESCRIPTION("Hyper-V PCI");
2664 MODULE_LICENSE("GPL v2");