]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/host/pci-hyperv.c
x86/apic: Switch all APICs to Fixed delivery mode
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / host / pci-hyperv.c
1 /*
2 * Copyright (c) Microsoft Corporation.
3 *
4 * Author:
5 * Jake Oshins <jakeo@microsoft.com>
6 *
7 * This driver acts as a paravirtual front-end for PCI Express root buses.
8 * When a PCI Express function (either an entire device or an SR-IOV
9 * Virtual Function) is being passed through to the VM, this driver exposes
10 * a new bus to the guest VM. This is modeled as a root PCI bus because
11 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
12 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
13 * until a device as been exposed using this driver.
14 *
15 * Each root PCI bus has its own PCI domain, which is called "Segment" in
16 * the PCI Firmware Specifications. Thus while each device passed through
17 * to the VM using this front-end will appear at "device 0", the domain will
18 * be unique. Typically, each bus will have one PCI function on it, though
19 * this driver does support more than one.
20 *
21 * In order to map the interrupts from the device through to the guest VM,
22 * this driver also implements an IRQ Domain, which handles interrupts (either
23 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
24 * set up, torn down, or reaffined, this driver communicates with the
25 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
26 * interrupt will be delivered to the correct virtual processor at the right
27 * vector. This driver does not support level-triggered (line-based)
28 * interrupts, and will report that the Interrupt Line register in the
29 * function's configuration space is zero.
30 *
31 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
32 * facilities. For instance, the configuration space of a function exposed
33 * by Hyper-V is mapped into a single page of memory space, and the
34 * read and write handlers for config space must be aware of this mechanism.
35 * Similarly, device setup and teardown involves messages sent to and from
36 * the PCI back-end driver in Hyper-V.
37 *
38 * This program is free software; you can redistribute it and/or modify it
39 * under the terms of the GNU General Public License version 2 as published
40 * by the Free Software Foundation.
41 *
42 * This program is distributed in the hope that it will be useful, but
43 * WITHOUT ANY WARRANTY; without even the implied warranty of
44 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
45 * NON INFRINGEMENT. See the GNU General Public License for more
46 * details.
47 *
48 */
49
50 #include <linux/kernel.h>
51 #include <linux/module.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/semaphore.h>
55 #include <linux/irqdomain.h>
56 #include <asm/irqdomain.h>
57 #include <asm/apic.h>
58 #include <linux/msi.h>
59 #include <linux/hyperv.h>
60 #include <linux/refcount.h>
61 #include <asm/mshyperv.h>
62
63 /*
64 * Protocol versions. The low word is the minor version, the high word the
65 * major version.
66 */
67
68 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
69 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
70 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
71
72 enum pci_protocol_version_t {
73 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
74 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
75 };
76
77 #define CPU_AFFINITY_ALL -1ULL
78
79 /*
80 * Supported protocol versions in the order of probing - highest go
81 * first.
82 */
83 static enum pci_protocol_version_t pci_protocol_versions[] = {
84 PCI_PROTOCOL_VERSION_1_2,
85 PCI_PROTOCOL_VERSION_1_1,
86 };
87
88 /*
89 * Protocol version negotiated by hv_pci_protocol_negotiation().
90 */
91 static enum pci_protocol_version_t pci_protocol_version;
92
93 #define PCI_CONFIG_MMIO_LENGTH 0x2000
94 #define CFG_PAGE_OFFSET 0x1000
95 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
96
97 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
98
99 #define STATUS_REVISION_MISMATCH 0xC0000059
100
101 /*
102 * Message Types
103 */
104
105 enum pci_message_type {
106 /*
107 * Version 1.1
108 */
109 PCI_MESSAGE_BASE = 0x42490000,
110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
133 PCI_MESSAGE_MAXIMUM
134 };
135
136 /*
137 * Structures defining the virtual PCI Express protocol.
138 */
139
140 union pci_version {
141 struct {
142 u16 minor_version;
143 u16 major_version;
144 } parts;
145 u32 version;
146 } __packed;
147
148 /*
149 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
150 * which is all this driver does. This representation is the one used in
151 * Windows, which is what is expected when sending this back and forth with
152 * the Hyper-V parent partition.
153 */
154 union win_slot_encoding {
155 struct {
156 u32 dev:5;
157 u32 func:3;
158 u32 reserved:24;
159 } bits;
160 u32 slot;
161 } __packed;
162
163 /*
164 * Pretty much as defined in the PCI Specifications.
165 */
166 struct pci_function_description {
167 u16 v_id; /* vendor ID */
168 u16 d_id; /* device ID */
169 u8 rev;
170 u8 prog_intf;
171 u8 subclass;
172 u8 base_class;
173 u32 subsystem_id;
174 union win_slot_encoding win_slot;
175 u32 ser; /* serial number */
176 } __packed;
177
178 /**
179 * struct hv_msi_desc
180 * @vector: IDT entry
181 * @delivery_mode: As defined in Intel's Programmer's
182 * Reference Manual, Volume 3, Chapter 8.
183 * @vector_count: Number of contiguous entries in the
184 * Interrupt Descriptor Table that are
185 * occupied by this Message-Signaled
186 * Interrupt. For "MSI", as first defined
187 * in PCI 2.2, this can be between 1 and
188 * 32. For "MSI-X," as first defined in PCI
189 * 3.0, this must be 1, as each MSI-X table
190 * entry would have its own descriptor.
191 * @reserved: Empty space
192 * @cpu_mask: All the target virtual processors.
193 */
194 struct hv_msi_desc {
195 u8 vector;
196 u8 delivery_mode;
197 u16 vector_count;
198 u32 reserved;
199 u64 cpu_mask;
200 } __packed;
201
202 /**
203 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
204 * @vector: IDT entry
205 * @delivery_mode: As defined in Intel's Programmer's
206 * Reference Manual, Volume 3, Chapter 8.
207 * @vector_count: Number of contiguous entries in the
208 * Interrupt Descriptor Table that are
209 * occupied by this Message-Signaled
210 * Interrupt. For "MSI", as first defined
211 * in PCI 2.2, this can be between 1 and
212 * 32. For "MSI-X," as first defined in PCI
213 * 3.0, this must be 1, as each MSI-X table
214 * entry would have its own descriptor.
215 * @processor_count: number of bits enabled in array.
216 * @processor_array: All the target virtual processors.
217 */
218 struct hv_msi_desc2 {
219 u8 vector;
220 u8 delivery_mode;
221 u16 vector_count;
222 u16 processor_count;
223 u16 processor_array[32];
224 } __packed;
225
226 /**
227 * struct tran_int_desc
228 * @reserved: unused, padding
229 * @vector_count: same as in hv_msi_desc
230 * @data: This is the "data payload" value that is
231 * written by the device when it generates
232 * a message-signaled interrupt, either MSI
233 * or MSI-X.
234 * @address: This is the address to which the data
235 * payload is written on interrupt
236 * generation.
237 */
238 struct tran_int_desc {
239 u16 reserved;
240 u16 vector_count;
241 u32 data;
242 u64 address;
243 } __packed;
244
245 /*
246 * A generic message format for virtual PCI.
247 * Specific message formats are defined later in the file.
248 */
249
250 struct pci_message {
251 u32 type;
252 } __packed;
253
254 struct pci_child_message {
255 struct pci_message message_type;
256 union win_slot_encoding wslot;
257 } __packed;
258
259 struct pci_incoming_message {
260 struct vmpacket_descriptor hdr;
261 struct pci_message message_type;
262 } __packed;
263
264 struct pci_response {
265 struct vmpacket_descriptor hdr;
266 s32 status; /* negative values are failures */
267 } __packed;
268
269 struct pci_packet {
270 void (*completion_func)(void *context, struct pci_response *resp,
271 int resp_packet_size);
272 void *compl_ctxt;
273
274 struct pci_message message[0];
275 };
276
277 /*
278 * Specific message types supporting the PCI protocol.
279 */
280
281 /*
282 * Version negotiation message. Sent from the guest to the host.
283 * The guest is free to try different versions until the host
284 * accepts the version.
285 *
286 * pci_version: The protocol version requested.
287 * is_last_attempt: If TRUE, this is the last version guest will request.
288 * reservedz: Reserved field, set to zero.
289 */
290
291 struct pci_version_request {
292 struct pci_message message_type;
293 u32 protocol_version;
294 } __packed;
295
296 /*
297 * Bus D0 Entry. This is sent from the guest to the host when the virtual
298 * bus (PCI Express port) is ready for action.
299 */
300
301 struct pci_bus_d0_entry {
302 struct pci_message message_type;
303 u32 reserved;
304 u64 mmio_base;
305 } __packed;
306
307 struct pci_bus_relations {
308 struct pci_incoming_message incoming;
309 u32 device_count;
310 struct pci_function_description func[0];
311 } __packed;
312
313 struct pci_q_res_req_response {
314 struct vmpacket_descriptor hdr;
315 s32 status; /* negative values are failures */
316 u32 probed_bar[6];
317 } __packed;
318
319 struct pci_set_power {
320 struct pci_message message_type;
321 union win_slot_encoding wslot;
322 u32 power_state; /* In Windows terms */
323 u32 reserved;
324 } __packed;
325
326 struct pci_set_power_response {
327 struct vmpacket_descriptor hdr;
328 s32 status; /* negative values are failures */
329 union win_slot_encoding wslot;
330 u32 resultant_state; /* In Windows terms */
331 u32 reserved;
332 } __packed;
333
334 struct pci_resources_assigned {
335 struct pci_message message_type;
336 union win_slot_encoding wslot;
337 u8 memory_range[0x14][6]; /* not used here */
338 u32 msi_descriptors;
339 u32 reserved[4];
340 } __packed;
341
342 struct pci_resources_assigned2 {
343 struct pci_message message_type;
344 union win_slot_encoding wslot;
345 u8 memory_range[0x14][6]; /* not used here */
346 u32 msi_descriptor_count;
347 u8 reserved[70];
348 } __packed;
349
350 struct pci_create_interrupt {
351 struct pci_message message_type;
352 union win_slot_encoding wslot;
353 struct hv_msi_desc int_desc;
354 } __packed;
355
356 struct pci_create_int_response {
357 struct pci_response response;
358 u32 reserved;
359 struct tran_int_desc int_desc;
360 } __packed;
361
362 struct pci_create_interrupt2 {
363 struct pci_message message_type;
364 union win_slot_encoding wslot;
365 struct hv_msi_desc2 int_desc;
366 } __packed;
367
368 struct pci_delete_interrupt {
369 struct pci_message message_type;
370 union win_slot_encoding wslot;
371 struct tran_int_desc int_desc;
372 } __packed;
373
374 struct pci_dev_incoming {
375 struct pci_incoming_message incoming;
376 union win_slot_encoding wslot;
377 } __packed;
378
379 struct pci_eject_response {
380 struct pci_message message_type;
381 union win_slot_encoding wslot;
382 u32 status;
383 } __packed;
384
385 static int pci_ring_size = (4 * PAGE_SIZE);
386
387 /*
388 * Definitions or interrupt steering hypercall.
389 */
390 #define HV_PARTITION_ID_SELF ((u64)-1)
391 #define HVCALL_RETARGET_INTERRUPT 0x7e
392
393 struct hv_interrupt_entry {
394 u32 source; /* 1 for MSI(-X) */
395 u32 reserved1;
396 u32 address;
397 u32 data;
398 };
399
400 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
401
402 struct hv_vp_set {
403 u64 format; /* 0 (HvGenericSetSparse4k) */
404 u64 valid_banks;
405 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
406 };
407
408 /*
409 * flags for hv_device_interrupt_target.flags
410 */
411 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
412 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
413
414 struct hv_device_interrupt_target {
415 u32 vector;
416 u32 flags;
417 union {
418 u64 vp_mask;
419 struct hv_vp_set vp_set;
420 };
421 };
422
423 struct retarget_msi_interrupt {
424 u64 partition_id; /* use "self" */
425 u64 device_id;
426 struct hv_interrupt_entry int_entry;
427 u64 reserved2;
428 struct hv_device_interrupt_target int_target;
429 } __packed;
430
431 /*
432 * Driver specific state.
433 */
434
435 enum hv_pcibus_state {
436 hv_pcibus_init = 0,
437 hv_pcibus_probed,
438 hv_pcibus_installed,
439 hv_pcibus_removed,
440 hv_pcibus_maximum
441 };
442
443 struct hv_pcibus_device {
444 struct pci_sysdata sysdata;
445 enum hv_pcibus_state state;
446 atomic_t remove_lock;
447 struct hv_device *hdev;
448 resource_size_t low_mmio_space;
449 resource_size_t high_mmio_space;
450 struct resource *mem_config;
451 struct resource *low_mmio_res;
452 struct resource *high_mmio_res;
453 struct completion *survey_event;
454 struct completion remove_event;
455 struct pci_bus *pci_bus;
456 spinlock_t config_lock; /* Avoid two threads writing index page */
457 spinlock_t device_list_lock; /* Protect lists below */
458 void __iomem *cfg_addr;
459
460 struct semaphore enum_sem;
461 struct list_head resources_for_children;
462
463 struct list_head children;
464 struct list_head dr_list;
465
466 struct msi_domain_info msi_info;
467 struct msi_controller msi_chip;
468 struct irq_domain *irq_domain;
469
470 /* hypercall arg, must not cross page boundary */
471 struct retarget_msi_interrupt retarget_msi_interrupt_params;
472
473 spinlock_t retarget_msi_interrupt_lock;
474 };
475
476 /*
477 * Tracks "Device Relations" messages from the host, which must be both
478 * processed in order and deferred so that they don't run in the context
479 * of the incoming packet callback.
480 */
481 struct hv_dr_work {
482 struct work_struct wrk;
483 struct hv_pcibus_device *bus;
484 };
485
486 struct hv_dr_state {
487 struct list_head list_entry;
488 u32 device_count;
489 struct pci_function_description func[0];
490 };
491
492 enum hv_pcichild_state {
493 hv_pcichild_init = 0,
494 hv_pcichild_requirements,
495 hv_pcichild_resourced,
496 hv_pcichild_ejecting,
497 hv_pcichild_maximum
498 };
499
500 enum hv_pcidev_ref_reason {
501 hv_pcidev_ref_invalid = 0,
502 hv_pcidev_ref_initial,
503 hv_pcidev_ref_by_slot,
504 hv_pcidev_ref_packet,
505 hv_pcidev_ref_pnp,
506 hv_pcidev_ref_childlist,
507 hv_pcidev_irqdata,
508 hv_pcidev_ref_max
509 };
510
511 struct hv_pci_dev {
512 /* List protected by pci_rescan_remove_lock */
513 struct list_head list_entry;
514 refcount_t refs;
515 enum hv_pcichild_state state;
516 struct pci_function_description desc;
517 bool reported_missing;
518 struct hv_pcibus_device *hbus;
519 struct work_struct wrk;
520
521 /*
522 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
523 * read it back, for each of the BAR offsets within config space.
524 */
525 u32 probed_bar[6];
526 };
527
528 struct hv_pci_compl {
529 struct completion host_event;
530 s32 completion_status;
531 };
532
533 /**
534 * hv_pci_generic_compl() - Invoked for a completion packet
535 * @context: Set up by the sender of the packet.
536 * @resp: The response packet
537 * @resp_packet_size: Size in bytes of the packet
538 *
539 * This function is used to trigger an event and report status
540 * for any message for which the completion packet contains a
541 * status and nothing else.
542 */
543 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
544 int resp_packet_size)
545 {
546 struct hv_pci_compl *comp_pkt = context;
547
548 if (resp_packet_size >= offsetofend(struct pci_response, status))
549 comp_pkt->completion_status = resp->status;
550 else
551 comp_pkt->completion_status = -1;
552
553 complete(&comp_pkt->host_event);
554 }
555
556 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
557 u32 wslot);
558 static void get_pcichild(struct hv_pci_dev *hv_pcidev,
559 enum hv_pcidev_ref_reason reason);
560 static void put_pcichild(struct hv_pci_dev *hv_pcidev,
561 enum hv_pcidev_ref_reason reason);
562
563 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
564 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
565
566 /**
567 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
568 * @devfn: The Linux representation of PCI slot
569 *
570 * Windows uses a slightly different representation of PCI slot.
571 *
572 * Return: The Windows representation
573 */
574 static u32 devfn_to_wslot(int devfn)
575 {
576 union win_slot_encoding wslot;
577
578 wslot.slot = 0;
579 wslot.bits.dev = PCI_SLOT(devfn);
580 wslot.bits.func = PCI_FUNC(devfn);
581
582 return wslot.slot;
583 }
584
585 /**
586 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
587 * @wslot: The Windows representation of PCI slot
588 *
589 * Windows uses a slightly different representation of PCI slot.
590 *
591 * Return: The Linux representation
592 */
593 static int wslot_to_devfn(u32 wslot)
594 {
595 union win_slot_encoding slot_no;
596
597 slot_no.slot = wslot;
598 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
599 }
600
601 /*
602 * PCI Configuration Space for these root PCI buses is implemented as a pair
603 * of pages in memory-mapped I/O space. Writing to the first page chooses
604 * the PCI function being written or read. Once the first page has been
605 * written to, the following page maps in the entire configuration space of
606 * the function.
607 */
608
609 /**
610 * _hv_pcifront_read_config() - Internal PCI config read
611 * @hpdev: The PCI driver's representation of the device
612 * @where: Offset within config space
613 * @size: Size of the transfer
614 * @val: Pointer to the buffer receiving the data
615 */
616 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
617 int size, u32 *val)
618 {
619 unsigned long flags;
620 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
621
622 /*
623 * If the attempt is to read the IDs or the ROM BAR, simulate that.
624 */
625 if (where + size <= PCI_COMMAND) {
626 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
627 } else if (where >= PCI_CLASS_REVISION && where + size <=
628 PCI_CACHE_LINE_SIZE) {
629 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
630 PCI_CLASS_REVISION, size);
631 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
632 PCI_ROM_ADDRESS) {
633 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
634 PCI_SUBSYSTEM_VENDOR_ID, size);
635 } else if (where >= PCI_ROM_ADDRESS && where + size <=
636 PCI_CAPABILITY_LIST) {
637 /* ROM BARs are unimplemented */
638 *val = 0;
639 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
640 PCI_INTERRUPT_PIN) {
641 /*
642 * Interrupt Line and Interrupt PIN are hard-wired to zero
643 * because this front-end only supports message-signaled
644 * interrupts.
645 */
646 *val = 0;
647 } else if (where + size <= CFG_PAGE_SIZE) {
648 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
649 /* Choose the function to be read. (See comment above) */
650 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
651 /* Make sure the function was chosen before we start reading. */
652 mb();
653 /* Read from that function's config space. */
654 switch (size) {
655 case 1:
656 *val = readb(addr);
657 break;
658 case 2:
659 *val = readw(addr);
660 break;
661 default:
662 *val = readl(addr);
663 break;
664 }
665 /*
666 * Make sure the write was done before we release the spinlock
667 * allowing consecutive reads/writes.
668 */
669 mb();
670 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
671 } else {
672 dev_err(&hpdev->hbus->hdev->device,
673 "Attempt to read beyond a function's config space.\n");
674 }
675 }
676
677 /**
678 * _hv_pcifront_write_config() - Internal PCI config write
679 * @hpdev: The PCI driver's representation of the device
680 * @where: Offset within config space
681 * @size: Size of the transfer
682 * @val: The data being transferred
683 */
684 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
685 int size, u32 val)
686 {
687 unsigned long flags;
688 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
689
690 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
691 where + size <= PCI_CAPABILITY_LIST) {
692 /* SSIDs and ROM BARs are read-only */
693 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695 /* Choose the function to be written. (See comment above) */
696 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 /* Make sure the function was chosen before we start writing. */
698 wmb();
699 /* Write to that function's config space. */
700 switch (size) {
701 case 1:
702 writeb(val, addr);
703 break;
704 case 2:
705 writew(val, addr);
706 break;
707 default:
708 writel(val, addr);
709 break;
710 }
711 /*
712 * Make sure the write was done before we release the spinlock
713 * allowing consecutive reads/writes.
714 */
715 mb();
716 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
717 } else {
718 dev_err(&hpdev->hbus->hdev->device,
719 "Attempt to write beyond a function's config space.\n");
720 }
721 }
722
723 /**
724 * hv_pcifront_read_config() - Read configuration space
725 * @bus: PCI Bus structure
726 * @devfn: Device/function
727 * @where: Offset from base
728 * @size: Byte/word/dword
729 * @val: Value to be read
730 *
731 * Return: PCIBIOS_SUCCESSFUL on success
732 * PCIBIOS_DEVICE_NOT_FOUND on failure
733 */
734 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
735 int where, int size, u32 *val)
736 {
737 struct hv_pcibus_device *hbus =
738 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
739 struct hv_pci_dev *hpdev;
740
741 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
742 if (!hpdev)
743 return PCIBIOS_DEVICE_NOT_FOUND;
744
745 _hv_pcifront_read_config(hpdev, where, size, val);
746
747 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
748 return PCIBIOS_SUCCESSFUL;
749 }
750
751 /**
752 * hv_pcifront_write_config() - Write configuration space
753 * @bus: PCI Bus structure
754 * @devfn: Device/function
755 * @where: Offset from base
756 * @size: Byte/word/dword
757 * @val: Value to be written to device
758 *
759 * Return: PCIBIOS_SUCCESSFUL on success
760 * PCIBIOS_DEVICE_NOT_FOUND on failure
761 */
762 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
763 int where, int size, u32 val)
764 {
765 struct hv_pcibus_device *hbus =
766 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
767 struct hv_pci_dev *hpdev;
768
769 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
770 if (!hpdev)
771 return PCIBIOS_DEVICE_NOT_FOUND;
772
773 _hv_pcifront_write_config(hpdev, where, size, val);
774
775 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
776 return PCIBIOS_SUCCESSFUL;
777 }
778
779 /* PCIe operations */
780 static struct pci_ops hv_pcifront_ops = {
781 .read = hv_pcifront_read_config,
782 .write = hv_pcifront_write_config,
783 };
784
785 /* Interrupt management hooks */
786 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
787 struct tran_int_desc *int_desc)
788 {
789 struct pci_delete_interrupt *int_pkt;
790 struct {
791 struct pci_packet pkt;
792 u8 buffer[sizeof(struct pci_delete_interrupt)];
793 } ctxt;
794
795 memset(&ctxt, 0, sizeof(ctxt));
796 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
797 int_pkt->message_type.type =
798 PCI_DELETE_INTERRUPT_MESSAGE;
799 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
800 int_pkt->int_desc = *int_desc;
801 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
802 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
803 kfree(int_desc);
804 }
805
806 /**
807 * hv_msi_free() - Free the MSI.
808 * @domain: The interrupt domain pointer
809 * @info: Extra MSI-related context
810 * @irq: Identifies the IRQ.
811 *
812 * The Hyper-V parent partition and hypervisor are tracking the
813 * messages that are in use, keeping the interrupt redirection
814 * table up to date. This callback sends a message that frees
815 * the IRT entry and related tracking nonsense.
816 */
817 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
818 unsigned int irq)
819 {
820 struct hv_pcibus_device *hbus;
821 struct hv_pci_dev *hpdev;
822 struct pci_dev *pdev;
823 struct tran_int_desc *int_desc;
824 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
825 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
826
827 pdev = msi_desc_to_pci_dev(msi);
828 hbus = info->data;
829 int_desc = irq_data_get_irq_chip_data(irq_data);
830 if (!int_desc)
831 return;
832
833 irq_data->chip_data = NULL;
834 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
835 if (!hpdev) {
836 kfree(int_desc);
837 return;
838 }
839
840 hv_int_desc_free(hpdev, int_desc);
841 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
842 }
843
844 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
845 bool force)
846 {
847 struct irq_data *parent = data->parent_data;
848
849 return parent->chip->irq_set_affinity(parent, dest, force);
850 }
851
852 static void hv_irq_mask(struct irq_data *data)
853 {
854 pci_msi_mask_irq(data);
855 }
856
857 /**
858 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
859 * affinity.
860 * @data: Describes the IRQ
861 *
862 * Build new a destination for the MSI and make a hypercall to
863 * update the Interrupt Redirection Table. "Device Logical ID"
864 * is built out of this PCI bus's instance GUID and the function
865 * number of the device.
866 */
867 static void hv_irq_unmask(struct irq_data *data)
868 {
869 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
870 struct irq_cfg *cfg = irqd_cfg(data);
871 struct retarget_msi_interrupt *params;
872 struct hv_pcibus_device *hbus;
873 struct cpumask *dest;
874 struct pci_bus *pbus;
875 struct pci_dev *pdev;
876 unsigned long flags;
877 u32 var_size = 0;
878 int cpu_vmbus;
879 int cpu;
880 u64 res;
881
882 dest = irq_data_get_affinity_mask(data);
883 pdev = msi_desc_to_pci_dev(msi_desc);
884 pbus = pdev->bus;
885 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
886
887 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
888
889 params = &hbus->retarget_msi_interrupt_params;
890 memset(params, 0, sizeof(*params));
891 params->partition_id = HV_PARTITION_ID_SELF;
892 params->int_entry.source = 1; /* MSI(-X) */
893 params->int_entry.address = msi_desc->msg.address_lo;
894 params->int_entry.data = msi_desc->msg.data;
895 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
896 (hbus->hdev->dev_instance.b[4] << 16) |
897 (hbus->hdev->dev_instance.b[7] << 8) |
898 (hbus->hdev->dev_instance.b[6] & 0xf8) |
899 PCI_FUNC(pdev->devfn);
900 params->int_target.vector = cfg->vector;
901
902 /*
903 * Honoring apic->irq_delivery_mode set to dest_Fixed by
904 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
905 * spurious interrupt storm. Not doing so does not seem to have a
906 * negative effect (yet?).
907 */
908
909 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
910 /*
911 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
912 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
913 * with >64 VP support.
914 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
915 * is not sufficient for this hypercall.
916 */
917 params->int_target.flags |=
918 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
919 params->int_target.vp_set.valid_banks =
920 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
921
922 /*
923 * var-sized hypercall, var-size starts after vp_mask (thus
924 * vp_set.format does not count, but vp_set.valid_banks does).
925 */
926 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
927
928 for_each_cpu_and(cpu, dest, cpu_online_mask) {
929 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
930
931 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
932 dev_err(&hbus->hdev->device,
933 "too high CPU %d", cpu_vmbus);
934 res = 1;
935 goto exit_unlock;
936 }
937
938 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
939 (1ULL << (cpu_vmbus & 63));
940 }
941 } else {
942 for_each_cpu_and(cpu, dest, cpu_online_mask) {
943 params->int_target.vp_mask |=
944 (1ULL << hv_cpu_number_to_vp_number(cpu));
945 }
946 }
947
948 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
949 params, NULL);
950
951 exit_unlock:
952 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
953
954 if (res) {
955 dev_err(&hbus->hdev->device,
956 "%s() failed: %#llx", __func__, res);
957 return;
958 }
959
960 pci_msi_unmask_irq(data);
961 }
962
963 struct compose_comp_ctxt {
964 struct hv_pci_compl comp_pkt;
965 struct tran_int_desc int_desc;
966 };
967
968 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
969 int resp_packet_size)
970 {
971 struct compose_comp_ctxt *comp_pkt = context;
972 struct pci_create_int_response *int_resp =
973 (struct pci_create_int_response *)resp;
974
975 comp_pkt->comp_pkt.completion_status = resp->status;
976 comp_pkt->int_desc = int_resp->int_desc;
977 complete(&comp_pkt->comp_pkt.host_event);
978 }
979
980 static u32 hv_compose_msi_req_v1(
981 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
982 u32 slot, u8 vector)
983 {
984 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
985 int_pkt->wslot.slot = slot;
986 int_pkt->int_desc.vector = vector;
987 int_pkt->int_desc.vector_count = 1;
988 int_pkt->int_desc.delivery_mode = dest_Fixed;
989
990 /*
991 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
992 * hv_irq_unmask().
993 */
994 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
995
996 return sizeof(*int_pkt);
997 }
998
999 static u32 hv_compose_msi_req_v2(
1000 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1001 u32 slot, u8 vector)
1002 {
1003 int cpu;
1004
1005 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1006 int_pkt->wslot.slot = slot;
1007 int_pkt->int_desc.vector = vector;
1008 int_pkt->int_desc.vector_count = 1;
1009 int_pkt->int_desc.delivery_mode = dest_Fixed;
1010
1011 /*
1012 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1013 * by subsequent retarget in hv_irq_unmask().
1014 */
1015 cpu = cpumask_first_and(affinity, cpu_online_mask);
1016 int_pkt->int_desc.processor_array[0] =
1017 hv_cpu_number_to_vp_number(cpu);
1018 int_pkt->int_desc.processor_count = 1;
1019
1020 return sizeof(*int_pkt);
1021 }
1022
1023 /**
1024 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1025 * @data: Everything about this MSI
1026 * @msg: Buffer that is filled in by this function
1027 *
1028 * This function unpacks the IRQ looking for target CPU set, IDT
1029 * vector and mode and sends a message to the parent partition
1030 * asking for a mapping for that tuple in this partition. The
1031 * response supplies a data value and address to which that data
1032 * should be written to trigger that interrupt.
1033 */
1034 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1035 {
1036 struct irq_cfg *cfg = irqd_cfg(data);
1037 struct hv_pcibus_device *hbus;
1038 struct hv_pci_dev *hpdev;
1039 struct pci_bus *pbus;
1040 struct pci_dev *pdev;
1041 struct compose_comp_ctxt comp;
1042 struct tran_int_desc *int_desc;
1043 struct {
1044 struct pci_packet pci_pkt;
1045 union {
1046 struct pci_create_interrupt v1;
1047 struct pci_create_interrupt2 v2;
1048 } int_pkts;
1049 } __packed ctxt;
1050
1051 u32 size;
1052 int ret;
1053
1054 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1055 pbus = pdev->bus;
1056 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1057 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1058 if (!hpdev)
1059 goto return_null_message;
1060
1061 /* Free any previous message that might have already been composed. */
1062 if (data->chip_data) {
1063 int_desc = data->chip_data;
1064 data->chip_data = NULL;
1065 hv_int_desc_free(hpdev, int_desc);
1066 }
1067
1068 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1069 if (!int_desc)
1070 goto drop_reference;
1071
1072 memset(&ctxt, 0, sizeof(ctxt));
1073 init_completion(&comp.comp_pkt.host_event);
1074 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1075 ctxt.pci_pkt.compl_ctxt = &comp;
1076
1077 switch (pci_protocol_version) {
1078 case PCI_PROTOCOL_VERSION_1_1:
1079 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1080 irq_data_get_affinity_mask(data),
1081 hpdev->desc.win_slot.slot,
1082 cfg->vector);
1083 break;
1084
1085 case PCI_PROTOCOL_VERSION_1_2:
1086 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1087 irq_data_get_affinity_mask(data),
1088 hpdev->desc.win_slot.slot,
1089 cfg->vector);
1090 break;
1091
1092 default:
1093 /* As we only negotiate protocol versions known to this driver,
1094 * this path should never hit. However, this is it not a hot
1095 * path so we print a message to aid future updates.
1096 */
1097 dev_err(&hbus->hdev->device,
1098 "Unexpected vPCI protocol, update driver.");
1099 goto free_int_desc;
1100 }
1101
1102 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1103 size, (unsigned long)&ctxt.pci_pkt,
1104 VM_PKT_DATA_INBAND,
1105 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1106 if (ret) {
1107 dev_err(&hbus->hdev->device,
1108 "Sending request for interrupt failed: 0x%x",
1109 comp.comp_pkt.completion_status);
1110 goto free_int_desc;
1111 }
1112
1113 /*
1114 * Since this function is called with IRQ locks held, can't
1115 * do normal wait for completion; instead poll.
1116 */
1117 while (!try_wait_for_completion(&comp.comp_pkt.host_event))
1118 udelay(100);
1119
1120 if (comp.comp_pkt.completion_status < 0) {
1121 dev_err(&hbus->hdev->device,
1122 "Request for interrupt failed: 0x%x",
1123 comp.comp_pkt.completion_status);
1124 goto free_int_desc;
1125 }
1126
1127 /*
1128 * Record the assignment so that this can be unwound later. Using
1129 * irq_set_chip_data() here would be appropriate, but the lock it takes
1130 * is already held.
1131 */
1132 *int_desc = comp.int_desc;
1133 data->chip_data = int_desc;
1134
1135 /* Pass up the result. */
1136 msg->address_hi = comp.int_desc.address >> 32;
1137 msg->address_lo = comp.int_desc.address & 0xffffffff;
1138 msg->data = comp.int_desc.data;
1139
1140 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1141 return;
1142
1143 free_int_desc:
1144 kfree(int_desc);
1145 drop_reference:
1146 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1147 return_null_message:
1148 msg->address_hi = 0;
1149 msg->address_lo = 0;
1150 msg->data = 0;
1151 }
1152
1153 /* HW Interrupt Chip Descriptor */
1154 static struct irq_chip hv_msi_irq_chip = {
1155 .name = "Hyper-V PCIe MSI",
1156 .irq_compose_msi_msg = hv_compose_msi_msg,
1157 .irq_set_affinity = hv_set_affinity,
1158 .irq_ack = irq_chip_ack_parent,
1159 .irq_mask = hv_irq_mask,
1160 .irq_unmask = hv_irq_unmask,
1161 };
1162
1163 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1164 msi_alloc_info_t *arg)
1165 {
1166 return arg->msi_hwirq;
1167 }
1168
1169 static struct msi_domain_ops hv_msi_ops = {
1170 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1171 .msi_prepare = pci_msi_prepare,
1172 .set_desc = pci_msi_set_desc,
1173 .msi_free = hv_msi_free,
1174 };
1175
1176 /**
1177 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1178 * @hbus: The root PCI bus
1179 *
1180 * This function creates an IRQ domain which will be used for
1181 * interrupts from devices that have been passed through. These
1182 * devices only support MSI and MSI-X, not line-based interrupts
1183 * or simulations of line-based interrupts through PCIe's
1184 * fabric-layer messages. Because interrupts are remapped, we
1185 * can support multi-message MSI here.
1186 *
1187 * Return: '0' on success and error value on failure
1188 */
1189 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1190 {
1191 hbus->msi_info.chip = &hv_msi_irq_chip;
1192 hbus->msi_info.ops = &hv_msi_ops;
1193 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1194 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1195 MSI_FLAG_PCI_MSIX);
1196 hbus->msi_info.handler = handle_edge_irq;
1197 hbus->msi_info.handler_name = "edge";
1198 hbus->msi_info.data = hbus;
1199 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1200 &hbus->msi_info,
1201 x86_vector_domain);
1202 if (!hbus->irq_domain) {
1203 dev_err(&hbus->hdev->device,
1204 "Failed to build an MSI IRQ domain\n");
1205 return -ENODEV;
1206 }
1207
1208 return 0;
1209 }
1210
1211 /**
1212 * get_bar_size() - Get the address space consumed by a BAR
1213 * @bar_val: Value that a BAR returned after -1 was written
1214 * to it.
1215 *
1216 * This function returns the size of the BAR, rounded up to 1
1217 * page. It has to be rounded up because the hypervisor's page
1218 * table entry that maps the BAR into the VM can't specify an
1219 * offset within a page. The invariant is that the hypervisor
1220 * must place any BARs of smaller than page length at the
1221 * beginning of a page.
1222 *
1223 * Return: Size in bytes of the consumed MMIO space.
1224 */
1225 static u64 get_bar_size(u64 bar_val)
1226 {
1227 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1228 PAGE_SIZE);
1229 }
1230
1231 /**
1232 * survey_child_resources() - Total all MMIO requirements
1233 * @hbus: Root PCI bus, as understood by this driver
1234 */
1235 static void survey_child_resources(struct hv_pcibus_device *hbus)
1236 {
1237 struct list_head *iter;
1238 struct hv_pci_dev *hpdev;
1239 resource_size_t bar_size = 0;
1240 unsigned long flags;
1241 struct completion *event;
1242 u64 bar_val;
1243 int i;
1244
1245 /* If nobody is waiting on the answer, don't compute it. */
1246 event = xchg(&hbus->survey_event, NULL);
1247 if (!event)
1248 return;
1249
1250 /* If the answer has already been computed, go with it. */
1251 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1252 complete(event);
1253 return;
1254 }
1255
1256 spin_lock_irqsave(&hbus->device_list_lock, flags);
1257
1258 /*
1259 * Due to an interesting quirk of the PCI spec, all memory regions
1260 * for a child device are a power of 2 in size and aligned in memory,
1261 * so it's sufficient to just add them up without tracking alignment.
1262 */
1263 list_for_each(iter, &hbus->children) {
1264 hpdev = container_of(iter, struct hv_pci_dev, list_entry);
1265 for (i = 0; i < 6; i++) {
1266 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1267 dev_err(&hbus->hdev->device,
1268 "There's an I/O BAR in this list!\n");
1269
1270 if (hpdev->probed_bar[i] != 0) {
1271 /*
1272 * A probed BAR has all the upper bits set that
1273 * can be changed.
1274 */
1275
1276 bar_val = hpdev->probed_bar[i];
1277 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1278 bar_val |=
1279 ((u64)hpdev->probed_bar[++i] << 32);
1280 else
1281 bar_val |= 0xffffffff00000000ULL;
1282
1283 bar_size = get_bar_size(bar_val);
1284
1285 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1286 hbus->high_mmio_space += bar_size;
1287 else
1288 hbus->low_mmio_space += bar_size;
1289 }
1290 }
1291 }
1292
1293 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1294 complete(event);
1295 }
1296
1297 /**
1298 * prepopulate_bars() - Fill in BARs with defaults
1299 * @hbus: Root PCI bus, as understood by this driver
1300 *
1301 * The core PCI driver code seems much, much happier if the BARs
1302 * for a device have values upon first scan. So fill them in.
1303 * The algorithm below works down from large sizes to small,
1304 * attempting to pack the assignments optimally. The assumption,
1305 * enforced in other parts of the code, is that the beginning of
1306 * the memory-mapped I/O space will be aligned on the largest
1307 * BAR size.
1308 */
1309 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1310 {
1311 resource_size_t high_size = 0;
1312 resource_size_t low_size = 0;
1313 resource_size_t high_base = 0;
1314 resource_size_t low_base = 0;
1315 resource_size_t bar_size;
1316 struct hv_pci_dev *hpdev;
1317 struct list_head *iter;
1318 unsigned long flags;
1319 u64 bar_val;
1320 u32 command;
1321 bool high;
1322 int i;
1323
1324 if (hbus->low_mmio_space) {
1325 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1326 low_base = hbus->low_mmio_res->start;
1327 }
1328
1329 if (hbus->high_mmio_space) {
1330 high_size = 1ULL <<
1331 (63 - __builtin_clzll(hbus->high_mmio_space));
1332 high_base = hbus->high_mmio_res->start;
1333 }
1334
1335 spin_lock_irqsave(&hbus->device_list_lock, flags);
1336
1337 /* Pick addresses for the BARs. */
1338 do {
1339 list_for_each(iter, &hbus->children) {
1340 hpdev = container_of(iter, struct hv_pci_dev,
1341 list_entry);
1342 for (i = 0; i < 6; i++) {
1343 bar_val = hpdev->probed_bar[i];
1344 if (bar_val == 0)
1345 continue;
1346 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1347 if (high) {
1348 bar_val |=
1349 ((u64)hpdev->probed_bar[i + 1]
1350 << 32);
1351 } else {
1352 bar_val |= 0xffffffffULL << 32;
1353 }
1354 bar_size = get_bar_size(bar_val);
1355 if (high) {
1356 if (high_size != bar_size) {
1357 i++;
1358 continue;
1359 }
1360 _hv_pcifront_write_config(hpdev,
1361 PCI_BASE_ADDRESS_0 + (4 * i),
1362 4,
1363 (u32)(high_base & 0xffffff00));
1364 i++;
1365 _hv_pcifront_write_config(hpdev,
1366 PCI_BASE_ADDRESS_0 + (4 * i),
1367 4, (u32)(high_base >> 32));
1368 high_base += bar_size;
1369 } else {
1370 if (low_size != bar_size)
1371 continue;
1372 _hv_pcifront_write_config(hpdev,
1373 PCI_BASE_ADDRESS_0 + (4 * i),
1374 4,
1375 (u32)(low_base & 0xffffff00));
1376 low_base += bar_size;
1377 }
1378 }
1379 if (high_size <= 1 && low_size <= 1) {
1380 /* Set the memory enable bit. */
1381 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1382 &command);
1383 command |= PCI_COMMAND_MEMORY;
1384 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1385 command);
1386 break;
1387 }
1388 }
1389
1390 high_size >>= 1;
1391 low_size >>= 1;
1392 } while (high_size || low_size);
1393
1394 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1395 }
1396
1397 /**
1398 * create_root_hv_pci_bus() - Expose a new root PCI bus
1399 * @hbus: Root PCI bus, as understood by this driver
1400 *
1401 * Return: 0 on success, -errno on failure
1402 */
1403 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1404 {
1405 /* Register the device */
1406 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1407 0, /* bus number is always zero */
1408 &hv_pcifront_ops,
1409 &hbus->sysdata,
1410 &hbus->resources_for_children);
1411 if (!hbus->pci_bus)
1412 return -ENODEV;
1413
1414 hbus->pci_bus->msi = &hbus->msi_chip;
1415 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1416
1417 pci_lock_rescan_remove();
1418 pci_scan_child_bus(hbus->pci_bus);
1419 pci_bus_assign_resources(hbus->pci_bus);
1420 pci_bus_add_devices(hbus->pci_bus);
1421 pci_unlock_rescan_remove();
1422 hbus->state = hv_pcibus_installed;
1423 return 0;
1424 }
1425
1426 struct q_res_req_compl {
1427 struct completion host_event;
1428 struct hv_pci_dev *hpdev;
1429 };
1430
1431 /**
1432 * q_resource_requirements() - Query Resource Requirements
1433 * @context: The completion context.
1434 * @resp: The response that came from the host.
1435 * @resp_packet_size: The size in bytes of resp.
1436 *
1437 * This function is invoked on completion of a Query Resource
1438 * Requirements packet.
1439 */
1440 static void q_resource_requirements(void *context, struct pci_response *resp,
1441 int resp_packet_size)
1442 {
1443 struct q_res_req_compl *completion = context;
1444 struct pci_q_res_req_response *q_res_req =
1445 (struct pci_q_res_req_response *)resp;
1446 int i;
1447
1448 if (resp->status < 0) {
1449 dev_err(&completion->hpdev->hbus->hdev->device,
1450 "query resource requirements failed: %x\n",
1451 resp->status);
1452 } else {
1453 for (i = 0; i < 6; i++) {
1454 completion->hpdev->probed_bar[i] =
1455 q_res_req->probed_bar[i];
1456 }
1457 }
1458
1459 complete(&completion->host_event);
1460 }
1461
1462 static void get_pcichild(struct hv_pci_dev *hpdev,
1463 enum hv_pcidev_ref_reason reason)
1464 {
1465 refcount_inc(&hpdev->refs);
1466 }
1467
1468 static void put_pcichild(struct hv_pci_dev *hpdev,
1469 enum hv_pcidev_ref_reason reason)
1470 {
1471 if (refcount_dec_and_test(&hpdev->refs))
1472 kfree(hpdev);
1473 }
1474
1475 /**
1476 * new_pcichild_device() - Create a new child device
1477 * @hbus: The internal struct tracking this root PCI bus.
1478 * @desc: The information supplied so far from the host
1479 * about the device.
1480 *
1481 * This function creates the tracking structure for a new child
1482 * device and kicks off the process of figuring out what it is.
1483 *
1484 * Return: Pointer to the new tracking struct
1485 */
1486 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1487 struct pci_function_description *desc)
1488 {
1489 struct hv_pci_dev *hpdev;
1490 struct pci_child_message *res_req;
1491 struct q_res_req_compl comp_pkt;
1492 struct {
1493 struct pci_packet init_packet;
1494 u8 buffer[sizeof(struct pci_child_message)];
1495 } pkt;
1496 unsigned long flags;
1497 int ret;
1498
1499 hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1500 if (!hpdev)
1501 return NULL;
1502
1503 hpdev->hbus = hbus;
1504
1505 memset(&pkt, 0, sizeof(pkt));
1506 init_completion(&comp_pkt.host_event);
1507 comp_pkt.hpdev = hpdev;
1508 pkt.init_packet.compl_ctxt = &comp_pkt;
1509 pkt.init_packet.completion_func = q_resource_requirements;
1510 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1511 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1512 res_req->wslot.slot = desc->win_slot.slot;
1513
1514 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1515 sizeof(struct pci_child_message),
1516 (unsigned long)&pkt.init_packet,
1517 VM_PKT_DATA_INBAND,
1518 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1519 if (ret)
1520 goto error;
1521
1522 wait_for_completion(&comp_pkt.host_event);
1523
1524 hpdev->desc = *desc;
1525 refcount_set(&hpdev->refs, 1);
1526 get_pcichild(hpdev, hv_pcidev_ref_childlist);
1527 spin_lock_irqsave(&hbus->device_list_lock, flags);
1528
1529 /*
1530 * When a device is being added to the bus, we set the PCI domain
1531 * number to be the device serial number, which is non-zero and
1532 * unique on the same VM. The serial numbers start with 1, and
1533 * increase by 1 for each device. So device names including this
1534 * can have shorter names than based on the bus instance UUID.
1535 * Only the first device serial number is used for domain, so the
1536 * domain number will not change after the first device is added.
1537 */
1538 if (list_empty(&hbus->children))
1539 hbus->sysdata.domain = desc->ser;
1540 list_add_tail(&hpdev->list_entry, &hbus->children);
1541 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1542 return hpdev;
1543
1544 error:
1545 kfree(hpdev);
1546 return NULL;
1547 }
1548
1549 /**
1550 * get_pcichild_wslot() - Find device from slot
1551 * @hbus: Root PCI bus, as understood by this driver
1552 * @wslot: Location on the bus
1553 *
1554 * This function looks up a PCI device and returns the internal
1555 * representation of it. It acquires a reference on it, so that
1556 * the device won't be deleted while somebody is using it. The
1557 * caller is responsible for calling put_pcichild() to release
1558 * this reference.
1559 *
1560 * Return: Internal representation of a PCI device
1561 */
1562 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1563 u32 wslot)
1564 {
1565 unsigned long flags;
1566 struct hv_pci_dev *iter, *hpdev = NULL;
1567
1568 spin_lock_irqsave(&hbus->device_list_lock, flags);
1569 list_for_each_entry(iter, &hbus->children, list_entry) {
1570 if (iter->desc.win_slot.slot == wslot) {
1571 hpdev = iter;
1572 get_pcichild(hpdev, hv_pcidev_ref_by_slot);
1573 break;
1574 }
1575 }
1576 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1577
1578 return hpdev;
1579 }
1580
1581 /**
1582 * pci_devices_present_work() - Handle new list of child devices
1583 * @work: Work struct embedded in struct hv_dr_work
1584 *
1585 * "Bus Relations" is the Windows term for "children of this
1586 * bus." The terminology is preserved here for people trying to
1587 * debug the interaction between Hyper-V and Linux. This
1588 * function is called when the parent partition reports a list
1589 * of functions that should be observed under this PCI Express
1590 * port (bus).
1591 *
1592 * This function updates the list, and must tolerate being
1593 * called multiple times with the same information. The typical
1594 * number of child devices is one, with very atypical cases
1595 * involving three or four, so the algorithms used here can be
1596 * simple and inefficient.
1597 *
1598 * It must also treat the omission of a previously observed device as
1599 * notification that the device no longer exists.
1600 *
1601 * Note that this function is a work item, and it may not be
1602 * invoked in the order that it was queued. Back to back
1603 * updates of the list of present devices may involve queuing
1604 * multiple work items, and this one may run before ones that
1605 * were sent later. As such, this function only does something
1606 * if is the last one in the queue.
1607 */
1608 static void pci_devices_present_work(struct work_struct *work)
1609 {
1610 u32 child_no;
1611 bool found;
1612 struct list_head *iter;
1613 struct pci_function_description *new_desc;
1614 struct hv_pci_dev *hpdev;
1615 struct hv_pcibus_device *hbus;
1616 struct list_head removed;
1617 struct hv_dr_work *dr_wrk;
1618 struct hv_dr_state *dr = NULL;
1619 unsigned long flags;
1620
1621 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1622 hbus = dr_wrk->bus;
1623 kfree(dr_wrk);
1624
1625 INIT_LIST_HEAD(&removed);
1626
1627 if (down_interruptible(&hbus->enum_sem)) {
1628 put_hvpcibus(hbus);
1629 return;
1630 }
1631
1632 /* Pull this off the queue and process it if it was the last one. */
1633 spin_lock_irqsave(&hbus->device_list_lock, flags);
1634 while (!list_empty(&hbus->dr_list)) {
1635 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1636 list_entry);
1637 list_del(&dr->list_entry);
1638
1639 /* Throw this away if the list still has stuff in it. */
1640 if (!list_empty(&hbus->dr_list)) {
1641 kfree(dr);
1642 continue;
1643 }
1644 }
1645 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1646
1647 if (!dr) {
1648 up(&hbus->enum_sem);
1649 put_hvpcibus(hbus);
1650 return;
1651 }
1652
1653 /* First, mark all existing children as reported missing. */
1654 spin_lock_irqsave(&hbus->device_list_lock, flags);
1655 list_for_each(iter, &hbus->children) {
1656 hpdev = container_of(iter, struct hv_pci_dev,
1657 list_entry);
1658 hpdev->reported_missing = true;
1659 }
1660 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1661
1662 /* Next, add back any reported devices. */
1663 for (child_no = 0; child_no < dr->device_count; child_no++) {
1664 found = false;
1665 new_desc = &dr->func[child_no];
1666
1667 spin_lock_irqsave(&hbus->device_list_lock, flags);
1668 list_for_each(iter, &hbus->children) {
1669 hpdev = container_of(iter, struct hv_pci_dev,
1670 list_entry);
1671 if ((hpdev->desc.win_slot.slot ==
1672 new_desc->win_slot.slot) &&
1673 (hpdev->desc.v_id == new_desc->v_id) &&
1674 (hpdev->desc.d_id == new_desc->d_id) &&
1675 (hpdev->desc.ser == new_desc->ser)) {
1676 hpdev->reported_missing = false;
1677 found = true;
1678 }
1679 }
1680 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1681
1682 if (!found) {
1683 hpdev = new_pcichild_device(hbus, new_desc);
1684 if (!hpdev)
1685 dev_err(&hbus->hdev->device,
1686 "couldn't record a child device.\n");
1687 }
1688 }
1689
1690 /* Move missing children to a list on the stack. */
1691 spin_lock_irqsave(&hbus->device_list_lock, flags);
1692 do {
1693 found = false;
1694 list_for_each(iter, &hbus->children) {
1695 hpdev = container_of(iter, struct hv_pci_dev,
1696 list_entry);
1697 if (hpdev->reported_missing) {
1698 found = true;
1699 put_pcichild(hpdev, hv_pcidev_ref_childlist);
1700 list_move_tail(&hpdev->list_entry, &removed);
1701 break;
1702 }
1703 }
1704 } while (found);
1705 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1706
1707 /* Delete everything that should no longer exist. */
1708 while (!list_empty(&removed)) {
1709 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1710 list_entry);
1711 list_del(&hpdev->list_entry);
1712 put_pcichild(hpdev, hv_pcidev_ref_initial);
1713 }
1714
1715 switch (hbus->state) {
1716 case hv_pcibus_installed:
1717 /*
1718 * Tell the core to rescan bus
1719 * because there may have been changes.
1720 */
1721 pci_lock_rescan_remove();
1722 pci_scan_child_bus(hbus->pci_bus);
1723 pci_unlock_rescan_remove();
1724 break;
1725
1726 case hv_pcibus_init:
1727 case hv_pcibus_probed:
1728 survey_child_resources(hbus);
1729 break;
1730
1731 default:
1732 break;
1733 }
1734
1735 up(&hbus->enum_sem);
1736 put_hvpcibus(hbus);
1737 kfree(dr);
1738 }
1739
1740 /**
1741 * hv_pci_devices_present() - Handles list of new children
1742 * @hbus: Root PCI bus, as understood by this driver
1743 * @relations: Packet from host listing children
1744 *
1745 * This function is invoked whenever a new list of devices for
1746 * this bus appears.
1747 */
1748 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1749 struct pci_bus_relations *relations)
1750 {
1751 struct hv_dr_state *dr;
1752 struct hv_dr_work *dr_wrk;
1753 unsigned long flags;
1754
1755 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1756 if (!dr_wrk)
1757 return;
1758
1759 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1760 (sizeof(struct pci_function_description) *
1761 (relations->device_count)), GFP_NOWAIT);
1762 if (!dr) {
1763 kfree(dr_wrk);
1764 return;
1765 }
1766
1767 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1768 dr_wrk->bus = hbus;
1769 dr->device_count = relations->device_count;
1770 if (dr->device_count != 0) {
1771 memcpy(dr->func, relations->func,
1772 sizeof(struct pci_function_description) *
1773 dr->device_count);
1774 }
1775
1776 spin_lock_irqsave(&hbus->device_list_lock, flags);
1777 list_add_tail(&dr->list_entry, &hbus->dr_list);
1778 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1779
1780 get_hvpcibus(hbus);
1781 schedule_work(&dr_wrk->wrk);
1782 }
1783
1784 /**
1785 * hv_eject_device_work() - Asynchronously handles ejection
1786 * @work: Work struct embedded in internal device struct
1787 *
1788 * This function handles ejecting a device. Windows will
1789 * attempt to gracefully eject a device, waiting 60 seconds to
1790 * hear back from the guest OS that this completed successfully.
1791 * If this timer expires, the device will be forcibly removed.
1792 */
1793 static void hv_eject_device_work(struct work_struct *work)
1794 {
1795 struct pci_eject_response *ejct_pkt;
1796 struct hv_pci_dev *hpdev;
1797 struct pci_dev *pdev;
1798 unsigned long flags;
1799 int wslot;
1800 struct {
1801 struct pci_packet pkt;
1802 u8 buffer[sizeof(struct pci_eject_response)];
1803 } ctxt;
1804
1805 hpdev = container_of(work, struct hv_pci_dev, wrk);
1806
1807 if (hpdev->state != hv_pcichild_ejecting) {
1808 put_pcichild(hpdev, hv_pcidev_ref_pnp);
1809 return;
1810 }
1811
1812 /*
1813 * Ejection can come before or after the PCI bus has been set up, so
1814 * attempt to find it and tear down the bus state, if it exists. This
1815 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1816 * because hbus->pci_bus may not exist yet.
1817 */
1818 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1819 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1820 wslot);
1821 if (pdev) {
1822 pci_lock_rescan_remove();
1823 pci_stop_and_remove_bus_device(pdev);
1824 pci_dev_put(pdev);
1825 pci_unlock_rescan_remove();
1826 }
1827
1828 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1829 list_del(&hpdev->list_entry);
1830 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1831
1832 memset(&ctxt, 0, sizeof(ctxt));
1833 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1834 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1835 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1836 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1837 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1838 VM_PKT_DATA_INBAND, 0);
1839
1840 put_pcichild(hpdev, hv_pcidev_ref_childlist);
1841 put_pcichild(hpdev, hv_pcidev_ref_pnp);
1842 put_hvpcibus(hpdev->hbus);
1843 }
1844
1845 /**
1846 * hv_pci_eject_device() - Handles device ejection
1847 * @hpdev: Internal device tracking struct
1848 *
1849 * This function is invoked when an ejection packet arrives. It
1850 * just schedules work so that we don't re-enter the packet
1851 * delivery code handling the ejection.
1852 */
1853 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1854 {
1855 hpdev->state = hv_pcichild_ejecting;
1856 get_pcichild(hpdev, hv_pcidev_ref_pnp);
1857 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1858 get_hvpcibus(hpdev->hbus);
1859 schedule_work(&hpdev->wrk);
1860 }
1861
1862 /**
1863 * hv_pci_onchannelcallback() - Handles incoming packets
1864 * @context: Internal bus tracking struct
1865 *
1866 * This function is invoked whenever the host sends a packet to
1867 * this channel (which is private to this root PCI bus).
1868 */
1869 static void hv_pci_onchannelcallback(void *context)
1870 {
1871 const int packet_size = 0x100;
1872 int ret;
1873 struct hv_pcibus_device *hbus = context;
1874 u32 bytes_recvd;
1875 u64 req_id;
1876 struct vmpacket_descriptor *desc;
1877 unsigned char *buffer;
1878 int bufferlen = packet_size;
1879 struct pci_packet *comp_packet;
1880 struct pci_response *response;
1881 struct pci_incoming_message *new_message;
1882 struct pci_bus_relations *bus_rel;
1883 struct pci_dev_incoming *dev_message;
1884 struct hv_pci_dev *hpdev;
1885
1886 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1887 if (!buffer)
1888 return;
1889
1890 while (1) {
1891 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1892 bufferlen, &bytes_recvd, &req_id);
1893
1894 if (ret == -ENOBUFS) {
1895 kfree(buffer);
1896 /* Handle large packet */
1897 bufferlen = bytes_recvd;
1898 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1899 if (!buffer)
1900 return;
1901 continue;
1902 }
1903
1904 /* Zero length indicates there are no more packets. */
1905 if (ret || !bytes_recvd)
1906 break;
1907
1908 /*
1909 * All incoming packets must be at least as large as a
1910 * response.
1911 */
1912 if (bytes_recvd <= sizeof(struct pci_response))
1913 continue;
1914 desc = (struct vmpacket_descriptor *)buffer;
1915
1916 switch (desc->type) {
1917 case VM_PKT_COMP:
1918
1919 /*
1920 * The host is trusted, and thus it's safe to interpret
1921 * this transaction ID as a pointer.
1922 */
1923 comp_packet = (struct pci_packet *)req_id;
1924 response = (struct pci_response *)buffer;
1925 comp_packet->completion_func(comp_packet->compl_ctxt,
1926 response,
1927 bytes_recvd);
1928 break;
1929
1930 case VM_PKT_DATA_INBAND:
1931
1932 new_message = (struct pci_incoming_message *)buffer;
1933 switch (new_message->message_type.type) {
1934 case PCI_BUS_RELATIONS:
1935
1936 bus_rel = (struct pci_bus_relations *)buffer;
1937 if (bytes_recvd <
1938 offsetof(struct pci_bus_relations, func) +
1939 (sizeof(struct pci_function_description) *
1940 (bus_rel->device_count))) {
1941 dev_err(&hbus->hdev->device,
1942 "bus relations too small\n");
1943 break;
1944 }
1945
1946 hv_pci_devices_present(hbus, bus_rel);
1947 break;
1948
1949 case PCI_EJECT:
1950
1951 dev_message = (struct pci_dev_incoming *)buffer;
1952 hpdev = get_pcichild_wslot(hbus,
1953 dev_message->wslot.slot);
1954 if (hpdev) {
1955 hv_pci_eject_device(hpdev);
1956 put_pcichild(hpdev,
1957 hv_pcidev_ref_by_slot);
1958 }
1959 break;
1960
1961 default:
1962 dev_warn(&hbus->hdev->device,
1963 "Unimplemented protocol message %x\n",
1964 new_message->message_type.type);
1965 break;
1966 }
1967 break;
1968
1969 default:
1970 dev_err(&hbus->hdev->device,
1971 "unhandled packet type %d, tid %llx len %d\n",
1972 desc->type, req_id, bytes_recvd);
1973 break;
1974 }
1975 }
1976
1977 kfree(buffer);
1978 }
1979
1980 /**
1981 * hv_pci_protocol_negotiation() - Set up protocol
1982 * @hdev: VMBus's tracking struct for this root PCI bus
1983 *
1984 * This driver is intended to support running on Windows 10
1985 * (server) and later versions. It will not run on earlier
1986 * versions, as they assume that many of the operations which
1987 * Linux needs accomplished with a spinlock held were done via
1988 * asynchronous messaging via VMBus. Windows 10 increases the
1989 * surface area of PCI emulation so that these actions can take
1990 * place by suspending a virtual processor for their duration.
1991 *
1992 * This function negotiates the channel protocol version,
1993 * failing if the host doesn't support the necessary protocol
1994 * level.
1995 */
1996 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
1997 {
1998 struct pci_version_request *version_req;
1999 struct hv_pci_compl comp_pkt;
2000 struct pci_packet *pkt;
2001 int ret;
2002 int i;
2003
2004 /*
2005 * Initiate the handshake with the host and negotiate
2006 * a version that the host can support. We start with the
2007 * highest version number and go down if the host cannot
2008 * support it.
2009 */
2010 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2011 if (!pkt)
2012 return -ENOMEM;
2013
2014 init_completion(&comp_pkt.host_event);
2015 pkt->completion_func = hv_pci_generic_compl;
2016 pkt->compl_ctxt = &comp_pkt;
2017 version_req = (struct pci_version_request *)&pkt->message;
2018 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2019
2020 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2021 version_req->protocol_version = pci_protocol_versions[i];
2022 ret = vmbus_sendpacket(hdev->channel, version_req,
2023 sizeof(struct pci_version_request),
2024 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2025 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2026 if (ret) {
2027 dev_err(&hdev->device,
2028 "PCI Pass-through VSP failed sending version reqquest: %#x",
2029 ret);
2030 goto exit;
2031 }
2032
2033 wait_for_completion(&comp_pkt.host_event);
2034
2035 if (comp_pkt.completion_status >= 0) {
2036 pci_protocol_version = pci_protocol_versions[i];
2037 dev_info(&hdev->device,
2038 "PCI VMBus probing: Using version %#x\n",
2039 pci_protocol_version);
2040 goto exit;
2041 }
2042
2043 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2044 dev_err(&hdev->device,
2045 "PCI Pass-through VSP failed version request: %#x",
2046 comp_pkt.completion_status);
2047 ret = -EPROTO;
2048 goto exit;
2049 }
2050
2051 reinit_completion(&comp_pkt.host_event);
2052 }
2053
2054 dev_err(&hdev->device,
2055 "PCI pass-through VSP failed to find supported version");
2056 ret = -EPROTO;
2057
2058 exit:
2059 kfree(pkt);
2060 return ret;
2061 }
2062
2063 /**
2064 * hv_pci_free_bridge_windows() - Release memory regions for the
2065 * bus
2066 * @hbus: Root PCI bus, as understood by this driver
2067 */
2068 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2069 {
2070 /*
2071 * Set the resources back to the way they looked when they
2072 * were allocated by setting IORESOURCE_BUSY again.
2073 */
2074
2075 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2076 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2077 vmbus_free_mmio(hbus->low_mmio_res->start,
2078 resource_size(hbus->low_mmio_res));
2079 }
2080
2081 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2082 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2083 vmbus_free_mmio(hbus->high_mmio_res->start,
2084 resource_size(hbus->high_mmio_res));
2085 }
2086 }
2087
2088 /**
2089 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2090 * for the bus
2091 * @hbus: Root PCI bus, as understood by this driver
2092 *
2093 * This function calls vmbus_allocate_mmio(), which is itself a
2094 * bit of a compromise. Ideally, we might change the pnp layer
2095 * in the kernel such that it comprehends either PCI devices
2096 * which are "grandchildren of ACPI," with some intermediate bus
2097 * node (in this case, VMBus) or change it such that it
2098 * understands VMBus. The pnp layer, however, has been declared
2099 * deprecated, and not subject to change.
2100 *
2101 * The workaround, implemented here, is to ask VMBus to allocate
2102 * MMIO space for this bus. VMBus itself knows which ranges are
2103 * appropriate by looking at its own ACPI objects. Then, after
2104 * these ranges are claimed, they're modified to look like they
2105 * would have looked if the ACPI and pnp code had allocated
2106 * bridge windows. These descriptors have to exist in this form
2107 * in order to satisfy the code which will get invoked when the
2108 * endpoint PCI function driver calls request_mem_region() or
2109 * request_mem_region_exclusive().
2110 *
2111 * Return: 0 on success, -errno on failure
2112 */
2113 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2114 {
2115 resource_size_t align;
2116 int ret;
2117
2118 if (hbus->low_mmio_space) {
2119 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2120 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2121 (u64)(u32)0xffffffff,
2122 hbus->low_mmio_space,
2123 align, false);
2124 if (ret) {
2125 dev_err(&hbus->hdev->device,
2126 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2127 hbus->low_mmio_space);
2128 return ret;
2129 }
2130
2131 /* Modify this resource to become a bridge window. */
2132 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2133 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2134 pci_add_resource(&hbus->resources_for_children,
2135 hbus->low_mmio_res);
2136 }
2137
2138 if (hbus->high_mmio_space) {
2139 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2140 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2141 0x100000000, -1,
2142 hbus->high_mmio_space, align,
2143 false);
2144 if (ret) {
2145 dev_err(&hbus->hdev->device,
2146 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2147 hbus->high_mmio_space);
2148 goto release_low_mmio;
2149 }
2150
2151 /* Modify this resource to become a bridge window. */
2152 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2153 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2154 pci_add_resource(&hbus->resources_for_children,
2155 hbus->high_mmio_res);
2156 }
2157
2158 return 0;
2159
2160 release_low_mmio:
2161 if (hbus->low_mmio_res) {
2162 vmbus_free_mmio(hbus->low_mmio_res->start,
2163 resource_size(hbus->low_mmio_res));
2164 }
2165
2166 return ret;
2167 }
2168
2169 /**
2170 * hv_allocate_config_window() - Find MMIO space for PCI Config
2171 * @hbus: Root PCI bus, as understood by this driver
2172 *
2173 * This function claims memory-mapped I/O space for accessing
2174 * configuration space for the functions on this bus.
2175 *
2176 * Return: 0 on success, -errno on failure
2177 */
2178 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2179 {
2180 int ret;
2181
2182 /*
2183 * Set up a region of MMIO space to use for accessing configuration
2184 * space.
2185 */
2186 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2187 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2188 if (ret)
2189 return ret;
2190
2191 /*
2192 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2193 * resource claims (those which cannot be overlapped) and the ranges
2194 * which are valid for the children of this bus, which are intended
2195 * to be overlapped by those children. Set the flag on this claim
2196 * meaning that this region can't be overlapped.
2197 */
2198
2199 hbus->mem_config->flags |= IORESOURCE_BUSY;
2200
2201 return 0;
2202 }
2203
2204 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2205 {
2206 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2207 }
2208
2209 /**
2210 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2211 * @hdev: VMBus's tracking struct for this root PCI bus
2212 *
2213 * Return: 0 on success, -errno on failure
2214 */
2215 static int hv_pci_enter_d0(struct hv_device *hdev)
2216 {
2217 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2218 struct pci_bus_d0_entry *d0_entry;
2219 struct hv_pci_compl comp_pkt;
2220 struct pci_packet *pkt;
2221 int ret;
2222
2223 /*
2224 * Tell the host that the bus is ready to use, and moved into the
2225 * powered-on state. This includes telling the host which region
2226 * of memory-mapped I/O space has been chosen for configuration space
2227 * access.
2228 */
2229 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2230 if (!pkt)
2231 return -ENOMEM;
2232
2233 init_completion(&comp_pkt.host_event);
2234 pkt->completion_func = hv_pci_generic_compl;
2235 pkt->compl_ctxt = &comp_pkt;
2236 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2237 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2238 d0_entry->mmio_base = hbus->mem_config->start;
2239
2240 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2241 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2242 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2243 if (ret)
2244 goto exit;
2245
2246 wait_for_completion(&comp_pkt.host_event);
2247
2248 if (comp_pkt.completion_status < 0) {
2249 dev_err(&hdev->device,
2250 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2251 comp_pkt.completion_status);
2252 ret = -EPROTO;
2253 goto exit;
2254 }
2255
2256 ret = 0;
2257
2258 exit:
2259 kfree(pkt);
2260 return ret;
2261 }
2262
2263 /**
2264 * hv_pci_query_relations() - Ask host to send list of child
2265 * devices
2266 * @hdev: VMBus's tracking struct for this root PCI bus
2267 *
2268 * Return: 0 on success, -errno on failure
2269 */
2270 static int hv_pci_query_relations(struct hv_device *hdev)
2271 {
2272 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2273 struct pci_message message;
2274 struct completion comp;
2275 int ret;
2276
2277 /* Ask the host to send along the list of child devices */
2278 init_completion(&comp);
2279 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2280 return -ENOTEMPTY;
2281
2282 memset(&message, 0, sizeof(message));
2283 message.type = PCI_QUERY_BUS_RELATIONS;
2284
2285 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2286 0, VM_PKT_DATA_INBAND, 0);
2287 if (ret)
2288 return ret;
2289
2290 wait_for_completion(&comp);
2291 return 0;
2292 }
2293
2294 /**
2295 * hv_send_resources_allocated() - Report local resource choices
2296 * @hdev: VMBus's tracking struct for this root PCI bus
2297 *
2298 * The host OS is expecting to be sent a request as a message
2299 * which contains all the resources that the device will use.
2300 * The response contains those same resources, "translated"
2301 * which is to say, the values which should be used by the
2302 * hardware, when it delivers an interrupt. (MMIO resources are
2303 * used in local terms.) This is nice for Windows, and lines up
2304 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2305 * is deeply expecting to scan an emulated PCI configuration
2306 * space. So this message is sent here only to drive the state
2307 * machine on the host forward.
2308 *
2309 * Return: 0 on success, -errno on failure
2310 */
2311 static int hv_send_resources_allocated(struct hv_device *hdev)
2312 {
2313 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2314 struct pci_resources_assigned *res_assigned;
2315 struct pci_resources_assigned2 *res_assigned2;
2316 struct hv_pci_compl comp_pkt;
2317 struct hv_pci_dev *hpdev;
2318 struct pci_packet *pkt;
2319 size_t size_res;
2320 u32 wslot;
2321 int ret;
2322
2323 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2324 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2325
2326 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2327 if (!pkt)
2328 return -ENOMEM;
2329
2330 ret = 0;
2331
2332 for (wslot = 0; wslot < 256; wslot++) {
2333 hpdev = get_pcichild_wslot(hbus, wslot);
2334 if (!hpdev)
2335 continue;
2336
2337 memset(pkt, 0, sizeof(*pkt) + size_res);
2338 init_completion(&comp_pkt.host_event);
2339 pkt->completion_func = hv_pci_generic_compl;
2340 pkt->compl_ctxt = &comp_pkt;
2341
2342 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2343 res_assigned =
2344 (struct pci_resources_assigned *)&pkt->message;
2345 res_assigned->message_type.type =
2346 PCI_RESOURCES_ASSIGNED;
2347 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2348 } else {
2349 res_assigned2 =
2350 (struct pci_resources_assigned2 *)&pkt->message;
2351 res_assigned2->message_type.type =
2352 PCI_RESOURCES_ASSIGNED2;
2353 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2354 }
2355 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2356
2357 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2358 size_res, (unsigned long)pkt,
2359 VM_PKT_DATA_INBAND,
2360 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2361 if (ret)
2362 break;
2363
2364 wait_for_completion(&comp_pkt.host_event);
2365
2366 if (comp_pkt.completion_status < 0) {
2367 ret = -EPROTO;
2368 dev_err(&hdev->device,
2369 "resource allocated returned 0x%x",
2370 comp_pkt.completion_status);
2371 break;
2372 }
2373 }
2374
2375 kfree(pkt);
2376 return ret;
2377 }
2378
2379 /**
2380 * hv_send_resources_released() - Report local resources
2381 * released
2382 * @hdev: VMBus's tracking struct for this root PCI bus
2383 *
2384 * Return: 0 on success, -errno on failure
2385 */
2386 static int hv_send_resources_released(struct hv_device *hdev)
2387 {
2388 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2389 struct pci_child_message pkt;
2390 struct hv_pci_dev *hpdev;
2391 u32 wslot;
2392 int ret;
2393
2394 for (wslot = 0; wslot < 256; wslot++) {
2395 hpdev = get_pcichild_wslot(hbus, wslot);
2396 if (!hpdev)
2397 continue;
2398
2399 memset(&pkt, 0, sizeof(pkt));
2400 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2401 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2402
2403 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2404
2405 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2406 VM_PKT_DATA_INBAND, 0);
2407 if (ret)
2408 return ret;
2409 }
2410
2411 return 0;
2412 }
2413
2414 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2415 {
2416 atomic_inc(&hbus->remove_lock);
2417 }
2418
2419 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2420 {
2421 if (atomic_dec_and_test(&hbus->remove_lock))
2422 complete(&hbus->remove_event);
2423 }
2424
2425 /**
2426 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2427 * @hdev: VMBus's tracking struct for this root PCI bus
2428 * @dev_id: Identifies the device itself
2429 *
2430 * Return: 0 on success, -errno on failure
2431 */
2432 static int hv_pci_probe(struct hv_device *hdev,
2433 const struct hv_vmbus_device_id *dev_id)
2434 {
2435 struct hv_pcibus_device *hbus;
2436 int ret;
2437
2438 /*
2439 * hv_pcibus_device contains the hypercall arguments for retargeting in
2440 * hv_irq_unmask(). Those must not cross a page boundary.
2441 */
2442 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2443
2444 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2445 if (!hbus)
2446 return -ENOMEM;
2447 hbus->state = hv_pcibus_init;
2448
2449 /*
2450 * The PCI bus "domain" is what is called "segment" in ACPI and
2451 * other specs. Pull it from the instance ID, to get something
2452 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2453 * do the same thing for consistency. Note that, since this code
2454 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2455 * that (1) the only domain in use for something that looks like
2456 * a physical PCI bus (which is actually emulated by the
2457 * hypervisor) is domain 0 and (2) there will be no overlap
2458 * between domains derived from these instance IDs in the same
2459 * VM.
2460 */
2461 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2462 hdev->dev_instance.b[8] << 8;
2463
2464 hbus->hdev = hdev;
2465 atomic_inc(&hbus->remove_lock);
2466 INIT_LIST_HEAD(&hbus->children);
2467 INIT_LIST_HEAD(&hbus->dr_list);
2468 INIT_LIST_HEAD(&hbus->resources_for_children);
2469 spin_lock_init(&hbus->config_lock);
2470 spin_lock_init(&hbus->device_list_lock);
2471 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2472 sema_init(&hbus->enum_sem, 1);
2473 init_completion(&hbus->remove_event);
2474
2475 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2476 hv_pci_onchannelcallback, hbus);
2477 if (ret)
2478 goto free_bus;
2479
2480 hv_set_drvdata(hdev, hbus);
2481
2482 ret = hv_pci_protocol_negotiation(hdev);
2483 if (ret)
2484 goto close;
2485
2486 ret = hv_allocate_config_window(hbus);
2487 if (ret)
2488 goto close;
2489
2490 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2491 PCI_CONFIG_MMIO_LENGTH);
2492 if (!hbus->cfg_addr) {
2493 dev_err(&hdev->device,
2494 "Unable to map a virtual address for config space\n");
2495 ret = -ENOMEM;
2496 goto free_config;
2497 }
2498
2499 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2500 if (!hbus->sysdata.fwnode) {
2501 ret = -ENOMEM;
2502 goto unmap;
2503 }
2504
2505 ret = hv_pcie_init_irq_domain(hbus);
2506 if (ret)
2507 goto free_fwnode;
2508
2509 ret = hv_pci_query_relations(hdev);
2510 if (ret)
2511 goto free_irq_domain;
2512
2513 ret = hv_pci_enter_d0(hdev);
2514 if (ret)
2515 goto free_irq_domain;
2516
2517 ret = hv_pci_allocate_bridge_windows(hbus);
2518 if (ret)
2519 goto free_irq_domain;
2520
2521 ret = hv_send_resources_allocated(hdev);
2522 if (ret)
2523 goto free_windows;
2524
2525 prepopulate_bars(hbus);
2526
2527 hbus->state = hv_pcibus_probed;
2528
2529 ret = create_root_hv_pci_bus(hbus);
2530 if (ret)
2531 goto free_windows;
2532
2533 return 0;
2534
2535 free_windows:
2536 hv_pci_free_bridge_windows(hbus);
2537 free_irq_domain:
2538 irq_domain_remove(hbus->irq_domain);
2539 free_fwnode:
2540 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2541 unmap:
2542 iounmap(hbus->cfg_addr);
2543 free_config:
2544 hv_free_config_window(hbus);
2545 close:
2546 vmbus_close(hdev->channel);
2547 free_bus:
2548 free_page((unsigned long)hbus);
2549 return ret;
2550 }
2551
2552 static void hv_pci_bus_exit(struct hv_device *hdev)
2553 {
2554 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2555 struct {
2556 struct pci_packet teardown_packet;
2557 u8 buffer[sizeof(struct pci_message)];
2558 } pkt;
2559 struct pci_bus_relations relations;
2560 struct hv_pci_compl comp_pkt;
2561 int ret;
2562
2563 /*
2564 * After the host sends the RESCIND_CHANNEL message, it doesn't
2565 * access the per-channel ringbuffer any longer.
2566 */
2567 if (hdev->channel->rescind)
2568 return;
2569
2570 /* Delete any children which might still exist. */
2571 memset(&relations, 0, sizeof(relations));
2572 hv_pci_devices_present(hbus, &relations);
2573
2574 ret = hv_send_resources_released(hdev);
2575 if (ret)
2576 dev_err(&hdev->device,
2577 "Couldn't send resources released packet(s)\n");
2578
2579 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2580 init_completion(&comp_pkt.host_event);
2581 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2582 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2583 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2584
2585 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2586 sizeof(struct pci_message),
2587 (unsigned long)&pkt.teardown_packet,
2588 VM_PKT_DATA_INBAND,
2589 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2590 if (!ret)
2591 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2592 }
2593
2594 /**
2595 * hv_pci_remove() - Remove routine for this VMBus channel
2596 * @hdev: VMBus's tracking struct for this root PCI bus
2597 *
2598 * Return: 0 on success, -errno on failure
2599 */
2600 static int hv_pci_remove(struct hv_device *hdev)
2601 {
2602 struct hv_pcibus_device *hbus;
2603
2604 hbus = hv_get_drvdata(hdev);
2605 if (hbus->state == hv_pcibus_installed) {
2606 /* Remove the bus from PCI's point of view. */
2607 pci_lock_rescan_remove();
2608 pci_stop_root_bus(hbus->pci_bus);
2609 pci_remove_root_bus(hbus->pci_bus);
2610 pci_unlock_rescan_remove();
2611 hbus->state = hv_pcibus_removed;
2612 }
2613
2614 hv_pci_bus_exit(hdev);
2615
2616 vmbus_close(hdev->channel);
2617
2618 iounmap(hbus->cfg_addr);
2619 hv_free_config_window(hbus);
2620 pci_free_resource_list(&hbus->resources_for_children);
2621 hv_pci_free_bridge_windows(hbus);
2622 irq_domain_remove(hbus->irq_domain);
2623 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2624 put_hvpcibus(hbus);
2625 wait_for_completion(&hbus->remove_event);
2626 free_page((unsigned long)hbus);
2627 return 0;
2628 }
2629
2630 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2631 /* PCI Pass-through Class ID */
2632 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2633 { HV_PCIE_GUID, },
2634 { },
2635 };
2636
2637 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2638
2639 static struct hv_driver hv_pci_drv = {
2640 .name = "hv_pci",
2641 .id_table = hv_pci_id_table,
2642 .probe = hv_pci_probe,
2643 .remove = hv_pci_remove,
2644 };
2645
2646 static void __exit exit_hv_pci_drv(void)
2647 {
2648 vmbus_driver_unregister(&hv_pci_drv);
2649 }
2650
2651 static int __init init_hv_pci_drv(void)
2652 {
2653 return vmbus_driver_register(&hv_pci_drv);
2654 }
2655
2656 module_init(init_hv_pci_drv);
2657 module_exit(exit_hv_pci_drv);
2658
2659 MODULE_DESCRIPTION("Hyper-V PCI");
2660 MODULE_LICENSE("GPL v2");