]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/host/pcie-iproc-msi.c
Merge tag 'rpmsg-v4.15' of git://github.com/andersson/remoteproc
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / host / pcie-iproc-msi.c
1 /*
2 * Copyright (C) 2015 Broadcom Corporation
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
7 *
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/irqdomain.h>
17 #include <linux/msi.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_pci.h>
20 #include <linux/pci.h>
21
22 #include "pcie-iproc.h"
23
24 #define IPROC_MSI_INTR_EN_SHIFT 11
25 #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT)
26 #define IPROC_MSI_INT_N_EVENT_SHIFT 1
27 #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
28 #define IPROC_MSI_EQ_EN_SHIFT 0
29 #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT)
30
31 #define IPROC_MSI_EQ_MASK 0x3f
32
33 /* Max number of GIC interrupts */
34 #define NR_HW_IRQS 6
35
36 /* Number of entries in each event queue */
37 #define EQ_LEN 64
38
39 /* Size of each event queue memory region */
40 #define EQ_MEM_REGION_SIZE SZ_4K
41
42 /* Size of each MSI address region */
43 #define MSI_MEM_REGION_SIZE SZ_4K
44
45 enum iproc_msi_reg {
46 IPROC_MSI_EQ_PAGE = 0,
47 IPROC_MSI_EQ_PAGE_UPPER,
48 IPROC_MSI_PAGE,
49 IPROC_MSI_PAGE_UPPER,
50 IPROC_MSI_CTRL,
51 IPROC_MSI_EQ_HEAD,
52 IPROC_MSI_EQ_TAIL,
53 IPROC_MSI_INTS_EN,
54 IPROC_MSI_REG_SIZE,
55 };
56
57 struct iproc_msi;
58
59 /**
60 * iProc MSI group
61 *
62 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
63 * event queue.
64 *
65 * @msi: pointer to iProc MSI data
66 * @gic_irq: GIC interrupt
67 * @eq: Event queue number
68 */
69 struct iproc_msi_grp {
70 struct iproc_msi *msi;
71 int gic_irq;
72 unsigned int eq;
73 };
74
75 /**
76 * iProc event queue based MSI
77 *
78 * Only meant to be used on platforms without MSI support integrated into the
79 * GIC.
80 *
81 * @pcie: pointer to iProc PCIe data
82 * @reg_offsets: MSI register offsets
83 * @grps: MSI groups
84 * @nr_irqs: number of total interrupts connected to GIC
85 * @nr_cpus: number of toal CPUs
86 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
87 * set explicitly (required for some legacy platforms)
88 * @bitmap: MSI vector bitmap
89 * @bitmap_lock: lock to protect access to the MSI bitmap
90 * @nr_msi_vecs: total number of MSI vectors
91 * @inner_domain: inner IRQ domain
92 * @msi_domain: MSI IRQ domain
93 * @nr_eq_region: required number of 4K aligned memory region for MSI event
94 * queues
95 * @nr_msi_region: required number of 4K aligned address region for MSI posted
96 * writes
97 * @eq_cpu: pointer to allocated memory region for MSI event queues
98 * @eq_dma: DMA address of MSI event queues
99 * @msi_addr: MSI address
100 */
101 struct iproc_msi {
102 struct iproc_pcie *pcie;
103 const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
104 struct iproc_msi_grp *grps;
105 int nr_irqs;
106 int nr_cpus;
107 bool has_inten_reg;
108 unsigned long *bitmap;
109 struct mutex bitmap_lock;
110 unsigned int nr_msi_vecs;
111 struct irq_domain *inner_domain;
112 struct irq_domain *msi_domain;
113 unsigned int nr_eq_region;
114 unsigned int nr_msi_region;
115 void *eq_cpu;
116 dma_addr_t eq_dma;
117 phys_addr_t msi_addr;
118 };
119
120 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
121 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
122 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
123 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
124 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
125 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
126 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
127 };
128
129 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
130 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
131 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
132 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
133 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
134 };
135
136 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
137 enum iproc_msi_reg reg,
138 unsigned int eq)
139 {
140 struct iproc_pcie *pcie = msi->pcie;
141
142 return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
143 }
144
145 static inline void iproc_msi_write_reg(struct iproc_msi *msi,
146 enum iproc_msi_reg reg,
147 int eq, u32 val)
148 {
149 struct iproc_pcie *pcie = msi->pcie;
150
151 writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
152 }
153
154 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
155 {
156 return (hwirq % msi->nr_irqs);
157 }
158
159 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
160 unsigned long hwirq)
161 {
162 if (msi->nr_msi_region > 1)
163 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
164 else
165 return hwirq_to_group(msi, hwirq) * sizeof(u32);
166 }
167
168 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
169 {
170 if (msi->nr_eq_region > 1)
171 return eq * EQ_MEM_REGION_SIZE;
172 else
173 return eq * EQ_LEN * sizeof(u32);
174 }
175
176 static struct irq_chip iproc_msi_irq_chip = {
177 .name = "iProc-MSI",
178 };
179
180 static struct msi_domain_info iproc_msi_domain_info = {
181 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
182 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
183 .chip = &iproc_msi_irq_chip,
184 };
185
186 /*
187 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
188 * dedicated event queue. Each MSI group can support up to 64 MSI vectors.
189 *
190 * The number of MSI groups varies between different iProc SoCs. The total
191 * number of CPU cores also varies. To support MSI IRQ affinity, we
192 * distribute GIC interrupts across all available CPUs. MSI vector is moved
193 * from one GIC interrupt to another to steer to the target CPU.
194 *
195 * Assuming:
196 * - the number of MSI groups is M
197 * - the number of CPU cores is N
198 * - M is always a multiple of N
199 *
200 * Total number of raw MSI vectors = M * 64
201 * Total number of supported MSI vectors = (M * 64) / N
202 */
203 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
204 {
205 return (hwirq % msi->nr_cpus);
206 }
207
208 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
209 unsigned long hwirq)
210 {
211 return (hwirq - hwirq_to_cpu(msi, hwirq));
212 }
213
214 static int iproc_msi_irq_set_affinity(struct irq_data *data,
215 const struct cpumask *mask, bool force)
216 {
217 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
218 int target_cpu = cpumask_first(mask);
219 int curr_cpu;
220
221 curr_cpu = hwirq_to_cpu(msi, data->hwirq);
222 if (curr_cpu == target_cpu)
223 return IRQ_SET_MASK_OK_DONE;
224
225 /* steer MSI to the target CPU */
226 data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
227
228 return IRQ_SET_MASK_OK;
229 }
230
231 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
232 struct msi_msg *msg)
233 {
234 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
235 dma_addr_t addr;
236
237 addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
238 msg->address_lo = lower_32_bits(addr);
239 msg->address_hi = upper_32_bits(addr);
240 msg->data = data->hwirq << 5;
241 }
242
243 static struct irq_chip iproc_msi_bottom_irq_chip = {
244 .name = "MSI",
245 .irq_set_affinity = iproc_msi_irq_set_affinity,
246 .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
247 };
248
249 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
250 unsigned int virq, unsigned int nr_irqs,
251 void *args)
252 {
253 struct iproc_msi *msi = domain->host_data;
254 int hwirq, i;
255
256 mutex_lock(&msi->bitmap_lock);
257
258 /* Allocate 'nr_cpus' number of MSI vectors each time */
259 hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
260 msi->nr_cpus, 0);
261 if (hwirq < msi->nr_msi_vecs) {
262 bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
263 } else {
264 mutex_unlock(&msi->bitmap_lock);
265 return -ENOSPC;
266 }
267
268 mutex_unlock(&msi->bitmap_lock);
269
270 for (i = 0; i < nr_irqs; i++) {
271 irq_domain_set_info(domain, virq + i, hwirq + i,
272 &iproc_msi_bottom_irq_chip,
273 domain->host_data, handle_simple_irq,
274 NULL, NULL);
275 }
276
277 return hwirq;
278 }
279
280 static void iproc_msi_irq_domain_free(struct irq_domain *domain,
281 unsigned int virq, unsigned int nr_irqs)
282 {
283 struct irq_data *data = irq_domain_get_irq_data(domain, virq);
284 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
285 unsigned int hwirq;
286
287 mutex_lock(&msi->bitmap_lock);
288
289 hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
290 bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
291
292 mutex_unlock(&msi->bitmap_lock);
293
294 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
295 }
296
297 static const struct irq_domain_ops msi_domain_ops = {
298 .alloc = iproc_msi_irq_domain_alloc,
299 .free = iproc_msi_irq_domain_free,
300 };
301
302 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
303 {
304 u32 *msg, hwirq;
305 unsigned int offs;
306
307 offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
308 msg = (u32 *)(msi->eq_cpu + offs);
309 hwirq = readl(msg);
310 hwirq = (hwirq >> 5) + (hwirq & 0x1f);
311
312 /*
313 * Since we have multiple hwirq mapped to a single MSI vector,
314 * now we need to derive the hwirq at CPU0. It can then be used to
315 * mapped back to virq.
316 */
317 return hwirq_to_canonical_hwirq(msi, hwirq);
318 }
319
320 static void iproc_msi_handler(struct irq_desc *desc)
321 {
322 struct irq_chip *chip = irq_desc_get_chip(desc);
323 struct iproc_msi_grp *grp;
324 struct iproc_msi *msi;
325 u32 eq, head, tail, nr_events;
326 unsigned long hwirq;
327 int virq;
328
329 chained_irq_enter(chip, desc);
330
331 grp = irq_desc_get_handler_data(desc);
332 msi = grp->msi;
333 eq = grp->eq;
334
335 /*
336 * iProc MSI event queue is tracked by head and tail pointers. Head
337 * pointer indicates the next entry (MSI data) to be consumed by SW in
338 * the queue and needs to be updated by SW. iProc MSI core uses the
339 * tail pointer as the next data insertion point.
340 *
341 * Entries between head and tail pointers contain valid MSI data. MSI
342 * data is guaranteed to be in the event queue memory before the tail
343 * pointer is updated by the iProc MSI core.
344 */
345 head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
346 eq) & IPROC_MSI_EQ_MASK;
347 do {
348 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
349 eq) & IPROC_MSI_EQ_MASK;
350
351 /*
352 * Figure out total number of events (MSI data) to be
353 * processed.
354 */
355 nr_events = (tail < head) ?
356 (EQ_LEN - (head - tail)) : (tail - head);
357 if (!nr_events)
358 break;
359
360 /* process all outstanding events */
361 while (nr_events--) {
362 hwirq = decode_msi_hwirq(msi, eq, head);
363 virq = irq_find_mapping(msi->inner_domain, hwirq);
364 generic_handle_irq(virq);
365
366 head++;
367 head %= EQ_LEN;
368 }
369
370 /*
371 * Now all outstanding events have been processed. Update the
372 * head pointer.
373 */
374 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
375
376 /*
377 * Now go read the tail pointer again to see if there are new
378 * oustanding events that came in during the above window.
379 */
380 } while (true);
381
382 chained_irq_exit(chip, desc);
383 }
384
385 static void iproc_msi_enable(struct iproc_msi *msi)
386 {
387 int i, eq;
388 u32 val;
389
390 /* Program memory region for each event queue */
391 for (i = 0; i < msi->nr_eq_region; i++) {
392 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
393
394 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
395 lower_32_bits(addr));
396 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
397 upper_32_bits(addr));
398 }
399
400 /* Program address region for MSI posted writes */
401 for (i = 0; i < msi->nr_msi_region; i++) {
402 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
403
404 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
405 lower_32_bits(addr));
406 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
407 upper_32_bits(addr));
408 }
409
410 for (eq = 0; eq < msi->nr_irqs; eq++) {
411 /* Enable MSI event queue */
412 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
413 IPROC_MSI_EQ_EN;
414 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
415
416 /*
417 * Some legacy platforms require the MSI interrupt enable
418 * register to be set explicitly.
419 */
420 if (msi->has_inten_reg) {
421 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
422 val |= BIT(eq);
423 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
424 }
425 }
426 }
427
428 static void iproc_msi_disable(struct iproc_msi *msi)
429 {
430 u32 eq, val;
431
432 for (eq = 0; eq < msi->nr_irqs; eq++) {
433 if (msi->has_inten_reg) {
434 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
435 val &= ~BIT(eq);
436 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
437 }
438
439 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
440 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
441 IPROC_MSI_EQ_EN);
442 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
443 }
444 }
445
446 static int iproc_msi_alloc_domains(struct device_node *node,
447 struct iproc_msi *msi)
448 {
449 msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
450 &msi_domain_ops, msi);
451 if (!msi->inner_domain)
452 return -ENOMEM;
453
454 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
455 &iproc_msi_domain_info,
456 msi->inner_domain);
457 if (!msi->msi_domain) {
458 irq_domain_remove(msi->inner_domain);
459 return -ENOMEM;
460 }
461
462 return 0;
463 }
464
465 static void iproc_msi_free_domains(struct iproc_msi *msi)
466 {
467 if (msi->msi_domain)
468 irq_domain_remove(msi->msi_domain);
469
470 if (msi->inner_domain)
471 irq_domain_remove(msi->inner_domain);
472 }
473
474 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
475 {
476 int i;
477
478 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
479 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
480 NULL, NULL);
481 }
482 }
483
484 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
485 {
486 int i, ret;
487 cpumask_var_t mask;
488 struct iproc_pcie *pcie = msi->pcie;
489
490 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
491 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
492 iproc_msi_handler,
493 &msi->grps[i]);
494 /* Dedicate GIC interrupt to each CPU core */
495 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
496 cpumask_clear(mask);
497 cpumask_set_cpu(cpu, mask);
498 ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
499 if (ret)
500 dev_err(pcie->dev,
501 "failed to set affinity for IRQ%d\n",
502 msi->grps[i].gic_irq);
503 free_cpumask_var(mask);
504 } else {
505 dev_err(pcie->dev, "failed to alloc CPU mask\n");
506 ret = -EINVAL;
507 }
508
509 if (ret) {
510 /* Free all configured/unconfigured IRQs */
511 iproc_msi_irq_free(msi, cpu);
512 return ret;
513 }
514 }
515
516 return 0;
517 }
518
519 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
520 {
521 struct iproc_msi *msi;
522 int i, ret;
523 unsigned int cpu;
524
525 if (!of_device_is_compatible(node, "brcm,iproc-msi"))
526 return -ENODEV;
527
528 if (!of_find_property(node, "msi-controller", NULL))
529 return -ENODEV;
530
531 if (pcie->msi)
532 return -EBUSY;
533
534 msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
535 if (!msi)
536 return -ENOMEM;
537
538 msi->pcie = pcie;
539 pcie->msi = msi;
540 msi->msi_addr = pcie->base_addr;
541 mutex_init(&msi->bitmap_lock);
542 msi->nr_cpus = num_possible_cpus();
543
544 msi->nr_irqs = of_irq_count(node);
545 if (!msi->nr_irqs) {
546 dev_err(pcie->dev, "found no MSI GIC interrupt\n");
547 return -ENODEV;
548 }
549
550 if (msi->nr_irqs > NR_HW_IRQS) {
551 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
552 msi->nr_irqs);
553 msi->nr_irqs = NR_HW_IRQS;
554 }
555
556 if (msi->nr_irqs < msi->nr_cpus) {
557 dev_err(pcie->dev,
558 "not enough GIC interrupts for MSI affinity\n");
559 return -EINVAL;
560 }
561
562 if (msi->nr_irqs % msi->nr_cpus != 0) {
563 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
564 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
565 msi->nr_irqs);
566 }
567
568 switch (pcie->type) {
569 case IPROC_PCIE_PAXB_BCMA:
570 case IPROC_PCIE_PAXB:
571 msi->reg_offsets = iproc_msi_reg_paxb;
572 msi->nr_eq_region = 1;
573 msi->nr_msi_region = 1;
574 break;
575 case IPROC_PCIE_PAXC:
576 msi->reg_offsets = iproc_msi_reg_paxc;
577 msi->nr_eq_region = msi->nr_irqs;
578 msi->nr_msi_region = msi->nr_irqs;
579 break;
580 default:
581 dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
582 return -EINVAL;
583 }
584
585 if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
586 msi->has_inten_reg = true;
587
588 msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
589 msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
590 sizeof(*msi->bitmap), GFP_KERNEL);
591 if (!msi->bitmap)
592 return -ENOMEM;
593
594 msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
595 GFP_KERNEL);
596 if (!msi->grps)
597 return -ENOMEM;
598
599 for (i = 0; i < msi->nr_irqs; i++) {
600 unsigned int irq = irq_of_parse_and_map(node, i);
601
602 if (!irq) {
603 dev_err(pcie->dev, "unable to parse/map interrupt\n");
604 ret = -ENODEV;
605 goto free_irqs;
606 }
607 msi->grps[i].gic_irq = irq;
608 msi->grps[i].msi = msi;
609 msi->grps[i].eq = i;
610 }
611
612 /* Reserve memory for event queue and make sure memories are zeroed */
613 msi->eq_cpu = dma_zalloc_coherent(pcie->dev,
614 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
615 &msi->eq_dma, GFP_KERNEL);
616 if (!msi->eq_cpu) {
617 ret = -ENOMEM;
618 goto free_irqs;
619 }
620
621 ret = iproc_msi_alloc_domains(node, msi);
622 if (ret) {
623 dev_err(pcie->dev, "failed to create MSI domains\n");
624 goto free_eq_dma;
625 }
626
627 for_each_online_cpu(cpu) {
628 ret = iproc_msi_irq_setup(msi, cpu);
629 if (ret)
630 goto free_msi_irq;
631 }
632
633 iproc_msi_enable(msi);
634
635 return 0;
636
637 free_msi_irq:
638 for_each_online_cpu(cpu)
639 iproc_msi_irq_free(msi, cpu);
640 iproc_msi_free_domains(msi);
641
642 free_eq_dma:
643 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
644 msi->eq_cpu, msi->eq_dma);
645
646 free_irqs:
647 for (i = 0; i < msi->nr_irqs; i++) {
648 if (msi->grps[i].gic_irq)
649 irq_dispose_mapping(msi->grps[i].gic_irq);
650 }
651 pcie->msi = NULL;
652 return ret;
653 }
654 EXPORT_SYMBOL(iproc_msi_init);
655
656 void iproc_msi_exit(struct iproc_pcie *pcie)
657 {
658 struct iproc_msi *msi = pcie->msi;
659 unsigned int i, cpu;
660
661 if (!msi)
662 return;
663
664 iproc_msi_disable(msi);
665
666 for_each_online_cpu(cpu)
667 iproc_msi_irq_free(msi, cpu);
668
669 iproc_msi_free_domains(msi);
670
671 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
672 msi->eq_cpu, msi->eq_dma);
673
674 for (i = 0; i < msi->nr_irqs; i++) {
675 if (msi->grps[i].gic_irq)
676 irq_dispose_mapping(msi->grps[i].gic_irq);
677 }
678 }
679 EXPORT_SYMBOL(iproc_msi_exit);