]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/pci/host/vmd.c
Merge branch 'pci/host-vmd' into next
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / host / vmd.c
1 /*
2 * Volume Management Device driver
3 * Copyright (c) 2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR 0
31 #define VMD_MEMBAR1 2
32 #define VMD_MEMBAR2 4
33
34 /*
35 * Lock for manipulating VMD IRQ lists.
36 */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41 * @node: list item for parent traversal.
42 * @rcu: RCU callback item for freeing.
43 * @irq: back pointer to parent.
44 * @virq: the virtual IRQ value provided to the requesting driver.
45 *
46 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
47 * a VMD IRQ using this structure.
48 */
49 struct vmd_irq {
50 struct list_head node;
51 struct rcu_head rcu;
52 struct vmd_irq_list *irq;
53 unsigned int virq;
54 };
55
56 /**
57 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
58 * @irq_list: the list of irq's the VMD one demuxes to.
59 * @count: number of child IRQs assigned to this vector; used to track
60 * sharing.
61 */
62 struct vmd_irq_list {
63 struct list_head irq_list;
64 unsigned int count;
65 };
66
67 struct vmd_dev {
68 struct pci_dev *dev;
69
70 spinlock_t cfg_lock;
71 char __iomem *cfgbar;
72
73 int msix_count;
74 struct vmd_irq_list *irqs;
75
76 struct pci_sysdata sysdata;
77 struct resource resources[3];
78 struct irq_domain *irq_domain;
79 struct pci_bus *bus;
80
81 #ifdef CONFIG_X86_DEV_DMA_OPS
82 struct dma_map_ops dma_ops;
83 struct dma_domain dma_domain;
84 #endif
85 };
86
87 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
88 {
89 return container_of(bus->sysdata, struct vmd_dev, sysdata);
90 }
91
92 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
93 struct vmd_irq_list *irqs)
94 {
95 return irqs - vmd->irqs;
96 }
97
98 /*
99 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
100 * but the MSI entry for the hardware it's driving will be programmed with a
101 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
102 * domain into one of its own, and the VMD driver de-muxes these for the
103 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
104 * and irq_chip to set this up.
105 */
106 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
107 {
108 struct vmd_irq *vmdirq = data->chip_data;
109 struct vmd_irq_list *irq = vmdirq->irq;
110 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
111
112 msg->address_hi = MSI_ADDR_BASE_HI;
113 msg->address_lo = MSI_ADDR_BASE_LO |
114 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
115 msg->data = 0;
116 }
117
118 /*
119 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
120 */
121 static void vmd_irq_enable(struct irq_data *data)
122 {
123 struct vmd_irq *vmdirq = data->chip_data;
124 unsigned long flags;
125
126 raw_spin_lock_irqsave(&list_lock, flags);
127 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
128 raw_spin_unlock_irqrestore(&list_lock, flags);
129
130 data->chip->irq_unmask(data);
131 }
132
133 static void vmd_irq_disable(struct irq_data *data)
134 {
135 struct vmd_irq *vmdirq = data->chip_data;
136 unsigned long flags;
137
138 data->chip->irq_mask(data);
139
140 raw_spin_lock_irqsave(&list_lock, flags);
141 list_del_rcu(&vmdirq->node);
142 INIT_LIST_HEAD_RCU(&vmdirq->node);
143 raw_spin_unlock_irqrestore(&list_lock, flags);
144 }
145
146 /*
147 * XXX: Stubbed until we develop acceptable way to not create conflicts with
148 * other devices sharing the same vector.
149 */
150 static int vmd_irq_set_affinity(struct irq_data *data,
151 const struct cpumask *dest, bool force)
152 {
153 return -EINVAL;
154 }
155
156 static struct irq_chip vmd_msi_controller = {
157 .name = "VMD-MSI",
158 .irq_enable = vmd_irq_enable,
159 .irq_disable = vmd_irq_disable,
160 .irq_compose_msi_msg = vmd_compose_msi_msg,
161 .irq_set_affinity = vmd_irq_set_affinity,
162 };
163
164 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
165 msi_alloc_info_t *arg)
166 {
167 return 0;
168 }
169
170 /*
171 * XXX: We can be even smarter selecting the best IRQ once we solve the
172 * affinity problem.
173 */
174 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
175 {
176 int i, best = 1;
177 unsigned long flags;
178
179 if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
180 return &vmd->irqs[0];
181
182 raw_spin_lock_irqsave(&list_lock, flags);
183 for (i = 1; i < vmd->msix_count; i++)
184 if (vmd->irqs[i].count < vmd->irqs[best].count)
185 best = i;
186 vmd->irqs[best].count++;
187 raw_spin_unlock_irqrestore(&list_lock, flags);
188
189 return &vmd->irqs[best];
190 }
191
192 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
193 unsigned int virq, irq_hw_number_t hwirq,
194 msi_alloc_info_t *arg)
195 {
196 struct msi_desc *desc = arg->desc;
197 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
198 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
199 unsigned int index, vector;
200
201 if (!vmdirq)
202 return -ENOMEM;
203
204 INIT_LIST_HEAD(&vmdirq->node);
205 vmdirq->irq = vmd_next_irq(vmd, desc);
206 vmdirq->virq = virq;
207 index = index_from_irqs(vmd, vmdirq->irq);
208 vector = pci_irq_vector(vmd->dev, index);
209
210 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
211 handle_untracked_irq, vmd, NULL);
212 return 0;
213 }
214
215 static void vmd_msi_free(struct irq_domain *domain,
216 struct msi_domain_info *info, unsigned int virq)
217 {
218 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
219 unsigned long flags;
220
221 synchronize_rcu();
222
223 /* XXX: Potential optimization to rebalance */
224 raw_spin_lock_irqsave(&list_lock, flags);
225 vmdirq->irq->count--;
226 raw_spin_unlock_irqrestore(&list_lock, flags);
227
228 kfree_rcu(vmdirq, rcu);
229 }
230
231 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
232 int nvec, msi_alloc_info_t *arg)
233 {
234 struct pci_dev *pdev = to_pci_dev(dev);
235 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
236
237 if (nvec > vmd->msix_count)
238 return vmd->msix_count;
239
240 memset(arg, 0, sizeof(*arg));
241 return 0;
242 }
243
244 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
245 {
246 arg->desc = desc;
247 }
248
249 static struct msi_domain_ops vmd_msi_domain_ops = {
250 .get_hwirq = vmd_get_hwirq,
251 .msi_init = vmd_msi_init,
252 .msi_free = vmd_msi_free,
253 .msi_prepare = vmd_msi_prepare,
254 .set_desc = vmd_set_desc,
255 };
256
257 static struct msi_domain_info vmd_msi_domain_info = {
258 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
259 MSI_FLAG_PCI_MSIX,
260 .ops = &vmd_msi_domain_ops,
261 .chip = &vmd_msi_controller,
262 };
263
264 #ifdef CONFIG_X86_DEV_DMA_OPS
265 /*
266 * VMD replaces the requester ID with its own. DMA mappings for devices in a
267 * VMD domain need to be mapped for the VMD, not the device requiring
268 * the mapping.
269 */
270 static struct device *to_vmd_dev(struct device *dev)
271 {
272 struct pci_dev *pdev = to_pci_dev(dev);
273 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
274
275 return &vmd->dev->dev;
276 }
277
278 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
279 {
280 return get_dma_ops(to_vmd_dev(dev));
281 }
282
283 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
284 gfp_t flag, unsigned long attrs)
285 {
286 return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
287 attrs);
288 }
289
290 static void vmd_free(struct device *dev, size_t size, void *vaddr,
291 dma_addr_t addr, unsigned long attrs)
292 {
293 return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
294 attrs);
295 }
296
297 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
298 void *cpu_addr, dma_addr_t addr, size_t size,
299 unsigned long attrs)
300 {
301 return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
302 size, attrs);
303 }
304
305 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
306 void *cpu_addr, dma_addr_t addr, size_t size,
307 unsigned long attrs)
308 {
309 return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
310 addr, size, attrs);
311 }
312
313 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
314 unsigned long offset, size_t size,
315 enum dma_data_direction dir,
316 unsigned long attrs)
317 {
318 return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
319 dir, attrs);
320 }
321
322 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
323 enum dma_data_direction dir, unsigned long attrs)
324 {
325 vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
326 }
327
328 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
329 enum dma_data_direction dir, unsigned long attrs)
330 {
331 return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
332 }
333
334 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 enum dma_data_direction dir, unsigned long attrs)
336 {
337 vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
338 }
339
340 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
341 size_t size, enum dma_data_direction dir)
342 {
343 vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
344 }
345
346 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
347 size_t size, enum dma_data_direction dir)
348 {
349 vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
350 dir);
351 }
352
353 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
354 int nents, enum dma_data_direction dir)
355 {
356 vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
357 }
358
359 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
360 int nents, enum dma_data_direction dir)
361 {
362 vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
363 }
364
365 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
366 {
367 return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
368 }
369
370 static int vmd_dma_supported(struct device *dev, u64 mask)
371 {
372 return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
373 }
374
375 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
376 static u64 vmd_get_required_mask(struct device *dev)
377 {
378 return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
379 }
380 #endif
381
382 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
383 {
384 struct dma_domain *domain = &vmd->dma_domain;
385
386 if (get_dma_ops(&vmd->dev->dev))
387 del_dma_domain(domain);
388 }
389
390 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
391 do { \
392 if (source->fn) \
393 dest->fn = vmd_##fn; \
394 } while (0)
395
396 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
397 {
398 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
399 struct dma_map_ops *dest = &vmd->dma_ops;
400 struct dma_domain *domain = &vmd->dma_domain;
401
402 domain->domain_nr = vmd->sysdata.domain;
403 domain->dma_ops = dest;
404
405 if (!source)
406 return;
407 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
408 ASSIGN_VMD_DMA_OPS(source, dest, free);
409 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
410 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
411 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
412 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
413 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
414 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
415 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
416 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
417 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
418 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
419 ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
420 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
421 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
422 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
423 #endif
424 add_dma_domain(domain);
425 }
426 #undef ASSIGN_VMD_DMA_OPS
427 #else
428 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
429 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
430 #endif
431
432 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
433 unsigned int devfn, int reg, int len)
434 {
435 char __iomem *addr = vmd->cfgbar +
436 (bus->number << 20) + (devfn << 12) + reg;
437
438 if ((addr - vmd->cfgbar) + len >=
439 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
440 return NULL;
441
442 return addr;
443 }
444
445 /*
446 * CPU may deadlock if config space is not serialized on some versions of this
447 * hardware, so all config space access is done under a spinlock.
448 */
449 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
450 int len, u32 *value)
451 {
452 struct vmd_dev *vmd = vmd_from_bus(bus);
453 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
454 unsigned long flags;
455 int ret = 0;
456
457 if (!addr)
458 return -EFAULT;
459
460 spin_lock_irqsave(&vmd->cfg_lock, flags);
461 switch (len) {
462 case 1:
463 *value = readb(addr);
464 break;
465 case 2:
466 *value = readw(addr);
467 break;
468 case 4:
469 *value = readl(addr);
470 break;
471 default:
472 ret = -EINVAL;
473 break;
474 }
475 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
476 return ret;
477 }
478
479 /*
480 * VMD h/w converts non-posted config writes to posted memory writes. The
481 * read-back in this function forces the completion so it returns only after
482 * the config space was written, as expected.
483 */
484 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
485 int len, u32 value)
486 {
487 struct vmd_dev *vmd = vmd_from_bus(bus);
488 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
489 unsigned long flags;
490 int ret = 0;
491
492 if (!addr)
493 return -EFAULT;
494
495 spin_lock_irqsave(&vmd->cfg_lock, flags);
496 switch (len) {
497 case 1:
498 writeb(value, addr);
499 readb(addr);
500 break;
501 case 2:
502 writew(value, addr);
503 readw(addr);
504 break;
505 case 4:
506 writel(value, addr);
507 readl(addr);
508 break;
509 default:
510 ret = -EINVAL;
511 break;
512 }
513 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
514 return ret;
515 }
516
517 static struct pci_ops vmd_ops = {
518 .read = vmd_pci_read,
519 .write = vmd_pci_write,
520 };
521
522 static void vmd_attach_resources(struct vmd_dev *vmd)
523 {
524 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
525 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
526 }
527
528 static void vmd_detach_resources(struct vmd_dev *vmd)
529 {
530 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
531 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
532 }
533
534 /*
535 * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
536 */
537 static int vmd_find_free_domain(void)
538 {
539 int domain = 0xffff;
540 struct pci_bus *bus = NULL;
541
542 while ((bus = pci_find_next_bus(bus)) != NULL)
543 domain = max_t(int, domain, pci_domain_nr(bus));
544 return domain + 1;
545 }
546
547 static int vmd_enable_domain(struct vmd_dev *vmd)
548 {
549 struct pci_sysdata *sd = &vmd->sysdata;
550 struct resource *res;
551 u32 upper_bits;
552 unsigned long flags;
553 LIST_HEAD(resources);
554
555 res = &vmd->dev->resource[VMD_CFGBAR];
556 vmd->resources[0] = (struct resource) {
557 .name = "VMD CFGBAR",
558 .start = 0,
559 .end = (resource_size(res) >> 20) - 1,
560 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
561 };
562
563 /*
564 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
565 * put 32-bit resources in the window.
566 *
567 * There's no hardware reason why a 64-bit window *couldn't*
568 * contain a 32-bit resource, but pbus_size_mem() computes the
569 * bridge window size assuming a 64-bit window will contain no
570 * 32-bit resources. __pci_assign_resource() enforces that
571 * artificial restriction to make sure everything will fit.
572 *
573 * The only way we could use a 64-bit non-prefechable MEMBAR is
574 * if its address is <4GB so that we can convert it to a 32-bit
575 * resource. To be visible to the host OS, all VMD endpoints must
576 * be initially configured by platform BIOS, which includes setting
577 * up these resources. We can assume the device is configured
578 * according to the platform needs.
579 */
580 res = &vmd->dev->resource[VMD_MEMBAR1];
581 upper_bits = upper_32_bits(res->end);
582 flags = res->flags & ~IORESOURCE_SIZEALIGN;
583 if (!upper_bits)
584 flags &= ~IORESOURCE_MEM_64;
585 vmd->resources[1] = (struct resource) {
586 .name = "VMD MEMBAR1",
587 .start = res->start,
588 .end = res->end,
589 .flags = flags,
590 .parent = res,
591 };
592
593 res = &vmd->dev->resource[VMD_MEMBAR2];
594 upper_bits = upper_32_bits(res->end);
595 flags = res->flags & ~IORESOURCE_SIZEALIGN;
596 if (!upper_bits)
597 flags &= ~IORESOURCE_MEM_64;
598 vmd->resources[2] = (struct resource) {
599 .name = "VMD MEMBAR2",
600 .start = res->start + 0x2000,
601 .end = res->end,
602 .flags = flags,
603 .parent = res,
604 };
605
606 sd->vmd_domain = true;
607 sd->domain = vmd_find_free_domain();
608 if (sd->domain < 0)
609 return sd->domain;
610
611 sd->node = pcibus_to_node(vmd->dev->bus);
612
613 vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
614 x86_vector_domain);
615 if (!vmd->irq_domain)
616 return -ENODEV;
617
618 pci_add_resource(&resources, &vmd->resources[0]);
619 pci_add_resource(&resources, &vmd->resources[1]);
620 pci_add_resource(&resources, &vmd->resources[2]);
621 vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
622 &resources);
623 if (!vmd->bus) {
624 pci_free_resource_list(&resources);
625 irq_domain_remove(vmd->irq_domain);
626 return -ENODEV;
627 }
628
629 vmd_attach_resources(vmd);
630 vmd_setup_dma_ops(vmd);
631 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
632 pci_rescan_bus(vmd->bus);
633
634 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
635 "domain"), "Can't create symlink to domain\n");
636 return 0;
637 }
638
639 static irqreturn_t vmd_irq(int irq, void *data)
640 {
641 struct vmd_irq_list *irqs = data;
642 struct vmd_irq *vmdirq;
643
644 rcu_read_lock();
645 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
646 generic_handle_irq(vmdirq->virq);
647 rcu_read_unlock();
648
649 return IRQ_HANDLED;
650 }
651
652 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
653 {
654 struct vmd_dev *vmd;
655 int i, err;
656
657 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
658 return -ENOMEM;
659
660 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
661 if (!vmd)
662 return -ENOMEM;
663
664 vmd->dev = dev;
665 err = pcim_enable_device(dev);
666 if (err < 0)
667 return err;
668
669 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
670 if (!vmd->cfgbar)
671 return -ENOMEM;
672
673 pci_set_master(dev);
674 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
675 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
676 return -ENODEV;
677
678 vmd->msix_count = pci_msix_vec_count(dev);
679 if (vmd->msix_count < 0)
680 return -ENODEV;
681
682 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
683 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
684 if (vmd->msix_count < 0)
685 return vmd->msix_count;
686
687 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
688 GFP_KERNEL);
689 if (!vmd->irqs)
690 return -ENOMEM;
691
692 for (i = 0; i < vmd->msix_count; i++) {
693 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
694 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
695 vmd_irq, 0, "vmd", &vmd->irqs[i]);
696 if (err)
697 return err;
698 }
699
700 spin_lock_init(&vmd->cfg_lock);
701 pci_set_drvdata(dev, vmd);
702 err = vmd_enable_domain(vmd);
703 if (err)
704 return err;
705
706 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
707 vmd->sysdata.domain);
708 return 0;
709 }
710
711 static void vmd_remove(struct pci_dev *dev)
712 {
713 struct vmd_dev *vmd = pci_get_drvdata(dev);
714
715 vmd_detach_resources(vmd);
716 pci_set_drvdata(dev, NULL);
717 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
718 pci_stop_root_bus(vmd->bus);
719 pci_remove_root_bus(vmd->bus);
720 vmd_teardown_dma_ops(vmd);
721 irq_domain_remove(vmd->irq_domain);
722 }
723
724 #ifdef CONFIG_PM
725 static int vmd_suspend(struct device *dev)
726 {
727 struct pci_dev *pdev = to_pci_dev(dev);
728
729 pci_save_state(pdev);
730 return 0;
731 }
732
733 static int vmd_resume(struct device *dev)
734 {
735 struct pci_dev *pdev = to_pci_dev(dev);
736
737 pci_restore_state(pdev);
738 return 0;
739 }
740 #endif
741 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
742
743 static const struct pci_device_id vmd_ids[] = {
744 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
745 {0,}
746 };
747 MODULE_DEVICE_TABLE(pci, vmd_ids);
748
749 static struct pci_driver vmd_drv = {
750 .name = "vmd",
751 .id_table = vmd_ids,
752 .probe = vmd_probe,
753 .remove = vmd_remove,
754 .driver = {
755 .pm = &vmd_dev_pm_ops,
756 },
757 };
758 module_pci_driver(vmd_drv);
759
760 MODULE_AUTHOR("Intel Corporation");
761 MODULE_LICENSE("GPL v2");
762 MODULE_VERSION("0.6");