]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/pci/hotplug/cpqphp_ctrl.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include "cpqphp.h"
40
41 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
42 u8 behind_bridge, struct resource_lists *resources);
43 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
44 u8 behind_bridge, struct resource_lists *resources);
45 static void interrupt_event_handler(struct controller *ctrl);
46
47 static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
48 static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
49 static int event_finished;
50 static unsigned long pushbutton_pending; /* = 0 */
51
52 /* things needed for the long_delay function */
53 static struct semaphore delay_sem;
54 static wait_queue_head_t delay_wait;
55
56 /* delay is in jiffies to wait for */
57 static void long_delay(int delay)
58 {
59 DECLARE_WAITQUEUE(wait, current);
60
61 /* only allow 1 customer into the delay queue at once
62 * yes this makes some people wait even longer, but who really cares?
63 * this is for _huge_ delays to make the hardware happy as the
64 * signals bounce around
65 */
66 down (&delay_sem);
67
68 init_waitqueue_head(&delay_wait);
69
70 add_wait_queue(&delay_wait, &wait);
71 msleep_interruptible(jiffies_to_msecs(delay));
72 remove_wait_queue(&delay_wait, &wait);
73
74 up(&delay_sem);
75 }
76
77
78 /* FIXME: The following line needs to be somewhere else... */
79 #define WRONG_BUS_FREQUENCY 0x07
80 static u8 handle_switch_change(u8 change, struct controller * ctrl)
81 {
82 int hp_slot;
83 u8 rc = 0;
84 u16 temp_word;
85 struct pci_func *func;
86 struct event_info *taskInfo;
87
88 if (!change)
89 return 0;
90
91 /* Switch Change */
92 dbg("cpqsbd: Switch interrupt received.\n");
93
94 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
95 if (change & (0x1L << hp_slot)) {
96 /**********************************
97 * this one changed.
98 **********************************/
99 func = cpqhp_slot_find(ctrl->bus,
100 (hp_slot + ctrl->slot_device_offset), 0);
101
102 /* this is the structure that tells the worker thread
103 *what to do */
104 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
105 ctrl->next_event = (ctrl->next_event + 1) % 10;
106 taskInfo->hp_slot = hp_slot;
107
108 rc++;
109
110 temp_word = ctrl->ctrl_int_comp >> 16;
111 func->presence_save = (temp_word >> hp_slot) & 0x01;
112 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
113
114 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
115 /**********************************
116 * Switch opened
117 **********************************/
118
119 func->switch_save = 0;
120
121 taskInfo->event_type = INT_SWITCH_OPEN;
122 } else {
123 /**********************************
124 * Switch closed
125 **********************************/
126
127 func->switch_save = 0x10;
128
129 taskInfo->event_type = INT_SWITCH_CLOSE;
130 }
131 }
132 }
133
134 return rc;
135 }
136
137 /**
138 * cpqhp_find_slot: find the struct slot of given device
139 * @ctrl: scan lots of this controller
140 * @device: the device id to find
141 */
142 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
143 {
144 struct slot *slot = ctrl->slot;
145
146 while (slot && (slot->device != device)) {
147 slot = slot->next;
148 }
149
150 return slot;
151 }
152
153
154 static u8 handle_presence_change(u16 change, struct controller * ctrl)
155 {
156 int hp_slot;
157 u8 rc = 0;
158 u8 temp_byte;
159 u16 temp_word;
160 struct pci_func *func;
161 struct event_info *taskInfo;
162 struct slot *p_slot;
163
164 if (!change)
165 return 0;
166
167 /**********************************
168 * Presence Change
169 **********************************/
170 dbg("cpqsbd: Presence/Notify input change.\n");
171 dbg(" Changed bits are 0x%4.4x\n", change );
172
173 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
174 if (change & (0x0101 << hp_slot)) {
175 /**********************************
176 * this one changed.
177 **********************************/
178 func = cpqhp_slot_find(ctrl->bus,
179 (hp_slot + ctrl->slot_device_offset), 0);
180
181 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
182 ctrl->next_event = (ctrl->next_event + 1) % 10;
183 taskInfo->hp_slot = hp_slot;
184
185 rc++;
186
187 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
188 if (!p_slot)
189 return 0;
190
191 /* If the switch closed, must be a button
192 * If not in button mode, nevermind */
193 if (func->switch_save && (ctrl->push_button == 1)) {
194 temp_word = ctrl->ctrl_int_comp >> 16;
195 temp_byte = (temp_word >> hp_slot) & 0x01;
196 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
197
198 if (temp_byte != func->presence_save) {
199 /**************************************
200 * button Pressed (doesn't do anything)
201 **************************************/
202 dbg("hp_slot %d button pressed\n", hp_slot);
203 taskInfo->event_type = INT_BUTTON_PRESS;
204 } else {
205 /**********************************
206 * button Released - TAKE ACTION!!!!
207 **********************************/
208 dbg("hp_slot %d button released\n", hp_slot);
209 taskInfo->event_type = INT_BUTTON_RELEASE;
210
211 /* Cancel if we are still blinking */
212 if ((p_slot->state == BLINKINGON_STATE)
213 || (p_slot->state == BLINKINGOFF_STATE)) {
214 taskInfo->event_type = INT_BUTTON_CANCEL;
215 dbg("hp_slot %d button cancel\n", hp_slot);
216 } else if ((p_slot->state == POWERON_STATE)
217 || (p_slot->state == POWEROFF_STATE)) {
218 /* info(msg_button_ignore, p_slot->number); */
219 taskInfo->event_type = INT_BUTTON_IGNORE;
220 dbg("hp_slot %d button ignore\n", hp_slot);
221 }
222 }
223 } else {
224 /* Switch is open, assume a presence change
225 * Save the presence state */
226 temp_word = ctrl->ctrl_int_comp >> 16;
227 func->presence_save = (temp_word >> hp_slot) & 0x01;
228 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
229
230 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
231 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
232 /* Present */
233 taskInfo->event_type = INT_PRESENCE_ON;
234 } else {
235 /* Not Present */
236 taskInfo->event_type = INT_PRESENCE_OFF;
237 }
238 }
239 }
240 }
241
242 return rc;
243 }
244
245
246 static u8 handle_power_fault(u8 change, struct controller * ctrl)
247 {
248 int hp_slot;
249 u8 rc = 0;
250 struct pci_func *func;
251 struct event_info *taskInfo;
252
253 if (!change)
254 return 0;
255
256 /**********************************
257 * power fault
258 **********************************/
259
260 info("power fault interrupt\n");
261
262 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
263 if (change & (0x01 << hp_slot)) {
264 /**********************************
265 * this one changed.
266 **********************************/
267 func = cpqhp_slot_find(ctrl->bus,
268 (hp_slot + ctrl->slot_device_offset), 0);
269
270 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
271 ctrl->next_event = (ctrl->next_event + 1) % 10;
272 taskInfo->hp_slot = hp_slot;
273
274 rc++;
275
276 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
277 /**********************************
278 * power fault Cleared
279 **********************************/
280 func->status = 0x00;
281
282 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
283 } else {
284 /**********************************
285 * power fault
286 **********************************/
287 taskInfo->event_type = INT_POWER_FAULT;
288
289 if (ctrl->rev < 4) {
290 amber_LED_on (ctrl, hp_slot);
291 green_LED_off (ctrl, hp_slot);
292 set_SOGO (ctrl);
293
294 /* this is a fatal condition, we want
295 * to crash the machine to protect from
296 * data corruption. simulated_NMI
297 * shouldn't ever return */
298 /* FIXME
299 simulated_NMI(hp_slot, ctrl); */
300
301 /* The following code causes a software
302 * crash just in case simulated_NMI did
303 * return */
304 /*FIXME
305 panic(msg_power_fault); */
306 } else {
307 /* set power fault status for this board */
308 func->status = 0xFF;
309 info("power fault bit %x set\n", hp_slot);
310 }
311 }
312 }
313 }
314
315 return rc;
316 }
317
318
319 /**
320 * sort_by_size: sort nodes on the list by their length, smallest first.
321 * @head: list to sort
322 *
323 */
324 static int sort_by_size(struct pci_resource **head)
325 {
326 struct pci_resource *current_res;
327 struct pci_resource *next_res;
328 int out_of_order = 1;
329
330 if (!(*head))
331 return 1;
332
333 if (!((*head)->next))
334 return 0;
335
336 while (out_of_order) {
337 out_of_order = 0;
338
339 /* Special case for swapping list head */
340 if (((*head)->next) &&
341 ((*head)->length > (*head)->next->length)) {
342 out_of_order++;
343 current_res = *head;
344 *head = (*head)->next;
345 current_res->next = (*head)->next;
346 (*head)->next = current_res;
347 }
348
349 current_res = *head;
350
351 while (current_res->next && current_res->next->next) {
352 if (current_res->next->length > current_res->next->next->length) {
353 out_of_order++;
354 next_res = current_res->next;
355 current_res->next = current_res->next->next;
356 current_res = current_res->next;
357 next_res->next = current_res->next;
358 current_res->next = next_res;
359 } else
360 current_res = current_res->next;
361 }
362 } /* End of out_of_order loop */
363
364 return 0;
365 }
366
367
368 /**
369 * sort_by_max_size: sort nodes on the list by their length, largest first.
370 * @head: list to sort
371 *
372 */
373 static int sort_by_max_size(struct pci_resource **head)
374 {
375 struct pci_resource *current_res;
376 struct pci_resource *next_res;
377 int out_of_order = 1;
378
379 if (!(*head))
380 return 1;
381
382 if (!((*head)->next))
383 return 0;
384
385 while (out_of_order) {
386 out_of_order = 0;
387
388 /* Special case for swapping list head */
389 if (((*head)->next) &&
390 ((*head)->length < (*head)->next->length)) {
391 out_of_order++;
392 current_res = *head;
393 *head = (*head)->next;
394 current_res->next = (*head)->next;
395 (*head)->next = current_res;
396 }
397
398 current_res = *head;
399
400 while (current_res->next && current_res->next->next) {
401 if (current_res->next->length < current_res->next->next->length) {
402 out_of_order++;
403 next_res = current_res->next;
404 current_res->next = current_res->next->next;
405 current_res = current_res->next;
406 next_res->next = current_res->next;
407 current_res->next = next_res;
408 } else
409 current_res = current_res->next;
410 }
411 } /* End of out_of_order loop */
412
413 return 0;
414 }
415
416
417 /**
418 * do_pre_bridge_resource_split: find node of resources that are unused
419 *
420 */
421 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
422 struct pci_resource **orig_head, u32 alignment)
423 {
424 struct pci_resource *prevnode = NULL;
425 struct pci_resource *node;
426 struct pci_resource *split_node;
427 u32 rc;
428 u32 temp_dword;
429 dbg("do_pre_bridge_resource_split\n");
430
431 if (!(*head) || !(*orig_head))
432 return NULL;
433
434 rc = cpqhp_resource_sort_and_combine(head);
435
436 if (rc)
437 return NULL;
438
439 if ((*head)->base != (*orig_head)->base)
440 return NULL;
441
442 if ((*head)->length == (*orig_head)->length)
443 return NULL;
444
445
446 /* If we got here, there the bridge requires some of the resource, but
447 * we may be able to split some off of the front */
448
449 node = *head;
450
451 if (node->length & (alignment -1)) {
452 /* this one isn't an aligned length, so we'll make a new entry
453 * and split it up. */
454 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
455
456 if (!split_node)
457 return NULL;
458
459 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
460
461 split_node->base = node->base;
462 split_node->length = temp_dword;
463
464 node->length -= temp_dword;
465 node->base += split_node->length;
466
467 /* Put it in the list */
468 *head = split_node;
469 split_node->next = node;
470 }
471
472 if (node->length < alignment)
473 return NULL;
474
475 /* Now unlink it */
476 if (*head == node) {
477 *head = node->next;
478 } else {
479 prevnode = *head;
480 while (prevnode->next != node)
481 prevnode = prevnode->next;
482
483 prevnode->next = node->next;
484 }
485 node->next = NULL;
486
487 return node;
488 }
489
490
491 /**
492 * do_bridge_resource_split: find one node of resources that aren't in use
493 *
494 */
495 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
496 {
497 struct pci_resource *prevnode = NULL;
498 struct pci_resource *node;
499 u32 rc;
500 u32 temp_dword;
501
502 rc = cpqhp_resource_sort_and_combine(head);
503
504 if (rc)
505 return NULL;
506
507 node = *head;
508
509 while (node->next) {
510 prevnode = node;
511 node = node->next;
512 kfree(prevnode);
513 }
514
515 if (node->length < alignment)
516 goto error;
517
518 if (node->base & (alignment - 1)) {
519 /* Short circuit if adjusted size is too small */
520 temp_dword = (node->base | (alignment-1)) + 1;
521 if ((node->length - (temp_dword - node->base)) < alignment)
522 goto error;
523
524 node->length -= (temp_dword - node->base);
525 node->base = temp_dword;
526 }
527
528 if (node->length & (alignment - 1))
529 /* There's stuff in use after this node */
530 goto error;
531
532 return node;
533 error:
534 kfree(node);
535 return NULL;
536 }
537
538
539 /**
540 * get_io_resource: find first node of given size not in ISA aliasing window.
541 * @head: list to search
542 * @size: size of node to find, must be a power of two.
543 *
544 * Description: this function sorts the resource list by size and then returns
545 * returns the first node of "size" length that is not in the ISA aliasing
546 * window. If it finds a node larger than "size" it will split it up.
547 *
548 */
549 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
550 {
551 struct pci_resource *prevnode;
552 struct pci_resource *node;
553 struct pci_resource *split_node;
554 u32 temp_dword;
555
556 if (!(*head))
557 return NULL;
558
559 if ( cpqhp_resource_sort_and_combine(head) )
560 return NULL;
561
562 if ( sort_by_size(head) )
563 return NULL;
564
565 for (node = *head; node; node = node->next) {
566 if (node->length < size)
567 continue;
568
569 if (node->base & (size - 1)) {
570 /* this one isn't base aligned properly
571 * so we'll make a new entry and split it up */
572 temp_dword = (node->base | (size-1)) + 1;
573
574 /* Short circuit if adjusted size is too small */
575 if ((node->length - (temp_dword - node->base)) < size)
576 continue;
577
578 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
579
580 if (!split_node)
581 return NULL;
582
583 split_node->base = node->base;
584 split_node->length = temp_dword - node->base;
585 node->base = temp_dword;
586 node->length -= split_node->length;
587
588 /* Put it in the list */
589 split_node->next = node->next;
590 node->next = split_node;
591 } /* End of non-aligned base */
592
593 /* Don't need to check if too small since we already did */
594 if (node->length > size) {
595 /* this one is longer than we need
596 * so we'll make a new entry and split it up */
597 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
598
599 if (!split_node)
600 return NULL;
601
602 split_node->base = node->base + size;
603 split_node->length = node->length - size;
604 node->length = size;
605
606 /* Put it in the list */
607 split_node->next = node->next;
608 node->next = split_node;
609 } /* End of too big on top end */
610
611 /* For IO make sure it's not in the ISA aliasing space */
612 if (node->base & 0x300L)
613 continue;
614
615 /* If we got here, then it is the right size
616 * Now take it out of the list and break */
617 if (*head == node) {
618 *head = node->next;
619 } else {
620 prevnode = *head;
621 while (prevnode->next != node)
622 prevnode = prevnode->next;
623
624 prevnode->next = node->next;
625 }
626 node->next = NULL;
627 break;
628 }
629
630 return node;
631 }
632
633
634 /**
635 * get_max_resource: get largest node which has at least the given size.
636 * @head: the list to search the node in
637 * @size: the minimum size of the node to find
638 *
639 * Description: Gets the largest node that is at least "size" big from the
640 * list pointed to by head. It aligns the node on top and bottom
641 * to "size" alignment before returning it.
642 */
643 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
644 {
645 struct pci_resource *max;
646 struct pci_resource *temp;
647 struct pci_resource *split_node;
648 u32 temp_dword;
649
650 if (cpqhp_resource_sort_and_combine(head))
651 return NULL;
652
653 if (sort_by_max_size(head))
654 return NULL;
655
656 for (max = *head; max; max = max->next) {
657 /* If not big enough we could probably just bail,
658 * instead we'll continue to the next. */
659 if (max->length < size)
660 continue;
661
662 if (max->base & (size - 1)) {
663 /* this one isn't base aligned properly
664 * so we'll make a new entry and split it up */
665 temp_dword = (max->base | (size-1)) + 1;
666
667 /* Short circuit if adjusted size is too small */
668 if ((max->length - (temp_dword - max->base)) < size)
669 continue;
670
671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672
673 if (!split_node)
674 return NULL;
675
676 split_node->base = max->base;
677 split_node->length = temp_dword - max->base;
678 max->base = temp_dword;
679 max->length -= split_node->length;
680
681 split_node->next = max->next;
682 max->next = split_node;
683 }
684
685 if ((max->base + max->length) & (size - 1)) {
686 /* this one isn't end aligned properly at the top
687 * so we'll make a new entry and split it up */
688 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
689
690 if (!split_node)
691 return NULL;
692 temp_dword = ((max->base + max->length) & ~(size - 1));
693 split_node->base = temp_dword;
694 split_node->length = max->length + max->base
695 - split_node->base;
696 max->length -= split_node->length;
697
698 split_node->next = max->next;
699 max->next = split_node;
700 }
701
702 /* Make sure it didn't shrink too much when we aligned it */
703 if (max->length < size)
704 continue;
705
706 /* Now take it out of the list */
707 temp = *head;
708 if (temp == max) {
709 *head = max->next;
710 } else {
711 while (temp && temp->next != max) {
712 temp = temp->next;
713 }
714
715 temp->next = max->next;
716 }
717
718 max->next = NULL;
719 break;
720 }
721
722 return max;
723 }
724
725
726 /**
727 * get_resource: find resource of given size and split up larger ones.
728 * @head: the list to search for resources
729 * @size: the size limit to use
730 *
731 * Description: This function sorts the resource list by size and then
732 * returns the first node of "size" length. If it finds a node
733 * larger than "size" it will split it up.
734 *
735 * size must be a power of two.
736 */
737 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
738 {
739 struct pci_resource *prevnode;
740 struct pci_resource *node;
741 struct pci_resource *split_node;
742 u32 temp_dword;
743
744 if (cpqhp_resource_sort_and_combine(head))
745 return NULL;
746
747 if (sort_by_size(head))
748 return NULL;
749
750 for (node = *head; node; node = node->next) {
751 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
752 __FUNCTION__, size, node, node->base, node->length);
753 if (node->length < size)
754 continue;
755
756 if (node->base & (size - 1)) {
757 dbg("%s: not aligned\n", __FUNCTION__);
758 /* this one isn't base aligned properly
759 * so we'll make a new entry and split it up */
760 temp_dword = (node->base | (size-1)) + 1;
761
762 /* Short circuit if adjusted size is too small */
763 if ((node->length - (temp_dword - node->base)) < size)
764 continue;
765
766 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
767
768 if (!split_node)
769 return NULL;
770
771 split_node->base = node->base;
772 split_node->length = temp_dword - node->base;
773 node->base = temp_dword;
774 node->length -= split_node->length;
775
776 split_node->next = node->next;
777 node->next = split_node;
778 } /* End of non-aligned base */
779
780 /* Don't need to check if too small since we already did */
781 if (node->length > size) {
782 dbg("%s: too big\n", __FUNCTION__);
783 /* this one is longer than we need
784 * so we'll make a new entry and split it up */
785 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
786
787 if (!split_node)
788 return NULL;
789
790 split_node->base = node->base + size;
791 split_node->length = node->length - size;
792 node->length = size;
793
794 /* Put it in the list */
795 split_node->next = node->next;
796 node->next = split_node;
797 } /* End of too big on top end */
798
799 dbg("%s: got one!!!\n", __FUNCTION__);
800 /* If we got here, then it is the right size
801 * Now take it out of the list */
802 if (*head == node) {
803 *head = node->next;
804 } else {
805 prevnode = *head;
806 while (prevnode->next != node)
807 prevnode = prevnode->next;
808
809 prevnode->next = node->next;
810 }
811 node->next = NULL;
812 break;
813 }
814 return node;
815 }
816
817
818 /**
819 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
820 * @head: the list to sort and clean up
821 *
822 * Description: Sorts all of the nodes in the list in ascending order by
823 * their base addresses. Also does garbage collection by
824 * combining adjacent nodes.
825 *
826 * returns 0 if success
827 */
828 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
829 {
830 struct pci_resource *node1;
831 struct pci_resource *node2;
832 int out_of_order = 1;
833
834 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
835
836 if (!(*head))
837 return 1;
838
839 dbg("*head->next = %p\n",(*head)->next);
840
841 if (!(*head)->next)
842 return 0; /* only one item on the list, already sorted! */
843
844 dbg("*head->base = 0x%x\n",(*head)->base);
845 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
846 while (out_of_order) {
847 out_of_order = 0;
848
849 /* Special case for swapping list head */
850 if (((*head)->next) &&
851 ((*head)->base > (*head)->next->base)) {
852 node1 = *head;
853 (*head) = (*head)->next;
854 node1->next = (*head)->next;
855 (*head)->next = node1;
856 out_of_order++;
857 }
858
859 node1 = (*head);
860
861 while (node1->next && node1->next->next) {
862 if (node1->next->base > node1->next->next->base) {
863 out_of_order++;
864 node2 = node1->next;
865 node1->next = node1->next->next;
866 node1 = node1->next;
867 node2->next = node1->next;
868 node1->next = node2;
869 } else
870 node1 = node1->next;
871 }
872 } /* End of out_of_order loop */
873
874 node1 = *head;
875
876 while (node1 && node1->next) {
877 if ((node1->base + node1->length) == node1->next->base) {
878 /* Combine */
879 dbg("8..\n");
880 node1->length += node1->next->length;
881 node2 = node1->next;
882 node1->next = node1->next->next;
883 kfree(node2);
884 } else
885 node1 = node1->next;
886 }
887
888 return 0;
889 }
890
891
892 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
893 {
894 struct controller *ctrl = data;
895 u8 schedule_flag = 0;
896 u8 reset;
897 u16 misc;
898 u32 Diff;
899 u32 temp_dword;
900
901
902 misc = readw(ctrl->hpc_reg + MISC);
903 /***************************************
904 * Check to see if it was our interrupt
905 ***************************************/
906 if (!(misc & 0x000C)) {
907 return IRQ_NONE;
908 }
909
910 if (misc & 0x0004) {
911 /**********************************
912 * Serial Output interrupt Pending
913 **********************************/
914
915 /* Clear the interrupt */
916 misc |= 0x0004;
917 writew(misc, ctrl->hpc_reg + MISC);
918
919 /* Read to clear posted writes */
920 misc = readw(ctrl->hpc_reg + MISC);
921
922 dbg ("%s - waking up\n", __FUNCTION__);
923 wake_up_interruptible(&ctrl->queue);
924 }
925
926 if (misc & 0x0008) {
927 /* General-interrupt-input interrupt Pending */
928 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
929
930 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
931
932 /* Clear the interrupt */
933 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
934
935 /* Read it back to clear any posted writes */
936 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
937
938 if (!Diff)
939 /* Clear all interrupts */
940 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
941
942 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
943 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
944 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
945 }
946
947 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
948 if (reset & 0x40) {
949 /* Bus reset has completed */
950 reset &= 0xCF;
951 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
952 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
953 wake_up_interruptible(&ctrl->queue);
954 }
955
956 if (schedule_flag) {
957 up(&event_semaphore);
958 dbg("Signal event_semaphore\n");
959 }
960 return IRQ_HANDLED;
961 }
962
963
964 /**
965 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
966 * @busnumber - bus where new node is to be located
967 *
968 * Returns pointer to the new node or NULL if unsuccessful
969 */
970 struct pci_func *cpqhp_slot_create(u8 busnumber)
971 {
972 struct pci_func *new_slot;
973 struct pci_func *next;
974
975 new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
976
977 if (new_slot == NULL) {
978 /* I'm not dead yet!
979 * You will be. */
980 return new_slot;
981 }
982
983 memset(new_slot, 0, sizeof(struct pci_func));
984
985 new_slot->next = NULL;
986 new_slot->configured = 1;
987
988 if (cpqhp_slot_list[busnumber] == NULL) {
989 cpqhp_slot_list[busnumber] = new_slot;
990 } else {
991 next = cpqhp_slot_list[busnumber];
992 while (next->next != NULL)
993 next = next->next;
994 next->next = new_slot;
995 }
996 return new_slot;
997 }
998
999
1000 /**
1001 * slot_remove - Removes a node from the linked list of slots.
1002 * @old_slot: slot to remove
1003 *
1004 * Returns 0 if successful, !0 otherwise.
1005 */
1006 static int slot_remove(struct pci_func * old_slot)
1007 {
1008 struct pci_func *next;
1009
1010 if (old_slot == NULL)
1011 return 1;
1012
1013 next = cpqhp_slot_list[old_slot->bus];
1014
1015 if (next == NULL) {
1016 return 1;
1017 }
1018
1019 if (next == old_slot) {
1020 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1021 cpqhp_destroy_board_resources(old_slot);
1022 kfree(old_slot);
1023 return 0;
1024 }
1025
1026 while ((next->next != old_slot) && (next->next != NULL)) {
1027 next = next->next;
1028 }
1029
1030 if (next->next == old_slot) {
1031 next->next = old_slot->next;
1032 cpqhp_destroy_board_resources(old_slot);
1033 kfree(old_slot);
1034 return 0;
1035 } else
1036 return 2;
1037 }
1038
1039
1040 /**
1041 * bridge_slot_remove - Removes a node from the linked list of slots.
1042 * @bridge: bridge to remove
1043 *
1044 * Returns 0 if successful, !0 otherwise.
1045 */
1046 static int bridge_slot_remove(struct pci_func *bridge)
1047 {
1048 u8 subordinateBus, secondaryBus;
1049 u8 tempBus;
1050 struct pci_func *next;
1051
1052 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1053 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1054
1055 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1056 next = cpqhp_slot_list[tempBus];
1057
1058 while (!slot_remove(next)) {
1059 next = cpqhp_slot_list[tempBus];
1060 }
1061 }
1062
1063 next = cpqhp_slot_list[bridge->bus];
1064
1065 if (next == NULL)
1066 return 1;
1067
1068 if (next == bridge) {
1069 cpqhp_slot_list[bridge->bus] = bridge->next;
1070 goto out;
1071 }
1072
1073 while ((next->next != bridge) && (next->next != NULL))
1074 next = next->next;
1075
1076 if (next->next != bridge)
1077 return 2;
1078 next->next = bridge->next;
1079 out:
1080 kfree(bridge);
1081 return 0;
1082 }
1083
1084
1085 /**
1086 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1087 * @bus: bus to find
1088 * @device: device to find
1089 * @index: is 0 for first function found, 1 for the second...
1090 *
1091 * Returns pointer to the node if successful, %NULL otherwise.
1092 */
1093 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1094 {
1095 int found = -1;
1096 struct pci_func *func;
1097
1098 func = cpqhp_slot_list[bus];
1099
1100 if ((func == NULL) || ((func->device == device) && (index == 0)))
1101 return func;
1102
1103 if (func->device == device)
1104 found++;
1105
1106 while (func->next != NULL) {
1107 func = func->next;
1108
1109 if (func->device == device)
1110 found++;
1111
1112 if (found == index)
1113 return func;
1114 }
1115
1116 return NULL;
1117 }
1118
1119
1120 /* DJZ: I don't think is_bridge will work as is.
1121 * FIXME */
1122 static int is_bridge(struct pci_func * func)
1123 {
1124 /* Check the header type */
1125 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1126 return 1;
1127 else
1128 return 0;
1129 }
1130
1131
1132 /**
1133 * set_controller_speed - set the frequency and/or mode of a specific
1134 * controller segment.
1135 *
1136 * @ctrl: controller to change frequency/mode for.
1137 * @adapter_speed: the speed of the adapter we want to match.
1138 * @hp_slot: the slot number where the adapter is installed.
1139 *
1140 * Returns 0 if we successfully change frequency and/or mode to match the
1141 * adapter speed.
1142 *
1143 */
1144 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1145 {
1146 struct slot *slot;
1147 u8 reg;
1148 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1149 u16 reg16;
1150 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1151
1152 if (ctrl->speed == adapter_speed)
1153 return 0;
1154
1155 /* We don't allow freq/mode changes if we find another adapter running
1156 * in another slot on this controller */
1157 for(slot = ctrl->slot; slot; slot = slot->next) {
1158 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1159 continue;
1160 if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1161 continue;
1162 if (slot->hotplug_slot->info->adapter_status == 0)
1163 continue;
1164 /* If another adapter is running on the same segment but at a
1165 * lower speed/mode, we allow the new adapter to function at
1166 * this rate if supported */
1167 if (ctrl->speed < adapter_speed)
1168 return 0;
1169
1170 return 1;
1171 }
1172
1173 /* If the controller doesn't support freq/mode changes and the
1174 * controller is running at a higher mode, we bail */
1175 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1176 return 1;
1177
1178 /* But we allow the adapter to run at a lower rate if possible */
1179 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1180 return 0;
1181
1182 /* We try to set the max speed supported by both the adapter and
1183 * controller */
1184 if (ctrl->speed_capability < adapter_speed) {
1185 if (ctrl->speed == ctrl->speed_capability)
1186 return 0;
1187 adapter_speed = ctrl->speed_capability;
1188 }
1189
1190 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1191 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1192
1193 set_SOGO(ctrl);
1194 wait_for_ctrl_irq(ctrl);
1195
1196 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1197 reg = 0xF5;
1198 else
1199 reg = 0xF4;
1200 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1201
1202 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1203 reg16 &= ~0x000F;
1204 switch(adapter_speed) {
1205 case(PCI_SPEED_133MHz_PCIX):
1206 reg = 0x75;
1207 reg16 |= 0xB;
1208 break;
1209 case(PCI_SPEED_100MHz_PCIX):
1210 reg = 0x74;
1211 reg16 |= 0xA;
1212 break;
1213 case(PCI_SPEED_66MHz_PCIX):
1214 reg = 0x73;
1215 reg16 |= 0x9;
1216 break;
1217 case(PCI_SPEED_66MHz):
1218 reg = 0x73;
1219 reg16 |= 0x1;
1220 break;
1221 default: /* 33MHz PCI 2.2 */
1222 reg = 0x71;
1223 break;
1224
1225 }
1226 reg16 |= 0xB << 12;
1227 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1228
1229 mdelay(5);
1230
1231 /* Reenable interrupts */
1232 writel(0, ctrl->hpc_reg + INT_MASK);
1233
1234 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1235
1236 /* Restart state machine */
1237 reg = ~0xF;
1238 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1239 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1240
1241 /* Only if mode change...*/
1242 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1243 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1244 set_SOGO(ctrl);
1245
1246 wait_for_ctrl_irq(ctrl);
1247 mdelay(1100);
1248
1249 /* Restore LED/Slot state */
1250 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1251 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1252
1253 set_SOGO(ctrl);
1254 wait_for_ctrl_irq(ctrl);
1255
1256 ctrl->speed = adapter_speed;
1257 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1258
1259 info("Successfully changed frequency/mode for adapter in slot %d\n",
1260 slot->number);
1261 return 0;
1262 }
1263
1264 /* the following routines constitute the bulk of the
1265 hotplug controller logic
1266 */
1267
1268
1269 /**
1270 * board_replaced - Called after a board has been replaced in the system.
1271 *
1272 * This is only used if we don't have resources for hot add
1273 * Turns power on for the board
1274 * Checks to see if board is the same
1275 * If board is same, reconfigures it
1276 * If board isn't same, turns it back off.
1277 *
1278 */
1279 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1280 {
1281 u8 hp_slot;
1282 u8 temp_byte;
1283 u8 adapter_speed;
1284 u32 rc = 0;
1285
1286 hp_slot = func->device - ctrl->slot_device_offset;
1287
1288 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1289 /**********************************
1290 * The switch is open.
1291 **********************************/
1292 rc = INTERLOCK_OPEN;
1293 } else if (is_slot_enabled (ctrl, hp_slot)) {
1294 /**********************************
1295 * The board is already on
1296 **********************************/
1297 rc = CARD_FUNCTIONING;
1298 } else {
1299 mutex_lock(&ctrl->crit_sect);
1300
1301 /* turn on board without attaching to the bus */
1302 enable_slot_power (ctrl, hp_slot);
1303
1304 set_SOGO(ctrl);
1305
1306 /* Wait for SOBS to be unset */
1307 wait_for_ctrl_irq (ctrl);
1308
1309 /* Change bits in slot power register to force another shift out
1310 * NOTE: this is to work around the timer bug */
1311 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1312 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1313 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1314
1315 set_SOGO(ctrl);
1316
1317 /* Wait for SOBS to be unset */
1318 wait_for_ctrl_irq (ctrl);
1319
1320 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1321 if (ctrl->speed != adapter_speed)
1322 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1323 rc = WRONG_BUS_FREQUENCY;
1324
1325 /* turn off board without attaching to the bus */
1326 disable_slot_power (ctrl, hp_slot);
1327
1328 set_SOGO(ctrl);
1329
1330 /* Wait for SOBS to be unset */
1331 wait_for_ctrl_irq (ctrl);
1332
1333 mutex_unlock(&ctrl->crit_sect);
1334
1335 if (rc)
1336 return rc;
1337
1338 mutex_lock(&ctrl->crit_sect);
1339
1340 slot_enable (ctrl, hp_slot);
1341 green_LED_blink (ctrl, hp_slot);
1342
1343 amber_LED_off (ctrl, hp_slot);
1344
1345 set_SOGO(ctrl);
1346
1347 /* Wait for SOBS to be unset */
1348 wait_for_ctrl_irq (ctrl);
1349
1350 mutex_unlock(&ctrl->crit_sect);
1351
1352 /* Wait for ~1 second because of hot plug spec */
1353 long_delay(1*HZ);
1354
1355 /* Check for a power fault */
1356 if (func->status == 0xFF) {
1357 /* power fault occurred, but it was benign */
1358 rc = POWER_FAILURE;
1359 func->status = 0;
1360 } else
1361 rc = cpqhp_valid_replace(ctrl, func);
1362
1363 if (!rc) {
1364 /* It must be the same board */
1365
1366 rc = cpqhp_configure_board(ctrl, func);
1367
1368 /* If configuration fails, turn it off
1369 * Get slot won't work for devices behind
1370 * bridges, but in this case it will always be
1371 * called for the "base" bus/dev/func of an
1372 * adapter. */
1373
1374 mutex_lock(&ctrl->crit_sect);
1375
1376 amber_LED_on (ctrl, hp_slot);
1377 green_LED_off (ctrl, hp_slot);
1378 slot_disable (ctrl, hp_slot);
1379
1380 set_SOGO(ctrl);
1381
1382 /* Wait for SOBS to be unset */
1383 wait_for_ctrl_irq (ctrl);
1384
1385 mutex_unlock(&ctrl->crit_sect);
1386
1387 if (rc)
1388 return rc;
1389 else
1390 return 1;
1391
1392 } else {
1393 /* Something is wrong
1394
1395 * Get slot won't work for devices behind bridges, but
1396 * in this case it will always be called for the "base"
1397 * bus/dev/func of an adapter. */
1398
1399 mutex_lock(&ctrl->crit_sect);
1400
1401 amber_LED_on (ctrl, hp_slot);
1402 green_LED_off (ctrl, hp_slot);
1403 slot_disable (ctrl, hp_slot);
1404
1405 set_SOGO(ctrl);
1406
1407 /* Wait for SOBS to be unset */
1408 wait_for_ctrl_irq (ctrl);
1409
1410 mutex_unlock(&ctrl->crit_sect);
1411 }
1412
1413 }
1414 return rc;
1415
1416 }
1417
1418
1419 /**
1420 * board_added - Called after a board has been added to the system.
1421 *
1422 * Turns power on for the board
1423 * Configures board
1424 *
1425 */
1426 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1427 {
1428 u8 hp_slot;
1429 u8 temp_byte;
1430 u8 adapter_speed;
1431 int index;
1432 u32 temp_register = 0xFFFFFFFF;
1433 u32 rc = 0;
1434 struct pci_func *new_slot = NULL;
1435 struct slot *p_slot;
1436 struct resource_lists res_lists;
1437
1438 hp_slot = func->device - ctrl->slot_device_offset;
1439 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1440 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1441
1442 mutex_lock(&ctrl->crit_sect);
1443
1444 /* turn on board without attaching to the bus */
1445 enable_slot_power(ctrl, hp_slot);
1446
1447 set_SOGO(ctrl);
1448
1449 /* Wait for SOBS to be unset */
1450 wait_for_ctrl_irq (ctrl);
1451
1452 /* Change bits in slot power register to force another shift out
1453 * NOTE: this is to work around the timer bug */
1454 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1455 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1456 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1457
1458 set_SOGO(ctrl);
1459
1460 /* Wait for SOBS to be unset */
1461 wait_for_ctrl_irq (ctrl);
1462
1463 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1464 if (ctrl->speed != adapter_speed)
1465 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1466 rc = WRONG_BUS_FREQUENCY;
1467
1468 /* turn off board without attaching to the bus */
1469 disable_slot_power (ctrl, hp_slot);
1470
1471 set_SOGO(ctrl);
1472
1473 /* Wait for SOBS to be unset */
1474 wait_for_ctrl_irq(ctrl);
1475
1476 mutex_unlock(&ctrl->crit_sect);
1477
1478 if (rc)
1479 return rc;
1480
1481 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1482
1483 /* turn on board and blink green LED */
1484
1485 dbg("%s: before down\n", __FUNCTION__);
1486 mutex_lock(&ctrl->crit_sect);
1487 dbg("%s: after down\n", __FUNCTION__);
1488
1489 dbg("%s: before slot_enable\n", __FUNCTION__);
1490 slot_enable (ctrl, hp_slot);
1491
1492 dbg("%s: before green_LED_blink\n", __FUNCTION__);
1493 green_LED_blink (ctrl, hp_slot);
1494
1495 dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1496 amber_LED_off (ctrl, hp_slot);
1497
1498 dbg("%s: before set_SOGO\n", __FUNCTION__);
1499 set_SOGO(ctrl);
1500
1501 /* Wait for SOBS to be unset */
1502 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1503 wait_for_ctrl_irq (ctrl);
1504 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1505
1506 dbg("%s: before up\n", __FUNCTION__);
1507 mutex_unlock(&ctrl->crit_sect);
1508 dbg("%s: after up\n", __FUNCTION__);
1509
1510 /* Wait for ~1 second because of hot plug spec */
1511 dbg("%s: before long_delay\n", __FUNCTION__);
1512 long_delay(1*HZ);
1513 dbg("%s: after long_delay\n", __FUNCTION__);
1514
1515 dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1516 /* Check for a power fault */
1517 if (func->status == 0xFF) {
1518 /* power fault occurred, but it was benign */
1519 temp_register = 0xFFFFFFFF;
1520 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1521 rc = POWER_FAILURE;
1522 func->status = 0;
1523 } else {
1524 /* Get vendor/device ID u32 */
1525 ctrl->pci_bus->number = func->bus;
1526 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1527 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1528 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1529
1530 if (rc != 0) {
1531 /* Something's wrong here */
1532 temp_register = 0xFFFFFFFF;
1533 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1534 }
1535 /* Preset return code. It will be changed later if things go okay. */
1536 rc = NO_ADAPTER_PRESENT;
1537 }
1538
1539 /* All F's is an empty slot or an invalid board */
1540 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1541 res_lists.io_head = ctrl->io_head;
1542 res_lists.mem_head = ctrl->mem_head;
1543 res_lists.p_mem_head = ctrl->p_mem_head;
1544 res_lists.bus_head = ctrl->bus_head;
1545 res_lists.irqs = NULL;
1546
1547 rc = configure_new_device(ctrl, func, 0, &res_lists);
1548
1549 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1550 ctrl->io_head = res_lists.io_head;
1551 ctrl->mem_head = res_lists.mem_head;
1552 ctrl->p_mem_head = res_lists.p_mem_head;
1553 ctrl->bus_head = res_lists.bus_head;
1554
1555 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1556 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1557 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1558 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1559
1560 if (rc) {
1561 mutex_lock(&ctrl->crit_sect);
1562
1563 amber_LED_on (ctrl, hp_slot);
1564 green_LED_off (ctrl, hp_slot);
1565 slot_disable (ctrl, hp_slot);
1566
1567 set_SOGO(ctrl);
1568
1569 /* Wait for SOBS to be unset */
1570 wait_for_ctrl_irq (ctrl);
1571
1572 mutex_unlock(&ctrl->crit_sect);
1573 return rc;
1574 } else {
1575 cpqhp_save_slot_config(ctrl, func);
1576 }
1577
1578
1579 func->status = 0;
1580 func->switch_save = 0x10;
1581 func->is_a_board = 0x01;
1582
1583 /* next, we will instantiate the linux pci_dev structures (with
1584 * appropriate driver notification, if already present) */
1585 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1586 index = 0;
1587 do {
1588 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1589 if (new_slot && !new_slot->pci_dev) {
1590 cpqhp_configure_device(ctrl, new_slot);
1591 }
1592 } while (new_slot);
1593
1594 mutex_lock(&ctrl->crit_sect);
1595
1596 green_LED_on (ctrl, hp_slot);
1597
1598 set_SOGO(ctrl);
1599
1600 /* Wait for SOBS to be unset */
1601 wait_for_ctrl_irq (ctrl);
1602
1603 mutex_unlock(&ctrl->crit_sect);
1604 } else {
1605 mutex_lock(&ctrl->crit_sect);
1606
1607 amber_LED_on (ctrl, hp_slot);
1608 green_LED_off (ctrl, hp_slot);
1609 slot_disable (ctrl, hp_slot);
1610
1611 set_SOGO(ctrl);
1612
1613 /* Wait for SOBS to be unset */
1614 wait_for_ctrl_irq (ctrl);
1615
1616 mutex_unlock(&ctrl->crit_sect);
1617
1618 return rc;
1619 }
1620 return 0;
1621 }
1622
1623
1624 /**
1625 * remove_board - Turns off slot and LED's
1626 *
1627 */
1628 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1629 {
1630 int index;
1631 u8 skip = 0;
1632 u8 device;
1633 u8 hp_slot;
1634 u8 temp_byte;
1635 u32 rc;
1636 struct resource_lists res_lists;
1637 struct pci_func *temp_func;
1638
1639 if (cpqhp_unconfigure_device(func))
1640 return 1;
1641
1642 device = func->device;
1643
1644 hp_slot = func->device - ctrl->slot_device_offset;
1645 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1646
1647 /* When we get here, it is safe to change base address registers.
1648 * We will attempt to save the base address register lengths */
1649 if (replace_flag || !ctrl->add_support)
1650 rc = cpqhp_save_base_addr_length(ctrl, func);
1651 else if (!func->bus_head && !func->mem_head &&
1652 !func->p_mem_head && !func->io_head) {
1653 /* Here we check to see if we've saved any of the board's
1654 * resources already. If so, we'll skip the attempt to
1655 * determine what's being used. */
1656 index = 0;
1657 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1658 while (temp_func) {
1659 if (temp_func->bus_head || temp_func->mem_head
1660 || temp_func->p_mem_head || temp_func->io_head) {
1661 skip = 1;
1662 break;
1663 }
1664 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1665 }
1666
1667 if (!skip)
1668 rc = cpqhp_save_used_resources(ctrl, func);
1669 }
1670 /* Change status to shutdown */
1671 if (func->is_a_board)
1672 func->status = 0x01;
1673 func->configured = 0;
1674
1675 mutex_lock(&ctrl->crit_sect);
1676
1677 green_LED_off (ctrl, hp_slot);
1678 slot_disable (ctrl, hp_slot);
1679
1680 set_SOGO(ctrl);
1681
1682 /* turn off SERR for slot */
1683 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1684 temp_byte &= ~(0x01 << hp_slot);
1685 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1686
1687 /* Wait for SOBS to be unset */
1688 wait_for_ctrl_irq (ctrl);
1689
1690 mutex_unlock(&ctrl->crit_sect);
1691
1692 if (!replace_flag && ctrl->add_support) {
1693 while (func) {
1694 res_lists.io_head = ctrl->io_head;
1695 res_lists.mem_head = ctrl->mem_head;
1696 res_lists.p_mem_head = ctrl->p_mem_head;
1697 res_lists.bus_head = ctrl->bus_head;
1698
1699 cpqhp_return_board_resources(func, &res_lists);
1700
1701 ctrl->io_head = res_lists.io_head;
1702 ctrl->mem_head = res_lists.mem_head;
1703 ctrl->p_mem_head = res_lists.p_mem_head;
1704 ctrl->bus_head = res_lists.bus_head;
1705
1706 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1707 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1708 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1709 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1710
1711 if (is_bridge(func)) {
1712 bridge_slot_remove(func);
1713 } else
1714 slot_remove(func);
1715
1716 func = cpqhp_slot_find(ctrl->bus, device, 0);
1717 }
1718
1719 /* Setup slot structure with entry for empty slot */
1720 func = cpqhp_slot_create(ctrl->bus);
1721
1722 if (func == NULL)
1723 return 1;
1724
1725 func->bus = ctrl->bus;
1726 func->device = device;
1727 func->function = 0;
1728 func->configured = 0;
1729 func->switch_save = 0x10;
1730 func->is_a_board = 0;
1731 func->p_task_event = NULL;
1732 }
1733
1734 return 0;
1735 }
1736
1737 static void pushbutton_helper_thread(unsigned long data)
1738 {
1739 pushbutton_pending = data;
1740 up(&event_semaphore);
1741 }
1742
1743
1744 /* this is the main worker thread */
1745 static int event_thread(void* data)
1746 {
1747 struct controller *ctrl;
1748 lock_kernel();
1749 daemonize("phpd_event");
1750
1751 unlock_kernel();
1752
1753 while (1) {
1754 dbg("!!!!event_thread sleeping\n");
1755 down_interruptible (&event_semaphore);
1756 dbg("event_thread woken finished = %d\n", event_finished);
1757 if (event_finished) break;
1758 /* Do stuff here */
1759 if (pushbutton_pending)
1760 cpqhp_pushbutton_thread(pushbutton_pending);
1761 else
1762 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1763 interrupt_event_handler(ctrl);
1764 }
1765 dbg("event_thread signals exit\n");
1766 up(&event_exit);
1767 return 0;
1768 }
1769
1770
1771 int cpqhp_event_start_thread(void)
1772 {
1773 int pid;
1774
1775 /* initialize our semaphores */
1776 init_MUTEX(&delay_sem);
1777 init_MUTEX_LOCKED(&event_semaphore);
1778 init_MUTEX_LOCKED(&event_exit);
1779 event_finished=0;
1780
1781 pid = kernel_thread(event_thread, NULL, 0);
1782 if (pid < 0) {
1783 err ("Can't start up our event thread\n");
1784 return -1;
1785 }
1786 dbg("Our event thread pid = %d\n", pid);
1787 return 0;
1788 }
1789
1790
1791 void cpqhp_event_stop_thread(void)
1792 {
1793 event_finished = 1;
1794 dbg("event_thread finish command given\n");
1795 up(&event_semaphore);
1796 dbg("wait for event_thread to exit\n");
1797 down(&event_exit);
1798 }
1799
1800
1801 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1802 {
1803 struct hotplug_slot_info *info;
1804 int result;
1805
1806 info = kmalloc(sizeof(*info), GFP_KERNEL);
1807 if (!info)
1808 return -ENOMEM;
1809
1810 info->power_status = get_slot_enabled(ctrl, slot);
1811 info->attention_status = cpq_get_attention_status(ctrl, slot);
1812 info->latch_status = cpq_get_latch_status(ctrl, slot);
1813 info->adapter_status = get_presence_status(ctrl, slot);
1814 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1815 kfree (info);
1816 return result;
1817 }
1818
1819 static void interrupt_event_handler(struct controller *ctrl)
1820 {
1821 int loop = 0;
1822 int change = 1;
1823 struct pci_func *func;
1824 u8 hp_slot;
1825 struct slot *p_slot;
1826
1827 while (change) {
1828 change = 0;
1829
1830 for (loop = 0; loop < 10; loop++) {
1831 /* dbg("loop %d\n", loop); */
1832 if (ctrl->event_queue[loop].event_type != 0) {
1833 hp_slot = ctrl->event_queue[loop].hp_slot;
1834
1835 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1836 if (!func)
1837 return;
1838
1839 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1840 if (!p_slot)
1841 return;
1842
1843 dbg("hp_slot %d, func %p, p_slot %p\n",
1844 hp_slot, func, p_slot);
1845
1846 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1847 dbg("button pressed\n");
1848 } else if (ctrl->event_queue[loop].event_type ==
1849 INT_BUTTON_CANCEL) {
1850 dbg("button cancel\n");
1851 del_timer(&p_slot->task_event);
1852
1853 mutex_lock(&ctrl->crit_sect);
1854
1855 if (p_slot->state == BLINKINGOFF_STATE) {
1856 /* slot is on */
1857 dbg("turn on green LED\n");
1858 green_LED_on (ctrl, hp_slot);
1859 } else if (p_slot->state == BLINKINGON_STATE) {
1860 /* slot is off */
1861 dbg("turn off green LED\n");
1862 green_LED_off (ctrl, hp_slot);
1863 }
1864
1865 info(msg_button_cancel, p_slot->number);
1866
1867 p_slot->state = STATIC_STATE;
1868
1869 amber_LED_off (ctrl, hp_slot);
1870
1871 set_SOGO(ctrl);
1872
1873 /* Wait for SOBS to be unset */
1874 wait_for_ctrl_irq (ctrl);
1875
1876 mutex_unlock(&ctrl->crit_sect);
1877 }
1878 /*** button Released (No action on press...) */
1879 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1880 dbg("button release\n");
1881
1882 if (is_slot_enabled (ctrl, hp_slot)) {
1883 dbg("slot is on\n");
1884 p_slot->state = BLINKINGOFF_STATE;
1885 info(msg_button_off, p_slot->number);
1886 } else {
1887 dbg("slot is off\n");
1888 p_slot->state = BLINKINGON_STATE;
1889 info(msg_button_on, p_slot->number);
1890 }
1891 mutex_lock(&ctrl->crit_sect);
1892
1893 dbg("blink green LED and turn off amber\n");
1894
1895 amber_LED_off (ctrl, hp_slot);
1896 green_LED_blink (ctrl, hp_slot);
1897
1898 set_SOGO(ctrl);
1899
1900 /* Wait for SOBS to be unset */
1901 wait_for_ctrl_irq (ctrl);
1902
1903 mutex_unlock(&ctrl->crit_sect);
1904 init_timer(&p_slot->task_event);
1905 p_slot->hp_slot = hp_slot;
1906 p_slot->ctrl = ctrl;
1907 /* p_slot->physical_slot = physical_slot; */
1908 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1909 p_slot->task_event.function = pushbutton_helper_thread;
1910 p_slot->task_event.data = (u32) p_slot;
1911
1912 dbg("add_timer p_slot = %p\n", p_slot);
1913 add_timer(&p_slot->task_event);
1914 }
1915 /***********POWER FAULT */
1916 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1917 dbg("power fault\n");
1918 } else {
1919 /* refresh notification */
1920 if (p_slot)
1921 update_slot_info(ctrl, p_slot);
1922 }
1923
1924 ctrl->event_queue[loop].event_type = 0;
1925
1926 change = 1;
1927 }
1928 } /* End of FOR loop */
1929 }
1930
1931 return;
1932 }
1933
1934
1935 /**
1936 * cpqhp_pushbutton_thread
1937 *
1938 * Scheduled procedure to handle blocking stuff for the pushbuttons
1939 * Handles all pending events and exits.
1940 *
1941 */
1942 void cpqhp_pushbutton_thread(unsigned long slot)
1943 {
1944 u8 hp_slot;
1945 u8 device;
1946 struct pci_func *func;
1947 struct slot *p_slot = (struct slot *) slot;
1948 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1949
1950 pushbutton_pending = 0;
1951 hp_slot = p_slot->hp_slot;
1952
1953 device = p_slot->device;
1954
1955 if (is_slot_enabled(ctrl, hp_slot)) {
1956 p_slot->state = POWEROFF_STATE;
1957 /* power Down board */
1958 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1959 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1960 if (!func) {
1961 dbg("Error! func NULL in %s\n", __FUNCTION__);
1962 return ;
1963 }
1964
1965 if (func != NULL && ctrl != NULL) {
1966 if (cpqhp_process_SS(ctrl, func) != 0) {
1967 amber_LED_on (ctrl, hp_slot);
1968 green_LED_on (ctrl, hp_slot);
1969
1970 set_SOGO(ctrl);
1971
1972 /* Wait for SOBS to be unset */
1973 wait_for_ctrl_irq (ctrl);
1974 }
1975 }
1976
1977 p_slot->state = STATIC_STATE;
1978 } else {
1979 p_slot->state = POWERON_STATE;
1980 /* slot is off */
1981
1982 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1983 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1984 if (!func) {
1985 dbg("Error! func NULL in %s\n", __FUNCTION__);
1986 return ;
1987 }
1988
1989 if (func != NULL && ctrl != NULL) {
1990 if (cpqhp_process_SI(ctrl, func) != 0) {
1991 amber_LED_on(ctrl, hp_slot);
1992 green_LED_off(ctrl, hp_slot);
1993
1994 set_SOGO(ctrl);
1995
1996 /* Wait for SOBS to be unset */
1997 wait_for_ctrl_irq (ctrl);
1998 }
1999 }
2000
2001 p_slot->state = STATIC_STATE;
2002 }
2003
2004 return;
2005 }
2006
2007
2008 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2009 {
2010 u8 device, hp_slot;
2011 u16 temp_word;
2012 u32 tempdword;
2013 int rc;
2014 struct slot* p_slot;
2015 int physical_slot = 0;
2016
2017 tempdword = 0;
2018
2019 device = func->device;
2020 hp_slot = device - ctrl->slot_device_offset;
2021 p_slot = cpqhp_find_slot(ctrl, device);
2022 if (p_slot)
2023 physical_slot = p_slot->number;
2024
2025 /* Check to see if the interlock is closed */
2026 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2027
2028 if (tempdword & (0x01 << hp_slot)) {
2029 return 1;
2030 }
2031
2032 if (func->is_a_board) {
2033 rc = board_replaced(func, ctrl);
2034 } else {
2035 /* add board */
2036 slot_remove(func);
2037
2038 func = cpqhp_slot_create(ctrl->bus);
2039 if (func == NULL)
2040 return 1;
2041
2042 func->bus = ctrl->bus;
2043 func->device = device;
2044 func->function = 0;
2045 func->configured = 0;
2046 func->is_a_board = 1;
2047
2048 /* We have to save the presence info for these slots */
2049 temp_word = ctrl->ctrl_int_comp >> 16;
2050 func->presence_save = (temp_word >> hp_slot) & 0x01;
2051 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2052
2053 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2054 func->switch_save = 0;
2055 } else {
2056 func->switch_save = 0x10;
2057 }
2058
2059 rc = board_added(func, ctrl);
2060 if (rc) {
2061 if (is_bridge(func)) {
2062 bridge_slot_remove(func);
2063 } else
2064 slot_remove(func);
2065
2066 /* Setup slot structure with entry for empty slot */
2067 func = cpqhp_slot_create(ctrl->bus);
2068
2069 if (func == NULL)
2070 return 1;
2071
2072 func->bus = ctrl->bus;
2073 func->device = device;
2074 func->function = 0;
2075 func->configured = 0;
2076 func->is_a_board = 0;
2077
2078 /* We have to save the presence info for these slots */
2079 temp_word = ctrl->ctrl_int_comp >> 16;
2080 func->presence_save = (temp_word >> hp_slot) & 0x01;
2081 func->presence_save |=
2082 (temp_word >> (hp_slot + 7)) & 0x02;
2083
2084 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2085 func->switch_save = 0;
2086 } else {
2087 func->switch_save = 0x10;
2088 }
2089 }
2090 }
2091
2092 if (rc) {
2093 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2094 }
2095
2096 if (p_slot)
2097 update_slot_info(ctrl, p_slot);
2098
2099 return rc;
2100 }
2101
2102
2103 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2104 {
2105 u8 device, class_code, header_type, BCR;
2106 u8 index = 0;
2107 u8 replace_flag;
2108 u32 rc = 0;
2109 unsigned int devfn;
2110 struct slot* p_slot;
2111 struct pci_bus *pci_bus = ctrl->pci_bus;
2112 int physical_slot=0;
2113
2114 device = func->device;
2115 func = cpqhp_slot_find(ctrl->bus, device, index++);
2116 p_slot = cpqhp_find_slot(ctrl, device);
2117 if (p_slot) {
2118 physical_slot = p_slot->number;
2119 }
2120
2121 /* Make sure there are no video controllers here */
2122 while (func && !rc) {
2123 pci_bus->number = func->bus;
2124 devfn = PCI_DEVFN(func->device, func->function);
2125
2126 /* Check the Class Code */
2127 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2128 if (rc)
2129 return rc;
2130
2131 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2132 /* Display/Video adapter (not supported) */
2133 rc = REMOVE_NOT_SUPPORTED;
2134 } else {
2135 /* See if it's a bridge */
2136 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2137 if (rc)
2138 return rc;
2139
2140 /* If it's a bridge, check the VGA Enable bit */
2141 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2142 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2143 if (rc)
2144 return rc;
2145
2146 /* If the VGA Enable bit is set, remove isn't
2147 * supported */
2148 if (BCR & PCI_BRIDGE_CTL_VGA) {
2149 rc = REMOVE_NOT_SUPPORTED;
2150 }
2151 }
2152 }
2153
2154 func = cpqhp_slot_find(ctrl->bus, device, index++);
2155 }
2156
2157 func = cpqhp_slot_find(ctrl->bus, device, 0);
2158 if ((func != NULL) && !rc) {
2159 /* FIXME: Replace flag should be passed into process_SS */
2160 replace_flag = !(ctrl->add_support);
2161 rc = remove_board(func, replace_flag, ctrl);
2162 } else if (!rc) {
2163 rc = 1;
2164 }
2165
2166 if (p_slot)
2167 update_slot_info(ctrl, p_slot);
2168
2169 return rc;
2170 }
2171
2172 /**
2173 * switch_leds: switch the leds, go from one site to the other.
2174 * @ctrl: controller to use
2175 * @num_of_slots: number of slots to use
2176 * @direction: 1 to start from the left side, 0 to start right.
2177 */
2178 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2179 u32 *work_LED, const int direction)
2180 {
2181 int loop;
2182
2183 for (loop = 0; loop < num_of_slots; loop++) {
2184 if (direction)
2185 *work_LED = *work_LED >> 1;
2186 else
2187 *work_LED = *work_LED << 1;
2188 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2189
2190 set_SOGO(ctrl);
2191
2192 /* Wait for SOGO interrupt */
2193 wait_for_ctrl_irq(ctrl);
2194
2195 /* Get ready for next iteration */
2196 long_delay((2*HZ)/10);
2197 }
2198 }
2199
2200 /**
2201 * hardware_test - runs hardware tests
2202 *
2203 * For hot plug ctrl folks to play with.
2204 * test_num is the number written to the "test" file in sysfs
2205 *
2206 */
2207 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2208 {
2209 u32 save_LED;
2210 u32 work_LED;
2211 int loop;
2212 int num_of_slots;
2213
2214 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2215
2216 switch (test_num) {
2217 case 1:
2218 /* Do stuff here! */
2219
2220 /* Do that funky LED thing */
2221 /* so we can restore them later */
2222 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2223 work_LED = 0x01010101;
2224 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2225 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2226 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2227 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2228
2229 work_LED = 0x01010000;
2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2232 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2233 work_LED = 0x00000101;
2234 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2235 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2236 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2237
2238 work_LED = 0x01010000;
2239 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2240 for (loop = 0; loop < num_of_slots; loop++) {
2241 set_SOGO(ctrl);
2242
2243 /* Wait for SOGO interrupt */
2244 wait_for_ctrl_irq (ctrl);
2245
2246 /* Get ready for next iteration */
2247 long_delay((3*HZ)/10);
2248 work_LED = work_LED >> 16;
2249 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2250
2251 set_SOGO(ctrl);
2252
2253 /* Wait for SOGO interrupt */
2254 wait_for_ctrl_irq (ctrl);
2255
2256 /* Get ready for next iteration */
2257 long_delay((3*HZ)/10);
2258 work_LED = work_LED << 16;
2259 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2260 work_LED = work_LED << 1;
2261 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2262 }
2263
2264 /* put it back the way it was */
2265 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2266
2267 set_SOGO(ctrl);
2268
2269 /* Wait for SOBS to be unset */
2270 wait_for_ctrl_irq (ctrl);
2271 break;
2272 case 2:
2273 /* Do other stuff here! */
2274 break;
2275 case 3:
2276 /* and more... */
2277 break;
2278 }
2279 return 0;
2280 }
2281
2282
2283 /**
2284 * configure_new_device - Configures the PCI header information of one board.
2285 *
2286 * @ctrl: pointer to controller structure
2287 * @func: pointer to function structure
2288 * @behind_bridge: 1 if this is a recursive call, 0 if not
2289 * @resources: pointer to set of resource lists
2290 *
2291 * Returns 0 if success
2292 *
2293 */
2294 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2295 u8 behind_bridge, struct resource_lists * resources)
2296 {
2297 u8 temp_byte, function, max_functions, stop_it;
2298 int rc;
2299 u32 ID;
2300 struct pci_func *new_slot;
2301 int index;
2302
2303 new_slot = func;
2304
2305 dbg("%s\n", __FUNCTION__);
2306 /* Check for Multi-function device */
2307 ctrl->pci_bus->number = func->bus;
2308 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2309 if (rc) {
2310 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2311 return rc;
2312 }
2313
2314 if (temp_byte & 0x80) /* Multi-function device */
2315 max_functions = 8;
2316 else
2317 max_functions = 1;
2318
2319 function = 0;
2320
2321 do {
2322 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2323
2324 if (rc) {
2325 dbg("configure_new_function failed %d\n",rc);
2326 index = 0;
2327
2328 while (new_slot) {
2329 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2330
2331 if (new_slot)
2332 cpqhp_return_board_resources(new_slot, resources);
2333 }
2334
2335 return rc;
2336 }
2337
2338 function++;
2339
2340 stop_it = 0;
2341
2342 /* The following loop skips to the next present function
2343 * and creates a board structure */
2344
2345 while ((function < max_functions) && (!stop_it)) {
2346 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2347
2348 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2349 function++;
2350 } else { /* There's something there */
2351 /* Setup slot structure. */
2352 new_slot = cpqhp_slot_create(func->bus);
2353
2354 if (new_slot == NULL)
2355 return 1;
2356
2357 new_slot->bus = func->bus;
2358 new_slot->device = func->device;
2359 new_slot->function = function;
2360 new_slot->is_a_board = 1;
2361 new_slot->status = 0;
2362
2363 stop_it++;
2364 }
2365 }
2366
2367 } while (function < max_functions);
2368 dbg("returning from configure_new_device\n");
2369
2370 return 0;
2371 }
2372
2373
2374 /*
2375 Configuration logic that involves the hotplug data structures and
2376 their bookkeeping
2377 */
2378
2379
2380 /**
2381 * configure_new_function - Configures the PCI header information of one device
2382 *
2383 * @ctrl: pointer to controller structure
2384 * @func: pointer to function structure
2385 * @behind_bridge: 1 if this is a recursive call, 0 if not
2386 * @resources: pointer to set of resource lists
2387 *
2388 * Calls itself recursively for bridged devices.
2389 * Returns 0 if success
2390 *
2391 */
2392 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2393 u8 behind_bridge,
2394 struct resource_lists *resources)
2395 {
2396 int cloop;
2397 u8 IRQ = 0;
2398 u8 temp_byte;
2399 u8 device;
2400 u8 class_code;
2401 u16 command;
2402 u16 temp_word;
2403 u32 temp_dword;
2404 u32 rc;
2405 u32 temp_register;
2406 u32 base;
2407 u32 ID;
2408 unsigned int devfn;
2409 struct pci_resource *mem_node;
2410 struct pci_resource *p_mem_node;
2411 struct pci_resource *io_node;
2412 struct pci_resource *bus_node;
2413 struct pci_resource *hold_mem_node;
2414 struct pci_resource *hold_p_mem_node;
2415 struct pci_resource *hold_IO_node;
2416 struct pci_resource *hold_bus_node;
2417 struct irq_mapping irqs;
2418 struct pci_func *new_slot;
2419 struct pci_bus *pci_bus;
2420 struct resource_lists temp_resources;
2421
2422 pci_bus = ctrl->pci_bus;
2423 pci_bus->number = func->bus;
2424 devfn = PCI_DEVFN(func->device, func->function);
2425
2426 /* Check for Bridge */
2427 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2428 if (rc)
2429 return rc;
2430
2431 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2432 /* set Primary bus */
2433 dbg("set Primary bus = %d\n", func->bus);
2434 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2435 if (rc)
2436 return rc;
2437
2438 /* find range of busses to use */
2439 dbg("find ranges of buses to use\n");
2440 bus_node = get_max_resource(&(resources->bus_head), 1);
2441
2442 /* If we don't have any busses to allocate, we can't continue */
2443 if (!bus_node)
2444 return -ENOMEM;
2445
2446 /* set Secondary bus */
2447 temp_byte = bus_node->base;
2448 dbg("set Secondary bus = %d\n", bus_node->base);
2449 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2450 if (rc)
2451 return rc;
2452
2453 /* set subordinate bus */
2454 temp_byte = bus_node->base + bus_node->length - 1;
2455 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2456 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2457 if (rc)
2458 return rc;
2459
2460 /* set subordinate Latency Timer and base Latency Timer */
2461 temp_byte = 0x40;
2462 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2463 if (rc)
2464 return rc;
2465 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2466 if (rc)
2467 return rc;
2468
2469 /* set Cache Line size */
2470 temp_byte = 0x08;
2471 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2472 if (rc)
2473 return rc;
2474
2475 /* Setup the IO, memory, and prefetchable windows */
2476 io_node = get_max_resource(&(resources->io_head), 0x1000);
2477 if (!io_node)
2478 return -ENOMEM;
2479 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2480 if (!mem_node)
2481 return -ENOMEM;
2482 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2483 if (!p_mem_node)
2484 return -ENOMEM;
2485 dbg("Setup the IO, memory, and prefetchable windows\n");
2486 dbg("io_node\n");
2487 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2488 io_node->length, io_node->next);
2489 dbg("mem_node\n");
2490 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2491 mem_node->length, mem_node->next);
2492 dbg("p_mem_node\n");
2493 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2494 p_mem_node->length, p_mem_node->next);
2495
2496 /* set up the IRQ info */
2497 if (!resources->irqs) {
2498 irqs.barber_pole = 0;
2499 irqs.interrupt[0] = 0;
2500 irqs.interrupt[1] = 0;
2501 irqs.interrupt[2] = 0;
2502 irqs.interrupt[3] = 0;
2503 irqs.valid_INT = 0;
2504 } else {
2505 irqs.barber_pole = resources->irqs->barber_pole;
2506 irqs.interrupt[0] = resources->irqs->interrupt[0];
2507 irqs.interrupt[1] = resources->irqs->interrupt[1];
2508 irqs.interrupt[2] = resources->irqs->interrupt[2];
2509 irqs.interrupt[3] = resources->irqs->interrupt[3];
2510 irqs.valid_INT = resources->irqs->valid_INT;
2511 }
2512
2513 /* set up resource lists that are now aligned on top and bottom
2514 * for anything behind the bridge. */
2515 temp_resources.bus_head = bus_node;
2516 temp_resources.io_head = io_node;
2517 temp_resources.mem_head = mem_node;
2518 temp_resources.p_mem_head = p_mem_node;
2519 temp_resources.irqs = &irqs;
2520
2521 /* Make copies of the nodes we are going to pass down so that
2522 * if there is a problem,we can just use these to free resources */
2523 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2524 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2525 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2526 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2527
2528 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2529 kfree(hold_bus_node);
2530 kfree(hold_IO_node);
2531 kfree(hold_mem_node);
2532 kfree(hold_p_mem_node);
2533
2534 return 1;
2535 }
2536
2537 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2538
2539 bus_node->base += 1;
2540 bus_node->length -= 1;
2541 bus_node->next = NULL;
2542
2543 /* If we have IO resources copy them and fill in the bridge's
2544 * IO range registers */
2545 if (io_node) {
2546 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2547 io_node->next = NULL;
2548
2549 /* set IO base and Limit registers */
2550 temp_byte = io_node->base >> 8;
2551 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2552
2553 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2554 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2555 } else {
2556 kfree(hold_IO_node);
2557 hold_IO_node = NULL;
2558 }
2559
2560 /* If we have memory resources copy them and fill in the
2561 * bridge's memory range registers. Otherwise, fill in the
2562 * range registers with values that disable them. */
2563 if (mem_node) {
2564 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2565 mem_node->next = NULL;
2566
2567 /* set Mem base and Limit registers */
2568 temp_word = mem_node->base >> 16;
2569 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2570
2571 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2572 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2573 } else {
2574 temp_word = 0xFFFF;
2575 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2576
2577 temp_word = 0x0000;
2578 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2579
2580 kfree(hold_mem_node);
2581 hold_mem_node = NULL;
2582 }
2583
2584 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2585 p_mem_node->next = NULL;
2586
2587 /* set Pre Mem base and Limit registers */
2588 temp_word = p_mem_node->base >> 16;
2589 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2590
2591 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2592 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2593
2594 /* Adjust this to compensate for extra adjustment in first loop */
2595 irqs.barber_pole--;
2596
2597 rc = 0;
2598
2599 /* Here we actually find the devices and configure them */
2600 for (device = 0; (device <= 0x1F) && !rc; device++) {
2601 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2602
2603 ID = 0xFFFFFFFF;
2604 pci_bus->number = hold_bus_node->base;
2605 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2606 pci_bus->number = func->bus;
2607
2608 if (ID != 0xFFFFFFFF) { /* device present */
2609 /* Setup slot structure. */
2610 new_slot = cpqhp_slot_create(hold_bus_node->base);
2611
2612 if (new_slot == NULL) {
2613 rc = -ENOMEM;
2614 continue;
2615 }
2616
2617 new_slot->bus = hold_bus_node->base;
2618 new_slot->device = device;
2619 new_slot->function = 0;
2620 new_slot->is_a_board = 1;
2621 new_slot->status = 0;
2622
2623 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2624 dbg("configure_new_device rc=0x%x\n",rc);
2625 } /* End of IF (device in slot?) */
2626 } /* End of FOR loop */
2627
2628 if (rc)
2629 goto free_and_out;
2630 /* save the interrupt routing information */
2631 if (resources->irqs) {
2632 resources->irqs->interrupt[0] = irqs.interrupt[0];
2633 resources->irqs->interrupt[1] = irqs.interrupt[1];
2634 resources->irqs->interrupt[2] = irqs.interrupt[2];
2635 resources->irqs->interrupt[3] = irqs.interrupt[3];
2636 resources->irqs->valid_INT = irqs.valid_INT;
2637 } else if (!behind_bridge) {
2638 /* We need to hook up the interrupts here */
2639 for (cloop = 0; cloop < 4; cloop++) {
2640 if (irqs.valid_INT & (0x01 << cloop)) {
2641 rc = cpqhp_set_irq(func->bus, func->device,
2642 0x0A + cloop, irqs.interrupt[cloop]);
2643 if (rc)
2644 goto free_and_out;
2645 }
2646 } /* end of for loop */
2647 }
2648 /* Return unused bus resources
2649 * First use the temporary node to store information for
2650 * the board */
2651 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2652 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2653
2654 hold_bus_node->next = func->bus_head;
2655 func->bus_head = hold_bus_node;
2656
2657 temp_byte = temp_resources.bus_head->base - 1;
2658
2659 /* set subordinate bus */
2660 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2661
2662 if (temp_resources.bus_head->length == 0) {
2663 kfree(temp_resources.bus_head);
2664 temp_resources.bus_head = NULL;
2665 } else {
2666 return_resource(&(resources->bus_head), temp_resources.bus_head);
2667 }
2668 }
2669
2670 /* If we have IO space available and there is some left,
2671 * return the unused portion */
2672 if (hold_IO_node && temp_resources.io_head) {
2673 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2674 &hold_IO_node, 0x1000);
2675
2676 /* Check if we were able to split something off */
2677 if (io_node) {
2678 hold_IO_node->base = io_node->base + io_node->length;
2679
2680 temp_byte = (hold_IO_node->base) >> 8;
2681 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2682
2683 return_resource(&(resources->io_head), io_node);
2684 }
2685
2686 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2687
2688 /* Check if we were able to split something off */
2689 if (io_node) {
2690 /* First use the temporary node to store
2691 * information for the board */
2692 hold_IO_node->length = io_node->base - hold_IO_node->base;
2693
2694 /* If we used any, add it to the board's list */
2695 if (hold_IO_node->length) {
2696 hold_IO_node->next = func->io_head;
2697 func->io_head = hold_IO_node;
2698
2699 temp_byte = (io_node->base - 1) >> 8;
2700 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2701
2702 return_resource(&(resources->io_head), io_node);
2703 } else {
2704 /* it doesn't need any IO */
2705 temp_word = 0x0000;
2706 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2707
2708 return_resource(&(resources->io_head), io_node);
2709 kfree(hold_IO_node);
2710 }
2711 } else {
2712 /* it used most of the range */
2713 hold_IO_node->next = func->io_head;
2714 func->io_head = hold_IO_node;
2715 }
2716 } else if (hold_IO_node) {
2717 /* it used the whole range */
2718 hold_IO_node->next = func->io_head;
2719 func->io_head = hold_IO_node;
2720 }
2721 /* If we have memory space available and there is some left,
2722 * return the unused portion */
2723 if (hold_mem_node && temp_resources.mem_head) {
2724 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2725 &hold_mem_node, 0x100000);
2726
2727 /* Check if we were able to split something off */
2728 if (mem_node) {
2729 hold_mem_node->base = mem_node->base + mem_node->length;
2730
2731 temp_word = (hold_mem_node->base) >> 16;
2732 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2733
2734 return_resource(&(resources->mem_head), mem_node);
2735 }
2736
2737 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2738
2739 /* Check if we were able to split something off */
2740 if (mem_node) {
2741 /* First use the temporary node to store
2742 * information for the board */
2743 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2744
2745 if (hold_mem_node->length) {
2746 hold_mem_node->next = func->mem_head;
2747 func->mem_head = hold_mem_node;
2748
2749 /* configure end address */
2750 temp_word = (mem_node->base - 1) >> 16;
2751 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2752
2753 /* Return unused resources to the pool */
2754 return_resource(&(resources->mem_head), mem_node);
2755 } else {
2756 /* it doesn't need any Mem */
2757 temp_word = 0x0000;
2758 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2759
2760 return_resource(&(resources->mem_head), mem_node);
2761 kfree(hold_mem_node);
2762 }
2763 } else {
2764 /* it used most of the range */
2765 hold_mem_node->next = func->mem_head;
2766 func->mem_head = hold_mem_node;
2767 }
2768 } else if (hold_mem_node) {
2769 /* it used the whole range */
2770 hold_mem_node->next = func->mem_head;
2771 func->mem_head = hold_mem_node;
2772 }
2773 /* If we have prefetchable memory space available and there
2774 * is some left at the end, return the unused portion */
2775 if (hold_p_mem_node && temp_resources.p_mem_head) {
2776 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2777 &hold_p_mem_node, 0x100000);
2778
2779 /* Check if we were able to split something off */
2780 if (p_mem_node) {
2781 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2782
2783 temp_word = (hold_p_mem_node->base) >> 16;
2784 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2785
2786 return_resource(&(resources->p_mem_head), p_mem_node);
2787 }
2788
2789 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2790
2791 /* Check if we were able to split something off */
2792 if (p_mem_node) {
2793 /* First use the temporary node to store
2794 * information for the board */
2795 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2796
2797 /* If we used any, add it to the board's list */
2798 if (hold_p_mem_node->length) {
2799 hold_p_mem_node->next = func->p_mem_head;
2800 func->p_mem_head = hold_p_mem_node;
2801
2802 temp_word = (p_mem_node->base - 1) >> 16;
2803 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2804
2805 return_resource(&(resources->p_mem_head), p_mem_node);
2806 } else {
2807 /* it doesn't need any PMem */
2808 temp_word = 0x0000;
2809 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2810
2811 return_resource(&(resources->p_mem_head), p_mem_node);
2812 kfree(hold_p_mem_node);
2813 }
2814 } else {
2815 /* it used the most of the range */
2816 hold_p_mem_node->next = func->p_mem_head;
2817 func->p_mem_head = hold_p_mem_node;
2818 }
2819 } else if (hold_p_mem_node) {
2820 /* it used the whole range */
2821 hold_p_mem_node->next = func->p_mem_head;
2822 func->p_mem_head = hold_p_mem_node;
2823 }
2824 /* We should be configuring an IRQ and the bridge's base address
2825 * registers if it needs them. Although we have never seen such
2826 * a device */
2827
2828 /* enable card */
2829 command = 0x0157; /* = PCI_COMMAND_IO |
2830 * PCI_COMMAND_MEMORY |
2831 * PCI_COMMAND_MASTER |
2832 * PCI_COMMAND_INVALIDATE |
2833 * PCI_COMMAND_PARITY |
2834 * PCI_COMMAND_SERR */
2835 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2836
2837 /* set Bridge Control Register */
2838 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2839 * PCI_BRIDGE_CTL_SERR |
2840 * PCI_BRIDGE_CTL_NO_ISA */
2841 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2842 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2843 /* Standard device */
2844 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2845
2846 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2847 /* Display (video) adapter (not supported) */
2848 return DEVICE_TYPE_NOT_SUPPORTED;
2849 }
2850 /* Figure out IO and memory needs */
2851 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2852 temp_register = 0xFFFFFFFF;
2853
2854 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2855 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2856
2857 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2858 dbg("CND: base = 0x%x\n", temp_register);
2859
2860 if (temp_register) { /* If this register is implemented */
2861 if ((temp_register & 0x03L) == 0x01) {
2862 /* Map IO */
2863
2864 /* set base = amount of IO space */
2865 base = temp_register & 0xFFFFFFFC;
2866 base = ~base + 1;
2867
2868 dbg("CND: length = 0x%x\n", base);
2869 io_node = get_io_resource(&(resources->io_head), base);
2870 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2871 io_node->base, io_node->length, io_node->next);
2872 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2873
2874 /* allocate the resource to the board */
2875 if (io_node) {
2876 base = io_node->base;
2877
2878 io_node->next = func->io_head;
2879 func->io_head = io_node;
2880 } else
2881 return -ENOMEM;
2882 } else if ((temp_register & 0x0BL) == 0x08) {
2883 /* Map prefetchable memory */
2884 base = temp_register & 0xFFFFFFF0;
2885 base = ~base + 1;
2886
2887 dbg("CND: length = 0x%x\n", base);
2888 p_mem_node = get_resource(&(resources->p_mem_head), base);
2889
2890 /* allocate the resource to the board */
2891 if (p_mem_node) {
2892 base = p_mem_node->base;
2893
2894 p_mem_node->next = func->p_mem_head;
2895 func->p_mem_head = p_mem_node;
2896 } else
2897 return -ENOMEM;
2898 } else if ((temp_register & 0x0BL) == 0x00) {
2899 /* Map memory */
2900 base = temp_register & 0xFFFFFFF0;
2901 base = ~base + 1;
2902
2903 dbg("CND: length = 0x%x\n", base);
2904 mem_node = get_resource(&(resources->mem_head), base);
2905
2906 /* allocate the resource to the board */
2907 if (mem_node) {
2908 base = mem_node->base;
2909
2910 mem_node->next = func->mem_head;
2911 func->mem_head = mem_node;
2912 } else
2913 return -ENOMEM;
2914 } else if ((temp_register & 0x0BL) == 0x04) {
2915 /* Map memory */
2916 base = temp_register & 0xFFFFFFF0;
2917 base = ~base + 1;
2918
2919 dbg("CND: length = 0x%x\n", base);
2920 mem_node = get_resource(&(resources->mem_head), base);
2921
2922 /* allocate the resource to the board */
2923 if (mem_node) {
2924 base = mem_node->base;
2925
2926 mem_node->next = func->mem_head;
2927 func->mem_head = mem_node;
2928 } else
2929 return -ENOMEM;
2930 } else if ((temp_register & 0x0BL) == 0x06) {
2931 /* Those bits are reserved, we can't handle this */
2932 return 1;
2933 } else {
2934 /* Requesting space below 1M */
2935 return NOT_ENOUGH_RESOURCES;
2936 }
2937
2938 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2939
2940 /* Check for 64-bit base */
2941 if ((temp_register & 0x07L) == 0x04) {
2942 cloop += 4;
2943
2944 /* Upper 32 bits of address always zero
2945 * on today's systems */
2946 /* FIXME this is probably not true on
2947 * Alpha and ia64??? */
2948 base = 0;
2949 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2950 }
2951 }
2952 } /* End of base register loop */
2953 if (cpqhp_legacy_mode) {
2954 /* Figure out which interrupt pin this function uses */
2955 rc = pci_bus_read_config_byte (pci_bus, devfn,
2956 PCI_INTERRUPT_PIN, &temp_byte);
2957
2958 /* If this function needs an interrupt and we are behind
2959 * a bridge and the pin is tied to something that's
2960 * alread mapped, set this one the same */
2961 if (temp_byte && resources->irqs &&
2962 (resources->irqs->valid_INT &
2963 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2964 /* We have to share with something already set up */
2965 IRQ = resources->irqs->interrupt[(temp_byte +
2966 resources->irqs->barber_pole - 1) & 0x03];
2967 } else {
2968 /* Program IRQ based on card type */
2969 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2970
2971 if (class_code == PCI_BASE_CLASS_STORAGE) {
2972 IRQ = cpqhp_disk_irq;
2973 } else {
2974 IRQ = cpqhp_nic_irq;
2975 }
2976 }
2977
2978 /* IRQ Line */
2979 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2980 }
2981
2982 if (!behind_bridge) {
2983 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2984 if (rc)
2985 return 1;
2986 } else {
2987 /* TBD - this code may also belong in the other clause
2988 * of this If statement */
2989 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2990 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2991 }
2992
2993 /* Latency Timer */
2994 temp_byte = 0x40;
2995 rc = pci_bus_write_config_byte(pci_bus, devfn,
2996 PCI_LATENCY_TIMER, temp_byte);
2997
2998 /* Cache Line size */
2999 temp_byte = 0x08;
3000 rc = pci_bus_write_config_byte(pci_bus, devfn,
3001 PCI_CACHE_LINE_SIZE, temp_byte);
3002
3003 /* disable ROM base Address */
3004 temp_dword = 0x00L;
3005 rc = pci_bus_write_config_word(pci_bus, devfn,
3006 PCI_ROM_ADDRESS, temp_dword);
3007
3008 /* enable card */
3009 temp_word = 0x0157; /* = PCI_COMMAND_IO |
3010 * PCI_COMMAND_MEMORY |
3011 * PCI_COMMAND_MASTER |
3012 * PCI_COMMAND_INVALIDATE |
3013 * PCI_COMMAND_PARITY |
3014 * PCI_COMMAND_SERR */
3015 rc = pci_bus_write_config_word (pci_bus, devfn,
3016 PCI_COMMAND, temp_word);
3017 } else { /* End of Not-A-Bridge else */
3018 /* It's some strange type of PCI adapter (Cardbus?) */
3019 return DEVICE_TYPE_NOT_SUPPORTED;
3020 }
3021
3022 func->configured = 1;
3023
3024 return 0;
3025 free_and_out:
3026 cpqhp_destroy_resource_list (&temp_resources);
3027
3028 return_resource(&(resources-> bus_head), hold_bus_node);
3029 return_resource(&(resources-> io_head), hold_IO_node);
3030 return_resource(&(resources-> mem_head), hold_mem_node);
3031 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3032 return rc;
3033 }