]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/pci/hotplug/cpqphp_ctrl.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-focal-kernel.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
41 #include "cpqphp.h"
42
43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44 u8 behind_bridge, struct resource_lists *resources);
45 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46 u8 behind_bridge, struct resource_lists *resources);
47 static void interrupt_event_handler(struct controller *ctrl);
48
49
50 static struct task_struct *cpqhp_event_thread;
51 static unsigned long pushbutton_pending; /* = 0 */
52
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay)
55 {
56 /*
57 * XXX(hch): if someone is bored please convert all callers
58 * to call msleep_interruptible directly. They really want
59 * to specify timeouts in natural units and spend a lot of
60 * effort converting them to jiffies..
61 */
62 msleep_interruptible(jiffies_to_msecs(delay));
63 }
64
65
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 {
70 int hp_slot;
71 u8 rc = 0;
72 u16 temp_word;
73 struct pci_func *func;
74 struct event_info *taskInfo;
75
76 if (!change)
77 return 0;
78
79 /* Switch Change */
80 dbg("cpqsbd: Switch interrupt received.\n");
81
82 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83 if (change & (0x1L << hp_slot)) {
84 /**********************************
85 * this one changed.
86 **********************************/
87 func = cpqhp_slot_find(ctrl->bus,
88 (hp_slot + ctrl->slot_device_offset), 0);
89
90 /* this is the structure that tells the worker thread
91 *what to do */
92 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 ctrl->next_event = (ctrl->next_event + 1) % 10;
94 taskInfo->hp_slot = hp_slot;
95
96 rc++;
97
98 temp_word = ctrl->ctrl_int_comp >> 16;
99 func->presence_save = (temp_word >> hp_slot) & 0x01;
100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103 /**********************************
104 * Switch opened
105 **********************************/
106
107 func->switch_save = 0;
108
109 taskInfo->event_type = INT_SWITCH_OPEN;
110 } else {
111 /**********************************
112 * Switch closed
113 **********************************/
114
115 func->switch_save = 0x10;
116
117 taskInfo->event_type = INT_SWITCH_CLOSE;
118 }
119 }
120 }
121
122 return rc;
123 }
124
125 /**
126 * cpqhp_find_slot: find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
129 */
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131 {
132 struct slot *slot = ctrl->slot;
133
134 while (slot && (slot->device != device)) {
135 slot = slot->next;
136 }
137
138 return slot;
139 }
140
141
142 static u8 handle_presence_change(u16 change, struct controller * ctrl)
143 {
144 int hp_slot;
145 u8 rc = 0;
146 u8 temp_byte;
147 u16 temp_word;
148 struct pci_func *func;
149 struct event_info *taskInfo;
150 struct slot *p_slot;
151
152 if (!change)
153 return 0;
154
155 /**********************************
156 * Presence Change
157 **********************************/
158 dbg("cpqsbd: Presence/Notify input change.\n");
159 dbg(" Changed bits are 0x%4.4x\n", change );
160
161 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
162 if (change & (0x0101 << hp_slot)) {
163 /**********************************
164 * this one changed.
165 **********************************/
166 func = cpqhp_slot_find(ctrl->bus,
167 (hp_slot + ctrl->slot_device_offset), 0);
168
169 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
170 ctrl->next_event = (ctrl->next_event + 1) % 10;
171 taskInfo->hp_slot = hp_slot;
172
173 rc++;
174
175 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
176 if (!p_slot)
177 return 0;
178
179 /* If the switch closed, must be a button
180 * If not in button mode, nevermind */
181 if (func->switch_save && (ctrl->push_button == 1)) {
182 temp_word = ctrl->ctrl_int_comp >> 16;
183 temp_byte = (temp_word >> hp_slot) & 0x01;
184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186 if (temp_byte != func->presence_save) {
187 /**************************************
188 * button Pressed (doesn't do anything)
189 **************************************/
190 dbg("hp_slot %d button pressed\n", hp_slot);
191 taskInfo->event_type = INT_BUTTON_PRESS;
192 } else {
193 /**********************************
194 * button Released - TAKE ACTION!!!!
195 **********************************/
196 dbg("hp_slot %d button released\n", hp_slot);
197 taskInfo->event_type = INT_BUTTON_RELEASE;
198
199 /* Cancel if we are still blinking */
200 if ((p_slot->state == BLINKINGON_STATE)
201 || (p_slot->state == BLINKINGOFF_STATE)) {
202 taskInfo->event_type = INT_BUTTON_CANCEL;
203 dbg("hp_slot %d button cancel\n", hp_slot);
204 } else if ((p_slot->state == POWERON_STATE)
205 || (p_slot->state == POWEROFF_STATE)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo->event_type = INT_BUTTON_IGNORE;
208 dbg("hp_slot %d button ignore\n", hp_slot);
209 }
210 }
211 } else {
212 /* Switch is open, assume a presence change
213 * Save the presence state */
214 temp_word = ctrl->ctrl_int_comp >> 16;
215 func->presence_save = (temp_word >> hp_slot) & 0x01;
216 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
217
218 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
219 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
220 /* Present */
221 taskInfo->event_type = INT_PRESENCE_ON;
222 } else {
223 /* Not Present */
224 taskInfo->event_type = INT_PRESENCE_OFF;
225 }
226 }
227 }
228 }
229
230 return rc;
231 }
232
233
234 static u8 handle_power_fault(u8 change, struct controller * ctrl)
235 {
236 int hp_slot;
237 u8 rc = 0;
238 struct pci_func *func;
239 struct event_info *taskInfo;
240
241 if (!change)
242 return 0;
243
244 /**********************************
245 * power fault
246 **********************************/
247
248 info("power fault interrupt\n");
249
250 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
251 if (change & (0x01 << hp_slot)) {
252 /**********************************
253 * this one changed.
254 **********************************/
255 func = cpqhp_slot_find(ctrl->bus,
256 (hp_slot + ctrl->slot_device_offset), 0);
257
258 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
259 ctrl->next_event = (ctrl->next_event + 1) % 10;
260 taskInfo->hp_slot = hp_slot;
261
262 rc++;
263
264 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
265 /**********************************
266 * power fault Cleared
267 **********************************/
268 func->status = 0x00;
269
270 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
271 } else {
272 /**********************************
273 * power fault
274 **********************************/
275 taskInfo->event_type = INT_POWER_FAULT;
276
277 if (ctrl->rev < 4) {
278 amber_LED_on (ctrl, hp_slot);
279 green_LED_off (ctrl, hp_slot);
280 set_SOGO (ctrl);
281
282 /* this is a fatal condition, we want
283 * to crash the machine to protect from
284 * data corruption. simulated_NMI
285 * shouldn't ever return */
286 /* FIXME
287 simulated_NMI(hp_slot, ctrl); */
288
289 /* The following code causes a software
290 * crash just in case simulated_NMI did
291 * return */
292 /*FIXME
293 panic(msg_power_fault); */
294 } else {
295 /* set power fault status for this board */
296 func->status = 0xFF;
297 info("power fault bit %x set\n", hp_slot);
298 }
299 }
300 }
301 }
302
303 return rc;
304 }
305
306
307 /**
308 * sort_by_size: sort nodes on the list by their length, smallest first.
309 * @head: list to sort
310 *
311 */
312 static int sort_by_size(struct pci_resource **head)
313 {
314 struct pci_resource *current_res;
315 struct pci_resource *next_res;
316 int out_of_order = 1;
317
318 if (!(*head))
319 return 1;
320
321 if (!((*head)->next))
322 return 0;
323
324 while (out_of_order) {
325 out_of_order = 0;
326
327 /* Special case for swapping list head */
328 if (((*head)->next) &&
329 ((*head)->length > (*head)->next->length)) {
330 out_of_order++;
331 current_res = *head;
332 *head = (*head)->next;
333 current_res->next = (*head)->next;
334 (*head)->next = current_res;
335 }
336
337 current_res = *head;
338
339 while (current_res->next && current_res->next->next) {
340 if (current_res->next->length > current_res->next->next->length) {
341 out_of_order++;
342 next_res = current_res->next;
343 current_res->next = current_res->next->next;
344 current_res = current_res->next;
345 next_res->next = current_res->next;
346 current_res->next = next_res;
347 } else
348 current_res = current_res->next;
349 }
350 } /* End of out_of_order loop */
351
352 return 0;
353 }
354
355
356 /**
357 * sort_by_max_size: sort nodes on the list by their length, largest first.
358 * @head: list to sort
359 *
360 */
361 static int sort_by_max_size(struct pci_resource **head)
362 {
363 struct pci_resource *current_res;
364 struct pci_resource *next_res;
365 int out_of_order = 1;
366
367 if (!(*head))
368 return 1;
369
370 if (!((*head)->next))
371 return 0;
372
373 while (out_of_order) {
374 out_of_order = 0;
375
376 /* Special case for swapping list head */
377 if (((*head)->next) &&
378 ((*head)->length < (*head)->next->length)) {
379 out_of_order++;
380 current_res = *head;
381 *head = (*head)->next;
382 current_res->next = (*head)->next;
383 (*head)->next = current_res;
384 }
385
386 current_res = *head;
387
388 while (current_res->next && current_res->next->next) {
389 if (current_res->next->length < current_res->next->next->length) {
390 out_of_order++;
391 next_res = current_res->next;
392 current_res->next = current_res->next->next;
393 current_res = current_res->next;
394 next_res->next = current_res->next;
395 current_res->next = next_res;
396 } else
397 current_res = current_res->next;
398 }
399 } /* End of out_of_order loop */
400
401 return 0;
402 }
403
404
405 /**
406 * do_pre_bridge_resource_split: find node of resources that are unused
407 *
408 */
409 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
410 struct pci_resource **orig_head, u32 alignment)
411 {
412 struct pci_resource *prevnode = NULL;
413 struct pci_resource *node;
414 struct pci_resource *split_node;
415 u32 rc;
416 u32 temp_dword;
417 dbg("do_pre_bridge_resource_split\n");
418
419 if (!(*head) || !(*orig_head))
420 return NULL;
421
422 rc = cpqhp_resource_sort_and_combine(head);
423
424 if (rc)
425 return NULL;
426
427 if ((*head)->base != (*orig_head)->base)
428 return NULL;
429
430 if ((*head)->length == (*orig_head)->length)
431 return NULL;
432
433
434 /* If we got here, there the bridge requires some of the resource, but
435 * we may be able to split some off of the front */
436
437 node = *head;
438
439 if (node->length & (alignment -1)) {
440 /* this one isn't an aligned length, so we'll make a new entry
441 * and split it up. */
442 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
443
444 if (!split_node)
445 return NULL;
446
447 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
448
449 split_node->base = node->base;
450 split_node->length = temp_dword;
451
452 node->length -= temp_dword;
453 node->base += split_node->length;
454
455 /* Put it in the list */
456 *head = split_node;
457 split_node->next = node;
458 }
459
460 if (node->length < alignment)
461 return NULL;
462
463 /* Now unlink it */
464 if (*head == node) {
465 *head = node->next;
466 } else {
467 prevnode = *head;
468 while (prevnode->next != node)
469 prevnode = prevnode->next;
470
471 prevnode->next = node->next;
472 }
473 node->next = NULL;
474
475 return node;
476 }
477
478
479 /**
480 * do_bridge_resource_split: find one node of resources that aren't in use
481 *
482 */
483 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
484 {
485 struct pci_resource *prevnode = NULL;
486 struct pci_resource *node;
487 u32 rc;
488 u32 temp_dword;
489
490 rc = cpqhp_resource_sort_and_combine(head);
491
492 if (rc)
493 return NULL;
494
495 node = *head;
496
497 while (node->next) {
498 prevnode = node;
499 node = node->next;
500 kfree(prevnode);
501 }
502
503 if (node->length < alignment)
504 goto error;
505
506 if (node->base & (alignment - 1)) {
507 /* Short circuit if adjusted size is too small */
508 temp_dword = (node->base | (alignment-1)) + 1;
509 if ((node->length - (temp_dword - node->base)) < alignment)
510 goto error;
511
512 node->length -= (temp_dword - node->base);
513 node->base = temp_dword;
514 }
515
516 if (node->length & (alignment - 1))
517 /* There's stuff in use after this node */
518 goto error;
519
520 return node;
521 error:
522 kfree(node);
523 return NULL;
524 }
525
526
527 /**
528 * get_io_resource: find first node of given size not in ISA aliasing window.
529 * @head: list to search
530 * @size: size of node to find, must be a power of two.
531 *
532 * Description: this function sorts the resource list by size and then returns
533 * returns the first node of "size" length that is not in the ISA aliasing
534 * window. If it finds a node larger than "size" it will split it up.
535 *
536 */
537 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
538 {
539 struct pci_resource *prevnode;
540 struct pci_resource *node;
541 struct pci_resource *split_node;
542 u32 temp_dword;
543
544 if (!(*head))
545 return NULL;
546
547 if ( cpqhp_resource_sort_and_combine(head) )
548 return NULL;
549
550 if ( sort_by_size(head) )
551 return NULL;
552
553 for (node = *head; node; node = node->next) {
554 if (node->length < size)
555 continue;
556
557 if (node->base & (size - 1)) {
558 /* this one isn't base aligned properly
559 * so we'll make a new entry and split it up */
560 temp_dword = (node->base | (size-1)) + 1;
561
562 /* Short circuit if adjusted size is too small */
563 if ((node->length - (temp_dword - node->base)) < size)
564 continue;
565
566 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
567
568 if (!split_node)
569 return NULL;
570
571 split_node->base = node->base;
572 split_node->length = temp_dword - node->base;
573 node->base = temp_dword;
574 node->length -= split_node->length;
575
576 /* Put it in the list */
577 split_node->next = node->next;
578 node->next = split_node;
579 } /* End of non-aligned base */
580
581 /* Don't need to check if too small since we already did */
582 if (node->length > size) {
583 /* this one is longer than we need
584 * so we'll make a new entry and split it up */
585 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
586
587 if (!split_node)
588 return NULL;
589
590 split_node->base = node->base + size;
591 split_node->length = node->length - size;
592 node->length = size;
593
594 /* Put it in the list */
595 split_node->next = node->next;
596 node->next = split_node;
597 } /* End of too big on top end */
598
599 /* For IO make sure it's not in the ISA aliasing space */
600 if (node->base & 0x300L)
601 continue;
602
603 /* If we got here, then it is the right size
604 * Now take it out of the list and break */
605 if (*head == node) {
606 *head = node->next;
607 } else {
608 prevnode = *head;
609 while (prevnode->next != node)
610 prevnode = prevnode->next;
611
612 prevnode->next = node->next;
613 }
614 node->next = NULL;
615 break;
616 }
617
618 return node;
619 }
620
621
622 /**
623 * get_max_resource: get largest node which has at least the given size.
624 * @head: the list to search the node in
625 * @size: the minimum size of the node to find
626 *
627 * Description: Gets the largest node that is at least "size" big from the
628 * list pointed to by head. It aligns the node on top and bottom
629 * to "size" alignment before returning it.
630 */
631 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
632 {
633 struct pci_resource *max;
634 struct pci_resource *temp;
635 struct pci_resource *split_node;
636 u32 temp_dword;
637
638 if (cpqhp_resource_sort_and_combine(head))
639 return NULL;
640
641 if (sort_by_max_size(head))
642 return NULL;
643
644 for (max = *head; max; max = max->next) {
645 /* If not big enough we could probably just bail,
646 * instead we'll continue to the next. */
647 if (max->length < size)
648 continue;
649
650 if (max->base & (size - 1)) {
651 /* this one isn't base aligned properly
652 * so we'll make a new entry and split it up */
653 temp_dword = (max->base | (size-1)) + 1;
654
655 /* Short circuit if adjusted size is too small */
656 if ((max->length - (temp_dword - max->base)) < size)
657 continue;
658
659 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
660
661 if (!split_node)
662 return NULL;
663
664 split_node->base = max->base;
665 split_node->length = temp_dword - max->base;
666 max->base = temp_dword;
667 max->length -= split_node->length;
668
669 split_node->next = max->next;
670 max->next = split_node;
671 }
672
673 if ((max->base + max->length) & (size - 1)) {
674 /* this one isn't end aligned properly at the top
675 * so we'll make a new entry and split it up */
676 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
677
678 if (!split_node)
679 return NULL;
680 temp_dword = ((max->base + max->length) & ~(size - 1));
681 split_node->base = temp_dword;
682 split_node->length = max->length + max->base
683 - split_node->base;
684 max->length -= split_node->length;
685
686 split_node->next = max->next;
687 max->next = split_node;
688 }
689
690 /* Make sure it didn't shrink too much when we aligned it */
691 if (max->length < size)
692 continue;
693
694 /* Now take it out of the list */
695 temp = *head;
696 if (temp == max) {
697 *head = max->next;
698 } else {
699 while (temp && temp->next != max) {
700 temp = temp->next;
701 }
702
703 temp->next = max->next;
704 }
705
706 max->next = NULL;
707 break;
708 }
709
710 return max;
711 }
712
713
714 /**
715 * get_resource: find resource of given size and split up larger ones.
716 * @head: the list to search for resources
717 * @size: the size limit to use
718 *
719 * Description: This function sorts the resource list by size and then
720 * returns the first node of "size" length. If it finds a node
721 * larger than "size" it will split it up.
722 *
723 * size must be a power of two.
724 */
725 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
726 {
727 struct pci_resource *prevnode;
728 struct pci_resource *node;
729 struct pci_resource *split_node;
730 u32 temp_dword;
731
732 if (cpqhp_resource_sort_and_combine(head))
733 return NULL;
734
735 if (sort_by_size(head))
736 return NULL;
737
738 for (node = *head; node; node = node->next) {
739 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
740 __FUNCTION__, size, node, node->base, node->length);
741 if (node->length < size)
742 continue;
743
744 if (node->base & (size - 1)) {
745 dbg("%s: not aligned\n", __FUNCTION__);
746 /* this one isn't base aligned properly
747 * so we'll make a new entry and split it up */
748 temp_dword = (node->base | (size-1)) + 1;
749
750 /* Short circuit if adjusted size is too small */
751 if ((node->length - (temp_dword - node->base)) < size)
752 continue;
753
754 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
755
756 if (!split_node)
757 return NULL;
758
759 split_node->base = node->base;
760 split_node->length = temp_dword - node->base;
761 node->base = temp_dword;
762 node->length -= split_node->length;
763
764 split_node->next = node->next;
765 node->next = split_node;
766 } /* End of non-aligned base */
767
768 /* Don't need to check if too small since we already did */
769 if (node->length > size) {
770 dbg("%s: too big\n", __FUNCTION__);
771 /* this one is longer than we need
772 * so we'll make a new entry and split it up */
773 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
774
775 if (!split_node)
776 return NULL;
777
778 split_node->base = node->base + size;
779 split_node->length = node->length - size;
780 node->length = size;
781
782 /* Put it in the list */
783 split_node->next = node->next;
784 node->next = split_node;
785 } /* End of too big on top end */
786
787 dbg("%s: got one!!!\n", __FUNCTION__);
788 /* If we got here, then it is the right size
789 * Now take it out of the list */
790 if (*head == node) {
791 *head = node->next;
792 } else {
793 prevnode = *head;
794 while (prevnode->next != node)
795 prevnode = prevnode->next;
796
797 prevnode->next = node->next;
798 }
799 node->next = NULL;
800 break;
801 }
802 return node;
803 }
804
805
806 /**
807 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
808 * @head: the list to sort and clean up
809 *
810 * Description: Sorts all of the nodes in the list in ascending order by
811 * their base addresses. Also does garbage collection by
812 * combining adjacent nodes.
813 *
814 * returns 0 if success
815 */
816 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
817 {
818 struct pci_resource *node1;
819 struct pci_resource *node2;
820 int out_of_order = 1;
821
822 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
823
824 if (!(*head))
825 return 1;
826
827 dbg("*head->next = %p\n",(*head)->next);
828
829 if (!(*head)->next)
830 return 0; /* only one item on the list, already sorted! */
831
832 dbg("*head->base = 0x%x\n",(*head)->base);
833 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
834 while (out_of_order) {
835 out_of_order = 0;
836
837 /* Special case for swapping list head */
838 if (((*head)->next) &&
839 ((*head)->base > (*head)->next->base)) {
840 node1 = *head;
841 (*head) = (*head)->next;
842 node1->next = (*head)->next;
843 (*head)->next = node1;
844 out_of_order++;
845 }
846
847 node1 = (*head);
848
849 while (node1->next && node1->next->next) {
850 if (node1->next->base > node1->next->next->base) {
851 out_of_order++;
852 node2 = node1->next;
853 node1->next = node1->next->next;
854 node1 = node1->next;
855 node2->next = node1->next;
856 node1->next = node2;
857 } else
858 node1 = node1->next;
859 }
860 } /* End of out_of_order loop */
861
862 node1 = *head;
863
864 while (node1 && node1->next) {
865 if ((node1->base + node1->length) == node1->next->base) {
866 /* Combine */
867 dbg("8..\n");
868 node1->length += node1->next->length;
869 node2 = node1->next;
870 node1->next = node1->next->next;
871 kfree(node2);
872 } else
873 node1 = node1->next;
874 }
875
876 return 0;
877 }
878
879
880 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
881 {
882 struct controller *ctrl = data;
883 u8 schedule_flag = 0;
884 u8 reset;
885 u16 misc;
886 u32 Diff;
887 u32 temp_dword;
888
889
890 misc = readw(ctrl->hpc_reg + MISC);
891 /***************************************
892 * Check to see if it was our interrupt
893 ***************************************/
894 if (!(misc & 0x000C)) {
895 return IRQ_NONE;
896 }
897
898 if (misc & 0x0004) {
899 /**********************************
900 * Serial Output interrupt Pending
901 **********************************/
902
903 /* Clear the interrupt */
904 misc |= 0x0004;
905 writew(misc, ctrl->hpc_reg + MISC);
906
907 /* Read to clear posted writes */
908 misc = readw(ctrl->hpc_reg + MISC);
909
910 dbg ("%s - waking up\n", __FUNCTION__);
911 wake_up_interruptible(&ctrl->queue);
912 }
913
914 if (misc & 0x0008) {
915 /* General-interrupt-input interrupt Pending */
916 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
917
918 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
919
920 /* Clear the interrupt */
921 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
922
923 /* Read it back to clear any posted writes */
924 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
925
926 if (!Diff)
927 /* Clear all interrupts */
928 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
929
930 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
931 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
932 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
933 }
934
935 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
936 if (reset & 0x40) {
937 /* Bus reset has completed */
938 reset &= 0xCF;
939 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
940 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
941 wake_up_interruptible(&ctrl->queue);
942 }
943
944 if (schedule_flag) {
945 wake_up_process(cpqhp_event_thread);
946 dbg("Waking even thread");
947 }
948 return IRQ_HANDLED;
949 }
950
951
952 /**
953 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
954 * @busnumber - bus where new node is to be located
955 *
956 * Returns pointer to the new node or NULL if unsuccessful
957 */
958 struct pci_func *cpqhp_slot_create(u8 busnumber)
959 {
960 struct pci_func *new_slot;
961 struct pci_func *next;
962
963 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
964 if (new_slot == NULL) {
965 /* I'm not dead yet!
966 * You will be. */
967 return new_slot;
968 }
969
970 new_slot->next = NULL;
971 new_slot->configured = 1;
972
973 if (cpqhp_slot_list[busnumber] == NULL) {
974 cpqhp_slot_list[busnumber] = new_slot;
975 } else {
976 next = cpqhp_slot_list[busnumber];
977 while (next->next != NULL)
978 next = next->next;
979 next->next = new_slot;
980 }
981 return new_slot;
982 }
983
984
985 /**
986 * slot_remove - Removes a node from the linked list of slots.
987 * @old_slot: slot to remove
988 *
989 * Returns 0 if successful, !0 otherwise.
990 */
991 static int slot_remove(struct pci_func * old_slot)
992 {
993 struct pci_func *next;
994
995 if (old_slot == NULL)
996 return 1;
997
998 next = cpqhp_slot_list[old_slot->bus];
999
1000 if (next == NULL) {
1001 return 1;
1002 }
1003
1004 if (next == old_slot) {
1005 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1006 cpqhp_destroy_board_resources(old_slot);
1007 kfree(old_slot);
1008 return 0;
1009 }
1010
1011 while ((next->next != old_slot) && (next->next != NULL)) {
1012 next = next->next;
1013 }
1014
1015 if (next->next == old_slot) {
1016 next->next = old_slot->next;
1017 cpqhp_destroy_board_resources(old_slot);
1018 kfree(old_slot);
1019 return 0;
1020 } else
1021 return 2;
1022 }
1023
1024
1025 /**
1026 * bridge_slot_remove - Removes a node from the linked list of slots.
1027 * @bridge: bridge to remove
1028 *
1029 * Returns 0 if successful, !0 otherwise.
1030 */
1031 static int bridge_slot_remove(struct pci_func *bridge)
1032 {
1033 u8 subordinateBus, secondaryBus;
1034 u8 tempBus;
1035 struct pci_func *next;
1036
1037 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1038 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1039
1040 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1041 next = cpqhp_slot_list[tempBus];
1042
1043 while (!slot_remove(next)) {
1044 next = cpqhp_slot_list[tempBus];
1045 }
1046 }
1047
1048 next = cpqhp_slot_list[bridge->bus];
1049
1050 if (next == NULL)
1051 return 1;
1052
1053 if (next == bridge) {
1054 cpqhp_slot_list[bridge->bus] = bridge->next;
1055 goto out;
1056 }
1057
1058 while ((next->next != bridge) && (next->next != NULL))
1059 next = next->next;
1060
1061 if (next->next != bridge)
1062 return 2;
1063 next->next = bridge->next;
1064 out:
1065 kfree(bridge);
1066 return 0;
1067 }
1068
1069
1070 /**
1071 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1072 * @bus: bus to find
1073 * @device: device to find
1074 * @index: is 0 for first function found, 1 for the second...
1075 *
1076 * Returns pointer to the node if successful, %NULL otherwise.
1077 */
1078 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1079 {
1080 int found = -1;
1081 struct pci_func *func;
1082
1083 func = cpqhp_slot_list[bus];
1084
1085 if ((func == NULL) || ((func->device == device) && (index == 0)))
1086 return func;
1087
1088 if (func->device == device)
1089 found++;
1090
1091 while (func->next != NULL) {
1092 func = func->next;
1093
1094 if (func->device == device)
1095 found++;
1096
1097 if (found == index)
1098 return func;
1099 }
1100
1101 return NULL;
1102 }
1103
1104
1105 /* DJZ: I don't think is_bridge will work as is.
1106 * FIXME */
1107 static int is_bridge(struct pci_func * func)
1108 {
1109 /* Check the header type */
1110 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1111 return 1;
1112 else
1113 return 0;
1114 }
1115
1116
1117 /**
1118 * set_controller_speed - set the frequency and/or mode of a specific
1119 * controller segment.
1120 *
1121 * @ctrl: controller to change frequency/mode for.
1122 * @adapter_speed: the speed of the adapter we want to match.
1123 * @hp_slot: the slot number where the adapter is installed.
1124 *
1125 * Returns 0 if we successfully change frequency and/or mode to match the
1126 * adapter speed.
1127 *
1128 */
1129 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1130 {
1131 struct slot *slot;
1132 u8 reg;
1133 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1134 u16 reg16;
1135 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1136
1137 if (ctrl->speed == adapter_speed)
1138 return 0;
1139
1140 /* We don't allow freq/mode changes if we find another adapter running
1141 * in another slot on this controller */
1142 for(slot = ctrl->slot; slot; slot = slot->next) {
1143 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1144 continue;
1145 if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1146 continue;
1147 if (slot->hotplug_slot->info->adapter_status == 0)
1148 continue;
1149 /* If another adapter is running on the same segment but at a
1150 * lower speed/mode, we allow the new adapter to function at
1151 * this rate if supported */
1152 if (ctrl->speed < adapter_speed)
1153 return 0;
1154
1155 return 1;
1156 }
1157
1158 /* If the controller doesn't support freq/mode changes and the
1159 * controller is running at a higher mode, we bail */
1160 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1161 return 1;
1162
1163 /* But we allow the adapter to run at a lower rate if possible */
1164 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1165 return 0;
1166
1167 /* We try to set the max speed supported by both the adapter and
1168 * controller */
1169 if (ctrl->speed_capability < adapter_speed) {
1170 if (ctrl->speed == ctrl->speed_capability)
1171 return 0;
1172 adapter_speed = ctrl->speed_capability;
1173 }
1174
1175 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1176 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1177
1178 set_SOGO(ctrl);
1179 wait_for_ctrl_irq(ctrl);
1180
1181 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1182 reg = 0xF5;
1183 else
1184 reg = 0xF4;
1185 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1186
1187 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1188 reg16 &= ~0x000F;
1189 switch(adapter_speed) {
1190 case(PCI_SPEED_133MHz_PCIX):
1191 reg = 0x75;
1192 reg16 |= 0xB;
1193 break;
1194 case(PCI_SPEED_100MHz_PCIX):
1195 reg = 0x74;
1196 reg16 |= 0xA;
1197 break;
1198 case(PCI_SPEED_66MHz_PCIX):
1199 reg = 0x73;
1200 reg16 |= 0x9;
1201 break;
1202 case(PCI_SPEED_66MHz):
1203 reg = 0x73;
1204 reg16 |= 0x1;
1205 break;
1206 default: /* 33MHz PCI 2.2 */
1207 reg = 0x71;
1208 break;
1209
1210 }
1211 reg16 |= 0xB << 12;
1212 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1213
1214 mdelay(5);
1215
1216 /* Reenable interrupts */
1217 writel(0, ctrl->hpc_reg + INT_MASK);
1218
1219 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1220
1221 /* Restart state machine */
1222 reg = ~0xF;
1223 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1224 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1225
1226 /* Only if mode change...*/
1227 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1228 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1229 set_SOGO(ctrl);
1230
1231 wait_for_ctrl_irq(ctrl);
1232 mdelay(1100);
1233
1234 /* Restore LED/Slot state */
1235 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1236 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1237
1238 set_SOGO(ctrl);
1239 wait_for_ctrl_irq(ctrl);
1240
1241 ctrl->speed = adapter_speed;
1242 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1243
1244 info("Successfully changed frequency/mode for adapter in slot %d\n",
1245 slot->number);
1246 return 0;
1247 }
1248
1249 /* the following routines constitute the bulk of the
1250 hotplug controller logic
1251 */
1252
1253
1254 /**
1255 * board_replaced - Called after a board has been replaced in the system.
1256 *
1257 * This is only used if we don't have resources for hot add
1258 * Turns power on for the board
1259 * Checks to see if board is the same
1260 * If board is same, reconfigures it
1261 * If board isn't same, turns it back off.
1262 *
1263 */
1264 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1265 {
1266 u8 hp_slot;
1267 u8 temp_byte;
1268 u8 adapter_speed;
1269 u32 rc = 0;
1270
1271 hp_slot = func->device - ctrl->slot_device_offset;
1272
1273 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1274 /**********************************
1275 * The switch is open.
1276 **********************************/
1277 rc = INTERLOCK_OPEN;
1278 } else if (is_slot_enabled (ctrl, hp_slot)) {
1279 /**********************************
1280 * The board is already on
1281 **********************************/
1282 rc = CARD_FUNCTIONING;
1283 } else {
1284 mutex_lock(&ctrl->crit_sect);
1285
1286 /* turn on board without attaching to the bus */
1287 enable_slot_power (ctrl, hp_slot);
1288
1289 set_SOGO(ctrl);
1290
1291 /* Wait for SOBS to be unset */
1292 wait_for_ctrl_irq (ctrl);
1293
1294 /* Change bits in slot power register to force another shift out
1295 * NOTE: this is to work around the timer bug */
1296 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1297 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1298 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1299
1300 set_SOGO(ctrl);
1301
1302 /* Wait for SOBS to be unset */
1303 wait_for_ctrl_irq (ctrl);
1304
1305 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1306 if (ctrl->speed != adapter_speed)
1307 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1308 rc = WRONG_BUS_FREQUENCY;
1309
1310 /* turn off board without attaching to the bus */
1311 disable_slot_power (ctrl, hp_slot);
1312
1313 set_SOGO(ctrl);
1314
1315 /* Wait for SOBS to be unset */
1316 wait_for_ctrl_irq (ctrl);
1317
1318 mutex_unlock(&ctrl->crit_sect);
1319
1320 if (rc)
1321 return rc;
1322
1323 mutex_lock(&ctrl->crit_sect);
1324
1325 slot_enable (ctrl, hp_slot);
1326 green_LED_blink (ctrl, hp_slot);
1327
1328 amber_LED_off (ctrl, hp_slot);
1329
1330 set_SOGO(ctrl);
1331
1332 /* Wait for SOBS to be unset */
1333 wait_for_ctrl_irq (ctrl);
1334
1335 mutex_unlock(&ctrl->crit_sect);
1336
1337 /* Wait for ~1 second because of hot plug spec */
1338 long_delay(1*HZ);
1339
1340 /* Check for a power fault */
1341 if (func->status == 0xFF) {
1342 /* power fault occurred, but it was benign */
1343 rc = POWER_FAILURE;
1344 func->status = 0;
1345 } else
1346 rc = cpqhp_valid_replace(ctrl, func);
1347
1348 if (!rc) {
1349 /* It must be the same board */
1350
1351 rc = cpqhp_configure_board(ctrl, func);
1352
1353 /* If configuration fails, turn it off
1354 * Get slot won't work for devices behind
1355 * bridges, but in this case it will always be
1356 * called for the "base" bus/dev/func of an
1357 * adapter. */
1358
1359 mutex_lock(&ctrl->crit_sect);
1360
1361 amber_LED_on (ctrl, hp_slot);
1362 green_LED_off (ctrl, hp_slot);
1363 slot_disable (ctrl, hp_slot);
1364
1365 set_SOGO(ctrl);
1366
1367 /* Wait for SOBS to be unset */
1368 wait_for_ctrl_irq (ctrl);
1369
1370 mutex_unlock(&ctrl->crit_sect);
1371
1372 if (rc)
1373 return rc;
1374 else
1375 return 1;
1376
1377 } else {
1378 /* Something is wrong
1379
1380 * Get slot won't work for devices behind bridges, but
1381 * in this case it will always be called for the "base"
1382 * bus/dev/func of an adapter. */
1383
1384 mutex_lock(&ctrl->crit_sect);
1385
1386 amber_LED_on (ctrl, hp_slot);
1387 green_LED_off (ctrl, hp_slot);
1388 slot_disable (ctrl, hp_slot);
1389
1390 set_SOGO(ctrl);
1391
1392 /* Wait for SOBS to be unset */
1393 wait_for_ctrl_irq (ctrl);
1394
1395 mutex_unlock(&ctrl->crit_sect);
1396 }
1397
1398 }
1399 return rc;
1400
1401 }
1402
1403
1404 /**
1405 * board_added - Called after a board has been added to the system.
1406 *
1407 * Turns power on for the board
1408 * Configures board
1409 *
1410 */
1411 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1412 {
1413 u8 hp_slot;
1414 u8 temp_byte;
1415 u8 adapter_speed;
1416 int index;
1417 u32 temp_register = 0xFFFFFFFF;
1418 u32 rc = 0;
1419 struct pci_func *new_slot = NULL;
1420 struct slot *p_slot;
1421 struct resource_lists res_lists;
1422
1423 hp_slot = func->device - ctrl->slot_device_offset;
1424 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1425 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1426
1427 mutex_lock(&ctrl->crit_sect);
1428
1429 /* turn on board without attaching to the bus */
1430 enable_slot_power(ctrl, hp_slot);
1431
1432 set_SOGO(ctrl);
1433
1434 /* Wait for SOBS to be unset */
1435 wait_for_ctrl_irq (ctrl);
1436
1437 /* Change bits in slot power register to force another shift out
1438 * NOTE: this is to work around the timer bug */
1439 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1440 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1441 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1442
1443 set_SOGO(ctrl);
1444
1445 /* Wait for SOBS to be unset */
1446 wait_for_ctrl_irq (ctrl);
1447
1448 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1449 if (ctrl->speed != adapter_speed)
1450 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1451 rc = WRONG_BUS_FREQUENCY;
1452
1453 /* turn off board without attaching to the bus */
1454 disable_slot_power (ctrl, hp_slot);
1455
1456 set_SOGO(ctrl);
1457
1458 /* Wait for SOBS to be unset */
1459 wait_for_ctrl_irq(ctrl);
1460
1461 mutex_unlock(&ctrl->crit_sect);
1462
1463 if (rc)
1464 return rc;
1465
1466 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1467
1468 /* turn on board and blink green LED */
1469
1470 dbg("%s: before down\n", __FUNCTION__);
1471 mutex_lock(&ctrl->crit_sect);
1472 dbg("%s: after down\n", __FUNCTION__);
1473
1474 dbg("%s: before slot_enable\n", __FUNCTION__);
1475 slot_enable (ctrl, hp_slot);
1476
1477 dbg("%s: before green_LED_blink\n", __FUNCTION__);
1478 green_LED_blink (ctrl, hp_slot);
1479
1480 dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1481 amber_LED_off (ctrl, hp_slot);
1482
1483 dbg("%s: before set_SOGO\n", __FUNCTION__);
1484 set_SOGO(ctrl);
1485
1486 /* Wait for SOBS to be unset */
1487 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1488 wait_for_ctrl_irq (ctrl);
1489 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1490
1491 dbg("%s: before up\n", __FUNCTION__);
1492 mutex_unlock(&ctrl->crit_sect);
1493 dbg("%s: after up\n", __FUNCTION__);
1494
1495 /* Wait for ~1 second because of hot plug spec */
1496 dbg("%s: before long_delay\n", __FUNCTION__);
1497 long_delay(1*HZ);
1498 dbg("%s: after long_delay\n", __FUNCTION__);
1499
1500 dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1501 /* Check for a power fault */
1502 if (func->status == 0xFF) {
1503 /* power fault occurred, but it was benign */
1504 temp_register = 0xFFFFFFFF;
1505 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1506 rc = POWER_FAILURE;
1507 func->status = 0;
1508 } else {
1509 /* Get vendor/device ID u32 */
1510 ctrl->pci_bus->number = func->bus;
1511 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1512 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1513 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1514
1515 if (rc != 0) {
1516 /* Something's wrong here */
1517 temp_register = 0xFFFFFFFF;
1518 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1519 }
1520 /* Preset return code. It will be changed later if things go okay. */
1521 rc = NO_ADAPTER_PRESENT;
1522 }
1523
1524 /* All F's is an empty slot or an invalid board */
1525 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1526 res_lists.io_head = ctrl->io_head;
1527 res_lists.mem_head = ctrl->mem_head;
1528 res_lists.p_mem_head = ctrl->p_mem_head;
1529 res_lists.bus_head = ctrl->bus_head;
1530 res_lists.irqs = NULL;
1531
1532 rc = configure_new_device(ctrl, func, 0, &res_lists);
1533
1534 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1535 ctrl->io_head = res_lists.io_head;
1536 ctrl->mem_head = res_lists.mem_head;
1537 ctrl->p_mem_head = res_lists.p_mem_head;
1538 ctrl->bus_head = res_lists.bus_head;
1539
1540 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1541 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1542 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1543 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1544
1545 if (rc) {
1546 mutex_lock(&ctrl->crit_sect);
1547
1548 amber_LED_on (ctrl, hp_slot);
1549 green_LED_off (ctrl, hp_slot);
1550 slot_disable (ctrl, hp_slot);
1551
1552 set_SOGO(ctrl);
1553
1554 /* Wait for SOBS to be unset */
1555 wait_for_ctrl_irq (ctrl);
1556
1557 mutex_unlock(&ctrl->crit_sect);
1558 return rc;
1559 } else {
1560 cpqhp_save_slot_config(ctrl, func);
1561 }
1562
1563
1564 func->status = 0;
1565 func->switch_save = 0x10;
1566 func->is_a_board = 0x01;
1567
1568 /* next, we will instantiate the linux pci_dev structures (with
1569 * appropriate driver notification, if already present) */
1570 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1571 index = 0;
1572 do {
1573 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1574 if (new_slot && !new_slot->pci_dev) {
1575 cpqhp_configure_device(ctrl, new_slot);
1576 }
1577 } while (new_slot);
1578
1579 mutex_lock(&ctrl->crit_sect);
1580
1581 green_LED_on (ctrl, hp_slot);
1582
1583 set_SOGO(ctrl);
1584
1585 /* Wait for SOBS to be unset */
1586 wait_for_ctrl_irq (ctrl);
1587
1588 mutex_unlock(&ctrl->crit_sect);
1589 } else {
1590 mutex_lock(&ctrl->crit_sect);
1591
1592 amber_LED_on (ctrl, hp_slot);
1593 green_LED_off (ctrl, hp_slot);
1594 slot_disable (ctrl, hp_slot);
1595
1596 set_SOGO(ctrl);
1597
1598 /* Wait for SOBS to be unset */
1599 wait_for_ctrl_irq (ctrl);
1600
1601 mutex_unlock(&ctrl->crit_sect);
1602
1603 return rc;
1604 }
1605 return 0;
1606 }
1607
1608
1609 /**
1610 * remove_board - Turns off slot and LED's
1611 *
1612 */
1613 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1614 {
1615 int index;
1616 u8 skip = 0;
1617 u8 device;
1618 u8 hp_slot;
1619 u8 temp_byte;
1620 u32 rc;
1621 struct resource_lists res_lists;
1622 struct pci_func *temp_func;
1623
1624 if (cpqhp_unconfigure_device(func))
1625 return 1;
1626
1627 device = func->device;
1628
1629 hp_slot = func->device - ctrl->slot_device_offset;
1630 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1631
1632 /* When we get here, it is safe to change base address registers.
1633 * We will attempt to save the base address register lengths */
1634 if (replace_flag || !ctrl->add_support)
1635 rc = cpqhp_save_base_addr_length(ctrl, func);
1636 else if (!func->bus_head && !func->mem_head &&
1637 !func->p_mem_head && !func->io_head) {
1638 /* Here we check to see if we've saved any of the board's
1639 * resources already. If so, we'll skip the attempt to
1640 * determine what's being used. */
1641 index = 0;
1642 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1643 while (temp_func) {
1644 if (temp_func->bus_head || temp_func->mem_head
1645 || temp_func->p_mem_head || temp_func->io_head) {
1646 skip = 1;
1647 break;
1648 }
1649 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1650 }
1651
1652 if (!skip)
1653 rc = cpqhp_save_used_resources(ctrl, func);
1654 }
1655 /* Change status to shutdown */
1656 if (func->is_a_board)
1657 func->status = 0x01;
1658 func->configured = 0;
1659
1660 mutex_lock(&ctrl->crit_sect);
1661
1662 green_LED_off (ctrl, hp_slot);
1663 slot_disable (ctrl, hp_slot);
1664
1665 set_SOGO(ctrl);
1666
1667 /* turn off SERR for slot */
1668 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1669 temp_byte &= ~(0x01 << hp_slot);
1670 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1671
1672 /* Wait for SOBS to be unset */
1673 wait_for_ctrl_irq (ctrl);
1674
1675 mutex_unlock(&ctrl->crit_sect);
1676
1677 if (!replace_flag && ctrl->add_support) {
1678 while (func) {
1679 res_lists.io_head = ctrl->io_head;
1680 res_lists.mem_head = ctrl->mem_head;
1681 res_lists.p_mem_head = ctrl->p_mem_head;
1682 res_lists.bus_head = ctrl->bus_head;
1683
1684 cpqhp_return_board_resources(func, &res_lists);
1685
1686 ctrl->io_head = res_lists.io_head;
1687 ctrl->mem_head = res_lists.mem_head;
1688 ctrl->p_mem_head = res_lists.p_mem_head;
1689 ctrl->bus_head = res_lists.bus_head;
1690
1691 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1692 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1693 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1694 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1695
1696 if (is_bridge(func)) {
1697 bridge_slot_remove(func);
1698 } else
1699 slot_remove(func);
1700
1701 func = cpqhp_slot_find(ctrl->bus, device, 0);
1702 }
1703
1704 /* Setup slot structure with entry for empty slot */
1705 func = cpqhp_slot_create(ctrl->bus);
1706
1707 if (func == NULL)
1708 return 1;
1709
1710 func->bus = ctrl->bus;
1711 func->device = device;
1712 func->function = 0;
1713 func->configured = 0;
1714 func->switch_save = 0x10;
1715 func->is_a_board = 0;
1716 func->p_task_event = NULL;
1717 }
1718
1719 return 0;
1720 }
1721
1722 static void pushbutton_helper_thread(unsigned long data)
1723 {
1724 pushbutton_pending = data;
1725 wake_up_process(cpqhp_event_thread);
1726 }
1727
1728
1729 /* this is the main worker thread */
1730 static int event_thread(void* data)
1731 {
1732 struct controller *ctrl;
1733
1734 while (1) {
1735 dbg("!!!!event_thread sleeping\n");
1736 set_current_state(TASK_INTERRUPTIBLE);
1737 schedule();
1738
1739 if (kthread_should_stop())
1740 break;
1741 /* Do stuff here */
1742 if (pushbutton_pending)
1743 cpqhp_pushbutton_thread(pushbutton_pending);
1744 else
1745 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1746 interrupt_event_handler(ctrl);
1747 }
1748 dbg("event_thread signals exit\n");
1749 return 0;
1750 }
1751
1752 int cpqhp_event_start_thread(void)
1753 {
1754 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1755 if (IS_ERR(cpqhp_event_thread)) {
1756 err ("Can't start up our event thread\n");
1757 return PTR_ERR(cpqhp_event_thread);
1758 }
1759
1760 return 0;
1761 }
1762
1763
1764 void cpqhp_event_stop_thread(void)
1765 {
1766 kthread_stop(cpqhp_event_thread);
1767 }
1768
1769
1770 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1771 {
1772 struct hotplug_slot_info *info;
1773 int result;
1774
1775 info = kmalloc(sizeof(*info), GFP_KERNEL);
1776 if (!info)
1777 return -ENOMEM;
1778
1779 info->power_status = get_slot_enabled(ctrl, slot);
1780 info->attention_status = cpq_get_attention_status(ctrl, slot);
1781 info->latch_status = cpq_get_latch_status(ctrl, slot);
1782 info->adapter_status = get_presence_status(ctrl, slot);
1783 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1784 kfree (info);
1785 return result;
1786 }
1787
1788 static void interrupt_event_handler(struct controller *ctrl)
1789 {
1790 int loop = 0;
1791 int change = 1;
1792 struct pci_func *func;
1793 u8 hp_slot;
1794 struct slot *p_slot;
1795
1796 while (change) {
1797 change = 0;
1798
1799 for (loop = 0; loop < 10; loop++) {
1800 /* dbg("loop %d\n", loop); */
1801 if (ctrl->event_queue[loop].event_type != 0) {
1802 hp_slot = ctrl->event_queue[loop].hp_slot;
1803
1804 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1805 if (!func)
1806 return;
1807
1808 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1809 if (!p_slot)
1810 return;
1811
1812 dbg("hp_slot %d, func %p, p_slot %p\n",
1813 hp_slot, func, p_slot);
1814
1815 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1816 dbg("button pressed\n");
1817 } else if (ctrl->event_queue[loop].event_type ==
1818 INT_BUTTON_CANCEL) {
1819 dbg("button cancel\n");
1820 del_timer(&p_slot->task_event);
1821
1822 mutex_lock(&ctrl->crit_sect);
1823
1824 if (p_slot->state == BLINKINGOFF_STATE) {
1825 /* slot is on */
1826 dbg("turn on green LED\n");
1827 green_LED_on (ctrl, hp_slot);
1828 } else if (p_slot->state == BLINKINGON_STATE) {
1829 /* slot is off */
1830 dbg("turn off green LED\n");
1831 green_LED_off (ctrl, hp_slot);
1832 }
1833
1834 info(msg_button_cancel, p_slot->number);
1835
1836 p_slot->state = STATIC_STATE;
1837
1838 amber_LED_off (ctrl, hp_slot);
1839
1840 set_SOGO(ctrl);
1841
1842 /* Wait for SOBS to be unset */
1843 wait_for_ctrl_irq (ctrl);
1844
1845 mutex_unlock(&ctrl->crit_sect);
1846 }
1847 /*** button Released (No action on press...) */
1848 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1849 dbg("button release\n");
1850
1851 if (is_slot_enabled (ctrl, hp_slot)) {
1852 dbg("slot is on\n");
1853 p_slot->state = BLINKINGOFF_STATE;
1854 info(msg_button_off, p_slot->number);
1855 } else {
1856 dbg("slot is off\n");
1857 p_slot->state = BLINKINGON_STATE;
1858 info(msg_button_on, p_slot->number);
1859 }
1860 mutex_lock(&ctrl->crit_sect);
1861
1862 dbg("blink green LED and turn off amber\n");
1863
1864 amber_LED_off (ctrl, hp_slot);
1865 green_LED_blink (ctrl, hp_slot);
1866
1867 set_SOGO(ctrl);
1868
1869 /* Wait for SOBS to be unset */
1870 wait_for_ctrl_irq (ctrl);
1871
1872 mutex_unlock(&ctrl->crit_sect);
1873 init_timer(&p_slot->task_event);
1874 p_slot->hp_slot = hp_slot;
1875 p_slot->ctrl = ctrl;
1876 /* p_slot->physical_slot = physical_slot; */
1877 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1878 p_slot->task_event.function = pushbutton_helper_thread;
1879 p_slot->task_event.data = (u32) p_slot;
1880
1881 dbg("add_timer p_slot = %p\n", p_slot);
1882 add_timer(&p_slot->task_event);
1883 }
1884 /***********POWER FAULT */
1885 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1886 dbg("power fault\n");
1887 } else {
1888 /* refresh notification */
1889 if (p_slot)
1890 update_slot_info(ctrl, p_slot);
1891 }
1892
1893 ctrl->event_queue[loop].event_type = 0;
1894
1895 change = 1;
1896 }
1897 } /* End of FOR loop */
1898 }
1899
1900 return;
1901 }
1902
1903
1904 /**
1905 * cpqhp_pushbutton_thread
1906 *
1907 * Scheduled procedure to handle blocking stuff for the pushbuttons
1908 * Handles all pending events and exits.
1909 *
1910 */
1911 void cpqhp_pushbutton_thread(unsigned long slot)
1912 {
1913 u8 hp_slot;
1914 u8 device;
1915 struct pci_func *func;
1916 struct slot *p_slot = (struct slot *) slot;
1917 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1918
1919 pushbutton_pending = 0;
1920 hp_slot = p_slot->hp_slot;
1921
1922 device = p_slot->device;
1923
1924 if (is_slot_enabled(ctrl, hp_slot)) {
1925 p_slot->state = POWEROFF_STATE;
1926 /* power Down board */
1927 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1928 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1929 if (!func) {
1930 dbg("Error! func NULL in %s\n", __FUNCTION__);
1931 return ;
1932 }
1933
1934 if (cpqhp_process_SS(ctrl, func) != 0) {
1935 amber_LED_on(ctrl, hp_slot);
1936 green_LED_on(ctrl, hp_slot);
1937
1938 set_SOGO(ctrl);
1939
1940 /* Wait for SOBS to be unset */
1941 wait_for_ctrl_irq(ctrl);
1942 }
1943
1944 p_slot->state = STATIC_STATE;
1945 } else {
1946 p_slot->state = POWERON_STATE;
1947 /* slot is off */
1948
1949 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1950 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1951 if (!func) {
1952 dbg("Error! func NULL in %s\n", __FUNCTION__);
1953 return ;
1954 }
1955
1956 if (func != NULL && ctrl != NULL) {
1957 if (cpqhp_process_SI(ctrl, func) != 0) {
1958 amber_LED_on(ctrl, hp_slot);
1959 green_LED_off(ctrl, hp_slot);
1960
1961 set_SOGO(ctrl);
1962
1963 /* Wait for SOBS to be unset */
1964 wait_for_ctrl_irq (ctrl);
1965 }
1966 }
1967
1968 p_slot->state = STATIC_STATE;
1969 }
1970
1971 return;
1972 }
1973
1974
1975 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1976 {
1977 u8 device, hp_slot;
1978 u16 temp_word;
1979 u32 tempdword;
1980 int rc;
1981 struct slot* p_slot;
1982 int physical_slot = 0;
1983
1984 tempdword = 0;
1985
1986 device = func->device;
1987 hp_slot = device - ctrl->slot_device_offset;
1988 p_slot = cpqhp_find_slot(ctrl, device);
1989 if (p_slot)
1990 physical_slot = p_slot->number;
1991
1992 /* Check to see if the interlock is closed */
1993 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1994
1995 if (tempdword & (0x01 << hp_slot)) {
1996 return 1;
1997 }
1998
1999 if (func->is_a_board) {
2000 rc = board_replaced(func, ctrl);
2001 } else {
2002 /* add board */
2003 slot_remove(func);
2004
2005 func = cpqhp_slot_create(ctrl->bus);
2006 if (func == NULL)
2007 return 1;
2008
2009 func->bus = ctrl->bus;
2010 func->device = device;
2011 func->function = 0;
2012 func->configured = 0;
2013 func->is_a_board = 1;
2014
2015 /* We have to save the presence info for these slots */
2016 temp_word = ctrl->ctrl_int_comp >> 16;
2017 func->presence_save = (temp_word >> hp_slot) & 0x01;
2018 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2019
2020 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2021 func->switch_save = 0;
2022 } else {
2023 func->switch_save = 0x10;
2024 }
2025
2026 rc = board_added(func, ctrl);
2027 if (rc) {
2028 if (is_bridge(func)) {
2029 bridge_slot_remove(func);
2030 } else
2031 slot_remove(func);
2032
2033 /* Setup slot structure with entry for empty slot */
2034 func = cpqhp_slot_create(ctrl->bus);
2035
2036 if (func == NULL)
2037 return 1;
2038
2039 func->bus = ctrl->bus;
2040 func->device = device;
2041 func->function = 0;
2042 func->configured = 0;
2043 func->is_a_board = 0;
2044
2045 /* We have to save the presence info for these slots */
2046 temp_word = ctrl->ctrl_int_comp >> 16;
2047 func->presence_save = (temp_word >> hp_slot) & 0x01;
2048 func->presence_save |=
2049 (temp_word >> (hp_slot + 7)) & 0x02;
2050
2051 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2052 func->switch_save = 0;
2053 } else {
2054 func->switch_save = 0x10;
2055 }
2056 }
2057 }
2058
2059 if (rc) {
2060 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2061 }
2062
2063 if (p_slot)
2064 update_slot_info(ctrl, p_slot);
2065
2066 return rc;
2067 }
2068
2069
2070 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2071 {
2072 u8 device, class_code, header_type, BCR;
2073 u8 index = 0;
2074 u8 replace_flag;
2075 u32 rc = 0;
2076 unsigned int devfn;
2077 struct slot* p_slot;
2078 struct pci_bus *pci_bus = ctrl->pci_bus;
2079 int physical_slot=0;
2080
2081 device = func->device;
2082 func = cpqhp_slot_find(ctrl->bus, device, index++);
2083 p_slot = cpqhp_find_slot(ctrl, device);
2084 if (p_slot) {
2085 physical_slot = p_slot->number;
2086 }
2087
2088 /* Make sure there are no video controllers here */
2089 while (func && !rc) {
2090 pci_bus->number = func->bus;
2091 devfn = PCI_DEVFN(func->device, func->function);
2092
2093 /* Check the Class Code */
2094 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2095 if (rc)
2096 return rc;
2097
2098 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2099 /* Display/Video adapter (not supported) */
2100 rc = REMOVE_NOT_SUPPORTED;
2101 } else {
2102 /* See if it's a bridge */
2103 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2104 if (rc)
2105 return rc;
2106
2107 /* If it's a bridge, check the VGA Enable bit */
2108 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2109 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2110 if (rc)
2111 return rc;
2112
2113 /* If the VGA Enable bit is set, remove isn't
2114 * supported */
2115 if (BCR & PCI_BRIDGE_CTL_VGA) {
2116 rc = REMOVE_NOT_SUPPORTED;
2117 }
2118 }
2119 }
2120
2121 func = cpqhp_slot_find(ctrl->bus, device, index++);
2122 }
2123
2124 func = cpqhp_slot_find(ctrl->bus, device, 0);
2125 if ((func != NULL) && !rc) {
2126 /* FIXME: Replace flag should be passed into process_SS */
2127 replace_flag = !(ctrl->add_support);
2128 rc = remove_board(func, replace_flag, ctrl);
2129 } else if (!rc) {
2130 rc = 1;
2131 }
2132
2133 if (p_slot)
2134 update_slot_info(ctrl, p_slot);
2135
2136 return rc;
2137 }
2138
2139 /**
2140 * switch_leds: switch the leds, go from one site to the other.
2141 * @ctrl: controller to use
2142 * @num_of_slots: number of slots to use
2143 * @direction: 1 to start from the left side, 0 to start right.
2144 */
2145 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2146 u32 *work_LED, const int direction)
2147 {
2148 int loop;
2149
2150 for (loop = 0; loop < num_of_slots; loop++) {
2151 if (direction)
2152 *work_LED = *work_LED >> 1;
2153 else
2154 *work_LED = *work_LED << 1;
2155 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2156
2157 set_SOGO(ctrl);
2158
2159 /* Wait for SOGO interrupt */
2160 wait_for_ctrl_irq(ctrl);
2161
2162 /* Get ready for next iteration */
2163 long_delay((2*HZ)/10);
2164 }
2165 }
2166
2167 /**
2168 * hardware_test - runs hardware tests
2169 *
2170 * For hot plug ctrl folks to play with.
2171 * test_num is the number written to the "test" file in sysfs
2172 *
2173 */
2174 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2175 {
2176 u32 save_LED;
2177 u32 work_LED;
2178 int loop;
2179 int num_of_slots;
2180
2181 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2182
2183 switch (test_num) {
2184 case 1:
2185 /* Do stuff here! */
2186
2187 /* Do that funky LED thing */
2188 /* so we can restore them later */
2189 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2190 work_LED = 0x01010101;
2191 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2192 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2193 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2194 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2195
2196 work_LED = 0x01010000;
2197 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2198 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2199 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2200 work_LED = 0x00000101;
2201 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2202 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204
2205 work_LED = 0x01010000;
2206 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2207 for (loop = 0; loop < num_of_slots; loop++) {
2208 set_SOGO(ctrl);
2209
2210 /* Wait for SOGO interrupt */
2211 wait_for_ctrl_irq (ctrl);
2212
2213 /* Get ready for next iteration */
2214 long_delay((3*HZ)/10);
2215 work_LED = work_LED >> 16;
2216 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2217
2218 set_SOGO(ctrl);
2219
2220 /* Wait for SOGO interrupt */
2221 wait_for_ctrl_irq (ctrl);
2222
2223 /* Get ready for next iteration */
2224 long_delay((3*HZ)/10);
2225 work_LED = work_LED << 16;
2226 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2227 work_LED = work_LED << 1;
2228 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2229 }
2230
2231 /* put it back the way it was */
2232 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2233
2234 set_SOGO(ctrl);
2235
2236 /* Wait for SOBS to be unset */
2237 wait_for_ctrl_irq (ctrl);
2238 break;
2239 case 2:
2240 /* Do other stuff here! */
2241 break;
2242 case 3:
2243 /* and more... */
2244 break;
2245 }
2246 return 0;
2247 }
2248
2249
2250 /**
2251 * configure_new_device - Configures the PCI header information of one board.
2252 *
2253 * @ctrl: pointer to controller structure
2254 * @func: pointer to function structure
2255 * @behind_bridge: 1 if this is a recursive call, 0 if not
2256 * @resources: pointer to set of resource lists
2257 *
2258 * Returns 0 if success
2259 *
2260 */
2261 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2262 u8 behind_bridge, struct resource_lists * resources)
2263 {
2264 u8 temp_byte, function, max_functions, stop_it;
2265 int rc;
2266 u32 ID;
2267 struct pci_func *new_slot;
2268 int index;
2269
2270 new_slot = func;
2271
2272 dbg("%s\n", __FUNCTION__);
2273 /* Check for Multi-function device */
2274 ctrl->pci_bus->number = func->bus;
2275 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2276 if (rc) {
2277 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2278 return rc;
2279 }
2280
2281 if (temp_byte & 0x80) /* Multi-function device */
2282 max_functions = 8;
2283 else
2284 max_functions = 1;
2285
2286 function = 0;
2287
2288 do {
2289 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2290
2291 if (rc) {
2292 dbg("configure_new_function failed %d\n",rc);
2293 index = 0;
2294
2295 while (new_slot) {
2296 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2297
2298 if (new_slot)
2299 cpqhp_return_board_resources(new_slot, resources);
2300 }
2301
2302 return rc;
2303 }
2304
2305 function++;
2306
2307 stop_it = 0;
2308
2309 /* The following loop skips to the next present function
2310 * and creates a board structure */
2311
2312 while ((function < max_functions) && (!stop_it)) {
2313 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2314
2315 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2316 function++;
2317 } else { /* There's something there */
2318 /* Setup slot structure. */
2319 new_slot = cpqhp_slot_create(func->bus);
2320
2321 if (new_slot == NULL)
2322 return 1;
2323
2324 new_slot->bus = func->bus;
2325 new_slot->device = func->device;
2326 new_slot->function = function;
2327 new_slot->is_a_board = 1;
2328 new_slot->status = 0;
2329
2330 stop_it++;
2331 }
2332 }
2333
2334 } while (function < max_functions);
2335 dbg("returning from configure_new_device\n");
2336
2337 return 0;
2338 }
2339
2340
2341 /*
2342 Configuration logic that involves the hotplug data structures and
2343 their bookkeeping
2344 */
2345
2346
2347 /**
2348 * configure_new_function - Configures the PCI header information of one device
2349 *
2350 * @ctrl: pointer to controller structure
2351 * @func: pointer to function structure
2352 * @behind_bridge: 1 if this is a recursive call, 0 if not
2353 * @resources: pointer to set of resource lists
2354 *
2355 * Calls itself recursively for bridged devices.
2356 * Returns 0 if success
2357 *
2358 */
2359 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2360 u8 behind_bridge,
2361 struct resource_lists *resources)
2362 {
2363 int cloop;
2364 u8 IRQ = 0;
2365 u8 temp_byte;
2366 u8 device;
2367 u8 class_code;
2368 u16 command;
2369 u16 temp_word;
2370 u32 temp_dword;
2371 u32 rc;
2372 u32 temp_register;
2373 u32 base;
2374 u32 ID;
2375 unsigned int devfn;
2376 struct pci_resource *mem_node;
2377 struct pci_resource *p_mem_node;
2378 struct pci_resource *io_node;
2379 struct pci_resource *bus_node;
2380 struct pci_resource *hold_mem_node;
2381 struct pci_resource *hold_p_mem_node;
2382 struct pci_resource *hold_IO_node;
2383 struct pci_resource *hold_bus_node;
2384 struct irq_mapping irqs;
2385 struct pci_func *new_slot;
2386 struct pci_bus *pci_bus;
2387 struct resource_lists temp_resources;
2388
2389 pci_bus = ctrl->pci_bus;
2390 pci_bus->number = func->bus;
2391 devfn = PCI_DEVFN(func->device, func->function);
2392
2393 /* Check for Bridge */
2394 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2395 if (rc)
2396 return rc;
2397
2398 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2399 /* set Primary bus */
2400 dbg("set Primary bus = %d\n", func->bus);
2401 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2402 if (rc)
2403 return rc;
2404
2405 /* find range of busses to use */
2406 dbg("find ranges of buses to use\n");
2407 bus_node = get_max_resource(&(resources->bus_head), 1);
2408
2409 /* If we don't have any busses to allocate, we can't continue */
2410 if (!bus_node)
2411 return -ENOMEM;
2412
2413 /* set Secondary bus */
2414 temp_byte = bus_node->base;
2415 dbg("set Secondary bus = %d\n", bus_node->base);
2416 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2417 if (rc)
2418 return rc;
2419
2420 /* set subordinate bus */
2421 temp_byte = bus_node->base + bus_node->length - 1;
2422 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2423 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2424 if (rc)
2425 return rc;
2426
2427 /* set subordinate Latency Timer and base Latency Timer */
2428 temp_byte = 0x40;
2429 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2430 if (rc)
2431 return rc;
2432 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2433 if (rc)
2434 return rc;
2435
2436 /* set Cache Line size */
2437 temp_byte = 0x08;
2438 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2439 if (rc)
2440 return rc;
2441
2442 /* Setup the IO, memory, and prefetchable windows */
2443 io_node = get_max_resource(&(resources->io_head), 0x1000);
2444 if (!io_node)
2445 return -ENOMEM;
2446 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2447 if (!mem_node)
2448 return -ENOMEM;
2449 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2450 if (!p_mem_node)
2451 return -ENOMEM;
2452 dbg("Setup the IO, memory, and prefetchable windows\n");
2453 dbg("io_node\n");
2454 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2455 io_node->length, io_node->next);
2456 dbg("mem_node\n");
2457 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2458 mem_node->length, mem_node->next);
2459 dbg("p_mem_node\n");
2460 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2461 p_mem_node->length, p_mem_node->next);
2462
2463 /* set up the IRQ info */
2464 if (!resources->irqs) {
2465 irqs.barber_pole = 0;
2466 irqs.interrupt[0] = 0;
2467 irqs.interrupt[1] = 0;
2468 irqs.interrupt[2] = 0;
2469 irqs.interrupt[3] = 0;
2470 irqs.valid_INT = 0;
2471 } else {
2472 irqs.barber_pole = resources->irqs->barber_pole;
2473 irqs.interrupt[0] = resources->irqs->interrupt[0];
2474 irqs.interrupt[1] = resources->irqs->interrupt[1];
2475 irqs.interrupt[2] = resources->irqs->interrupt[2];
2476 irqs.interrupt[3] = resources->irqs->interrupt[3];
2477 irqs.valid_INT = resources->irqs->valid_INT;
2478 }
2479
2480 /* set up resource lists that are now aligned on top and bottom
2481 * for anything behind the bridge. */
2482 temp_resources.bus_head = bus_node;
2483 temp_resources.io_head = io_node;
2484 temp_resources.mem_head = mem_node;
2485 temp_resources.p_mem_head = p_mem_node;
2486 temp_resources.irqs = &irqs;
2487
2488 /* Make copies of the nodes we are going to pass down so that
2489 * if there is a problem,we can just use these to free resources */
2490 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2491 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2492 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2493 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2494
2495 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2496 kfree(hold_bus_node);
2497 kfree(hold_IO_node);
2498 kfree(hold_mem_node);
2499 kfree(hold_p_mem_node);
2500
2501 return 1;
2502 }
2503
2504 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2505
2506 bus_node->base += 1;
2507 bus_node->length -= 1;
2508 bus_node->next = NULL;
2509
2510 /* If we have IO resources copy them and fill in the bridge's
2511 * IO range registers */
2512 if (io_node) {
2513 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2514 io_node->next = NULL;
2515
2516 /* set IO base and Limit registers */
2517 temp_byte = io_node->base >> 8;
2518 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2519
2520 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2521 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2522 } else {
2523 kfree(hold_IO_node);
2524 hold_IO_node = NULL;
2525 }
2526
2527 /* If we have memory resources copy them and fill in the
2528 * bridge's memory range registers. Otherwise, fill in the
2529 * range registers with values that disable them. */
2530 if (mem_node) {
2531 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2532 mem_node->next = NULL;
2533
2534 /* set Mem base and Limit registers */
2535 temp_word = mem_node->base >> 16;
2536 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2537
2538 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2539 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2540 } else {
2541 temp_word = 0xFFFF;
2542 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2543
2544 temp_word = 0x0000;
2545 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2546
2547 kfree(hold_mem_node);
2548 hold_mem_node = NULL;
2549 }
2550
2551 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2552 p_mem_node->next = NULL;
2553
2554 /* set Pre Mem base and Limit registers */
2555 temp_word = p_mem_node->base >> 16;
2556 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2557
2558 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2559 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2560
2561 /* Adjust this to compensate for extra adjustment in first loop */
2562 irqs.barber_pole--;
2563
2564 rc = 0;
2565
2566 /* Here we actually find the devices and configure them */
2567 for (device = 0; (device <= 0x1F) && !rc; device++) {
2568 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2569
2570 ID = 0xFFFFFFFF;
2571 pci_bus->number = hold_bus_node->base;
2572 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2573 pci_bus->number = func->bus;
2574
2575 if (ID != 0xFFFFFFFF) { /* device present */
2576 /* Setup slot structure. */
2577 new_slot = cpqhp_slot_create(hold_bus_node->base);
2578
2579 if (new_slot == NULL) {
2580 rc = -ENOMEM;
2581 continue;
2582 }
2583
2584 new_slot->bus = hold_bus_node->base;
2585 new_slot->device = device;
2586 new_slot->function = 0;
2587 new_slot->is_a_board = 1;
2588 new_slot->status = 0;
2589
2590 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2591 dbg("configure_new_device rc=0x%x\n",rc);
2592 } /* End of IF (device in slot?) */
2593 } /* End of FOR loop */
2594
2595 if (rc)
2596 goto free_and_out;
2597 /* save the interrupt routing information */
2598 if (resources->irqs) {
2599 resources->irqs->interrupt[0] = irqs.interrupt[0];
2600 resources->irqs->interrupt[1] = irqs.interrupt[1];
2601 resources->irqs->interrupt[2] = irqs.interrupt[2];
2602 resources->irqs->interrupt[3] = irqs.interrupt[3];
2603 resources->irqs->valid_INT = irqs.valid_INT;
2604 } else if (!behind_bridge) {
2605 /* We need to hook up the interrupts here */
2606 for (cloop = 0; cloop < 4; cloop++) {
2607 if (irqs.valid_INT & (0x01 << cloop)) {
2608 rc = cpqhp_set_irq(func->bus, func->device,
2609 0x0A + cloop, irqs.interrupt[cloop]);
2610 if (rc)
2611 goto free_and_out;
2612 }
2613 } /* end of for loop */
2614 }
2615 /* Return unused bus resources
2616 * First use the temporary node to store information for
2617 * the board */
2618 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2619 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2620
2621 hold_bus_node->next = func->bus_head;
2622 func->bus_head = hold_bus_node;
2623
2624 temp_byte = temp_resources.bus_head->base - 1;
2625
2626 /* set subordinate bus */
2627 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2628
2629 if (temp_resources.bus_head->length == 0) {
2630 kfree(temp_resources.bus_head);
2631 temp_resources.bus_head = NULL;
2632 } else {
2633 return_resource(&(resources->bus_head), temp_resources.bus_head);
2634 }
2635 }
2636
2637 /* If we have IO space available and there is some left,
2638 * return the unused portion */
2639 if (hold_IO_node && temp_resources.io_head) {
2640 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2641 &hold_IO_node, 0x1000);
2642
2643 /* Check if we were able to split something off */
2644 if (io_node) {
2645 hold_IO_node->base = io_node->base + io_node->length;
2646
2647 temp_byte = (hold_IO_node->base) >> 8;
2648 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2649
2650 return_resource(&(resources->io_head), io_node);
2651 }
2652
2653 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2654
2655 /* Check if we were able to split something off */
2656 if (io_node) {
2657 /* First use the temporary node to store
2658 * information for the board */
2659 hold_IO_node->length = io_node->base - hold_IO_node->base;
2660
2661 /* If we used any, add it to the board's list */
2662 if (hold_IO_node->length) {
2663 hold_IO_node->next = func->io_head;
2664 func->io_head = hold_IO_node;
2665
2666 temp_byte = (io_node->base - 1) >> 8;
2667 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2668
2669 return_resource(&(resources->io_head), io_node);
2670 } else {
2671 /* it doesn't need any IO */
2672 temp_word = 0x0000;
2673 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2674
2675 return_resource(&(resources->io_head), io_node);
2676 kfree(hold_IO_node);
2677 }
2678 } else {
2679 /* it used most of the range */
2680 hold_IO_node->next = func->io_head;
2681 func->io_head = hold_IO_node;
2682 }
2683 } else if (hold_IO_node) {
2684 /* it used the whole range */
2685 hold_IO_node->next = func->io_head;
2686 func->io_head = hold_IO_node;
2687 }
2688 /* If we have memory space available and there is some left,
2689 * return the unused portion */
2690 if (hold_mem_node && temp_resources.mem_head) {
2691 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2692 &hold_mem_node, 0x100000);
2693
2694 /* Check if we were able to split something off */
2695 if (mem_node) {
2696 hold_mem_node->base = mem_node->base + mem_node->length;
2697
2698 temp_word = (hold_mem_node->base) >> 16;
2699 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2700
2701 return_resource(&(resources->mem_head), mem_node);
2702 }
2703
2704 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2705
2706 /* Check if we were able to split something off */
2707 if (mem_node) {
2708 /* First use the temporary node to store
2709 * information for the board */
2710 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2711
2712 if (hold_mem_node->length) {
2713 hold_mem_node->next = func->mem_head;
2714 func->mem_head = hold_mem_node;
2715
2716 /* configure end address */
2717 temp_word = (mem_node->base - 1) >> 16;
2718 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2719
2720 /* Return unused resources to the pool */
2721 return_resource(&(resources->mem_head), mem_node);
2722 } else {
2723 /* it doesn't need any Mem */
2724 temp_word = 0x0000;
2725 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2726
2727 return_resource(&(resources->mem_head), mem_node);
2728 kfree(hold_mem_node);
2729 }
2730 } else {
2731 /* it used most of the range */
2732 hold_mem_node->next = func->mem_head;
2733 func->mem_head = hold_mem_node;
2734 }
2735 } else if (hold_mem_node) {
2736 /* it used the whole range */
2737 hold_mem_node->next = func->mem_head;
2738 func->mem_head = hold_mem_node;
2739 }
2740 /* If we have prefetchable memory space available and there
2741 * is some left at the end, return the unused portion */
2742 if (hold_p_mem_node && temp_resources.p_mem_head) {
2743 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2744 &hold_p_mem_node, 0x100000);
2745
2746 /* Check if we were able to split something off */
2747 if (p_mem_node) {
2748 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2749
2750 temp_word = (hold_p_mem_node->base) >> 16;
2751 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2752
2753 return_resource(&(resources->p_mem_head), p_mem_node);
2754 }
2755
2756 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2757
2758 /* Check if we were able to split something off */
2759 if (p_mem_node) {
2760 /* First use the temporary node to store
2761 * information for the board */
2762 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2763
2764 /* If we used any, add it to the board's list */
2765 if (hold_p_mem_node->length) {
2766 hold_p_mem_node->next = func->p_mem_head;
2767 func->p_mem_head = hold_p_mem_node;
2768
2769 temp_word = (p_mem_node->base - 1) >> 16;
2770 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2771
2772 return_resource(&(resources->p_mem_head), p_mem_node);
2773 } else {
2774 /* it doesn't need any PMem */
2775 temp_word = 0x0000;
2776 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2777
2778 return_resource(&(resources->p_mem_head), p_mem_node);
2779 kfree(hold_p_mem_node);
2780 }
2781 } else {
2782 /* it used the most of the range */
2783 hold_p_mem_node->next = func->p_mem_head;
2784 func->p_mem_head = hold_p_mem_node;
2785 }
2786 } else if (hold_p_mem_node) {
2787 /* it used the whole range */
2788 hold_p_mem_node->next = func->p_mem_head;
2789 func->p_mem_head = hold_p_mem_node;
2790 }
2791 /* We should be configuring an IRQ and the bridge's base address
2792 * registers if it needs them. Although we have never seen such
2793 * a device */
2794
2795 /* enable card */
2796 command = 0x0157; /* = PCI_COMMAND_IO |
2797 * PCI_COMMAND_MEMORY |
2798 * PCI_COMMAND_MASTER |
2799 * PCI_COMMAND_INVALIDATE |
2800 * PCI_COMMAND_PARITY |
2801 * PCI_COMMAND_SERR */
2802 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2803
2804 /* set Bridge Control Register */
2805 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2806 * PCI_BRIDGE_CTL_SERR |
2807 * PCI_BRIDGE_CTL_NO_ISA */
2808 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2809 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2810 /* Standard device */
2811 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2812
2813 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2814 /* Display (video) adapter (not supported) */
2815 return DEVICE_TYPE_NOT_SUPPORTED;
2816 }
2817 /* Figure out IO and memory needs */
2818 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2819 temp_register = 0xFFFFFFFF;
2820
2821 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2822 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2823
2824 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2825 dbg("CND: base = 0x%x\n", temp_register);
2826
2827 if (temp_register) { /* If this register is implemented */
2828 if ((temp_register & 0x03L) == 0x01) {
2829 /* Map IO */
2830
2831 /* set base = amount of IO space */
2832 base = temp_register & 0xFFFFFFFC;
2833 base = ~base + 1;
2834
2835 dbg("CND: length = 0x%x\n", base);
2836 io_node = get_io_resource(&(resources->io_head), base);
2837 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2838 io_node->base, io_node->length, io_node->next);
2839 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2840
2841 /* allocate the resource to the board */
2842 if (io_node) {
2843 base = io_node->base;
2844
2845 io_node->next = func->io_head;
2846 func->io_head = io_node;
2847 } else
2848 return -ENOMEM;
2849 } else if ((temp_register & 0x0BL) == 0x08) {
2850 /* Map prefetchable memory */
2851 base = temp_register & 0xFFFFFFF0;
2852 base = ~base + 1;
2853
2854 dbg("CND: length = 0x%x\n", base);
2855 p_mem_node = get_resource(&(resources->p_mem_head), base);
2856
2857 /* allocate the resource to the board */
2858 if (p_mem_node) {
2859 base = p_mem_node->base;
2860
2861 p_mem_node->next = func->p_mem_head;
2862 func->p_mem_head = p_mem_node;
2863 } else
2864 return -ENOMEM;
2865 } else if ((temp_register & 0x0BL) == 0x00) {
2866 /* Map memory */
2867 base = temp_register & 0xFFFFFFF0;
2868 base = ~base + 1;
2869
2870 dbg("CND: length = 0x%x\n", base);
2871 mem_node = get_resource(&(resources->mem_head), base);
2872
2873 /* allocate the resource to the board */
2874 if (mem_node) {
2875 base = mem_node->base;
2876
2877 mem_node->next = func->mem_head;
2878 func->mem_head = mem_node;
2879 } else
2880 return -ENOMEM;
2881 } else if ((temp_register & 0x0BL) == 0x04) {
2882 /* Map memory */
2883 base = temp_register & 0xFFFFFFF0;
2884 base = ~base + 1;
2885
2886 dbg("CND: length = 0x%x\n", base);
2887 mem_node = get_resource(&(resources->mem_head), base);
2888
2889 /* allocate the resource to the board */
2890 if (mem_node) {
2891 base = mem_node->base;
2892
2893 mem_node->next = func->mem_head;
2894 func->mem_head = mem_node;
2895 } else
2896 return -ENOMEM;
2897 } else if ((temp_register & 0x0BL) == 0x06) {
2898 /* Those bits are reserved, we can't handle this */
2899 return 1;
2900 } else {
2901 /* Requesting space below 1M */
2902 return NOT_ENOUGH_RESOURCES;
2903 }
2904
2905 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2906
2907 /* Check for 64-bit base */
2908 if ((temp_register & 0x07L) == 0x04) {
2909 cloop += 4;
2910
2911 /* Upper 32 bits of address always zero
2912 * on today's systems */
2913 /* FIXME this is probably not true on
2914 * Alpha and ia64??? */
2915 base = 0;
2916 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2917 }
2918 }
2919 } /* End of base register loop */
2920 if (cpqhp_legacy_mode) {
2921 /* Figure out which interrupt pin this function uses */
2922 rc = pci_bus_read_config_byte (pci_bus, devfn,
2923 PCI_INTERRUPT_PIN, &temp_byte);
2924
2925 /* If this function needs an interrupt and we are behind
2926 * a bridge and the pin is tied to something that's
2927 * alread mapped, set this one the same */
2928 if (temp_byte && resources->irqs &&
2929 (resources->irqs->valid_INT &
2930 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2931 /* We have to share with something already set up */
2932 IRQ = resources->irqs->interrupt[(temp_byte +
2933 resources->irqs->barber_pole - 1) & 0x03];
2934 } else {
2935 /* Program IRQ based on card type */
2936 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2937
2938 if (class_code == PCI_BASE_CLASS_STORAGE) {
2939 IRQ = cpqhp_disk_irq;
2940 } else {
2941 IRQ = cpqhp_nic_irq;
2942 }
2943 }
2944
2945 /* IRQ Line */
2946 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2947 }
2948
2949 if (!behind_bridge) {
2950 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2951 if (rc)
2952 return 1;
2953 } else {
2954 /* TBD - this code may also belong in the other clause
2955 * of this If statement */
2956 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2957 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2958 }
2959
2960 /* Latency Timer */
2961 temp_byte = 0x40;
2962 rc = pci_bus_write_config_byte(pci_bus, devfn,
2963 PCI_LATENCY_TIMER, temp_byte);
2964
2965 /* Cache Line size */
2966 temp_byte = 0x08;
2967 rc = pci_bus_write_config_byte(pci_bus, devfn,
2968 PCI_CACHE_LINE_SIZE, temp_byte);
2969
2970 /* disable ROM base Address */
2971 temp_dword = 0x00L;
2972 rc = pci_bus_write_config_word(pci_bus, devfn,
2973 PCI_ROM_ADDRESS, temp_dword);
2974
2975 /* enable card */
2976 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2977 * PCI_COMMAND_MEMORY |
2978 * PCI_COMMAND_MASTER |
2979 * PCI_COMMAND_INVALIDATE |
2980 * PCI_COMMAND_PARITY |
2981 * PCI_COMMAND_SERR */
2982 rc = pci_bus_write_config_word (pci_bus, devfn,
2983 PCI_COMMAND, temp_word);
2984 } else { /* End of Not-A-Bridge else */
2985 /* It's some strange type of PCI adapter (Cardbus?) */
2986 return DEVICE_TYPE_NOT_SUPPORTED;
2987 }
2988
2989 func->configured = 1;
2990
2991 return 0;
2992 free_and_out:
2993 cpqhp_destroy_resource_list (&temp_resources);
2994
2995 return_resource(&(resources-> bus_head), hold_bus_node);
2996 return_resource(&(resources-> io_head), hold_IO_node);
2997 return_resource(&(resources-> mem_head), hold_mem_node);
2998 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2999 return rc;
3000 }