]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/pci/intel-iommu.c
5493c79dde4788cbcf0e585405196ec6152c6ec6
[mirror_ubuntu-artful-kernel.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/dmi.h>
41 #include <asm/cacheflush.h>
42 #include <asm/iommu.h>
43 #include "pci.h"
44
45 #define ROOT_SIZE VTD_PAGE_SIZE
46 #define CONTEXT_SIZE VTD_PAGE_SIZE
47
48 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
49 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50
51 #define IOAPIC_RANGE_START (0xfee00000)
52 #define IOAPIC_RANGE_END (0xfeefffff)
53 #define IOVA_START_ADDR (0x1000)
54
55 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56
57 #define MAX_AGAW_WIDTH 64
58
59 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
61
62 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
63 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
64 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
65 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
66 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
67
68 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
69 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
70 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
71
72
73 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
74 are never going to work. */
75 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
76 {
77 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
78 }
79
80 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
81 {
82 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
83 }
84 static inline unsigned long page_to_dma_pfn(struct page *pg)
85 {
86 return mm_to_dma_pfn(page_to_pfn(pg));
87 }
88 static inline unsigned long virt_to_dma_pfn(void *p)
89 {
90 return page_to_dma_pfn(virt_to_page(p));
91 }
92
93 /* global iommu list, set NULL for ignored DMAR units */
94 static struct intel_iommu **g_iommus;
95
96 static int rwbf_quirk;
97
98 /*
99 * 0: Present
100 * 1-11: Reserved
101 * 12-63: Context Ptr (12 - (haw-1))
102 * 64-127: Reserved
103 */
104 struct root_entry {
105 u64 val;
106 u64 rsvd1;
107 };
108 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
109 static inline bool root_present(struct root_entry *root)
110 {
111 return (root->val & 1);
112 }
113 static inline void set_root_present(struct root_entry *root)
114 {
115 root->val |= 1;
116 }
117 static inline void set_root_value(struct root_entry *root, unsigned long value)
118 {
119 root->val |= value & VTD_PAGE_MASK;
120 }
121
122 static inline struct context_entry *
123 get_context_addr_from_root(struct root_entry *root)
124 {
125 return (struct context_entry *)
126 (root_present(root)?phys_to_virt(
127 root->val & VTD_PAGE_MASK) :
128 NULL);
129 }
130
131 /*
132 * low 64 bits:
133 * 0: present
134 * 1: fault processing disable
135 * 2-3: translation type
136 * 12-63: address space root
137 * high 64 bits:
138 * 0-2: address width
139 * 3-6: aval
140 * 8-23: domain id
141 */
142 struct context_entry {
143 u64 lo;
144 u64 hi;
145 };
146
147 static inline bool context_present(struct context_entry *context)
148 {
149 return (context->lo & 1);
150 }
151 static inline void context_set_present(struct context_entry *context)
152 {
153 context->lo |= 1;
154 }
155
156 static inline void context_set_fault_enable(struct context_entry *context)
157 {
158 context->lo &= (((u64)-1) << 2) | 1;
159 }
160
161 static inline void context_set_translation_type(struct context_entry *context,
162 unsigned long value)
163 {
164 context->lo &= (((u64)-1) << 4) | 3;
165 context->lo |= (value & 3) << 2;
166 }
167
168 static inline void context_set_address_root(struct context_entry *context,
169 unsigned long value)
170 {
171 context->lo |= value & VTD_PAGE_MASK;
172 }
173
174 static inline void context_set_address_width(struct context_entry *context,
175 unsigned long value)
176 {
177 context->hi |= value & 7;
178 }
179
180 static inline void context_set_domain_id(struct context_entry *context,
181 unsigned long value)
182 {
183 context->hi |= (value & ((1 << 16) - 1)) << 8;
184 }
185
186 static inline void context_clear_entry(struct context_entry *context)
187 {
188 context->lo = 0;
189 context->hi = 0;
190 }
191
192 /*
193 * 0: readable
194 * 1: writable
195 * 2-6: reserved
196 * 7: super page
197 * 8-10: available
198 * 11: snoop behavior
199 * 12-63: Host physcial address
200 */
201 struct dma_pte {
202 u64 val;
203 };
204
205 static inline void dma_clear_pte(struct dma_pte *pte)
206 {
207 pte->val = 0;
208 }
209
210 static inline void dma_set_pte_readable(struct dma_pte *pte)
211 {
212 pte->val |= DMA_PTE_READ;
213 }
214
215 static inline void dma_set_pte_writable(struct dma_pte *pte)
216 {
217 pte->val |= DMA_PTE_WRITE;
218 }
219
220 static inline void dma_set_pte_snp(struct dma_pte *pte)
221 {
222 pte->val |= DMA_PTE_SNP;
223 }
224
225 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
226 {
227 pte->val = (pte->val & ~3) | (prot & 3);
228 }
229
230 static inline u64 dma_pte_addr(struct dma_pte *pte)
231 {
232 #ifdef CONFIG_64BIT
233 return pte->val & VTD_PAGE_MASK;
234 #else
235 /* Must have a full atomic 64-bit read */
236 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
237 #endif
238 }
239
240 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
241 {
242 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
243 }
244
245 static inline bool dma_pte_present(struct dma_pte *pte)
246 {
247 return (pte->val & 3) != 0;
248 }
249
250 static inline int first_pte_in_page(struct dma_pte *pte)
251 {
252 return !((unsigned long)pte & ~VTD_PAGE_MASK);
253 }
254
255 /*
256 * This domain is a statically identity mapping domain.
257 * 1. This domain creats a static 1:1 mapping to all usable memory.
258 * 2. It maps to each iommu if successful.
259 * 3. Each iommu mapps to this domain if successful.
260 */
261 static struct dmar_domain *si_domain;
262 static int hw_pass_through = 1;
263
264 /* devices under the same p2p bridge are owned in one domain */
265 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
266
267 /* domain represents a virtual machine, more than one devices
268 * across iommus may be owned in one domain, e.g. kvm guest.
269 */
270 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
271
272 /* si_domain contains mulitple devices */
273 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
274
275 struct dmar_domain {
276 int id; /* domain id */
277 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
278
279 struct list_head devices; /* all devices' list */
280 struct iova_domain iovad; /* iova's that belong to this domain */
281
282 struct dma_pte *pgd; /* virtual address */
283 int gaw; /* max guest address width */
284
285 /* adjusted guest address width, 0 is level 2 30-bit */
286 int agaw;
287
288 int flags; /* flags to find out type of domain */
289
290 int iommu_coherency;/* indicate coherency of iommu access */
291 int iommu_snooping; /* indicate snooping control feature*/
292 int iommu_count; /* reference count of iommu */
293 spinlock_t iommu_lock; /* protect iommu set in domain */
294 u64 max_addr; /* maximum mapped address */
295 };
296
297 /* PCI domain-device relationship */
298 struct device_domain_info {
299 struct list_head link; /* link to domain siblings */
300 struct list_head global; /* link to global list */
301 int segment; /* PCI domain */
302 u8 bus; /* PCI bus number */
303 u8 devfn; /* PCI devfn number */
304 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
305 struct intel_iommu *iommu; /* IOMMU used by this device */
306 struct dmar_domain *domain; /* pointer to domain */
307 };
308
309 static void flush_unmaps_timeout(unsigned long data);
310
311 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
312
313 #define HIGH_WATER_MARK 250
314 struct deferred_flush_tables {
315 int next;
316 struct iova *iova[HIGH_WATER_MARK];
317 struct dmar_domain *domain[HIGH_WATER_MARK];
318 };
319
320 static struct deferred_flush_tables *deferred_flush;
321
322 /* bitmap for indexing intel_iommus */
323 static int g_num_of_iommus;
324
325 static DEFINE_SPINLOCK(async_umap_flush_lock);
326 static LIST_HEAD(unmaps_to_do);
327
328 static int timer_on;
329 static long list_size;
330
331 static void domain_remove_dev_info(struct dmar_domain *domain);
332
333 #ifdef CONFIG_DMAR_DEFAULT_ON
334 int dmar_disabled = 0;
335 #else
336 int dmar_disabled = 1;
337 #endif /*CONFIG_DMAR_DEFAULT_ON*/
338
339 static int __initdata dmar_map_gfx = 1;
340 static int dmar_forcedac;
341 static int intel_iommu_strict;
342
343 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
344 static DEFINE_SPINLOCK(device_domain_lock);
345 static LIST_HEAD(device_domain_list);
346
347 static struct iommu_ops intel_iommu_ops;
348
349 static int __init intel_iommu_setup(char *str)
350 {
351 if (!str)
352 return -EINVAL;
353 while (*str) {
354 if (!strncmp(str, "on", 2)) {
355 dmar_disabled = 0;
356 printk(KERN_INFO "Intel-IOMMU: enabled\n");
357 } else if (!strncmp(str, "off", 3)) {
358 dmar_disabled = 1;
359 printk(KERN_INFO "Intel-IOMMU: disabled\n");
360 } else if (!strncmp(str, "igfx_off", 8)) {
361 dmar_map_gfx = 0;
362 printk(KERN_INFO
363 "Intel-IOMMU: disable GFX device mapping\n");
364 } else if (!strncmp(str, "forcedac", 8)) {
365 printk(KERN_INFO
366 "Intel-IOMMU: Forcing DAC for PCI devices\n");
367 dmar_forcedac = 1;
368 } else if (!strncmp(str, "strict", 6)) {
369 printk(KERN_INFO
370 "Intel-IOMMU: disable batched IOTLB flush\n");
371 intel_iommu_strict = 1;
372 }
373
374 str += strcspn(str, ",");
375 while (*str == ',')
376 str++;
377 }
378 return 0;
379 }
380 __setup("intel_iommu=", intel_iommu_setup);
381
382 static struct kmem_cache *iommu_domain_cache;
383 static struct kmem_cache *iommu_devinfo_cache;
384 static struct kmem_cache *iommu_iova_cache;
385
386 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
387 {
388 unsigned int flags;
389 void *vaddr;
390
391 /* trying to avoid low memory issues */
392 flags = current->flags & PF_MEMALLOC;
393 current->flags |= PF_MEMALLOC;
394 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
395 current->flags &= (~PF_MEMALLOC | flags);
396 return vaddr;
397 }
398
399
400 static inline void *alloc_pgtable_page(void)
401 {
402 unsigned int flags;
403 void *vaddr;
404
405 /* trying to avoid low memory issues */
406 flags = current->flags & PF_MEMALLOC;
407 current->flags |= PF_MEMALLOC;
408 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
409 current->flags &= (~PF_MEMALLOC | flags);
410 return vaddr;
411 }
412
413 static inline void free_pgtable_page(void *vaddr)
414 {
415 free_page((unsigned long)vaddr);
416 }
417
418 static inline void *alloc_domain_mem(void)
419 {
420 return iommu_kmem_cache_alloc(iommu_domain_cache);
421 }
422
423 static void free_domain_mem(void *vaddr)
424 {
425 kmem_cache_free(iommu_domain_cache, vaddr);
426 }
427
428 static inline void * alloc_devinfo_mem(void)
429 {
430 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
431 }
432
433 static inline void free_devinfo_mem(void *vaddr)
434 {
435 kmem_cache_free(iommu_devinfo_cache, vaddr);
436 }
437
438 struct iova *alloc_iova_mem(void)
439 {
440 return iommu_kmem_cache_alloc(iommu_iova_cache);
441 }
442
443 void free_iova_mem(struct iova *iova)
444 {
445 kmem_cache_free(iommu_iova_cache, iova);
446 }
447
448
449 static inline int width_to_agaw(int width);
450
451 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
452 {
453 unsigned long sagaw;
454 int agaw = -1;
455
456 sagaw = cap_sagaw(iommu->cap);
457 for (agaw = width_to_agaw(max_gaw);
458 agaw >= 0; agaw--) {
459 if (test_bit(agaw, &sagaw))
460 break;
461 }
462
463 return agaw;
464 }
465
466 /*
467 * Calculate max SAGAW for each iommu.
468 */
469 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
470 {
471 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
472 }
473
474 /*
475 * calculate agaw for each iommu.
476 * "SAGAW" may be different across iommus, use a default agaw, and
477 * get a supported less agaw for iommus that don't support the default agaw.
478 */
479 int iommu_calculate_agaw(struct intel_iommu *iommu)
480 {
481 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
482 }
483
484 /* This functionin only returns single iommu in a domain */
485 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
486 {
487 int iommu_id;
488
489 /* si_domain and vm domain should not get here. */
490 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
491 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
492
493 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
494 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
495 return NULL;
496
497 return g_iommus[iommu_id];
498 }
499
500 static void domain_update_iommu_coherency(struct dmar_domain *domain)
501 {
502 int i;
503
504 domain->iommu_coherency = 1;
505
506 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
507 for (; i < g_num_of_iommus; ) {
508 if (!ecap_coherent(g_iommus[i]->ecap)) {
509 domain->iommu_coherency = 0;
510 break;
511 }
512 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
513 }
514 }
515
516 static void domain_update_iommu_snooping(struct dmar_domain *domain)
517 {
518 int i;
519
520 domain->iommu_snooping = 1;
521
522 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
523 for (; i < g_num_of_iommus; ) {
524 if (!ecap_sc_support(g_iommus[i]->ecap)) {
525 domain->iommu_snooping = 0;
526 break;
527 }
528 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
529 }
530 }
531
532 /* Some capabilities may be different across iommus */
533 static void domain_update_iommu_cap(struct dmar_domain *domain)
534 {
535 domain_update_iommu_coherency(domain);
536 domain_update_iommu_snooping(domain);
537 }
538
539 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
540 {
541 struct dmar_drhd_unit *drhd = NULL;
542 int i;
543
544 for_each_drhd_unit(drhd) {
545 if (drhd->ignored)
546 continue;
547 if (segment != drhd->segment)
548 continue;
549
550 for (i = 0; i < drhd->devices_cnt; i++) {
551 if (drhd->devices[i] &&
552 drhd->devices[i]->bus->number == bus &&
553 drhd->devices[i]->devfn == devfn)
554 return drhd->iommu;
555 if (drhd->devices[i] &&
556 drhd->devices[i]->subordinate &&
557 drhd->devices[i]->subordinate->number <= bus &&
558 drhd->devices[i]->subordinate->subordinate >= bus)
559 return drhd->iommu;
560 }
561
562 if (drhd->include_all)
563 return drhd->iommu;
564 }
565
566 return NULL;
567 }
568
569 static void domain_flush_cache(struct dmar_domain *domain,
570 void *addr, int size)
571 {
572 if (!domain->iommu_coherency)
573 clflush_cache_range(addr, size);
574 }
575
576 /* Gets context entry for a given bus and devfn */
577 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
578 u8 bus, u8 devfn)
579 {
580 struct root_entry *root;
581 struct context_entry *context;
582 unsigned long phy_addr;
583 unsigned long flags;
584
585 spin_lock_irqsave(&iommu->lock, flags);
586 root = &iommu->root_entry[bus];
587 context = get_context_addr_from_root(root);
588 if (!context) {
589 context = (struct context_entry *)alloc_pgtable_page();
590 if (!context) {
591 spin_unlock_irqrestore(&iommu->lock, flags);
592 return NULL;
593 }
594 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
595 phy_addr = virt_to_phys((void *)context);
596 set_root_value(root, phy_addr);
597 set_root_present(root);
598 __iommu_flush_cache(iommu, root, sizeof(*root));
599 }
600 spin_unlock_irqrestore(&iommu->lock, flags);
601 return &context[devfn];
602 }
603
604 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
605 {
606 struct root_entry *root;
607 struct context_entry *context;
608 int ret;
609 unsigned long flags;
610
611 spin_lock_irqsave(&iommu->lock, flags);
612 root = &iommu->root_entry[bus];
613 context = get_context_addr_from_root(root);
614 if (!context) {
615 ret = 0;
616 goto out;
617 }
618 ret = context_present(&context[devfn]);
619 out:
620 spin_unlock_irqrestore(&iommu->lock, flags);
621 return ret;
622 }
623
624 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
625 {
626 struct root_entry *root;
627 struct context_entry *context;
628 unsigned long flags;
629
630 spin_lock_irqsave(&iommu->lock, flags);
631 root = &iommu->root_entry[bus];
632 context = get_context_addr_from_root(root);
633 if (context) {
634 context_clear_entry(&context[devfn]);
635 __iommu_flush_cache(iommu, &context[devfn], \
636 sizeof(*context));
637 }
638 spin_unlock_irqrestore(&iommu->lock, flags);
639 }
640
641 static void free_context_table(struct intel_iommu *iommu)
642 {
643 struct root_entry *root;
644 int i;
645 unsigned long flags;
646 struct context_entry *context;
647
648 spin_lock_irqsave(&iommu->lock, flags);
649 if (!iommu->root_entry) {
650 goto out;
651 }
652 for (i = 0; i < ROOT_ENTRY_NR; i++) {
653 root = &iommu->root_entry[i];
654 context = get_context_addr_from_root(root);
655 if (context)
656 free_pgtable_page(context);
657 }
658 free_pgtable_page(iommu->root_entry);
659 iommu->root_entry = NULL;
660 out:
661 spin_unlock_irqrestore(&iommu->lock, flags);
662 }
663
664 /* page table handling */
665 #define LEVEL_STRIDE (9)
666 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
667
668 static inline int agaw_to_level(int agaw)
669 {
670 return agaw + 2;
671 }
672
673 static inline int agaw_to_width(int agaw)
674 {
675 return 30 + agaw * LEVEL_STRIDE;
676
677 }
678
679 static inline int width_to_agaw(int width)
680 {
681 return (width - 30) / LEVEL_STRIDE;
682 }
683
684 static inline unsigned int level_to_offset_bits(int level)
685 {
686 return (level - 1) * LEVEL_STRIDE;
687 }
688
689 static inline int pfn_level_offset(unsigned long pfn, int level)
690 {
691 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
692 }
693
694 static inline unsigned long level_mask(int level)
695 {
696 return -1UL << level_to_offset_bits(level);
697 }
698
699 static inline unsigned long level_size(int level)
700 {
701 return 1UL << level_to_offset_bits(level);
702 }
703
704 static inline unsigned long align_to_level(unsigned long pfn, int level)
705 {
706 return (pfn + level_size(level) - 1) & level_mask(level);
707 }
708
709 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
710 unsigned long pfn)
711 {
712 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
713 struct dma_pte *parent, *pte = NULL;
714 int level = agaw_to_level(domain->agaw);
715 int offset;
716
717 BUG_ON(!domain->pgd);
718 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
719 parent = domain->pgd;
720
721 while (level > 0) {
722 void *tmp_page;
723
724 offset = pfn_level_offset(pfn, level);
725 pte = &parent[offset];
726 if (level == 1)
727 break;
728
729 if (!dma_pte_present(pte)) {
730 uint64_t pteval;
731
732 tmp_page = alloc_pgtable_page();
733
734 if (!tmp_page)
735 return NULL;
736
737 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
738 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
739 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
740 /* Someone else set it while we were thinking; use theirs. */
741 free_pgtable_page(tmp_page);
742 } else {
743 dma_pte_addr(pte);
744 domain_flush_cache(domain, pte, sizeof(*pte));
745 }
746 }
747 parent = phys_to_virt(dma_pte_addr(pte));
748 level--;
749 }
750
751 return pte;
752 }
753
754 /* return address's pte at specific level */
755 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
756 unsigned long pfn,
757 int level)
758 {
759 struct dma_pte *parent, *pte = NULL;
760 int total = agaw_to_level(domain->agaw);
761 int offset;
762
763 parent = domain->pgd;
764 while (level <= total) {
765 offset = pfn_level_offset(pfn, total);
766 pte = &parent[offset];
767 if (level == total)
768 return pte;
769
770 if (!dma_pte_present(pte))
771 break;
772 parent = phys_to_virt(dma_pte_addr(pte));
773 total--;
774 }
775 return NULL;
776 }
777
778 /* clear last level pte, a tlb flush should be followed */
779 static void dma_pte_clear_range(struct dmar_domain *domain,
780 unsigned long start_pfn,
781 unsigned long last_pfn)
782 {
783 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
784 struct dma_pte *first_pte, *pte;
785
786 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
787 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
788 BUG_ON(start_pfn > last_pfn);
789
790 /* we don't need lock here; nobody else touches the iova range */
791 do {
792 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
793 if (!pte) {
794 start_pfn = align_to_level(start_pfn + 1, 2);
795 continue;
796 }
797 do {
798 dma_clear_pte(pte);
799 start_pfn++;
800 pte++;
801 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
802
803 domain_flush_cache(domain, first_pte,
804 (void *)pte - (void *)first_pte);
805
806 } while (start_pfn && start_pfn <= last_pfn);
807 }
808
809 /* free page table pages. last level pte should already be cleared */
810 static void dma_pte_free_pagetable(struct dmar_domain *domain,
811 unsigned long start_pfn,
812 unsigned long last_pfn)
813 {
814 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
815 struct dma_pte *first_pte, *pte;
816 int total = agaw_to_level(domain->agaw);
817 int level;
818 unsigned long tmp;
819
820 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
821 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
822 BUG_ON(start_pfn > last_pfn);
823
824 /* We don't need lock here; nobody else touches the iova range */
825 level = 2;
826 while (level <= total) {
827 tmp = align_to_level(start_pfn, level);
828
829 /* If we can't even clear one PTE at this level, we're done */
830 if (tmp + level_size(level) - 1 > last_pfn)
831 return;
832
833 do {
834 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
835 if (!pte) {
836 tmp = align_to_level(tmp + 1, level + 1);
837 continue;
838 }
839 do {
840 if (dma_pte_present(pte)) {
841 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
842 dma_clear_pte(pte);
843 }
844 pte++;
845 tmp += level_size(level);
846 } while (!first_pte_in_page(pte) &&
847 tmp + level_size(level) - 1 <= last_pfn);
848
849 domain_flush_cache(domain, first_pte,
850 (void *)pte - (void *)first_pte);
851
852 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
853 level++;
854 }
855 /* free pgd */
856 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
857 free_pgtable_page(domain->pgd);
858 domain->pgd = NULL;
859 }
860 }
861
862 /* iommu handling */
863 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
864 {
865 struct root_entry *root;
866 unsigned long flags;
867
868 root = (struct root_entry *)alloc_pgtable_page();
869 if (!root)
870 return -ENOMEM;
871
872 __iommu_flush_cache(iommu, root, ROOT_SIZE);
873
874 spin_lock_irqsave(&iommu->lock, flags);
875 iommu->root_entry = root;
876 spin_unlock_irqrestore(&iommu->lock, flags);
877
878 return 0;
879 }
880
881 static void iommu_set_root_entry(struct intel_iommu *iommu)
882 {
883 void *addr;
884 u32 sts;
885 unsigned long flag;
886
887 addr = iommu->root_entry;
888
889 spin_lock_irqsave(&iommu->register_lock, flag);
890 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
891
892 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
893
894 /* Make sure hardware complete it */
895 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
896 readl, (sts & DMA_GSTS_RTPS), sts);
897
898 spin_unlock_irqrestore(&iommu->register_lock, flag);
899 }
900
901 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
902 {
903 u32 val;
904 unsigned long flag;
905
906 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
907 return;
908
909 spin_lock_irqsave(&iommu->register_lock, flag);
910 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
911
912 /* Make sure hardware complete it */
913 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
914 readl, (!(val & DMA_GSTS_WBFS)), val);
915
916 spin_unlock_irqrestore(&iommu->register_lock, flag);
917 }
918
919 /* return value determine if we need a write buffer flush */
920 static void __iommu_flush_context(struct intel_iommu *iommu,
921 u16 did, u16 source_id, u8 function_mask,
922 u64 type)
923 {
924 u64 val = 0;
925 unsigned long flag;
926
927 switch (type) {
928 case DMA_CCMD_GLOBAL_INVL:
929 val = DMA_CCMD_GLOBAL_INVL;
930 break;
931 case DMA_CCMD_DOMAIN_INVL:
932 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
933 break;
934 case DMA_CCMD_DEVICE_INVL:
935 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
936 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
937 break;
938 default:
939 BUG();
940 }
941 val |= DMA_CCMD_ICC;
942
943 spin_lock_irqsave(&iommu->register_lock, flag);
944 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
945
946 /* Make sure hardware complete it */
947 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
948 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
949
950 spin_unlock_irqrestore(&iommu->register_lock, flag);
951 }
952
953 /* return value determine if we need a write buffer flush */
954 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
955 u64 addr, unsigned int size_order, u64 type)
956 {
957 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
958 u64 val = 0, val_iva = 0;
959 unsigned long flag;
960
961 switch (type) {
962 case DMA_TLB_GLOBAL_FLUSH:
963 /* global flush doesn't need set IVA_REG */
964 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
965 break;
966 case DMA_TLB_DSI_FLUSH:
967 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
968 break;
969 case DMA_TLB_PSI_FLUSH:
970 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
971 /* Note: always flush non-leaf currently */
972 val_iva = size_order | addr;
973 break;
974 default:
975 BUG();
976 }
977 /* Note: set drain read/write */
978 #if 0
979 /*
980 * This is probably to be super secure.. Looks like we can
981 * ignore it without any impact.
982 */
983 if (cap_read_drain(iommu->cap))
984 val |= DMA_TLB_READ_DRAIN;
985 #endif
986 if (cap_write_drain(iommu->cap))
987 val |= DMA_TLB_WRITE_DRAIN;
988
989 spin_lock_irqsave(&iommu->register_lock, flag);
990 /* Note: Only uses first TLB reg currently */
991 if (val_iva)
992 dmar_writeq(iommu->reg + tlb_offset, val_iva);
993 dmar_writeq(iommu->reg + tlb_offset + 8, val);
994
995 /* Make sure hardware complete it */
996 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
997 dmar_readq, (!(val & DMA_TLB_IVT)), val);
998
999 spin_unlock_irqrestore(&iommu->register_lock, flag);
1000
1001 /* check IOTLB invalidation granularity */
1002 if (DMA_TLB_IAIG(val) == 0)
1003 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1004 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1005 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1006 (unsigned long long)DMA_TLB_IIRG(type),
1007 (unsigned long long)DMA_TLB_IAIG(val));
1008 }
1009
1010 static struct device_domain_info *iommu_support_dev_iotlb(
1011 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1012 {
1013 int found = 0;
1014 unsigned long flags;
1015 struct device_domain_info *info;
1016 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1017
1018 if (!ecap_dev_iotlb_support(iommu->ecap))
1019 return NULL;
1020
1021 if (!iommu->qi)
1022 return NULL;
1023
1024 spin_lock_irqsave(&device_domain_lock, flags);
1025 list_for_each_entry(info, &domain->devices, link)
1026 if (info->bus == bus && info->devfn == devfn) {
1027 found = 1;
1028 break;
1029 }
1030 spin_unlock_irqrestore(&device_domain_lock, flags);
1031
1032 if (!found || !info->dev)
1033 return NULL;
1034
1035 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1036 return NULL;
1037
1038 if (!dmar_find_matched_atsr_unit(info->dev))
1039 return NULL;
1040
1041 info->iommu = iommu;
1042
1043 return info;
1044 }
1045
1046 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1047 {
1048 if (!info)
1049 return;
1050
1051 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1052 }
1053
1054 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1055 {
1056 if (!info->dev || !pci_ats_enabled(info->dev))
1057 return;
1058
1059 pci_disable_ats(info->dev);
1060 }
1061
1062 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1063 u64 addr, unsigned mask)
1064 {
1065 u16 sid, qdep;
1066 unsigned long flags;
1067 struct device_domain_info *info;
1068
1069 spin_lock_irqsave(&device_domain_lock, flags);
1070 list_for_each_entry(info, &domain->devices, link) {
1071 if (!info->dev || !pci_ats_enabled(info->dev))
1072 continue;
1073
1074 sid = info->bus << 8 | info->devfn;
1075 qdep = pci_ats_queue_depth(info->dev);
1076 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1077 }
1078 spin_unlock_irqrestore(&device_domain_lock, flags);
1079 }
1080
1081 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1082 unsigned long pfn, unsigned int pages)
1083 {
1084 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1085 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1086
1087 BUG_ON(pages == 0);
1088
1089 /*
1090 * Fallback to domain selective flush if no PSI support or the size is
1091 * too big.
1092 * PSI requires page size to be 2 ^ x, and the base address is naturally
1093 * aligned to the size
1094 */
1095 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1096 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1097 DMA_TLB_DSI_FLUSH);
1098 else
1099 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1100 DMA_TLB_PSI_FLUSH);
1101
1102 /*
1103 * In caching mode, domain ID 0 is reserved for non-present to present
1104 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1105 */
1106 if (!cap_caching_mode(iommu->cap) || did)
1107 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1108 }
1109
1110 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1111 {
1112 u32 pmen;
1113 unsigned long flags;
1114
1115 spin_lock_irqsave(&iommu->register_lock, flags);
1116 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1117 pmen &= ~DMA_PMEN_EPM;
1118 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1119
1120 /* wait for the protected region status bit to clear */
1121 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1122 readl, !(pmen & DMA_PMEN_PRS), pmen);
1123
1124 spin_unlock_irqrestore(&iommu->register_lock, flags);
1125 }
1126
1127 static int iommu_enable_translation(struct intel_iommu *iommu)
1128 {
1129 u32 sts;
1130 unsigned long flags;
1131
1132 spin_lock_irqsave(&iommu->register_lock, flags);
1133 iommu->gcmd |= DMA_GCMD_TE;
1134 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1135
1136 /* Make sure hardware complete it */
1137 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1138 readl, (sts & DMA_GSTS_TES), sts);
1139
1140 spin_unlock_irqrestore(&iommu->register_lock, flags);
1141 return 0;
1142 }
1143
1144 static int iommu_disable_translation(struct intel_iommu *iommu)
1145 {
1146 u32 sts;
1147 unsigned long flag;
1148
1149 spin_lock_irqsave(&iommu->register_lock, flag);
1150 iommu->gcmd &= ~DMA_GCMD_TE;
1151 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1152
1153 /* Make sure hardware complete it */
1154 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1155 readl, (!(sts & DMA_GSTS_TES)), sts);
1156
1157 spin_unlock_irqrestore(&iommu->register_lock, flag);
1158 return 0;
1159 }
1160
1161
1162 static int iommu_init_domains(struct intel_iommu *iommu)
1163 {
1164 unsigned long ndomains;
1165 unsigned long nlongs;
1166
1167 ndomains = cap_ndoms(iommu->cap);
1168 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1169 nlongs = BITS_TO_LONGS(ndomains);
1170
1171 spin_lock_init(&iommu->lock);
1172
1173 /* TBD: there might be 64K domains,
1174 * consider other allocation for future chip
1175 */
1176 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1177 if (!iommu->domain_ids) {
1178 printk(KERN_ERR "Allocating domain id array failed\n");
1179 return -ENOMEM;
1180 }
1181 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1182 GFP_KERNEL);
1183 if (!iommu->domains) {
1184 printk(KERN_ERR "Allocating domain array failed\n");
1185 return -ENOMEM;
1186 }
1187
1188 /*
1189 * if Caching mode is set, then invalid translations are tagged
1190 * with domainid 0. Hence we need to pre-allocate it.
1191 */
1192 if (cap_caching_mode(iommu->cap))
1193 set_bit(0, iommu->domain_ids);
1194 return 0;
1195 }
1196
1197
1198 static void domain_exit(struct dmar_domain *domain);
1199 static void vm_domain_exit(struct dmar_domain *domain);
1200
1201 void free_dmar_iommu(struct intel_iommu *iommu)
1202 {
1203 struct dmar_domain *domain;
1204 int i;
1205 unsigned long flags;
1206
1207 if ((iommu->domains) && (iommu->domain_ids)) {
1208 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1209 for (; i < cap_ndoms(iommu->cap); ) {
1210 domain = iommu->domains[i];
1211 clear_bit(i, iommu->domain_ids);
1212
1213 spin_lock_irqsave(&domain->iommu_lock, flags);
1214 if (--domain->iommu_count == 0) {
1215 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1216 vm_domain_exit(domain);
1217 else
1218 domain_exit(domain);
1219 }
1220 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1221
1222 i = find_next_bit(iommu->domain_ids,
1223 cap_ndoms(iommu->cap), i+1);
1224 }
1225 }
1226
1227 if (iommu->gcmd & DMA_GCMD_TE)
1228 iommu_disable_translation(iommu);
1229
1230 if (iommu->irq) {
1231 set_irq_data(iommu->irq, NULL);
1232 /* This will mask the irq */
1233 free_irq(iommu->irq, iommu);
1234 destroy_irq(iommu->irq);
1235 }
1236
1237 kfree(iommu->domains);
1238 kfree(iommu->domain_ids);
1239
1240 g_iommus[iommu->seq_id] = NULL;
1241
1242 /* if all iommus are freed, free g_iommus */
1243 for (i = 0; i < g_num_of_iommus; i++) {
1244 if (g_iommus[i])
1245 break;
1246 }
1247
1248 if (i == g_num_of_iommus)
1249 kfree(g_iommus);
1250
1251 /* free context mapping */
1252 free_context_table(iommu);
1253 }
1254
1255 static struct dmar_domain *alloc_domain(void)
1256 {
1257 struct dmar_domain *domain;
1258
1259 domain = alloc_domain_mem();
1260 if (!domain)
1261 return NULL;
1262
1263 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1264 domain->flags = 0;
1265
1266 return domain;
1267 }
1268
1269 static int iommu_attach_domain(struct dmar_domain *domain,
1270 struct intel_iommu *iommu)
1271 {
1272 int num;
1273 unsigned long ndomains;
1274 unsigned long flags;
1275
1276 ndomains = cap_ndoms(iommu->cap);
1277
1278 spin_lock_irqsave(&iommu->lock, flags);
1279
1280 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1281 if (num >= ndomains) {
1282 spin_unlock_irqrestore(&iommu->lock, flags);
1283 printk(KERN_ERR "IOMMU: no free domain ids\n");
1284 return -ENOMEM;
1285 }
1286
1287 domain->id = num;
1288 set_bit(num, iommu->domain_ids);
1289 set_bit(iommu->seq_id, &domain->iommu_bmp);
1290 iommu->domains[num] = domain;
1291 spin_unlock_irqrestore(&iommu->lock, flags);
1292
1293 return 0;
1294 }
1295
1296 static void iommu_detach_domain(struct dmar_domain *domain,
1297 struct intel_iommu *iommu)
1298 {
1299 unsigned long flags;
1300 int num, ndomains;
1301 int found = 0;
1302
1303 spin_lock_irqsave(&iommu->lock, flags);
1304 ndomains = cap_ndoms(iommu->cap);
1305 num = find_first_bit(iommu->domain_ids, ndomains);
1306 for (; num < ndomains; ) {
1307 if (iommu->domains[num] == domain) {
1308 found = 1;
1309 break;
1310 }
1311 num = find_next_bit(iommu->domain_ids,
1312 cap_ndoms(iommu->cap), num+1);
1313 }
1314
1315 if (found) {
1316 clear_bit(num, iommu->domain_ids);
1317 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1318 iommu->domains[num] = NULL;
1319 }
1320 spin_unlock_irqrestore(&iommu->lock, flags);
1321 }
1322
1323 static struct iova_domain reserved_iova_list;
1324 static struct lock_class_key reserved_rbtree_key;
1325
1326 static void dmar_init_reserved_ranges(void)
1327 {
1328 struct pci_dev *pdev = NULL;
1329 struct iova *iova;
1330 int i;
1331
1332 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1333
1334 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1335 &reserved_rbtree_key);
1336
1337 /* IOAPIC ranges shouldn't be accessed by DMA */
1338 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1339 IOVA_PFN(IOAPIC_RANGE_END));
1340 if (!iova)
1341 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1342
1343 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1344 for_each_pci_dev(pdev) {
1345 struct resource *r;
1346
1347 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1348 r = &pdev->resource[i];
1349 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1350 continue;
1351 iova = reserve_iova(&reserved_iova_list,
1352 IOVA_PFN(r->start),
1353 IOVA_PFN(r->end));
1354 if (!iova)
1355 printk(KERN_ERR "Reserve iova failed\n");
1356 }
1357 }
1358
1359 }
1360
1361 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1362 {
1363 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1364 }
1365
1366 static inline int guestwidth_to_adjustwidth(int gaw)
1367 {
1368 int agaw;
1369 int r = (gaw - 12) % 9;
1370
1371 if (r == 0)
1372 agaw = gaw;
1373 else
1374 agaw = gaw + 9 - r;
1375 if (agaw > 64)
1376 agaw = 64;
1377 return agaw;
1378 }
1379
1380 static int domain_init(struct dmar_domain *domain, int guest_width)
1381 {
1382 struct intel_iommu *iommu;
1383 int adjust_width, agaw;
1384 unsigned long sagaw;
1385
1386 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1387 spin_lock_init(&domain->iommu_lock);
1388
1389 domain_reserve_special_ranges(domain);
1390
1391 /* calculate AGAW */
1392 iommu = domain_get_iommu(domain);
1393 if (guest_width > cap_mgaw(iommu->cap))
1394 guest_width = cap_mgaw(iommu->cap);
1395 domain->gaw = guest_width;
1396 adjust_width = guestwidth_to_adjustwidth(guest_width);
1397 agaw = width_to_agaw(adjust_width);
1398 sagaw = cap_sagaw(iommu->cap);
1399 if (!test_bit(agaw, &sagaw)) {
1400 /* hardware doesn't support it, choose a bigger one */
1401 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1402 agaw = find_next_bit(&sagaw, 5, agaw);
1403 if (agaw >= 5)
1404 return -ENODEV;
1405 }
1406 domain->agaw = agaw;
1407 INIT_LIST_HEAD(&domain->devices);
1408
1409 if (ecap_coherent(iommu->ecap))
1410 domain->iommu_coherency = 1;
1411 else
1412 domain->iommu_coherency = 0;
1413
1414 if (ecap_sc_support(iommu->ecap))
1415 domain->iommu_snooping = 1;
1416 else
1417 domain->iommu_snooping = 0;
1418
1419 domain->iommu_count = 1;
1420
1421 /* always allocate the top pgd */
1422 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1423 if (!domain->pgd)
1424 return -ENOMEM;
1425 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1426 return 0;
1427 }
1428
1429 static void domain_exit(struct dmar_domain *domain)
1430 {
1431 struct dmar_drhd_unit *drhd;
1432 struct intel_iommu *iommu;
1433
1434 /* Domain 0 is reserved, so dont process it */
1435 if (!domain)
1436 return;
1437
1438 domain_remove_dev_info(domain);
1439 /* destroy iovas */
1440 put_iova_domain(&domain->iovad);
1441
1442 /* clear ptes */
1443 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1444
1445 /* free page tables */
1446 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1447
1448 for_each_active_iommu(iommu, drhd)
1449 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1450 iommu_detach_domain(domain, iommu);
1451
1452 free_domain_mem(domain);
1453 }
1454
1455 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1456 u8 bus, u8 devfn, int translation)
1457 {
1458 struct context_entry *context;
1459 unsigned long flags;
1460 struct intel_iommu *iommu;
1461 struct dma_pte *pgd;
1462 unsigned long num;
1463 unsigned long ndomains;
1464 int id;
1465 int agaw;
1466 struct device_domain_info *info = NULL;
1467
1468 pr_debug("Set context mapping for %02x:%02x.%d\n",
1469 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1470
1471 BUG_ON(!domain->pgd);
1472 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1473 translation != CONTEXT_TT_MULTI_LEVEL);
1474
1475 iommu = device_to_iommu(segment, bus, devfn);
1476 if (!iommu)
1477 return -ENODEV;
1478
1479 context = device_to_context_entry(iommu, bus, devfn);
1480 if (!context)
1481 return -ENOMEM;
1482 spin_lock_irqsave(&iommu->lock, flags);
1483 if (context_present(context)) {
1484 spin_unlock_irqrestore(&iommu->lock, flags);
1485 return 0;
1486 }
1487
1488 id = domain->id;
1489 pgd = domain->pgd;
1490
1491 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1492 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1493 int found = 0;
1494
1495 /* find an available domain id for this device in iommu */
1496 ndomains = cap_ndoms(iommu->cap);
1497 num = find_first_bit(iommu->domain_ids, ndomains);
1498 for (; num < ndomains; ) {
1499 if (iommu->domains[num] == domain) {
1500 id = num;
1501 found = 1;
1502 break;
1503 }
1504 num = find_next_bit(iommu->domain_ids,
1505 cap_ndoms(iommu->cap), num+1);
1506 }
1507
1508 if (found == 0) {
1509 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1510 if (num >= ndomains) {
1511 spin_unlock_irqrestore(&iommu->lock, flags);
1512 printk(KERN_ERR "IOMMU: no free domain ids\n");
1513 return -EFAULT;
1514 }
1515
1516 set_bit(num, iommu->domain_ids);
1517 iommu->domains[num] = domain;
1518 id = num;
1519 }
1520
1521 /* Skip top levels of page tables for
1522 * iommu which has less agaw than default.
1523 */
1524 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1525 pgd = phys_to_virt(dma_pte_addr(pgd));
1526 if (!dma_pte_present(pgd)) {
1527 spin_unlock_irqrestore(&iommu->lock, flags);
1528 return -ENOMEM;
1529 }
1530 }
1531 }
1532
1533 context_set_domain_id(context, id);
1534
1535 if (translation != CONTEXT_TT_PASS_THROUGH) {
1536 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1537 translation = info ? CONTEXT_TT_DEV_IOTLB :
1538 CONTEXT_TT_MULTI_LEVEL;
1539 }
1540 /*
1541 * In pass through mode, AW must be programmed to indicate the largest
1542 * AGAW value supported by hardware. And ASR is ignored by hardware.
1543 */
1544 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1545 context_set_address_width(context, iommu->msagaw);
1546 else {
1547 context_set_address_root(context, virt_to_phys(pgd));
1548 context_set_address_width(context, iommu->agaw);
1549 }
1550
1551 context_set_translation_type(context, translation);
1552 context_set_fault_enable(context);
1553 context_set_present(context);
1554 domain_flush_cache(domain, context, sizeof(*context));
1555
1556 /*
1557 * It's a non-present to present mapping. If hardware doesn't cache
1558 * non-present entry we only need to flush the write-buffer. If the
1559 * _does_ cache non-present entries, then it does so in the special
1560 * domain #0, which we have to flush:
1561 */
1562 if (cap_caching_mode(iommu->cap)) {
1563 iommu->flush.flush_context(iommu, 0,
1564 (((u16)bus) << 8) | devfn,
1565 DMA_CCMD_MASK_NOBIT,
1566 DMA_CCMD_DEVICE_INVL);
1567 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1568 } else {
1569 iommu_flush_write_buffer(iommu);
1570 }
1571 iommu_enable_dev_iotlb(info);
1572 spin_unlock_irqrestore(&iommu->lock, flags);
1573
1574 spin_lock_irqsave(&domain->iommu_lock, flags);
1575 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1576 domain->iommu_count++;
1577 domain_update_iommu_cap(domain);
1578 }
1579 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1580 return 0;
1581 }
1582
1583 static int
1584 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1585 int translation)
1586 {
1587 int ret;
1588 struct pci_dev *tmp, *parent;
1589
1590 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1591 pdev->bus->number, pdev->devfn,
1592 translation);
1593 if (ret)
1594 return ret;
1595
1596 /* dependent device mapping */
1597 tmp = pci_find_upstream_pcie_bridge(pdev);
1598 if (!tmp)
1599 return 0;
1600 /* Secondary interface's bus number and devfn 0 */
1601 parent = pdev->bus->self;
1602 while (parent != tmp) {
1603 ret = domain_context_mapping_one(domain,
1604 pci_domain_nr(parent->bus),
1605 parent->bus->number,
1606 parent->devfn, translation);
1607 if (ret)
1608 return ret;
1609 parent = parent->bus->self;
1610 }
1611 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1612 return domain_context_mapping_one(domain,
1613 pci_domain_nr(tmp->subordinate),
1614 tmp->subordinate->number, 0,
1615 translation);
1616 else /* this is a legacy PCI bridge */
1617 return domain_context_mapping_one(domain,
1618 pci_domain_nr(tmp->bus),
1619 tmp->bus->number,
1620 tmp->devfn,
1621 translation);
1622 }
1623
1624 static int domain_context_mapped(struct pci_dev *pdev)
1625 {
1626 int ret;
1627 struct pci_dev *tmp, *parent;
1628 struct intel_iommu *iommu;
1629
1630 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1631 pdev->devfn);
1632 if (!iommu)
1633 return -ENODEV;
1634
1635 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1636 if (!ret)
1637 return ret;
1638 /* dependent device mapping */
1639 tmp = pci_find_upstream_pcie_bridge(pdev);
1640 if (!tmp)
1641 return ret;
1642 /* Secondary interface's bus number and devfn 0 */
1643 parent = pdev->bus->self;
1644 while (parent != tmp) {
1645 ret = device_context_mapped(iommu, parent->bus->number,
1646 parent->devfn);
1647 if (!ret)
1648 return ret;
1649 parent = parent->bus->self;
1650 }
1651 if (tmp->is_pcie)
1652 return device_context_mapped(iommu, tmp->subordinate->number,
1653 0);
1654 else
1655 return device_context_mapped(iommu, tmp->bus->number,
1656 tmp->devfn);
1657 }
1658
1659 /* Returns a number of VTD pages, but aligned to MM page size */
1660 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1661 size_t size)
1662 {
1663 host_addr &= ~PAGE_MASK;
1664 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1665 }
1666
1667 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1668 struct scatterlist *sg, unsigned long phys_pfn,
1669 unsigned long nr_pages, int prot)
1670 {
1671 struct dma_pte *first_pte = NULL, *pte = NULL;
1672 phys_addr_t uninitialized_var(pteval);
1673 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1674 unsigned long sg_res;
1675
1676 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1677
1678 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1679 return -EINVAL;
1680
1681 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1682
1683 if (sg)
1684 sg_res = 0;
1685 else {
1686 sg_res = nr_pages + 1;
1687 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1688 }
1689
1690 while (nr_pages--) {
1691 uint64_t tmp;
1692
1693 if (!sg_res) {
1694 sg_res = aligned_nrpages(sg->offset, sg->length);
1695 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1696 sg->dma_length = sg->length;
1697 pteval = page_to_phys(sg_page(sg)) | prot;
1698 }
1699 if (!pte) {
1700 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1701 if (!pte)
1702 return -ENOMEM;
1703 }
1704 /* We don't need lock here, nobody else
1705 * touches the iova range
1706 */
1707 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1708 if (tmp) {
1709 static int dumps = 5;
1710 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1711 iov_pfn, tmp, (unsigned long long)pteval);
1712 if (dumps) {
1713 dumps--;
1714 debug_dma_dump_mappings(NULL);
1715 }
1716 WARN_ON(1);
1717 }
1718 pte++;
1719 if (!nr_pages || first_pte_in_page(pte)) {
1720 domain_flush_cache(domain, first_pte,
1721 (void *)pte - (void *)first_pte);
1722 pte = NULL;
1723 }
1724 iov_pfn++;
1725 pteval += VTD_PAGE_SIZE;
1726 sg_res--;
1727 if (!sg_res)
1728 sg = sg_next(sg);
1729 }
1730 return 0;
1731 }
1732
1733 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1734 struct scatterlist *sg, unsigned long nr_pages,
1735 int prot)
1736 {
1737 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1738 }
1739
1740 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1741 unsigned long phys_pfn, unsigned long nr_pages,
1742 int prot)
1743 {
1744 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1745 }
1746
1747 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1748 {
1749 if (!iommu)
1750 return;
1751
1752 clear_context_table(iommu, bus, devfn);
1753 iommu->flush.flush_context(iommu, 0, 0, 0,
1754 DMA_CCMD_GLOBAL_INVL);
1755 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1756 }
1757
1758 static void domain_remove_dev_info(struct dmar_domain *domain)
1759 {
1760 struct device_domain_info *info;
1761 unsigned long flags;
1762 struct intel_iommu *iommu;
1763
1764 spin_lock_irqsave(&device_domain_lock, flags);
1765 while (!list_empty(&domain->devices)) {
1766 info = list_entry(domain->devices.next,
1767 struct device_domain_info, link);
1768 list_del(&info->link);
1769 list_del(&info->global);
1770 if (info->dev)
1771 info->dev->dev.archdata.iommu = NULL;
1772 spin_unlock_irqrestore(&device_domain_lock, flags);
1773
1774 iommu_disable_dev_iotlb(info);
1775 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1776 iommu_detach_dev(iommu, info->bus, info->devfn);
1777 free_devinfo_mem(info);
1778
1779 spin_lock_irqsave(&device_domain_lock, flags);
1780 }
1781 spin_unlock_irqrestore(&device_domain_lock, flags);
1782 }
1783
1784 /*
1785 * find_domain
1786 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1787 */
1788 static struct dmar_domain *
1789 find_domain(struct pci_dev *pdev)
1790 {
1791 struct device_domain_info *info;
1792
1793 /* No lock here, assumes no domain exit in normal case */
1794 info = pdev->dev.archdata.iommu;
1795 if (info)
1796 return info->domain;
1797 return NULL;
1798 }
1799
1800 /* domain is initialized */
1801 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1802 {
1803 struct dmar_domain *domain, *found = NULL;
1804 struct intel_iommu *iommu;
1805 struct dmar_drhd_unit *drhd;
1806 struct device_domain_info *info, *tmp;
1807 struct pci_dev *dev_tmp;
1808 unsigned long flags;
1809 int bus = 0, devfn = 0;
1810 int segment;
1811 int ret;
1812
1813 domain = find_domain(pdev);
1814 if (domain)
1815 return domain;
1816
1817 segment = pci_domain_nr(pdev->bus);
1818
1819 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1820 if (dev_tmp) {
1821 if (dev_tmp->is_pcie) {
1822 bus = dev_tmp->subordinate->number;
1823 devfn = 0;
1824 } else {
1825 bus = dev_tmp->bus->number;
1826 devfn = dev_tmp->devfn;
1827 }
1828 spin_lock_irqsave(&device_domain_lock, flags);
1829 list_for_each_entry(info, &device_domain_list, global) {
1830 if (info->segment == segment &&
1831 info->bus == bus && info->devfn == devfn) {
1832 found = info->domain;
1833 break;
1834 }
1835 }
1836 spin_unlock_irqrestore(&device_domain_lock, flags);
1837 /* pcie-pci bridge already has a domain, uses it */
1838 if (found) {
1839 domain = found;
1840 goto found_domain;
1841 }
1842 }
1843
1844 domain = alloc_domain();
1845 if (!domain)
1846 goto error;
1847
1848 /* Allocate new domain for the device */
1849 drhd = dmar_find_matched_drhd_unit(pdev);
1850 if (!drhd) {
1851 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1852 pci_name(pdev));
1853 return NULL;
1854 }
1855 iommu = drhd->iommu;
1856
1857 ret = iommu_attach_domain(domain, iommu);
1858 if (ret) {
1859 domain_exit(domain);
1860 goto error;
1861 }
1862
1863 if (domain_init(domain, gaw)) {
1864 domain_exit(domain);
1865 goto error;
1866 }
1867
1868 /* register pcie-to-pci device */
1869 if (dev_tmp) {
1870 info = alloc_devinfo_mem();
1871 if (!info) {
1872 domain_exit(domain);
1873 goto error;
1874 }
1875 info->segment = segment;
1876 info->bus = bus;
1877 info->devfn = devfn;
1878 info->dev = NULL;
1879 info->domain = domain;
1880 /* This domain is shared by devices under p2p bridge */
1881 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1882
1883 /* pcie-to-pci bridge already has a domain, uses it */
1884 found = NULL;
1885 spin_lock_irqsave(&device_domain_lock, flags);
1886 list_for_each_entry(tmp, &device_domain_list, global) {
1887 if (tmp->segment == segment &&
1888 tmp->bus == bus && tmp->devfn == devfn) {
1889 found = tmp->domain;
1890 break;
1891 }
1892 }
1893 if (found) {
1894 free_devinfo_mem(info);
1895 domain_exit(domain);
1896 domain = found;
1897 } else {
1898 list_add(&info->link, &domain->devices);
1899 list_add(&info->global, &device_domain_list);
1900 }
1901 spin_unlock_irqrestore(&device_domain_lock, flags);
1902 }
1903
1904 found_domain:
1905 info = alloc_devinfo_mem();
1906 if (!info)
1907 goto error;
1908 info->segment = segment;
1909 info->bus = pdev->bus->number;
1910 info->devfn = pdev->devfn;
1911 info->dev = pdev;
1912 info->domain = domain;
1913 spin_lock_irqsave(&device_domain_lock, flags);
1914 /* somebody is fast */
1915 found = find_domain(pdev);
1916 if (found != NULL) {
1917 spin_unlock_irqrestore(&device_domain_lock, flags);
1918 if (found != domain) {
1919 domain_exit(domain);
1920 domain = found;
1921 }
1922 free_devinfo_mem(info);
1923 return domain;
1924 }
1925 list_add(&info->link, &domain->devices);
1926 list_add(&info->global, &device_domain_list);
1927 pdev->dev.archdata.iommu = info;
1928 spin_unlock_irqrestore(&device_domain_lock, flags);
1929 return domain;
1930 error:
1931 /* recheck it here, maybe others set it */
1932 return find_domain(pdev);
1933 }
1934
1935 static int iommu_identity_mapping;
1936
1937 static int iommu_domain_identity_map(struct dmar_domain *domain,
1938 unsigned long long start,
1939 unsigned long long end)
1940 {
1941 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1942 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1943
1944 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1945 dma_to_mm_pfn(last_vpfn))) {
1946 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1947 return -ENOMEM;
1948 }
1949
1950 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1951 start, end, domain->id);
1952 /*
1953 * RMRR range might have overlap with physical memory range,
1954 * clear it first
1955 */
1956 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1957
1958 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1959 last_vpfn - first_vpfn + 1,
1960 DMA_PTE_READ|DMA_PTE_WRITE);
1961 }
1962
1963 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1964 unsigned long long start,
1965 unsigned long long end)
1966 {
1967 struct dmar_domain *domain;
1968 int ret;
1969
1970 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1971 if (!domain)
1972 return -ENOMEM;
1973
1974 /* For _hardware_ passthrough, don't bother. But for software
1975 passthrough, we do it anyway -- it may indicate a memory
1976 range which is reserved in E820, so which didn't get set
1977 up to start with in si_domain */
1978 if (domain == si_domain && hw_pass_through) {
1979 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1980 pci_name(pdev), start, end);
1981 return 0;
1982 }
1983
1984 printk(KERN_INFO
1985 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1986 pci_name(pdev), start, end);
1987
1988 if (end >> agaw_to_width(domain->agaw)) {
1989 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1990 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1991 agaw_to_width(domain->agaw),
1992 dmi_get_system_info(DMI_BIOS_VENDOR),
1993 dmi_get_system_info(DMI_BIOS_VERSION),
1994 dmi_get_system_info(DMI_PRODUCT_VERSION));
1995 ret = -EIO;
1996 goto error;
1997 }
1998
1999 ret = iommu_domain_identity_map(domain, start, end);
2000 if (ret)
2001 goto error;
2002
2003 /* context entry init */
2004 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2005 if (ret)
2006 goto error;
2007
2008 return 0;
2009
2010 error:
2011 domain_exit(domain);
2012 return ret;
2013 }
2014
2015 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2016 struct pci_dev *pdev)
2017 {
2018 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2019 return 0;
2020 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2021 rmrr->end_address + 1);
2022 }
2023
2024 #ifdef CONFIG_DMAR_FLOPPY_WA
2025 static inline void iommu_prepare_isa(void)
2026 {
2027 struct pci_dev *pdev;
2028 int ret;
2029
2030 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2031 if (!pdev)
2032 return;
2033
2034 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2035 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2036
2037 if (ret)
2038 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2039 "floppy might not work\n");
2040
2041 }
2042 #else
2043 static inline void iommu_prepare_isa(void)
2044 {
2045 return;
2046 }
2047 #endif /* !CONFIG_DMAR_FLPY_WA */
2048
2049 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2050
2051 static int __init si_domain_work_fn(unsigned long start_pfn,
2052 unsigned long end_pfn, void *datax)
2053 {
2054 int *ret = datax;
2055
2056 *ret = iommu_domain_identity_map(si_domain,
2057 (uint64_t)start_pfn << PAGE_SHIFT,
2058 (uint64_t)end_pfn << PAGE_SHIFT);
2059 return *ret;
2060
2061 }
2062
2063 static int __init si_domain_init(int hw)
2064 {
2065 struct dmar_drhd_unit *drhd;
2066 struct intel_iommu *iommu;
2067 int nid, ret = 0;
2068
2069 si_domain = alloc_domain();
2070 if (!si_domain)
2071 return -EFAULT;
2072
2073 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2074
2075 for_each_active_iommu(iommu, drhd) {
2076 ret = iommu_attach_domain(si_domain, iommu);
2077 if (ret) {
2078 domain_exit(si_domain);
2079 return -EFAULT;
2080 }
2081 }
2082
2083 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2084 domain_exit(si_domain);
2085 return -EFAULT;
2086 }
2087
2088 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2089
2090 if (hw)
2091 return 0;
2092
2093 for_each_online_node(nid) {
2094 work_with_active_regions(nid, si_domain_work_fn, &ret);
2095 if (ret)
2096 return ret;
2097 }
2098
2099 return 0;
2100 }
2101
2102 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2103 struct pci_dev *pdev);
2104 static int identity_mapping(struct pci_dev *pdev)
2105 {
2106 struct device_domain_info *info;
2107
2108 if (likely(!iommu_identity_mapping))
2109 return 0;
2110
2111
2112 list_for_each_entry(info, &si_domain->devices, link)
2113 if (info->dev == pdev)
2114 return 1;
2115 return 0;
2116 }
2117
2118 static int domain_add_dev_info(struct dmar_domain *domain,
2119 struct pci_dev *pdev,
2120 int translation)
2121 {
2122 struct device_domain_info *info;
2123 unsigned long flags;
2124 int ret;
2125
2126 info = alloc_devinfo_mem();
2127 if (!info)
2128 return -ENOMEM;
2129
2130 ret = domain_context_mapping(domain, pdev, translation);
2131 if (ret) {
2132 free_devinfo_mem(info);
2133 return ret;
2134 }
2135
2136 info->segment = pci_domain_nr(pdev->bus);
2137 info->bus = pdev->bus->number;
2138 info->devfn = pdev->devfn;
2139 info->dev = pdev;
2140 info->domain = domain;
2141
2142 spin_lock_irqsave(&device_domain_lock, flags);
2143 list_add(&info->link, &domain->devices);
2144 list_add(&info->global, &device_domain_list);
2145 pdev->dev.archdata.iommu = info;
2146 spin_unlock_irqrestore(&device_domain_lock, flags);
2147
2148 return 0;
2149 }
2150
2151 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2152 {
2153 if (iommu_identity_mapping == 2)
2154 return IS_GFX_DEVICE(pdev);
2155
2156 /*
2157 * We want to start off with all devices in the 1:1 domain, and
2158 * take them out later if we find they can't access all of memory.
2159 *
2160 * However, we can't do this for PCI devices behind bridges,
2161 * because all PCI devices behind the same bridge will end up
2162 * with the same source-id on their transactions.
2163 *
2164 * Practically speaking, we can't change things around for these
2165 * devices at run-time, because we can't be sure there'll be no
2166 * DMA transactions in flight for any of their siblings.
2167 *
2168 * So PCI devices (unless they're on the root bus) as well as
2169 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2170 * the 1:1 domain, just in _case_ one of their siblings turns out
2171 * not to be able to map all of memory.
2172 */
2173 if (!pdev->is_pcie) {
2174 if (!pci_is_root_bus(pdev->bus))
2175 return 0;
2176 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2177 return 0;
2178 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2179 return 0;
2180
2181 /*
2182 * At boot time, we don't yet know if devices will be 64-bit capable.
2183 * Assume that they will -- if they turn out not to be, then we can
2184 * take them out of the 1:1 domain later.
2185 */
2186 if (!startup)
2187 return pdev->dma_mask > DMA_BIT_MASK(32);
2188
2189 return 1;
2190 }
2191
2192 static int __init iommu_prepare_static_identity_mapping(int hw)
2193 {
2194 struct pci_dev *pdev = NULL;
2195 int ret;
2196
2197 ret = si_domain_init(hw);
2198 if (ret)
2199 return -EFAULT;
2200
2201 for_each_pci_dev(pdev) {
2202 if (iommu_should_identity_map(pdev, 1)) {
2203 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2204 hw ? "hardware" : "software", pci_name(pdev));
2205
2206 ret = domain_add_dev_info(si_domain, pdev,
2207 hw ? CONTEXT_TT_PASS_THROUGH :
2208 CONTEXT_TT_MULTI_LEVEL);
2209 if (ret)
2210 return ret;
2211 }
2212 }
2213
2214 return 0;
2215 }
2216
2217 int __init init_dmars(void)
2218 {
2219 struct dmar_drhd_unit *drhd;
2220 struct dmar_rmrr_unit *rmrr;
2221 struct pci_dev *pdev;
2222 struct intel_iommu *iommu;
2223 int i, ret;
2224
2225 /*
2226 * for each drhd
2227 * allocate root
2228 * initialize and program root entry to not present
2229 * endfor
2230 */
2231 for_each_drhd_unit(drhd) {
2232 g_num_of_iommus++;
2233 /*
2234 * lock not needed as this is only incremented in the single
2235 * threaded kernel __init code path all other access are read
2236 * only
2237 */
2238 }
2239
2240 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2241 GFP_KERNEL);
2242 if (!g_iommus) {
2243 printk(KERN_ERR "Allocating global iommu array failed\n");
2244 ret = -ENOMEM;
2245 goto error;
2246 }
2247
2248 deferred_flush = kzalloc(g_num_of_iommus *
2249 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2250 if (!deferred_flush) {
2251 ret = -ENOMEM;
2252 goto error;
2253 }
2254
2255 for_each_drhd_unit(drhd) {
2256 if (drhd->ignored)
2257 continue;
2258
2259 iommu = drhd->iommu;
2260 g_iommus[iommu->seq_id] = iommu;
2261
2262 ret = iommu_init_domains(iommu);
2263 if (ret)
2264 goto error;
2265
2266 /*
2267 * TBD:
2268 * we could share the same root & context tables
2269 * amoung all IOMMU's. Need to Split it later.
2270 */
2271 ret = iommu_alloc_root_entry(iommu);
2272 if (ret) {
2273 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2274 goto error;
2275 }
2276 if (!ecap_pass_through(iommu->ecap))
2277 hw_pass_through = 0;
2278 }
2279
2280 /*
2281 * Start from the sane iommu hardware state.
2282 */
2283 for_each_drhd_unit(drhd) {
2284 if (drhd->ignored)
2285 continue;
2286
2287 iommu = drhd->iommu;
2288
2289 /*
2290 * If the queued invalidation is already initialized by us
2291 * (for example, while enabling interrupt-remapping) then
2292 * we got the things already rolling from a sane state.
2293 */
2294 if (iommu->qi)
2295 continue;
2296
2297 /*
2298 * Clear any previous faults.
2299 */
2300 dmar_fault(-1, iommu);
2301 /*
2302 * Disable queued invalidation if supported and already enabled
2303 * before OS handover.
2304 */
2305 dmar_disable_qi(iommu);
2306 }
2307
2308 for_each_drhd_unit(drhd) {
2309 if (drhd->ignored)
2310 continue;
2311
2312 iommu = drhd->iommu;
2313
2314 if (dmar_enable_qi(iommu)) {
2315 /*
2316 * Queued Invalidate not enabled, use Register Based
2317 * Invalidate
2318 */
2319 iommu->flush.flush_context = __iommu_flush_context;
2320 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2321 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2322 "invalidation\n",
2323 (unsigned long long)drhd->reg_base_addr);
2324 } else {
2325 iommu->flush.flush_context = qi_flush_context;
2326 iommu->flush.flush_iotlb = qi_flush_iotlb;
2327 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2328 "invalidation\n",
2329 (unsigned long long)drhd->reg_base_addr);
2330 }
2331 }
2332
2333 if (iommu_pass_through)
2334 iommu_identity_mapping = 1;
2335 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2336 else
2337 iommu_identity_mapping = 2;
2338 #endif
2339 /*
2340 * If pass through is not set or not enabled, setup context entries for
2341 * identity mappings for rmrr, gfx, and isa and may fall back to static
2342 * identity mapping if iommu_identity_mapping is set.
2343 */
2344 if (iommu_identity_mapping) {
2345 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2346 if (ret) {
2347 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2348 goto error;
2349 }
2350 }
2351 /*
2352 * For each rmrr
2353 * for each dev attached to rmrr
2354 * do
2355 * locate drhd for dev, alloc domain for dev
2356 * allocate free domain
2357 * allocate page table entries for rmrr
2358 * if context not allocated for bus
2359 * allocate and init context
2360 * set present in root table for this bus
2361 * init context with domain, translation etc
2362 * endfor
2363 * endfor
2364 */
2365 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2366 for_each_rmrr_units(rmrr) {
2367 for (i = 0; i < rmrr->devices_cnt; i++) {
2368 pdev = rmrr->devices[i];
2369 /*
2370 * some BIOS lists non-exist devices in DMAR
2371 * table.
2372 */
2373 if (!pdev)
2374 continue;
2375 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2376 if (ret)
2377 printk(KERN_ERR
2378 "IOMMU: mapping reserved region failed\n");
2379 }
2380 }
2381
2382 iommu_prepare_isa();
2383
2384 /*
2385 * for each drhd
2386 * enable fault log
2387 * global invalidate context cache
2388 * global invalidate iotlb
2389 * enable translation
2390 */
2391 for_each_drhd_unit(drhd) {
2392 if (drhd->ignored)
2393 continue;
2394 iommu = drhd->iommu;
2395
2396 iommu_flush_write_buffer(iommu);
2397
2398 ret = dmar_set_interrupt(iommu);
2399 if (ret)
2400 goto error;
2401
2402 iommu_set_root_entry(iommu);
2403
2404 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2405 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2406 iommu_disable_protect_mem_regions(iommu);
2407
2408 ret = iommu_enable_translation(iommu);
2409 if (ret)
2410 goto error;
2411 }
2412
2413 return 0;
2414 error:
2415 for_each_drhd_unit(drhd) {
2416 if (drhd->ignored)
2417 continue;
2418 iommu = drhd->iommu;
2419 free_iommu(iommu);
2420 }
2421 kfree(g_iommus);
2422 return ret;
2423 }
2424
2425 /* This takes a number of _MM_ pages, not VTD pages */
2426 static struct iova *intel_alloc_iova(struct device *dev,
2427 struct dmar_domain *domain,
2428 unsigned long nrpages, uint64_t dma_mask)
2429 {
2430 struct pci_dev *pdev = to_pci_dev(dev);
2431 struct iova *iova = NULL;
2432
2433 /* Restrict dma_mask to the width that the iommu can handle */
2434 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2435
2436 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2437 /*
2438 * First try to allocate an io virtual address in
2439 * DMA_BIT_MASK(32) and if that fails then try allocating
2440 * from higher range
2441 */
2442 iova = alloc_iova(&domain->iovad, nrpages,
2443 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2444 if (iova)
2445 return iova;
2446 }
2447 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2448 if (unlikely(!iova)) {
2449 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2450 nrpages, pci_name(pdev));
2451 return NULL;
2452 }
2453
2454 return iova;
2455 }
2456
2457 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2458 {
2459 struct dmar_domain *domain;
2460 int ret;
2461
2462 domain = get_domain_for_dev(pdev,
2463 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2464 if (!domain) {
2465 printk(KERN_ERR
2466 "Allocating domain for %s failed", pci_name(pdev));
2467 return NULL;
2468 }
2469
2470 /* make sure context mapping is ok */
2471 if (unlikely(!domain_context_mapped(pdev))) {
2472 ret = domain_context_mapping(domain, pdev,
2473 CONTEXT_TT_MULTI_LEVEL);
2474 if (ret) {
2475 printk(KERN_ERR
2476 "Domain context map for %s failed",
2477 pci_name(pdev));
2478 return NULL;
2479 }
2480 }
2481
2482 return domain;
2483 }
2484
2485 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2486 {
2487 struct device_domain_info *info;
2488
2489 /* No lock here, assumes no domain exit in normal case */
2490 info = dev->dev.archdata.iommu;
2491 if (likely(info))
2492 return info->domain;
2493
2494 return __get_valid_domain_for_dev(dev);
2495 }
2496
2497 static int iommu_dummy(struct pci_dev *pdev)
2498 {
2499 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2500 }
2501
2502 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2503 static int iommu_no_mapping(struct device *dev)
2504 {
2505 struct pci_dev *pdev;
2506 int found;
2507
2508 if (unlikely(dev->bus != &pci_bus_type))
2509 return 1;
2510
2511 pdev = to_pci_dev(dev);
2512 if (iommu_dummy(pdev))
2513 return 1;
2514
2515 if (!iommu_identity_mapping)
2516 return 0;
2517
2518 found = identity_mapping(pdev);
2519 if (found) {
2520 if (iommu_should_identity_map(pdev, 0))
2521 return 1;
2522 else {
2523 /*
2524 * 32 bit DMA is removed from si_domain and fall back
2525 * to non-identity mapping.
2526 */
2527 domain_remove_one_dev_info(si_domain, pdev);
2528 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2529 pci_name(pdev));
2530 return 0;
2531 }
2532 } else {
2533 /*
2534 * In case of a detached 64 bit DMA device from vm, the device
2535 * is put into si_domain for identity mapping.
2536 */
2537 if (iommu_should_identity_map(pdev, 0)) {
2538 int ret;
2539 ret = domain_add_dev_info(si_domain, pdev,
2540 hw_pass_through ?
2541 CONTEXT_TT_PASS_THROUGH :
2542 CONTEXT_TT_MULTI_LEVEL);
2543 if (!ret) {
2544 printk(KERN_INFO "64bit %s uses identity mapping\n",
2545 pci_name(pdev));
2546 return 1;
2547 }
2548 }
2549 }
2550
2551 return 0;
2552 }
2553
2554 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2555 size_t size, int dir, u64 dma_mask)
2556 {
2557 struct pci_dev *pdev = to_pci_dev(hwdev);
2558 struct dmar_domain *domain;
2559 phys_addr_t start_paddr;
2560 struct iova *iova;
2561 int prot = 0;
2562 int ret;
2563 struct intel_iommu *iommu;
2564 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2565
2566 BUG_ON(dir == DMA_NONE);
2567
2568 if (iommu_no_mapping(hwdev))
2569 return paddr;
2570
2571 domain = get_valid_domain_for_dev(pdev);
2572 if (!domain)
2573 return 0;
2574
2575 iommu = domain_get_iommu(domain);
2576 size = aligned_nrpages(paddr, size);
2577
2578 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2579 pdev->dma_mask);
2580 if (!iova)
2581 goto error;
2582
2583 /*
2584 * Check if DMAR supports zero-length reads on write only
2585 * mappings..
2586 */
2587 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2588 !cap_zlr(iommu->cap))
2589 prot |= DMA_PTE_READ;
2590 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2591 prot |= DMA_PTE_WRITE;
2592 /*
2593 * paddr - (paddr + size) might be partial page, we should map the whole
2594 * page. Note: if two part of one page are separately mapped, we
2595 * might have two guest_addr mapping to the same host paddr, but this
2596 * is not a big problem
2597 */
2598 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2599 mm_to_dma_pfn(paddr_pfn), size, prot);
2600 if (ret)
2601 goto error;
2602
2603 /* it's a non-present to present mapping. Only flush if caching mode */
2604 if (cap_caching_mode(iommu->cap))
2605 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2606 else
2607 iommu_flush_write_buffer(iommu);
2608
2609 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2610 start_paddr += paddr & ~PAGE_MASK;
2611 return start_paddr;
2612
2613 error:
2614 if (iova)
2615 __free_iova(&domain->iovad, iova);
2616 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2617 pci_name(pdev), size, (unsigned long long)paddr, dir);
2618 return 0;
2619 }
2620
2621 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2622 unsigned long offset, size_t size,
2623 enum dma_data_direction dir,
2624 struct dma_attrs *attrs)
2625 {
2626 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2627 dir, to_pci_dev(dev)->dma_mask);
2628 }
2629
2630 static void flush_unmaps(void)
2631 {
2632 int i, j;
2633
2634 timer_on = 0;
2635
2636 /* just flush them all */
2637 for (i = 0; i < g_num_of_iommus; i++) {
2638 struct intel_iommu *iommu = g_iommus[i];
2639 if (!iommu)
2640 continue;
2641
2642 if (!deferred_flush[i].next)
2643 continue;
2644
2645 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2646 DMA_TLB_GLOBAL_FLUSH);
2647 for (j = 0; j < deferred_flush[i].next; j++) {
2648 unsigned long mask;
2649 struct iova *iova = deferred_flush[i].iova[j];
2650
2651 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2652 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2653 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2654 iova->pfn_lo << PAGE_SHIFT, mask);
2655 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2656 }
2657 deferred_flush[i].next = 0;
2658 }
2659
2660 list_size = 0;
2661 }
2662
2663 static void flush_unmaps_timeout(unsigned long data)
2664 {
2665 unsigned long flags;
2666
2667 spin_lock_irqsave(&async_umap_flush_lock, flags);
2668 flush_unmaps();
2669 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2670 }
2671
2672 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2673 {
2674 unsigned long flags;
2675 int next, iommu_id;
2676 struct intel_iommu *iommu;
2677
2678 spin_lock_irqsave(&async_umap_flush_lock, flags);
2679 if (list_size == HIGH_WATER_MARK)
2680 flush_unmaps();
2681
2682 iommu = domain_get_iommu(dom);
2683 iommu_id = iommu->seq_id;
2684
2685 next = deferred_flush[iommu_id].next;
2686 deferred_flush[iommu_id].domain[next] = dom;
2687 deferred_flush[iommu_id].iova[next] = iova;
2688 deferred_flush[iommu_id].next++;
2689
2690 if (!timer_on) {
2691 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2692 timer_on = 1;
2693 }
2694 list_size++;
2695 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2696 }
2697
2698 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2699 size_t size, enum dma_data_direction dir,
2700 struct dma_attrs *attrs)
2701 {
2702 struct pci_dev *pdev = to_pci_dev(dev);
2703 struct dmar_domain *domain;
2704 unsigned long start_pfn, last_pfn;
2705 struct iova *iova;
2706 struct intel_iommu *iommu;
2707
2708 if (iommu_no_mapping(dev))
2709 return;
2710
2711 domain = find_domain(pdev);
2712 BUG_ON(!domain);
2713
2714 iommu = domain_get_iommu(domain);
2715
2716 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2717 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2718 (unsigned long long)dev_addr))
2719 return;
2720
2721 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2722 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2723
2724 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2725 pci_name(pdev), start_pfn, last_pfn);
2726
2727 /* clear the whole page */
2728 dma_pte_clear_range(domain, start_pfn, last_pfn);
2729
2730 /* free page tables */
2731 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2732
2733 if (intel_iommu_strict) {
2734 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2735 last_pfn - start_pfn + 1);
2736 /* free iova */
2737 __free_iova(&domain->iovad, iova);
2738 } else {
2739 add_unmap(domain, iova);
2740 /*
2741 * queue up the release of the unmap to save the 1/6th of the
2742 * cpu used up by the iotlb flush operation...
2743 */
2744 }
2745 }
2746
2747 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2748 dma_addr_t *dma_handle, gfp_t flags)
2749 {
2750 void *vaddr;
2751 int order;
2752
2753 size = PAGE_ALIGN(size);
2754 order = get_order(size);
2755 flags &= ~(GFP_DMA | GFP_DMA32);
2756
2757 vaddr = (void *)__get_free_pages(flags, order);
2758 if (!vaddr)
2759 return NULL;
2760 memset(vaddr, 0, size);
2761
2762 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2763 DMA_BIDIRECTIONAL,
2764 hwdev->coherent_dma_mask);
2765 if (*dma_handle)
2766 return vaddr;
2767 free_pages((unsigned long)vaddr, order);
2768 return NULL;
2769 }
2770
2771 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2772 dma_addr_t dma_handle)
2773 {
2774 int order;
2775
2776 size = PAGE_ALIGN(size);
2777 order = get_order(size);
2778
2779 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2780 free_pages((unsigned long)vaddr, order);
2781 }
2782
2783 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2784 int nelems, enum dma_data_direction dir,
2785 struct dma_attrs *attrs)
2786 {
2787 struct pci_dev *pdev = to_pci_dev(hwdev);
2788 struct dmar_domain *domain;
2789 unsigned long start_pfn, last_pfn;
2790 struct iova *iova;
2791 struct intel_iommu *iommu;
2792
2793 if (iommu_no_mapping(hwdev))
2794 return;
2795
2796 domain = find_domain(pdev);
2797 BUG_ON(!domain);
2798
2799 iommu = domain_get_iommu(domain);
2800
2801 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2802 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2803 (unsigned long long)sglist[0].dma_address))
2804 return;
2805
2806 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2807 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2808
2809 /* clear the whole page */
2810 dma_pte_clear_range(domain, start_pfn, last_pfn);
2811
2812 /* free page tables */
2813 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2814
2815 if (intel_iommu_strict) {
2816 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2817 last_pfn - start_pfn + 1);
2818 /* free iova */
2819 __free_iova(&domain->iovad, iova);
2820 } else {
2821 add_unmap(domain, iova);
2822 /*
2823 * queue up the release of the unmap to save the 1/6th of the
2824 * cpu used up by the iotlb flush operation...
2825 */
2826 }
2827 }
2828
2829 static int intel_nontranslate_map_sg(struct device *hddev,
2830 struct scatterlist *sglist, int nelems, int dir)
2831 {
2832 int i;
2833 struct scatterlist *sg;
2834
2835 for_each_sg(sglist, sg, nelems, i) {
2836 BUG_ON(!sg_page(sg));
2837 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2838 sg->dma_length = sg->length;
2839 }
2840 return nelems;
2841 }
2842
2843 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2844 enum dma_data_direction dir, struct dma_attrs *attrs)
2845 {
2846 int i;
2847 struct pci_dev *pdev = to_pci_dev(hwdev);
2848 struct dmar_domain *domain;
2849 size_t size = 0;
2850 int prot = 0;
2851 size_t offset_pfn = 0;
2852 struct iova *iova = NULL;
2853 int ret;
2854 struct scatterlist *sg;
2855 unsigned long start_vpfn;
2856 struct intel_iommu *iommu;
2857
2858 BUG_ON(dir == DMA_NONE);
2859 if (iommu_no_mapping(hwdev))
2860 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2861
2862 domain = get_valid_domain_for_dev(pdev);
2863 if (!domain)
2864 return 0;
2865
2866 iommu = domain_get_iommu(domain);
2867
2868 for_each_sg(sglist, sg, nelems, i)
2869 size += aligned_nrpages(sg->offset, sg->length);
2870
2871 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2872 pdev->dma_mask);
2873 if (!iova) {
2874 sglist->dma_length = 0;
2875 return 0;
2876 }
2877
2878 /*
2879 * Check if DMAR supports zero-length reads on write only
2880 * mappings..
2881 */
2882 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2883 !cap_zlr(iommu->cap))
2884 prot |= DMA_PTE_READ;
2885 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2886 prot |= DMA_PTE_WRITE;
2887
2888 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2889
2890 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2891 if (unlikely(ret)) {
2892 /* clear the page */
2893 dma_pte_clear_range(domain, start_vpfn,
2894 start_vpfn + size - 1);
2895 /* free page tables */
2896 dma_pte_free_pagetable(domain, start_vpfn,
2897 start_vpfn + size - 1);
2898 /* free iova */
2899 __free_iova(&domain->iovad, iova);
2900 return 0;
2901 }
2902
2903 /* it's a non-present to present mapping. Only flush if caching mode */
2904 if (cap_caching_mode(iommu->cap))
2905 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2906 else
2907 iommu_flush_write_buffer(iommu);
2908
2909 return nelems;
2910 }
2911
2912 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2913 {
2914 return !dma_addr;
2915 }
2916
2917 struct dma_map_ops intel_dma_ops = {
2918 .alloc_coherent = intel_alloc_coherent,
2919 .free_coherent = intel_free_coherent,
2920 .map_sg = intel_map_sg,
2921 .unmap_sg = intel_unmap_sg,
2922 .map_page = intel_map_page,
2923 .unmap_page = intel_unmap_page,
2924 .mapping_error = intel_mapping_error,
2925 };
2926
2927 static inline int iommu_domain_cache_init(void)
2928 {
2929 int ret = 0;
2930
2931 iommu_domain_cache = kmem_cache_create("iommu_domain",
2932 sizeof(struct dmar_domain),
2933 0,
2934 SLAB_HWCACHE_ALIGN,
2935
2936 NULL);
2937 if (!iommu_domain_cache) {
2938 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2939 ret = -ENOMEM;
2940 }
2941
2942 return ret;
2943 }
2944
2945 static inline int iommu_devinfo_cache_init(void)
2946 {
2947 int ret = 0;
2948
2949 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2950 sizeof(struct device_domain_info),
2951 0,
2952 SLAB_HWCACHE_ALIGN,
2953 NULL);
2954 if (!iommu_devinfo_cache) {
2955 printk(KERN_ERR "Couldn't create devinfo cache\n");
2956 ret = -ENOMEM;
2957 }
2958
2959 return ret;
2960 }
2961
2962 static inline int iommu_iova_cache_init(void)
2963 {
2964 int ret = 0;
2965
2966 iommu_iova_cache = kmem_cache_create("iommu_iova",
2967 sizeof(struct iova),
2968 0,
2969 SLAB_HWCACHE_ALIGN,
2970 NULL);
2971 if (!iommu_iova_cache) {
2972 printk(KERN_ERR "Couldn't create iova cache\n");
2973 ret = -ENOMEM;
2974 }
2975
2976 return ret;
2977 }
2978
2979 static int __init iommu_init_mempool(void)
2980 {
2981 int ret;
2982 ret = iommu_iova_cache_init();
2983 if (ret)
2984 return ret;
2985
2986 ret = iommu_domain_cache_init();
2987 if (ret)
2988 goto domain_error;
2989
2990 ret = iommu_devinfo_cache_init();
2991 if (!ret)
2992 return ret;
2993
2994 kmem_cache_destroy(iommu_domain_cache);
2995 domain_error:
2996 kmem_cache_destroy(iommu_iova_cache);
2997
2998 return -ENOMEM;
2999 }
3000
3001 static void __init iommu_exit_mempool(void)
3002 {
3003 kmem_cache_destroy(iommu_devinfo_cache);
3004 kmem_cache_destroy(iommu_domain_cache);
3005 kmem_cache_destroy(iommu_iova_cache);
3006
3007 }
3008
3009 static void __init init_no_remapping_devices(void)
3010 {
3011 struct dmar_drhd_unit *drhd;
3012
3013 for_each_drhd_unit(drhd) {
3014 if (!drhd->include_all) {
3015 int i;
3016 for (i = 0; i < drhd->devices_cnt; i++)
3017 if (drhd->devices[i] != NULL)
3018 break;
3019 /* ignore DMAR unit if no pci devices exist */
3020 if (i == drhd->devices_cnt)
3021 drhd->ignored = 1;
3022 }
3023 }
3024
3025 if (dmar_map_gfx)
3026 return;
3027
3028 for_each_drhd_unit(drhd) {
3029 int i;
3030 if (drhd->ignored || drhd->include_all)
3031 continue;
3032
3033 for (i = 0; i < drhd->devices_cnt; i++)
3034 if (drhd->devices[i] &&
3035 !IS_GFX_DEVICE(drhd->devices[i]))
3036 break;
3037
3038 if (i < drhd->devices_cnt)
3039 continue;
3040
3041 /* bypass IOMMU if it is just for gfx devices */
3042 drhd->ignored = 1;
3043 for (i = 0; i < drhd->devices_cnt; i++) {
3044 if (!drhd->devices[i])
3045 continue;
3046 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3047 }
3048 }
3049 }
3050
3051 #ifdef CONFIG_SUSPEND
3052 static int init_iommu_hw(void)
3053 {
3054 struct dmar_drhd_unit *drhd;
3055 struct intel_iommu *iommu = NULL;
3056
3057 for_each_active_iommu(iommu, drhd)
3058 if (iommu->qi)
3059 dmar_reenable_qi(iommu);
3060
3061 for_each_active_iommu(iommu, drhd) {
3062 iommu_flush_write_buffer(iommu);
3063
3064 iommu_set_root_entry(iommu);
3065
3066 iommu->flush.flush_context(iommu, 0, 0, 0,
3067 DMA_CCMD_GLOBAL_INVL);
3068 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3069 DMA_TLB_GLOBAL_FLUSH);
3070 iommu_disable_protect_mem_regions(iommu);
3071 iommu_enable_translation(iommu);
3072 }
3073
3074 return 0;
3075 }
3076
3077 static void iommu_flush_all(void)
3078 {
3079 struct dmar_drhd_unit *drhd;
3080 struct intel_iommu *iommu;
3081
3082 for_each_active_iommu(iommu, drhd) {
3083 iommu->flush.flush_context(iommu, 0, 0, 0,
3084 DMA_CCMD_GLOBAL_INVL);
3085 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3086 DMA_TLB_GLOBAL_FLUSH);
3087 }
3088 }
3089
3090 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3091 {
3092 struct dmar_drhd_unit *drhd;
3093 struct intel_iommu *iommu = NULL;
3094 unsigned long flag;
3095
3096 for_each_active_iommu(iommu, drhd) {
3097 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3098 GFP_ATOMIC);
3099 if (!iommu->iommu_state)
3100 goto nomem;
3101 }
3102
3103 iommu_flush_all();
3104
3105 for_each_active_iommu(iommu, drhd) {
3106 iommu_disable_translation(iommu);
3107
3108 spin_lock_irqsave(&iommu->register_lock, flag);
3109
3110 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3111 readl(iommu->reg + DMAR_FECTL_REG);
3112 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3113 readl(iommu->reg + DMAR_FEDATA_REG);
3114 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3115 readl(iommu->reg + DMAR_FEADDR_REG);
3116 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3117 readl(iommu->reg + DMAR_FEUADDR_REG);
3118
3119 spin_unlock_irqrestore(&iommu->register_lock, flag);
3120 }
3121 return 0;
3122
3123 nomem:
3124 for_each_active_iommu(iommu, drhd)
3125 kfree(iommu->iommu_state);
3126
3127 return -ENOMEM;
3128 }
3129
3130 static int iommu_resume(struct sys_device *dev)
3131 {
3132 struct dmar_drhd_unit *drhd;
3133 struct intel_iommu *iommu = NULL;
3134 unsigned long flag;
3135
3136 if (init_iommu_hw()) {
3137 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3138 return -EIO;
3139 }
3140
3141 for_each_active_iommu(iommu, drhd) {
3142
3143 spin_lock_irqsave(&iommu->register_lock, flag);
3144
3145 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3146 iommu->reg + DMAR_FECTL_REG);
3147 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3148 iommu->reg + DMAR_FEDATA_REG);
3149 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3150 iommu->reg + DMAR_FEADDR_REG);
3151 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3152 iommu->reg + DMAR_FEUADDR_REG);
3153
3154 spin_unlock_irqrestore(&iommu->register_lock, flag);
3155 }
3156
3157 for_each_active_iommu(iommu, drhd)
3158 kfree(iommu->iommu_state);
3159
3160 return 0;
3161 }
3162
3163 static struct sysdev_class iommu_sysclass = {
3164 .name = "iommu",
3165 .resume = iommu_resume,
3166 .suspend = iommu_suspend,
3167 };
3168
3169 static struct sys_device device_iommu = {
3170 .cls = &iommu_sysclass,
3171 };
3172
3173 static int __init init_iommu_sysfs(void)
3174 {
3175 int error;
3176
3177 error = sysdev_class_register(&iommu_sysclass);
3178 if (error)
3179 return error;
3180
3181 error = sysdev_register(&device_iommu);
3182 if (error)
3183 sysdev_class_unregister(&iommu_sysclass);
3184
3185 return error;
3186 }
3187
3188 #else
3189 static int __init init_iommu_sysfs(void)
3190 {
3191 return 0;
3192 }
3193 #endif /* CONFIG_PM */
3194
3195 int __init intel_iommu_init(void)
3196 {
3197 int ret = 0;
3198
3199 if (dmar_table_init())
3200 return -ENODEV;
3201
3202 if (dmar_dev_scope_init())
3203 return -ENODEV;
3204
3205 /*
3206 * Check the need for DMA-remapping initialization now.
3207 * Above initialization will also be used by Interrupt-remapping.
3208 */
3209 if (no_iommu || swiotlb || dmar_disabled)
3210 return -ENODEV;
3211
3212 iommu_init_mempool();
3213 dmar_init_reserved_ranges();
3214
3215 init_no_remapping_devices();
3216
3217 ret = init_dmars();
3218 if (ret) {
3219 printk(KERN_ERR "IOMMU: dmar init failed\n");
3220 put_iova_domain(&reserved_iova_list);
3221 iommu_exit_mempool();
3222 return ret;
3223 }
3224 printk(KERN_INFO
3225 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3226
3227 init_timer(&unmap_timer);
3228 force_iommu = 1;
3229 dma_ops = &intel_dma_ops;
3230
3231 init_iommu_sysfs();
3232
3233 register_iommu(&intel_iommu_ops);
3234
3235 return 0;
3236 }
3237
3238 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3239 struct pci_dev *pdev)
3240 {
3241 struct pci_dev *tmp, *parent;
3242
3243 if (!iommu || !pdev)
3244 return;
3245
3246 /* dependent device detach */
3247 tmp = pci_find_upstream_pcie_bridge(pdev);
3248 /* Secondary interface's bus number and devfn 0 */
3249 if (tmp) {
3250 parent = pdev->bus->self;
3251 while (parent != tmp) {
3252 iommu_detach_dev(iommu, parent->bus->number,
3253 parent->devfn);
3254 parent = parent->bus->self;
3255 }
3256 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3257 iommu_detach_dev(iommu,
3258 tmp->subordinate->number, 0);
3259 else /* this is a legacy PCI bridge */
3260 iommu_detach_dev(iommu, tmp->bus->number,
3261 tmp->devfn);
3262 }
3263 }
3264
3265 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3266 struct pci_dev *pdev)
3267 {
3268 struct device_domain_info *info;
3269 struct intel_iommu *iommu;
3270 unsigned long flags;
3271 int found = 0;
3272 struct list_head *entry, *tmp;
3273
3274 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3275 pdev->devfn);
3276 if (!iommu)
3277 return;
3278
3279 spin_lock_irqsave(&device_domain_lock, flags);
3280 list_for_each_safe(entry, tmp, &domain->devices) {
3281 info = list_entry(entry, struct device_domain_info, link);
3282 /* No need to compare PCI domain; it has to be the same */
3283 if (info->bus == pdev->bus->number &&
3284 info->devfn == pdev->devfn) {
3285 list_del(&info->link);
3286 list_del(&info->global);
3287 if (info->dev)
3288 info->dev->dev.archdata.iommu = NULL;
3289 spin_unlock_irqrestore(&device_domain_lock, flags);
3290
3291 iommu_disable_dev_iotlb(info);
3292 iommu_detach_dev(iommu, info->bus, info->devfn);
3293 iommu_detach_dependent_devices(iommu, pdev);
3294 free_devinfo_mem(info);
3295
3296 spin_lock_irqsave(&device_domain_lock, flags);
3297
3298 if (found)
3299 break;
3300 else
3301 continue;
3302 }
3303
3304 /* if there is no other devices under the same iommu
3305 * owned by this domain, clear this iommu in iommu_bmp
3306 * update iommu count and coherency
3307 */
3308 if (iommu == device_to_iommu(info->segment, info->bus,
3309 info->devfn))
3310 found = 1;
3311 }
3312
3313 if (found == 0) {
3314 unsigned long tmp_flags;
3315 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3316 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3317 domain->iommu_count--;
3318 domain_update_iommu_cap(domain);
3319 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3320 }
3321
3322 spin_unlock_irqrestore(&device_domain_lock, flags);
3323 }
3324
3325 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3326 {
3327 struct device_domain_info *info;
3328 struct intel_iommu *iommu;
3329 unsigned long flags1, flags2;
3330
3331 spin_lock_irqsave(&device_domain_lock, flags1);
3332 while (!list_empty(&domain->devices)) {
3333 info = list_entry(domain->devices.next,
3334 struct device_domain_info, link);
3335 list_del(&info->link);
3336 list_del(&info->global);
3337 if (info->dev)
3338 info->dev->dev.archdata.iommu = NULL;
3339
3340 spin_unlock_irqrestore(&device_domain_lock, flags1);
3341
3342 iommu_disable_dev_iotlb(info);
3343 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3344 iommu_detach_dev(iommu, info->bus, info->devfn);
3345 iommu_detach_dependent_devices(iommu, info->dev);
3346
3347 /* clear this iommu in iommu_bmp, update iommu count
3348 * and capabilities
3349 */
3350 spin_lock_irqsave(&domain->iommu_lock, flags2);
3351 if (test_and_clear_bit(iommu->seq_id,
3352 &domain->iommu_bmp)) {
3353 domain->iommu_count--;
3354 domain_update_iommu_cap(domain);
3355 }
3356 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3357
3358 free_devinfo_mem(info);
3359 spin_lock_irqsave(&device_domain_lock, flags1);
3360 }
3361 spin_unlock_irqrestore(&device_domain_lock, flags1);
3362 }
3363
3364 /* domain id for virtual machine, it won't be set in context */
3365 static unsigned long vm_domid;
3366
3367 static int vm_domain_min_agaw(struct dmar_domain *domain)
3368 {
3369 int i;
3370 int min_agaw = domain->agaw;
3371
3372 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3373 for (; i < g_num_of_iommus; ) {
3374 if (min_agaw > g_iommus[i]->agaw)
3375 min_agaw = g_iommus[i]->agaw;
3376
3377 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3378 }
3379
3380 return min_agaw;
3381 }
3382
3383 static struct dmar_domain *iommu_alloc_vm_domain(void)
3384 {
3385 struct dmar_domain *domain;
3386
3387 domain = alloc_domain_mem();
3388 if (!domain)
3389 return NULL;
3390
3391 domain->id = vm_domid++;
3392 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3393 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3394
3395 return domain;
3396 }
3397
3398 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3399 {
3400 int adjust_width;
3401
3402 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3403 spin_lock_init(&domain->iommu_lock);
3404
3405 domain_reserve_special_ranges(domain);
3406
3407 /* calculate AGAW */
3408 domain->gaw = guest_width;
3409 adjust_width = guestwidth_to_adjustwidth(guest_width);
3410 domain->agaw = width_to_agaw(adjust_width);
3411
3412 INIT_LIST_HEAD(&domain->devices);
3413
3414 domain->iommu_count = 0;
3415 domain->iommu_coherency = 0;
3416 domain->iommu_snooping = 0;
3417 domain->max_addr = 0;
3418
3419 /* always allocate the top pgd */
3420 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3421 if (!domain->pgd)
3422 return -ENOMEM;
3423 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3424 return 0;
3425 }
3426
3427 static void iommu_free_vm_domain(struct dmar_domain *domain)
3428 {
3429 unsigned long flags;
3430 struct dmar_drhd_unit *drhd;
3431 struct intel_iommu *iommu;
3432 unsigned long i;
3433 unsigned long ndomains;
3434
3435 for_each_drhd_unit(drhd) {
3436 if (drhd->ignored)
3437 continue;
3438 iommu = drhd->iommu;
3439
3440 ndomains = cap_ndoms(iommu->cap);
3441 i = find_first_bit(iommu->domain_ids, ndomains);
3442 for (; i < ndomains; ) {
3443 if (iommu->domains[i] == domain) {
3444 spin_lock_irqsave(&iommu->lock, flags);
3445 clear_bit(i, iommu->domain_ids);
3446 iommu->domains[i] = NULL;
3447 spin_unlock_irqrestore(&iommu->lock, flags);
3448 break;
3449 }
3450 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3451 }
3452 }
3453 }
3454
3455 static void vm_domain_exit(struct dmar_domain *domain)
3456 {
3457 /* Domain 0 is reserved, so dont process it */
3458 if (!domain)
3459 return;
3460
3461 vm_domain_remove_all_dev_info(domain);
3462 /* destroy iovas */
3463 put_iova_domain(&domain->iovad);
3464
3465 /* clear ptes */
3466 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3467
3468 /* free page tables */
3469 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3470
3471 iommu_free_vm_domain(domain);
3472 free_domain_mem(domain);
3473 }
3474
3475 static int intel_iommu_domain_init(struct iommu_domain *domain)
3476 {
3477 struct dmar_domain *dmar_domain;
3478
3479 dmar_domain = iommu_alloc_vm_domain();
3480 if (!dmar_domain) {
3481 printk(KERN_ERR
3482 "intel_iommu_domain_init: dmar_domain == NULL\n");
3483 return -ENOMEM;
3484 }
3485 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3486 printk(KERN_ERR
3487 "intel_iommu_domain_init() failed\n");
3488 vm_domain_exit(dmar_domain);
3489 return -ENOMEM;
3490 }
3491 domain->priv = dmar_domain;
3492
3493 return 0;
3494 }
3495
3496 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3497 {
3498 struct dmar_domain *dmar_domain = domain->priv;
3499
3500 domain->priv = NULL;
3501 vm_domain_exit(dmar_domain);
3502 }
3503
3504 static int intel_iommu_attach_device(struct iommu_domain *domain,
3505 struct device *dev)
3506 {
3507 struct dmar_domain *dmar_domain = domain->priv;
3508 struct pci_dev *pdev = to_pci_dev(dev);
3509 struct intel_iommu *iommu;
3510 int addr_width;
3511 u64 end;
3512
3513 /* normally pdev is not mapped */
3514 if (unlikely(domain_context_mapped(pdev))) {
3515 struct dmar_domain *old_domain;
3516
3517 old_domain = find_domain(pdev);
3518 if (old_domain) {
3519 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3520 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3521 domain_remove_one_dev_info(old_domain, pdev);
3522 else
3523 domain_remove_dev_info(old_domain);
3524 }
3525 }
3526
3527 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3528 pdev->devfn);
3529 if (!iommu)
3530 return -ENODEV;
3531
3532 /* check if this iommu agaw is sufficient for max mapped address */
3533 addr_width = agaw_to_width(iommu->agaw);
3534 end = DOMAIN_MAX_ADDR(addr_width);
3535 end = end & VTD_PAGE_MASK;
3536 if (end < dmar_domain->max_addr) {
3537 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3538 "sufficient for the mapped address (%llx)\n",
3539 __func__, iommu->agaw, dmar_domain->max_addr);
3540 return -EFAULT;
3541 }
3542
3543 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3544 }
3545
3546 static void intel_iommu_detach_device(struct iommu_domain *domain,
3547 struct device *dev)
3548 {
3549 struct dmar_domain *dmar_domain = domain->priv;
3550 struct pci_dev *pdev = to_pci_dev(dev);
3551
3552 domain_remove_one_dev_info(dmar_domain, pdev);
3553 }
3554
3555 static int intel_iommu_map_range(struct iommu_domain *domain,
3556 unsigned long iova, phys_addr_t hpa,
3557 size_t size, int iommu_prot)
3558 {
3559 struct dmar_domain *dmar_domain = domain->priv;
3560 u64 max_addr;
3561 int addr_width;
3562 int prot = 0;
3563 int ret;
3564
3565 if (iommu_prot & IOMMU_READ)
3566 prot |= DMA_PTE_READ;
3567 if (iommu_prot & IOMMU_WRITE)
3568 prot |= DMA_PTE_WRITE;
3569 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3570 prot |= DMA_PTE_SNP;
3571
3572 max_addr = iova + size;
3573 if (dmar_domain->max_addr < max_addr) {
3574 int min_agaw;
3575 u64 end;
3576
3577 /* check if minimum agaw is sufficient for mapped address */
3578 min_agaw = vm_domain_min_agaw(dmar_domain);
3579 addr_width = agaw_to_width(min_agaw);
3580 end = DOMAIN_MAX_ADDR(addr_width);
3581 end = end & VTD_PAGE_MASK;
3582 if (end < max_addr) {
3583 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3584 "sufficient for the mapped address (%llx)\n",
3585 __func__, min_agaw, max_addr);
3586 return -EFAULT;
3587 }
3588 dmar_domain->max_addr = max_addr;
3589 }
3590 /* Round up size to next multiple of PAGE_SIZE, if it and
3591 the low bits of hpa would take us onto the next page */
3592 size = aligned_nrpages(hpa, size);
3593 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3594 hpa >> VTD_PAGE_SHIFT, size, prot);
3595 return ret;
3596 }
3597
3598 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3599 unsigned long iova, size_t size)
3600 {
3601 struct dmar_domain *dmar_domain = domain->priv;
3602
3603 if (!size)
3604 return;
3605
3606 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3607 (iova + size - 1) >> VTD_PAGE_SHIFT);
3608
3609 if (dmar_domain->max_addr == iova + size)
3610 dmar_domain->max_addr = iova;
3611 }
3612
3613 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3614 unsigned long iova)
3615 {
3616 struct dmar_domain *dmar_domain = domain->priv;
3617 struct dma_pte *pte;
3618 u64 phys = 0;
3619
3620 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3621 if (pte)
3622 phys = dma_pte_addr(pte);
3623
3624 return phys;
3625 }
3626
3627 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3628 unsigned long cap)
3629 {
3630 struct dmar_domain *dmar_domain = domain->priv;
3631
3632 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3633 return dmar_domain->iommu_snooping;
3634
3635 return 0;
3636 }
3637
3638 static struct iommu_ops intel_iommu_ops = {
3639 .domain_init = intel_iommu_domain_init,
3640 .domain_destroy = intel_iommu_domain_destroy,
3641 .attach_dev = intel_iommu_attach_device,
3642 .detach_dev = intel_iommu_detach_device,
3643 .map = intel_iommu_map_range,
3644 .unmap = intel_iommu_unmap_range,
3645 .iova_to_phys = intel_iommu_iova_to_phys,
3646 .domain_has_cap = intel_iommu_domain_has_cap,
3647 };
3648
3649 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3650 {
3651 /*
3652 * Mobile 4 Series Chipset neglects to set RWBF capability,
3653 * but needs it:
3654 */
3655 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3656 rwbf_quirk = 1;
3657 }
3658
3659 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);