]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/pci/pci-driver.c
drm/vc4: Add DSI driver
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 size_t retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = count;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202
203 static struct attribute *pci_drv_attrs[] = {
204 &driver_attr_new_id.attr,
205 &driver_attr_remove_id.attr,
206 NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209
210 /**
211 * pci_match_id - See if a pci device matches a given pci_id table
212 * @ids: array of PCI device id structures to search in
213 * @dev: the PCI device structure to match against.
214 *
215 * Used by a driver to check whether a PCI device present in the
216 * system is in its list of supported devices. Returns the matching
217 * pci_device_id structure or %NULL if there is no match.
218 *
219 * Deprecated, don't use this as it will not catch any dynamic ids
220 * that a driver might want to check for.
221 */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 struct pci_dev *dev)
224 {
225 if (ids) {
226 while (ids->vendor || ids->subvendor || ids->class_mask) {
227 if (pci_match_one_device(ids, dev))
228 return ids;
229 ids++;
230 }
231 }
232 return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235
236 static const struct pci_device_id pci_device_id_any = {
237 .vendor = PCI_ANY_ID,
238 .device = PCI_ANY_ID,
239 .subvendor = PCI_ANY_ID,
240 .subdevice = PCI_ANY_ID,
241 };
242
243 /**
244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245 * @drv: the PCI driver to match against
246 * @dev: the PCI device structure to match against
247 *
248 * Used by a driver to check whether a PCI device present in the
249 * system is in its list of supported devices. Returns the matching
250 * pci_device_id structure or %NULL if there is no match.
251 */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 struct pci_dev *dev)
254 {
255 struct pci_dynid *dynid;
256 const struct pci_device_id *found_id = NULL;
257
258 /* When driver_override is set, only bind to the matching driver */
259 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 return NULL;
261
262 /* Look at the dynamic ids first, before the static ones */
263 spin_lock(&drv->dynids.lock);
264 list_for_each_entry(dynid, &drv->dynids.list, node) {
265 if (pci_match_one_device(&dynid->id, dev)) {
266 found_id = &dynid->id;
267 break;
268 }
269 }
270 spin_unlock(&drv->dynids.lock);
271
272 if (!found_id)
273 found_id = pci_match_id(drv->id_table, dev);
274
275 /* driver_override will always match, send a dummy id */
276 if (!found_id && dev->driver_override)
277 found_id = &pci_device_id_any;
278
279 return found_id;
280 }
281
282 struct drv_dev_and_id {
283 struct pci_driver *drv;
284 struct pci_dev *dev;
285 const struct pci_device_id *id;
286 };
287
288 static long local_pci_probe(void *_ddi)
289 {
290 struct drv_dev_and_id *ddi = _ddi;
291 struct pci_dev *pci_dev = ddi->dev;
292 struct pci_driver *pci_drv = ddi->drv;
293 struct device *dev = &pci_dev->dev;
294 int rc;
295
296 /*
297 * Unbound PCI devices are always put in D0, regardless of
298 * runtime PM status. During probe, the device is set to
299 * active and the usage count is incremented. If the driver
300 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 * or any other runtime PM helper function decrementing the usage
302 * count, in its probe routine and pm_runtime_get_noresume() in
303 * its remove routine.
304 */
305 pm_runtime_get_sync(dev);
306 pci_dev->driver = pci_drv;
307 rc = pci_drv->probe(pci_dev, ddi->id);
308 if (!rc)
309 return rc;
310 if (rc < 0) {
311 pci_dev->driver = NULL;
312 pm_runtime_put_sync(dev);
313 return rc;
314 }
315 /*
316 * Probe function should return < 0 for failure, 0 for success
317 * Treat values > 0 as success, but warn.
318 */
319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 return 0;
321 }
322
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 const struct pci_device_id *id)
325 {
326 int error, node;
327 struct drv_dev_and_id ddi = { drv, dev, id };
328
329 /*
330 * Execute driver initialization on node where the device is
331 * attached. This way the driver likely allocates its local memory
332 * on the right node.
333 */
334 node = dev_to_node(&dev->dev);
335
336 /*
337 * On NUMA systems, we are likely to call a PF probe function using
338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
339 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 * this function to call the VF probe function. Calling
341 * work_on_cpu() again will cause a lockdep warning. Since VFs are
342 * always on the same node as the PF, we can work around this by
343 * avoiding work_on_cpu() when we're already on the correct node.
344 *
345 * Preemption is enabled, so it's theoretically unsafe to use
346 * numa_node_id(), but even if we run the probe function on the
347 * wrong node, it should be functionally correct.
348 */
349 if (node >= 0 && node != numa_node_id()) {
350 int cpu;
351
352 get_online_cpus();
353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 if (cpu < nr_cpu_ids)
355 error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 else
357 error = local_pci_probe(&ddi);
358 put_online_cpus();
359 } else
360 error = local_pci_probe(&ddi);
361
362 return error;
363 }
364
365 /**
366 * __pci_device_probe - check if a driver wants to claim a specific PCI device
367 * @drv: driver to call to check if it wants the PCI device
368 * @pci_dev: PCI device being probed
369 *
370 * returns 0 on success, else error.
371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372 */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 const struct pci_device_id *id;
376 int error = 0;
377
378 if (!pci_dev->driver && drv->probe) {
379 error = -ENODEV;
380
381 id = pci_match_device(drv, pci_dev);
382 if (id)
383 error = pci_call_probe(drv, pci_dev, id);
384 if (error >= 0)
385 error = 0;
386 }
387 return error;
388 }
389
390 int __weak pcibios_alloc_irq(struct pci_dev *dev)
391 {
392 return 0;
393 }
394
395 void __weak pcibios_free_irq(struct pci_dev *dev)
396 {
397 }
398
399 static int pci_device_probe(struct device *dev)
400 {
401 int error;
402 struct pci_dev *pci_dev = to_pci_dev(dev);
403 struct pci_driver *drv = to_pci_driver(dev->driver);
404
405 error = pcibios_alloc_irq(pci_dev);
406 if (error < 0)
407 return error;
408
409 pci_dev_get(pci_dev);
410 error = __pci_device_probe(drv, pci_dev);
411 if (error) {
412 pcibios_free_irq(pci_dev);
413 pci_dev_put(pci_dev);
414 }
415
416 return error;
417 }
418
419 static int pci_device_remove(struct device *dev)
420 {
421 struct pci_dev *pci_dev = to_pci_dev(dev);
422 struct pci_driver *drv = pci_dev->driver;
423
424 if (drv) {
425 if (drv->remove) {
426 pm_runtime_get_sync(dev);
427 drv->remove(pci_dev);
428 pm_runtime_put_noidle(dev);
429 }
430 pcibios_free_irq(pci_dev);
431 pci_dev->driver = NULL;
432 }
433
434 /* Undo the runtime PM settings in local_pci_probe() */
435 pm_runtime_put_sync(dev);
436
437 /*
438 * If the device is still on, set the power state as "unknown",
439 * since it might change by the next time we load the driver.
440 */
441 if (pci_dev->current_state == PCI_D0)
442 pci_dev->current_state = PCI_UNKNOWN;
443
444 /*
445 * We would love to complain here if pci_dev->is_enabled is set, that
446 * the driver should have called pci_disable_device(), but the
447 * unfortunate fact is there are too many odd BIOS and bridge setups
448 * that don't like drivers doing that all of the time.
449 * Oh well, we can dream of sane hardware when we sleep, no matter how
450 * horrible the crap we have to deal with is when we are awake...
451 */
452
453 pci_dev_put(pci_dev);
454 return 0;
455 }
456
457 static void pci_device_shutdown(struct device *dev)
458 {
459 struct pci_dev *pci_dev = to_pci_dev(dev);
460 struct pci_driver *drv = pci_dev->driver;
461
462 pm_runtime_resume(dev);
463
464 if (drv && drv->shutdown)
465 drv->shutdown(pci_dev);
466 pci_msi_shutdown(pci_dev);
467 pci_msix_shutdown(pci_dev);
468
469 /*
470 * If this is a kexec reboot, turn off Bus Master bit on the
471 * device to tell it to not continue to do DMA. Don't touch
472 * devices in D3cold or unknown states.
473 * If it is not a kexec reboot, firmware will hit the PCI
474 * devices with big hammer and stop their DMA any way.
475 */
476 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
477 pci_clear_master(pci_dev);
478 }
479
480 #ifdef CONFIG_PM
481
482 /* Auxiliary functions used for system resume and run-time resume. */
483
484 /**
485 * pci_restore_standard_config - restore standard config registers of PCI device
486 * @pci_dev: PCI device to handle
487 */
488 static int pci_restore_standard_config(struct pci_dev *pci_dev)
489 {
490 pci_update_current_state(pci_dev, PCI_UNKNOWN);
491
492 if (pci_dev->current_state != PCI_D0) {
493 int error = pci_set_power_state(pci_dev, PCI_D0);
494 if (error)
495 return error;
496 }
497
498 pci_restore_state(pci_dev);
499 return 0;
500 }
501
502 #endif
503
504 #ifdef CONFIG_PM_SLEEP
505
506 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
507 {
508 pci_power_up(pci_dev);
509 pci_restore_state(pci_dev);
510 pci_fixup_device(pci_fixup_resume_early, pci_dev);
511 }
512
513 /*
514 * Default "suspend" method for devices that have no driver provided suspend,
515 * or not even a driver at all (second part).
516 */
517 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
518 {
519 /*
520 * mark its power state as "unknown", since we don't know if
521 * e.g. the BIOS will change its device state when we suspend.
522 */
523 if (pci_dev->current_state == PCI_D0)
524 pci_dev->current_state = PCI_UNKNOWN;
525 }
526
527 /*
528 * Default "resume" method for devices that have no driver provided resume,
529 * or not even a driver at all (second part).
530 */
531 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
532 {
533 int retval;
534
535 /* if the device was enabled before suspend, reenable */
536 retval = pci_reenable_device(pci_dev);
537 /*
538 * if the device was busmaster before the suspend, make it busmaster
539 * again
540 */
541 if (pci_dev->is_busmaster)
542 pci_set_master(pci_dev);
543
544 return retval;
545 }
546
547 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
548 {
549 struct pci_dev *pci_dev = to_pci_dev(dev);
550 struct pci_driver *drv = pci_dev->driver;
551
552 if (drv && drv->suspend) {
553 pci_power_t prev = pci_dev->current_state;
554 int error;
555
556 error = drv->suspend(pci_dev, state);
557 suspend_report_result(drv->suspend, error);
558 if (error)
559 return error;
560
561 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
562 && pci_dev->current_state != PCI_UNKNOWN) {
563 WARN_ONCE(pci_dev->current_state != prev,
564 "PCI PM: Device state not saved by %pF\n",
565 drv->suspend);
566 }
567 }
568
569 pci_fixup_device(pci_fixup_suspend, pci_dev);
570
571 return 0;
572 }
573
574 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
575 {
576 struct pci_dev *pci_dev = to_pci_dev(dev);
577 struct pci_driver *drv = pci_dev->driver;
578
579 if (drv && drv->suspend_late) {
580 pci_power_t prev = pci_dev->current_state;
581 int error;
582
583 error = drv->suspend_late(pci_dev, state);
584 suspend_report_result(drv->suspend_late, error);
585 if (error)
586 return error;
587
588 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
589 && pci_dev->current_state != PCI_UNKNOWN) {
590 WARN_ONCE(pci_dev->current_state != prev,
591 "PCI PM: Device state not saved by %pF\n",
592 drv->suspend_late);
593 goto Fixup;
594 }
595 }
596
597 if (!pci_dev->state_saved)
598 pci_save_state(pci_dev);
599
600 pci_pm_set_unknown_state(pci_dev);
601
602 Fixup:
603 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
604
605 return 0;
606 }
607
608 static int pci_legacy_resume_early(struct device *dev)
609 {
610 struct pci_dev *pci_dev = to_pci_dev(dev);
611 struct pci_driver *drv = pci_dev->driver;
612
613 return drv && drv->resume_early ?
614 drv->resume_early(pci_dev) : 0;
615 }
616
617 static int pci_legacy_resume(struct device *dev)
618 {
619 struct pci_dev *pci_dev = to_pci_dev(dev);
620 struct pci_driver *drv = pci_dev->driver;
621
622 pci_fixup_device(pci_fixup_resume, pci_dev);
623
624 return drv && drv->resume ?
625 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
626 }
627
628 /* Auxiliary functions used by the new power management framework */
629
630 static void pci_pm_default_resume(struct pci_dev *pci_dev)
631 {
632 pci_fixup_device(pci_fixup_resume, pci_dev);
633
634 if (!pci_has_subordinate(pci_dev))
635 pci_enable_wake(pci_dev, PCI_D0, false);
636 }
637
638 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
639 {
640 /* Disable non-bridge devices without PM support */
641 if (!pci_has_subordinate(pci_dev))
642 pci_disable_enabled_device(pci_dev);
643 }
644
645 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
646 {
647 struct pci_driver *drv = pci_dev->driver;
648 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
649 || drv->resume_early);
650
651 /*
652 * Legacy PM support is used by default, so warn if the new framework is
653 * supported as well. Drivers are supposed to support either the
654 * former, or the latter, but not both at the same time.
655 */
656 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
657 drv->name, pci_dev->vendor, pci_dev->device);
658
659 return ret;
660 }
661
662 /* New power management framework */
663
664 static int pci_pm_prepare(struct device *dev)
665 {
666 struct device_driver *drv = dev->driver;
667
668 /*
669 * Devices having power.ignore_children set may still be necessary for
670 * suspending their children in the next phase of device suspend.
671 */
672 if (dev->power.ignore_children)
673 pm_runtime_resume(dev);
674
675 if (drv && drv->pm && drv->pm->prepare) {
676 int error = drv->pm->prepare(dev);
677 if (error)
678 return error;
679 }
680 return pci_dev_keep_suspended(to_pci_dev(dev));
681 }
682
683 static void pci_pm_complete(struct device *dev)
684 {
685 struct pci_dev *pci_dev = to_pci_dev(dev);
686
687 pci_dev_complete_resume(pci_dev);
688 pm_generic_complete(dev);
689
690 /* Resume device if platform firmware has put it in reset-power-on */
691 if (dev->power.direct_complete && pm_resume_via_firmware()) {
692 pci_power_t pre_sleep_state = pci_dev->current_state;
693
694 pci_update_current_state(pci_dev, pci_dev->current_state);
695 if (pci_dev->current_state < pre_sleep_state)
696 pm_request_resume(dev);
697 }
698 }
699
700 #else /* !CONFIG_PM_SLEEP */
701
702 #define pci_pm_prepare NULL
703 #define pci_pm_complete NULL
704
705 #endif /* !CONFIG_PM_SLEEP */
706
707 #ifdef CONFIG_SUSPEND
708
709 static int pci_pm_suspend(struct device *dev)
710 {
711 struct pci_dev *pci_dev = to_pci_dev(dev);
712 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
713
714 if (pci_has_legacy_pm_support(pci_dev))
715 return pci_legacy_suspend(dev, PMSG_SUSPEND);
716
717 if (!pm) {
718 pci_pm_default_suspend(pci_dev);
719 goto Fixup;
720 }
721
722 /*
723 * PCI devices suspended at run time need to be resumed at this point,
724 * because in general it is necessary to reconfigure them for system
725 * suspend. Namely, if the device is supposed to wake up the system
726 * from the sleep state, we may need to reconfigure it for this purpose.
727 * In turn, if the device is not supposed to wake up the system from the
728 * sleep state, we'll have to prevent it from signaling wake-up.
729 */
730 pm_runtime_resume(dev);
731
732 pci_dev->state_saved = false;
733 if (pm->suspend) {
734 pci_power_t prev = pci_dev->current_state;
735 int error;
736
737 error = pm->suspend(dev);
738 suspend_report_result(pm->suspend, error);
739 if (error)
740 return error;
741
742 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
743 && pci_dev->current_state != PCI_UNKNOWN) {
744 WARN_ONCE(pci_dev->current_state != prev,
745 "PCI PM: State of device not saved by %pF\n",
746 pm->suspend);
747 }
748 }
749
750 Fixup:
751 pci_fixup_device(pci_fixup_suspend, pci_dev);
752
753 return 0;
754 }
755
756 static int pci_pm_suspend_noirq(struct device *dev)
757 {
758 struct pci_dev *pci_dev = to_pci_dev(dev);
759 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
760
761 if (pci_has_legacy_pm_support(pci_dev))
762 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
763
764 if (!pm) {
765 pci_save_state(pci_dev);
766 goto Fixup;
767 }
768
769 if (pm->suspend_noirq) {
770 pci_power_t prev = pci_dev->current_state;
771 int error;
772
773 error = pm->suspend_noirq(dev);
774 suspend_report_result(pm->suspend_noirq, error);
775 if (error)
776 return error;
777
778 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
779 && pci_dev->current_state != PCI_UNKNOWN) {
780 WARN_ONCE(pci_dev->current_state != prev,
781 "PCI PM: State of device not saved by %pF\n",
782 pm->suspend_noirq);
783 goto Fixup;
784 }
785 }
786
787 if (!pci_dev->state_saved) {
788 pci_save_state(pci_dev);
789 if (pci_power_manageable(pci_dev))
790 pci_prepare_to_sleep(pci_dev);
791 }
792
793 pci_pm_set_unknown_state(pci_dev);
794
795 /*
796 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
797 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
798 * hasn't been quiesced and tries to turn it off. If the controller
799 * is already in D3, this can hang or cause memory corruption.
800 *
801 * Since the value of the COMMAND register doesn't matter once the
802 * device has been suspended, we can safely set it to 0 here.
803 */
804 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
805 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
806
807 Fixup:
808 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
809
810 return 0;
811 }
812
813 static int pci_pm_resume_noirq(struct device *dev)
814 {
815 struct pci_dev *pci_dev = to_pci_dev(dev);
816 struct device_driver *drv = dev->driver;
817 int error = 0;
818
819 pci_pm_default_resume_early(pci_dev);
820
821 if (pci_has_legacy_pm_support(pci_dev))
822 return pci_legacy_resume_early(dev);
823
824 if (drv && drv->pm && drv->pm->resume_noirq)
825 error = drv->pm->resume_noirq(dev);
826
827 return error;
828 }
829
830 static int pci_pm_resume(struct device *dev)
831 {
832 struct pci_dev *pci_dev = to_pci_dev(dev);
833 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
834 int error = 0;
835
836 /*
837 * This is necessary for the suspend error path in which resume is
838 * called without restoring the standard config registers of the device.
839 */
840 if (pci_dev->state_saved)
841 pci_restore_standard_config(pci_dev);
842
843 if (pci_has_legacy_pm_support(pci_dev))
844 return pci_legacy_resume(dev);
845
846 pci_pm_default_resume(pci_dev);
847
848 if (pm) {
849 if (pm->resume)
850 error = pm->resume(dev);
851 } else {
852 pci_pm_reenable_device(pci_dev);
853 }
854
855 return error;
856 }
857
858 #else /* !CONFIG_SUSPEND */
859
860 #define pci_pm_suspend NULL
861 #define pci_pm_suspend_noirq NULL
862 #define pci_pm_resume NULL
863 #define pci_pm_resume_noirq NULL
864
865 #endif /* !CONFIG_SUSPEND */
866
867 #ifdef CONFIG_HIBERNATE_CALLBACKS
868
869
870 /*
871 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
872 * a hibernate transition
873 */
874 struct dev_pm_ops __weak pcibios_pm_ops;
875
876 static int pci_pm_freeze(struct device *dev)
877 {
878 struct pci_dev *pci_dev = to_pci_dev(dev);
879 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
880
881 if (pci_has_legacy_pm_support(pci_dev))
882 return pci_legacy_suspend(dev, PMSG_FREEZE);
883
884 if (!pm) {
885 pci_pm_default_suspend(pci_dev);
886 return 0;
887 }
888
889 /*
890 * This used to be done in pci_pm_prepare() for all devices and some
891 * drivers may depend on it, so do it here. Ideally, runtime-suspended
892 * devices should not be touched during freeze/thaw transitions,
893 * however.
894 */
895 pm_runtime_resume(dev);
896
897 pci_dev->state_saved = false;
898 if (pm->freeze) {
899 int error;
900
901 error = pm->freeze(dev);
902 suspend_report_result(pm->freeze, error);
903 if (error)
904 return error;
905 }
906
907 if (pcibios_pm_ops.freeze)
908 return pcibios_pm_ops.freeze(dev);
909
910 return 0;
911 }
912
913 static int pci_pm_freeze_noirq(struct device *dev)
914 {
915 struct pci_dev *pci_dev = to_pci_dev(dev);
916 struct device_driver *drv = dev->driver;
917
918 if (pci_has_legacy_pm_support(pci_dev))
919 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
920
921 if (drv && drv->pm && drv->pm->freeze_noirq) {
922 int error;
923
924 error = drv->pm->freeze_noirq(dev);
925 suspend_report_result(drv->pm->freeze_noirq, error);
926 if (error)
927 return error;
928 }
929
930 if (!pci_dev->state_saved)
931 pci_save_state(pci_dev);
932
933 pci_pm_set_unknown_state(pci_dev);
934
935 if (pcibios_pm_ops.freeze_noirq)
936 return pcibios_pm_ops.freeze_noirq(dev);
937
938 return 0;
939 }
940
941 static int pci_pm_thaw_noirq(struct device *dev)
942 {
943 struct pci_dev *pci_dev = to_pci_dev(dev);
944 struct device_driver *drv = dev->driver;
945 int error = 0;
946
947 if (pcibios_pm_ops.thaw_noirq) {
948 error = pcibios_pm_ops.thaw_noirq(dev);
949 if (error)
950 return error;
951 }
952
953 if (pci_has_legacy_pm_support(pci_dev))
954 return pci_legacy_resume_early(dev);
955
956 pci_update_current_state(pci_dev, PCI_D0);
957
958 if (drv && drv->pm && drv->pm->thaw_noirq)
959 error = drv->pm->thaw_noirq(dev);
960
961 return error;
962 }
963
964 static int pci_pm_thaw(struct device *dev)
965 {
966 struct pci_dev *pci_dev = to_pci_dev(dev);
967 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
968 int error = 0;
969
970 if (pcibios_pm_ops.thaw) {
971 error = pcibios_pm_ops.thaw(dev);
972 if (error)
973 return error;
974 }
975
976 if (pci_has_legacy_pm_support(pci_dev))
977 return pci_legacy_resume(dev);
978
979 if (pm) {
980 if (pm->thaw)
981 error = pm->thaw(dev);
982 } else {
983 pci_pm_reenable_device(pci_dev);
984 }
985
986 pci_dev->state_saved = false;
987
988 return error;
989 }
990
991 static int pci_pm_poweroff(struct device *dev)
992 {
993 struct pci_dev *pci_dev = to_pci_dev(dev);
994 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
995
996 if (pci_has_legacy_pm_support(pci_dev))
997 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
998
999 if (!pm) {
1000 pci_pm_default_suspend(pci_dev);
1001 goto Fixup;
1002 }
1003
1004 /* The reason to do that is the same as in pci_pm_suspend(). */
1005 pm_runtime_resume(dev);
1006
1007 pci_dev->state_saved = false;
1008 if (pm->poweroff) {
1009 int error;
1010
1011 error = pm->poweroff(dev);
1012 suspend_report_result(pm->poweroff, error);
1013 if (error)
1014 return error;
1015 }
1016
1017 Fixup:
1018 pci_fixup_device(pci_fixup_suspend, pci_dev);
1019
1020 if (pcibios_pm_ops.poweroff)
1021 return pcibios_pm_ops.poweroff(dev);
1022
1023 return 0;
1024 }
1025
1026 static int pci_pm_poweroff_noirq(struct device *dev)
1027 {
1028 struct pci_dev *pci_dev = to_pci_dev(dev);
1029 struct device_driver *drv = dev->driver;
1030
1031 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1032 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1033
1034 if (!drv || !drv->pm) {
1035 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1036 return 0;
1037 }
1038
1039 if (drv->pm->poweroff_noirq) {
1040 int error;
1041
1042 error = drv->pm->poweroff_noirq(dev);
1043 suspend_report_result(drv->pm->poweroff_noirq, error);
1044 if (error)
1045 return error;
1046 }
1047
1048 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1049 pci_prepare_to_sleep(pci_dev);
1050
1051 /*
1052 * The reason for doing this here is the same as for the analogous code
1053 * in pci_pm_suspend_noirq().
1054 */
1055 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1056 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1057
1058 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1059
1060 if (pcibios_pm_ops.poweroff_noirq)
1061 return pcibios_pm_ops.poweroff_noirq(dev);
1062
1063 return 0;
1064 }
1065
1066 static int pci_pm_restore_noirq(struct device *dev)
1067 {
1068 struct pci_dev *pci_dev = to_pci_dev(dev);
1069 struct device_driver *drv = dev->driver;
1070 int error = 0;
1071
1072 if (pcibios_pm_ops.restore_noirq) {
1073 error = pcibios_pm_ops.restore_noirq(dev);
1074 if (error)
1075 return error;
1076 }
1077
1078 pci_pm_default_resume_early(pci_dev);
1079
1080 if (pci_has_legacy_pm_support(pci_dev))
1081 return pci_legacy_resume_early(dev);
1082
1083 if (drv && drv->pm && drv->pm->restore_noirq)
1084 error = drv->pm->restore_noirq(dev);
1085
1086 return error;
1087 }
1088
1089 static int pci_pm_restore(struct device *dev)
1090 {
1091 struct pci_dev *pci_dev = to_pci_dev(dev);
1092 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1093 int error = 0;
1094
1095 if (pcibios_pm_ops.restore) {
1096 error = pcibios_pm_ops.restore(dev);
1097 if (error)
1098 return error;
1099 }
1100
1101 /*
1102 * This is necessary for the hibernation error path in which restore is
1103 * called without restoring the standard config registers of the device.
1104 */
1105 if (pci_dev->state_saved)
1106 pci_restore_standard_config(pci_dev);
1107
1108 if (pci_has_legacy_pm_support(pci_dev))
1109 return pci_legacy_resume(dev);
1110
1111 pci_pm_default_resume(pci_dev);
1112
1113 if (pm) {
1114 if (pm->restore)
1115 error = pm->restore(dev);
1116 } else {
1117 pci_pm_reenable_device(pci_dev);
1118 }
1119
1120 return error;
1121 }
1122
1123 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1124
1125 #define pci_pm_freeze NULL
1126 #define pci_pm_freeze_noirq NULL
1127 #define pci_pm_thaw NULL
1128 #define pci_pm_thaw_noirq NULL
1129 #define pci_pm_poweroff NULL
1130 #define pci_pm_poweroff_noirq NULL
1131 #define pci_pm_restore NULL
1132 #define pci_pm_restore_noirq NULL
1133
1134 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1135
1136 #ifdef CONFIG_PM
1137
1138 static int pci_pm_runtime_suspend(struct device *dev)
1139 {
1140 struct pci_dev *pci_dev = to_pci_dev(dev);
1141 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1142 pci_power_t prev = pci_dev->current_state;
1143 int error;
1144
1145 /*
1146 * If pci_dev->driver is not set (unbound), the device should
1147 * always remain in D0 regardless of the runtime PM status
1148 */
1149 if (!pci_dev->driver)
1150 return 0;
1151
1152 if (!pm || !pm->runtime_suspend)
1153 return -ENOSYS;
1154
1155 pci_dev->state_saved = false;
1156 error = pm->runtime_suspend(dev);
1157 if (error) {
1158 /*
1159 * -EBUSY and -EAGAIN is used to request the runtime PM core
1160 * to schedule a new suspend, so log the event only with debug
1161 * log level.
1162 */
1163 if (error == -EBUSY || error == -EAGAIN)
1164 dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1165 pm->runtime_suspend, error);
1166 else
1167 dev_err(dev, "can't suspend (%pf returned %d)\n",
1168 pm->runtime_suspend, error);
1169
1170 return error;
1171 }
1172
1173 pci_fixup_device(pci_fixup_suspend, pci_dev);
1174
1175 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1176 && pci_dev->current_state != PCI_UNKNOWN) {
1177 WARN_ONCE(pci_dev->current_state != prev,
1178 "PCI PM: State of device not saved by %pF\n",
1179 pm->runtime_suspend);
1180 return 0;
1181 }
1182
1183 if (!pci_dev->state_saved) {
1184 pci_save_state(pci_dev);
1185 pci_finish_runtime_suspend(pci_dev);
1186 }
1187
1188 return 0;
1189 }
1190
1191 static int pci_pm_runtime_resume(struct device *dev)
1192 {
1193 int rc;
1194 struct pci_dev *pci_dev = to_pci_dev(dev);
1195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1196
1197 /*
1198 * If pci_dev->driver is not set (unbound), the device should
1199 * always remain in D0 regardless of the runtime PM status
1200 */
1201 if (!pci_dev->driver)
1202 return 0;
1203
1204 if (!pm || !pm->runtime_resume)
1205 return -ENOSYS;
1206
1207 pci_restore_standard_config(pci_dev);
1208 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1209 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1210 pci_fixup_device(pci_fixup_resume, pci_dev);
1211
1212 rc = pm->runtime_resume(dev);
1213
1214 pci_dev->runtime_d3cold = false;
1215
1216 return rc;
1217 }
1218
1219 static int pci_pm_runtime_idle(struct device *dev)
1220 {
1221 struct pci_dev *pci_dev = to_pci_dev(dev);
1222 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1223 int ret = 0;
1224
1225 /*
1226 * If pci_dev->driver is not set (unbound), the device should
1227 * always remain in D0 regardless of the runtime PM status
1228 */
1229 if (!pci_dev->driver)
1230 return 0;
1231
1232 if (!pm)
1233 return -ENOSYS;
1234
1235 if (pm->runtime_idle)
1236 ret = pm->runtime_idle(dev);
1237
1238 return ret;
1239 }
1240
1241 static const struct dev_pm_ops pci_dev_pm_ops = {
1242 .prepare = pci_pm_prepare,
1243 .complete = pci_pm_complete,
1244 .suspend = pci_pm_suspend,
1245 .resume = pci_pm_resume,
1246 .freeze = pci_pm_freeze,
1247 .thaw = pci_pm_thaw,
1248 .poweroff = pci_pm_poweroff,
1249 .restore = pci_pm_restore,
1250 .suspend_noirq = pci_pm_suspend_noirq,
1251 .resume_noirq = pci_pm_resume_noirq,
1252 .freeze_noirq = pci_pm_freeze_noirq,
1253 .thaw_noirq = pci_pm_thaw_noirq,
1254 .poweroff_noirq = pci_pm_poweroff_noirq,
1255 .restore_noirq = pci_pm_restore_noirq,
1256 .runtime_suspend = pci_pm_runtime_suspend,
1257 .runtime_resume = pci_pm_runtime_resume,
1258 .runtime_idle = pci_pm_runtime_idle,
1259 };
1260
1261 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1262
1263 #else /* !CONFIG_PM */
1264
1265 #define pci_pm_runtime_suspend NULL
1266 #define pci_pm_runtime_resume NULL
1267 #define pci_pm_runtime_idle NULL
1268
1269 #define PCI_PM_OPS_PTR NULL
1270
1271 #endif /* !CONFIG_PM */
1272
1273 /**
1274 * __pci_register_driver - register a new pci driver
1275 * @drv: the driver structure to register
1276 * @owner: owner module of drv
1277 * @mod_name: module name string
1278 *
1279 * Adds the driver structure to the list of registered drivers.
1280 * Returns a negative value on error, otherwise 0.
1281 * If no error occurred, the driver remains registered even if
1282 * no device was claimed during registration.
1283 */
1284 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1285 const char *mod_name)
1286 {
1287 /* initialize common driver fields */
1288 drv->driver.name = drv->name;
1289 drv->driver.bus = &pci_bus_type;
1290 drv->driver.owner = owner;
1291 drv->driver.mod_name = mod_name;
1292
1293 spin_lock_init(&drv->dynids.lock);
1294 INIT_LIST_HEAD(&drv->dynids.list);
1295
1296 /* register with core */
1297 return driver_register(&drv->driver);
1298 }
1299 EXPORT_SYMBOL(__pci_register_driver);
1300
1301 /**
1302 * pci_unregister_driver - unregister a pci driver
1303 * @drv: the driver structure to unregister
1304 *
1305 * Deletes the driver structure from the list of registered PCI drivers,
1306 * gives it a chance to clean up by calling its remove() function for
1307 * each device it was responsible for, and marks those devices as
1308 * driverless.
1309 */
1310
1311 void pci_unregister_driver(struct pci_driver *drv)
1312 {
1313 driver_unregister(&drv->driver);
1314 pci_free_dynids(drv);
1315 }
1316 EXPORT_SYMBOL(pci_unregister_driver);
1317
1318 static struct pci_driver pci_compat_driver = {
1319 .name = "compat"
1320 };
1321
1322 /**
1323 * pci_dev_driver - get the pci_driver of a device
1324 * @dev: the device to query
1325 *
1326 * Returns the appropriate pci_driver structure or %NULL if there is no
1327 * registered driver for the device.
1328 */
1329 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1330 {
1331 if (dev->driver)
1332 return dev->driver;
1333 else {
1334 int i;
1335 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1336 if (dev->resource[i].flags & IORESOURCE_BUSY)
1337 return &pci_compat_driver;
1338 }
1339 return NULL;
1340 }
1341 EXPORT_SYMBOL(pci_dev_driver);
1342
1343 /**
1344 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1345 * @dev: the PCI device structure to match against
1346 * @drv: the device driver to search for matching PCI device id structures
1347 *
1348 * Used by a driver to check whether a PCI device present in the
1349 * system is in its list of supported devices. Returns the matching
1350 * pci_device_id structure or %NULL if there is no match.
1351 */
1352 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1353 {
1354 struct pci_dev *pci_dev = to_pci_dev(dev);
1355 struct pci_driver *pci_drv;
1356 const struct pci_device_id *found_id;
1357
1358 if (!pci_dev->match_driver)
1359 return 0;
1360
1361 pci_drv = to_pci_driver(drv);
1362 found_id = pci_match_device(pci_drv, pci_dev);
1363 if (found_id)
1364 return 1;
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * pci_dev_get - increments the reference count of the pci device structure
1371 * @dev: the device being referenced
1372 *
1373 * Each live reference to a device should be refcounted.
1374 *
1375 * Drivers for PCI devices should normally record such references in
1376 * their probe() methods, when they bind to a device, and release
1377 * them by calling pci_dev_put(), in their disconnect() methods.
1378 *
1379 * A pointer to the device with the incremented reference counter is returned.
1380 */
1381 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1382 {
1383 if (dev)
1384 get_device(&dev->dev);
1385 return dev;
1386 }
1387 EXPORT_SYMBOL(pci_dev_get);
1388
1389 /**
1390 * pci_dev_put - release a use of the pci device structure
1391 * @dev: device that's been disconnected
1392 *
1393 * Must be called when a user of a device is finished with it. When the last
1394 * user of the device calls this function, the memory of the device is freed.
1395 */
1396 void pci_dev_put(struct pci_dev *dev)
1397 {
1398 if (dev)
1399 put_device(&dev->dev);
1400 }
1401 EXPORT_SYMBOL(pci_dev_put);
1402
1403 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1404 {
1405 struct pci_dev *pdev;
1406
1407 if (!dev)
1408 return -ENODEV;
1409
1410 pdev = to_pci_dev(dev);
1411
1412 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1413 return -ENOMEM;
1414
1415 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1416 return -ENOMEM;
1417
1418 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1419 pdev->subsystem_device))
1420 return -ENOMEM;
1421
1422 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1423 return -ENOMEM;
1424
1425 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1426 pdev->vendor, pdev->device,
1427 pdev->subsystem_vendor, pdev->subsystem_device,
1428 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1429 (u8)(pdev->class)))
1430 return -ENOMEM;
1431
1432 return 0;
1433 }
1434
1435 struct bus_type pci_bus_type = {
1436 .name = "pci",
1437 .match = pci_bus_match,
1438 .uevent = pci_uevent,
1439 .probe = pci_device_probe,
1440 .remove = pci_device_remove,
1441 .shutdown = pci_device_shutdown,
1442 .dev_groups = pci_dev_groups,
1443 .bus_groups = pci_bus_groups,
1444 .drv_groups = pci_drv_groups,
1445 .pm = PCI_PM_OPS_PTR,
1446 };
1447 EXPORT_SYMBOL(pci_bus_type);
1448
1449 static int __init pci_driver_init(void)
1450 {
1451 return bus_register(&pci_bus_type);
1452 }
1453 postcore_initcall(pci_driver_init);